Random Forest
library(randomForest)
## Warning: package 'randomForest' was built under R version 4.4.1
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
library(caret)
## Warning: package 'caret' was built under R version 4.4.1
## Loading required package: ggplot2
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:randomForest':
##
## margin
## Loading required package: lattice
library(e1071)
## Warning: package 'e1071' was built under R version 4.4.1
df <- read.csv("C:/Users/eleyva1/Downloads/heart.csv")
summary(df)
## age sex cp trestbps
## Min. :29.00 Min. :0.0000 Min. :0.0000 Min. : 94.0
## 1st Qu.:48.00 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:120.0
## Median :56.00 Median :1.0000 Median :1.0000 Median :130.0
## Mean :54.43 Mean :0.6956 Mean :0.9424 Mean :131.6
## 3rd Qu.:61.00 3rd Qu.:1.0000 3rd Qu.:2.0000 3rd Qu.:140.0
## Max. :77.00 Max. :1.0000 Max. :3.0000 Max. :200.0
## chol fbs restecg thalach
## Min. :126 Min. :0.0000 Min. :0.0000 Min. : 71.0
## 1st Qu.:211 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:132.0
## Median :240 Median :0.0000 Median :1.0000 Median :152.0
## Mean :246 Mean :0.1493 Mean :0.5298 Mean :149.1
## 3rd Qu.:275 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:166.0
## Max. :564 Max. :1.0000 Max. :2.0000 Max. :202.0
## exang oldpeak slope ca
## Min. :0.0000 Min. :0.000 Min. :0.000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:1.000 1st Qu.:0.0000
## Median :0.0000 Median :0.800 Median :1.000 Median :0.0000
## Mean :0.3366 Mean :1.072 Mean :1.385 Mean :0.7541
## 3rd Qu.:1.0000 3rd Qu.:1.800 3rd Qu.:2.000 3rd Qu.:1.0000
## Max. :1.0000 Max. :6.200 Max. :2.000 Max. :4.0000
## thal target
## Min. :0.000 Min. :0.0000
## 1st Qu.:2.000 1st Qu.:0.0000
## Median :2.000 Median :1.0000
## Mean :2.324 Mean :0.5132
## 3rd Qu.:3.000 3rd Qu.:1.0000
## Max. :3.000 Max. :1.0000
str(df)
## 'data.frame': 1025 obs. of 14 variables:
## $ age : int 52 53 70 61 62 58 58 55 46 54 ...
## $ sex : int 1 1 1 1 0 0 1 1 1 1 ...
## $ cp : int 0 0 0 0 0 0 0 0 0 0 ...
## $ trestbps: int 125 140 145 148 138 100 114 160 120 122 ...
## $ chol : int 212 203 174 203 294 248 318 289 249 286 ...
## $ fbs : int 0 1 0 0 1 0 0 0 0 0 ...
## $ restecg : int 1 0 1 1 1 0 2 0 0 0 ...
## $ thalach : int 168 155 125 161 106 122 140 145 144 116 ...
## $ exang : int 0 1 1 0 0 0 0 1 0 1 ...
## $ oldpeak : num 1 3.1 2.6 0 1.9 1 4.4 0.8 0.8 3.2 ...
## $ slope : int 2 0 0 2 1 1 0 1 2 1 ...
## $ ca : int 2 0 0 1 3 0 3 1 0 2 ...
## $ thal : int 3 3 3 3 2 2 1 3 3 2 ...
## $ target : int 0 0 0 0 0 1 0 0 0 0 ...
df$target <- as.factor(df$target)
summary(df)
## age sex cp trestbps
## Min. :29.00 Min. :0.0000 Min. :0.0000 Min. : 94.0
## 1st Qu.:48.00 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:120.0
## Median :56.00 Median :1.0000 Median :1.0000 Median :130.0
## Mean :54.43 Mean :0.6956 Mean :0.9424 Mean :131.6
## 3rd Qu.:61.00 3rd Qu.:1.0000 3rd Qu.:2.0000 3rd Qu.:140.0
## Max. :77.00 Max. :1.0000 Max. :3.0000 Max. :200.0
## chol fbs restecg thalach
## Min. :126 Min. :0.0000 Min. :0.0000 Min. : 71.0
## 1st Qu.:211 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:132.0
## Median :240 Median :0.0000 Median :1.0000 Median :152.0
## Mean :246 Mean :0.1493 Mean :0.5298 Mean :149.1
## 3rd Qu.:275 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:166.0
## Max. :564 Max. :1.0000 Max. :2.0000 Max. :202.0
## exang oldpeak slope ca
## Min. :0.0000 Min. :0.000 Min. :0.000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:1.000 1st Qu.:0.0000
## Median :0.0000 Median :0.800 Median :1.000 Median :0.0000
## Mean :0.3366 Mean :1.072 Mean :1.385 Mean :0.7541
## 3rd Qu.:1.0000 3rd Qu.:1.800 3rd Qu.:2.000 3rd Qu.:1.0000
## Max. :1.0000 Max. :6.200 Max. :2.000 Max. :4.0000
## thal target
## Min. :0.000 0:499
## 1st Qu.:2.000 1:526
## Median :2.000
## Mean :2.324
## 3rd Qu.:3.000
## Max. :3.000
str(df)
## 'data.frame': 1025 obs. of 14 variables:
## $ age : int 52 53 70 61 62 58 58 55 46 54 ...
## $ sex : int 1 1 1 1 0 0 1 1 1 1 ...
## $ cp : int 0 0 0 0 0 0 0 0 0 0 ...
## $ trestbps: int 125 140 145 148 138 100 114 160 120 122 ...
## $ chol : int 212 203 174 203 294 248 318 289 249 286 ...
## $ fbs : int 0 1 0 0 1 0 0 0 0 0 ...
## $ restecg : int 1 0 1 1 1 0 2 0 0 0 ...
## $ thalach : int 168 155 125 161 106 122 140 145 144 116 ...
## $ exang : int 0 1 1 0 0 0 0 1 0 1 ...
## $ oldpeak : num 1 3.1 2.6 0 1.9 1 4.4 0.8 0.8 3.2 ...
## $ slope : int 2 0 0 2 1 1 0 1 2 1 ...
## $ ca : int 2 0 0 1 3 0 3 1 0 2 ...
## $ thal : int 3 3 3 3 2 2 1 3 3 2 ...
## $ target : Factor w/ 2 levels "0","1": 1 1 1 1 1 2 1 1 1 1 ...
set.seed(123)
renglones_entrenamiento <- createDataPartition(df$target, p=0.8, list=FALSE)
entrenamiento <- df[renglones_entrenamiento, ]
prueba <- df[-renglones_entrenamiento, ]
Modelo SVM Linear
modelo <- svm(target ~ ., data = entrenamiento, kernel= "linear")
resultado_entrenamiento <- predict(modelo,entrenamiento)
resultado_prueba <- predict(modelo,prueba)
# Matriz de Confusión
mcre <- confusionMatrix(resultado_entrenamiento, entrenamiento$target) # matriz de confusión del resultado del entrenamiento
mcre
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 301 37
## 1 99 384
##
## Accuracy : 0.8343
## 95% CI : (0.8071, 0.8592)
## No Information Rate : 0.5128
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.6672
##
## Mcnemar's Test P-Value : 1.689e-07
##
## Sensitivity : 0.7525
## Specificity : 0.9121
## Pos Pred Value : 0.8905
## Neg Pred Value : 0.7950
## Prevalence : 0.4872
## Detection Rate : 0.3666
## Detection Prevalence : 0.4117
## Balanced Accuracy : 0.8323
##
## 'Positive' Class : 0
##
mcrp <- confusionMatrix(resultado_prueba,prueba$target) # matriz de confusión del resultado de la prueba
mcrp
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 78 10
## 1 21 95
##
## Accuracy : 0.848
## 95% CI : (0.7913, 0.8944)
## No Information Rate : 0.5147
## P-Value [Acc > NIR] : < 2e-16
##
## Kappa : 0.6948
##
## Mcnemar's Test P-Value : 0.07249
##
## Sensitivity : 0.7879
## Specificity : 0.9048
## Pos Pred Value : 0.8864
## Neg Pred Value : 0.8190
## Prevalence : 0.4853
## Detection Rate : 0.3824
## Detection Prevalence : 0.4314
## Balanced Accuracy : 0.8463
##
## 'Positive' Class : 0
##
resultados <- data.frame("SVM Lineal" = c(mcre$overall["Accuracy"], mcrp$overall["Accuracy"]))
rownames(resultados) <- c("Precision de entrenamiento", "Precision de prueba")
resultados
## SVM.Lineal
## Precision de entrenamiento 0.8343484
## Precision de prueba 0.8480392
paciente <- data.frame(
age = 58,
sex = 0,
cp = 0,
trestbps = 100,
chol = 248,
fbs = 0,
restecg = 0,
thalach = 122,
exang = 0,
oldpeak = 1,
slope = 1,
ca = 0,
thal = 2
)
prediccion <- predict(modelo, paciente)
if(prediccion == 1) {
print("Tiene enfermedad cardíaca")
} else {
print("No tiene enfermedad cardíaca")
}
## [1] "Tiene enfermedad cardíaca"
En consluión, la maquina de vectores de soporte es una herramienta
robusta para la prediccion de diagnostico en enfermedad cardiaca.
LS0tDQp0aXRsZTogIk1hcXVpbmEgZGUgdmVjdG9yZXMgZGUgc29wb3J0ZS4iDQphdXRob3I6ICJFZHVhcmRvIExleXZhIg0KZGF0ZTogIjIwMjQtMDgtMjIiDQpvdXRwdXQ6IA0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogVFJVRQ0KICAgIHRvY19mbG9hdDogVFJVRQ0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCiAgICB0aGVtZTogY2VydWxlYW4NCmVkaXRvcl9vcHRpb25zOiANCiAgY2h1bmtfb3V0cHV0X3R5cGU6IGNvbnNvbGUNCi0tLQ0KDQojIyMjIFJhbmRvbSBGb3Jlc3QNCg0KYGBge3J9DQpsaWJyYXJ5KHJhbmRvbUZvcmVzdCkNCmxpYnJhcnkoY2FyZXQpDQpsaWJyYXJ5KGUxMDcxKQ0KYGBgDQoNCmBgYHtyfQ0KZGYgPC0gcmVhZC5jc3YoIkM6L1VzZXJzL2VsZXl2YTEvRG93bmxvYWRzL2hlYXJ0LmNzdiIpDQoNCnN1bW1hcnkoZGYpDQpzdHIoZGYpDQpkZiR0YXJnZXQgPC0gYXMuZmFjdG9yKGRmJHRhcmdldCkNCnN1bW1hcnkoZGYpDQpzdHIoZGYpDQpgYGANCg0KYGBge3J9DQpzZXQuc2VlZCgxMjMpDQpyZW5nbG9uZXNfZW50cmVuYW1pZW50byA8LSBjcmVhdGVEYXRhUGFydGl0aW9uKGRmJHRhcmdldCwgcD0wLjgsIGxpc3Q9RkFMU0UpDQplbnRyZW5hbWllbnRvIDwtIGRmW3Jlbmdsb25lc19lbnRyZW5hbWllbnRvLCBdDQpwcnVlYmEgPC0gZGZbLXJlbmdsb25lc19lbnRyZW5hbWllbnRvLCBdDQpgYGANCg0KIyMjIyMgTW9kZWxvIFNWTSBMaW5lYXINCg0KYGBge3J9DQptb2RlbG8gPC0gc3ZtKHRhcmdldCB+IC4sIGRhdGEgPSBlbnRyZW5hbWllbnRvLCBrZXJuZWw9ICJsaW5lYXIiKQ0KcmVzdWx0YWRvX2VudHJlbmFtaWVudG8gPC0gcHJlZGljdChtb2RlbG8sZW50cmVuYW1pZW50bykNCnJlc3VsdGFkb19wcnVlYmEgPC0gcHJlZGljdChtb2RlbG8scHJ1ZWJhKQ0KDQojIE1hdHJpeiBkZSBDb25mdXNpw7NuDQptY3JlIDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fZW50cmVuYW1pZW50bywgZW50cmVuYW1pZW50byR0YXJnZXQpICMgbWF0cml6IGRlIGNvbmZ1c2nDs24gZGVsIHJlc3VsdGFkbyBkZWwgZW50cmVuYW1pZW50bw0KbWNyZQ0KbWNycCA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX3BydWViYSxwcnVlYmEkdGFyZ2V0KSAjIG1hdHJpeiBkZSBjb25mdXNpw7NuIGRlbCByZXN1bHRhZG8gZGUgbGEgcHJ1ZWJhDQptY3JwDQoNCg0KcmVzdWx0YWRvcyA8LSBkYXRhLmZyYW1lKCJTVk0gTGluZWFsIiA9IGMobWNyZSRvdmVyYWxsWyJBY2N1cmFjeSJdLCBtY3JwJG92ZXJhbGxbIkFjY3VyYWN5Il0pKQ0Kcm93bmFtZXMocmVzdWx0YWRvcykgPC0gYygiUHJlY2lzaW9uIGRlIGVudHJlbmFtaWVudG8iLCAiUHJlY2lzaW9uIGRlIHBydWViYSIpDQpyZXN1bHRhZG9zDQpgYGANCg0KYGBge3J9DQpwYWNpZW50ZSA8LSBkYXRhLmZyYW1lKA0KICBhZ2UgPSA1OCwNCiAgc2V4ID0gMCwNCiAgY3AgPSAwLA0KICB0cmVzdGJwcyA9IDEwMCwNCiAgY2hvbCA9IDI0OCwNCiAgZmJzID0gMCwNCiAgcmVzdGVjZyA9IDAsDQogIHRoYWxhY2ggPSAxMjIsDQogIGV4YW5nID0gMCwNCiAgb2xkcGVhayA9IDEsDQogIHNsb3BlID0gMSwNCiAgY2EgPSAwLA0KICB0aGFsID0gMg0KKQ0KYGBgDQoNCmBgYHtyfQ0KcHJlZGljY2lvbiA8LSBwcmVkaWN0KG1vZGVsbywgcGFjaWVudGUpDQoNCmlmKHByZWRpY2Npb24gPT0gMSkgew0KICBwcmludCgiVGllbmUgZW5mZXJtZWRhZCBjYXJkw61hY2EiKQ0KfSBlbHNlIHsNCiAgcHJpbnQoIk5vIHRpZW5lIGVuZmVybWVkYWQgY2FyZMOtYWNhIikNCn0NCmBgYA0KDQojIyMjIyBFbiBjb25zbHVpw7NuLCBsYSBtYXF1aW5hIGRlIHZlY3RvcmVzIGRlIHNvcG9ydGUgZXMgdW5hIGhlcnJhbWllbnRhIHJvYnVzdGEgcGFyYSBsYSBwcmVkaWNjaW9uIGRlIGRpYWdub3N0aWNvIGVuIGVuZmVybWVkYWQgY2FyZGlhY2Eu