# Instalar paquetes y llamar librerías
# install.packages("e1071")
library(e1071)
# install.packages("caret") 
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
# Crear la base de datos
df <- read.csv("/Users/constantinomilletxacur/Desktop/Concentracion/Modulo 2/heart.csv")
# file.choose()
# Análisis exploratorio
summary(df)
##       age             sex               cp            trestbps    
##  Min.   :29.00   Min.   :0.0000   Min.   :0.0000   Min.   : 94.0  
##  1st Qu.:48.00   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:120.0  
##  Median :56.00   Median :1.0000   Median :1.0000   Median :130.0  
##  Mean   :54.43   Mean   :0.6956   Mean   :0.9424   Mean   :131.6  
##  3rd Qu.:61.00   3rd Qu.:1.0000   3rd Qu.:2.0000   3rd Qu.:140.0  
##  Max.   :77.00   Max.   :1.0000   Max.   :3.0000   Max.   :200.0  
##       chol          fbs            restecg          thalach     
##  Min.   :126   Min.   :0.0000   Min.   :0.0000   Min.   : 71.0  
##  1st Qu.:211   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:132.0  
##  Median :240   Median :0.0000   Median :1.0000   Median :152.0  
##  Mean   :246   Mean   :0.1493   Mean   :0.5298   Mean   :149.1  
##  3rd Qu.:275   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:166.0  
##  Max.   :564   Max.   :1.0000   Max.   :2.0000   Max.   :202.0  
##      exang           oldpeak          slope             ca        
##  Min.   :0.0000   Min.   :0.000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:1.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.800   Median :1.000   Median :0.0000  
##  Mean   :0.3366   Mean   :1.072   Mean   :1.385   Mean   :0.7541  
##  3rd Qu.:1.0000   3rd Qu.:1.800   3rd Qu.:2.000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :6.200   Max.   :2.000   Max.   :4.0000  
##       thal           target      
##  Min.   :0.000   Min.   :0.0000  
##  1st Qu.:2.000   1st Qu.:0.0000  
##  Median :2.000   Median :1.0000  
##  Mean   :2.324   Mean   :0.5132  
##  3rd Qu.:3.000   3rd Qu.:1.0000  
##  Max.   :3.000   Max.   :1.0000
str(df)
## 'data.frame':    1025 obs. of  14 variables:
##  $ age     : int  52 53 70 61 62 58 58 55 46 54 ...
##  $ sex     : int  1 1 1 1 0 0 1 1 1 1 ...
##  $ cp      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trestbps: int  125 140 145 148 138 100 114 160 120 122 ...
##  $ chol    : int  212 203 174 203 294 248 318 289 249 286 ...
##  $ fbs     : int  0 1 0 0 1 0 0 0 0 0 ...
##  $ restecg : int  1 0 1 1 1 0 2 0 0 0 ...
##  $ thalach : int  168 155 125 161 106 122 140 145 144 116 ...
##  $ exang   : int  0 1 1 0 0 0 0 1 0 1 ...
##  $ oldpeak : num  1 3.1 2.6 0 1.9 1 4.4 0.8 0.8 3.2 ...
##  $ slope   : int  2 0 0 2 1 1 0 1 2 1 ...
##  $ ca      : int  2 0 0 1 3 0 3 1 0 2 ...
##  $ thal    : int  3 3 3 3 2 2 1 3 3 2 ...
##  $ target  : int  0 0 0 0 0 1 0 0 0 0 ...
df$target <- as.factor(df$target)
summary(df)
##       age             sex               cp            trestbps    
##  Min.   :29.00   Min.   :0.0000   Min.   :0.0000   Min.   : 94.0  
##  1st Qu.:48.00   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:120.0  
##  Median :56.00   Median :1.0000   Median :1.0000   Median :130.0  
##  Mean   :54.43   Mean   :0.6956   Mean   :0.9424   Mean   :131.6  
##  3rd Qu.:61.00   3rd Qu.:1.0000   3rd Qu.:2.0000   3rd Qu.:140.0  
##  Max.   :77.00   Max.   :1.0000   Max.   :3.0000   Max.   :200.0  
##       chol          fbs            restecg          thalach     
##  Min.   :126   Min.   :0.0000   Min.   :0.0000   Min.   : 71.0  
##  1st Qu.:211   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:132.0  
##  Median :240   Median :0.0000   Median :1.0000   Median :152.0  
##  Mean   :246   Mean   :0.1493   Mean   :0.5298   Mean   :149.1  
##  3rd Qu.:275   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:166.0  
##  Max.   :564   Max.   :1.0000   Max.   :2.0000   Max.   :202.0  
##      exang           oldpeak          slope             ca        
##  Min.   :0.0000   Min.   :0.000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:1.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.800   Median :1.000   Median :0.0000  
##  Mean   :0.3366   Mean   :1.072   Mean   :1.385   Mean   :0.7541  
##  3rd Qu.:1.0000   3rd Qu.:1.800   3rd Qu.:2.000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :6.200   Max.   :2.000   Max.   :4.0000  
##       thal       target 
##  Min.   :0.000   0:499  
##  1st Qu.:2.000   1:526  
##  Median :2.000          
##  Mean   :2.324          
##  3rd Qu.:3.000          
##  Max.   :3.000
str(df)
## 'data.frame':    1025 obs. of  14 variables:
##  $ age     : int  52 53 70 61 62 58 58 55 46 54 ...
##  $ sex     : int  1 1 1 1 0 0 1 1 1 1 ...
##  $ cp      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trestbps: int  125 140 145 148 138 100 114 160 120 122 ...
##  $ chol    : int  212 203 174 203 294 248 318 289 249 286 ...
##  $ fbs     : int  0 1 0 0 1 0 0 0 0 0 ...
##  $ restecg : int  1 0 1 1 1 0 2 0 0 0 ...
##  $ thalach : int  168 155 125 161 106 122 140 145 144 116 ...
##  $ exang   : int  0 1 1 0 0 0 0 1 0 1 ...
##  $ oldpeak : num  1 3.1 2.6 0 1.9 1 4.4 0.8 0.8 3.2 ...
##  $ slope   : int  2 0 0 2 1 1 0 1 2 1 ...
##  $ ca      : int  2 0 0 1 3 0 3 1 0 2 ...
##  $ thal    : int  3 3 3 3 2 2 1 3 3 2 ...
##  $ target  : Factor w/ 2 levels "0","1": 1 1 1 1 1 2 1 1 1 1 ...
# Partir la base de datos
set.seed(123)
renglones_entrenamiento <- createDataPartition(df$target, p=0.8, list=FALSE)
entrenamiento <- df[renglones_entrenamiento, ]
prueba <- df[-renglones_entrenamiento, ]
# Construir el modelo Random Forest
modelo <- svm(target ~ ., data = entrenamiento, kerner = "lineal")

resultado_entrenamiento <- predict(modelo,entrenamiento)
resultado_prueba <- predict(modelo,prueba)
# Matriz de Confusión
mcre <- confusionMatrix(resultado_entrenamiento, entrenamiento$target) # matriz de confusión del resultado del entrenamiento
mcre
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 376   9
##          1  24 412
##                                          
##                Accuracy : 0.9598         
##                  95% CI : (0.944, 0.9722)
##     No Information Rate : 0.5128         
##     P-Value [Acc > NIR] : < 2e-16        
##                                          
##                   Kappa : 0.9195         
##                                          
##  Mcnemar's Test P-Value : 0.01481        
##                                          
##             Sensitivity : 0.9400         
##             Specificity : 0.9786         
##          Pos Pred Value : 0.9766         
##          Neg Pred Value : 0.9450         
##              Prevalence : 0.4872         
##          Detection Rate : 0.4580         
##    Detection Prevalence : 0.4689         
##       Balanced Accuracy : 0.9593         
##                                          
##        'Positive' Class : 0              
## 
mcrp <- confusionMatrix(resultado_prueba,prueba$target) # matriz de confusión del resultado de la prueba
mcrp
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0  93   3
##          1   6 102
##                                           
##                Accuracy : 0.9559          
##                  95% CI : (0.9179, 0.9796)
##     No Information Rate : 0.5147          
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.9116          
##                                           
##  Mcnemar's Test P-Value : 0.505           
##                                           
##             Sensitivity : 0.9394          
##             Specificity : 0.9714          
##          Pos Pred Value : 0.9688          
##          Neg Pred Value : 0.9444          
##              Prevalence : 0.4853          
##          Detection Rate : 0.4559          
##    Detection Prevalence : 0.4706          
##       Balanced Accuracy : 0.9554          
##                                           
##        'Positive' Class : 0               
## 
resultados <- data.frame("SVM Lineal" = c(mcre$overall["Accuracy"], mcrp$overall["Accuracy"]))
rownames(resultados) <- c("Precision de entrenamiento", "Precision de prueba")
resultados
##                            SVM.Lineal
## Precision de entrenamiento  0.9598051
## Precision de prueba         0.9558824
# Obtener predicción
paciente <- data.frame(
  age = 58,
  sex = 0,
  cp = 0,
  trestbps = 100,
  chol = 248,
  fbs = 0,
  restecg = 0,
  thalach = 122,
  exang = 0,
  oldpeak = 1,
  slope = 1,
  ca = 0,
  thal = 2
)
# Hacer la predicción
prediccion <- predict(modelo, paciente)

if(prediccion == 1) {
  print("Tiene enfermedad cardíaca")
} else {
  print("No tiene enfermedad cardíaca")
}
## [1] "Tiene enfermedad cardíaca"

Conclusion

En conclusion, la Maquina de Vectores de Soporte es una herramienta robusta para la pediccion de diagnostico en enfermedad cardiaca.

LS0tCnRpdGxlOiAiU1ZNIgphdXRob3I6ICJDb25zdGFudGlubyBNaWxsZXQgWGFjdXIiCmRhdGU6ICIyMDI0LTA4LTIyIgpvdXRwdXQ6IAogaHRtbF9kb2N1bWVudDoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlIAogICAgdGhlbWU6IGZsYXRseQotLS0KCiFbXSgvVXNlcnMvY29uc3RhbnRpbm9taWxsZXR4YWN1ci9EZXNrdG9wL0NvbmNlbnRyYWNpb24vTW9kdWxvIDIvRm90b3MgbTIvc3ZtLmpwZWcpCgoKCmBgYHtyfQojIEluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXMKIyBpbnN0YWxsLnBhY2thZ2VzKCJlMTA3MSIpCmxpYnJhcnkoZTEwNzEpCiMgaW5zdGFsbC5wYWNrYWdlcygiY2FyZXQiKSAKbGlicmFyeShjYXJldCkKYGBgCgoKYGBge3J9CiMgQ3JlYXIgbGEgYmFzZSBkZSBkYXRvcwpkZiA8LSByZWFkLmNzdigiL1VzZXJzL2NvbnN0YW50aW5vbWlsbGV0eGFjdXIvRGVza3RvcC9Db25jZW50cmFjaW9uL01vZHVsbyAyL2hlYXJ0LmNzdiIpCmBgYAoKYGBge3J9CiMgZmlsZS5jaG9vc2UoKQpgYGAKCmBgYHtyfQojIEFuw6FsaXNpcyBleHBsb3JhdG9yaW8Kc3VtbWFyeShkZikKc3RyKGRmKQpkZiR0YXJnZXQgPC0gYXMuZmFjdG9yKGRmJHRhcmdldCkKc3VtbWFyeShkZikKc3RyKGRmKQpgYGAKCgpgYGB7cn0KIyBQYXJ0aXIgbGEgYmFzZSBkZSBkYXRvcwpzZXQuc2VlZCgxMjMpCnJlbmdsb25lc19lbnRyZW5hbWllbnRvIDwtIGNyZWF0ZURhdGFQYXJ0aXRpb24oZGYkdGFyZ2V0LCBwPTAuOCwgbGlzdD1GQUxTRSkKZW50cmVuYW1pZW50byA8LSBkZltyZW5nbG9uZXNfZW50cmVuYW1pZW50bywgXQpwcnVlYmEgPC0gZGZbLXJlbmdsb25lc19lbnRyZW5hbWllbnRvLCBdCmBgYAoKCmBgYHtyfQojIENvbnN0cnVpciBlbCBtb2RlbG8gUmFuZG9tIEZvcmVzdAptb2RlbG8gPC0gc3ZtKHRhcmdldCB+IC4sIGRhdGEgPSBlbnRyZW5hbWllbnRvLCBrZXJuZXIgPSAibGluZWFsIikKCnJlc3VsdGFkb19lbnRyZW5hbWllbnRvIDwtIHByZWRpY3QobW9kZWxvLGVudHJlbmFtaWVudG8pCnJlc3VsdGFkb19wcnVlYmEgPC0gcHJlZGljdChtb2RlbG8scHJ1ZWJhKQpgYGAKCmBgYHtyfQojIE1hdHJpeiBkZSBDb25mdXNpw7NuCm1jcmUgPC0gY29uZnVzaW9uTWF0cml4KHJlc3VsdGFkb19lbnRyZW5hbWllbnRvLCBlbnRyZW5hbWllbnRvJHRhcmdldCkgIyBtYXRyaXogZGUgY29uZnVzacOzbiBkZWwgcmVzdWx0YWRvIGRlbCBlbnRyZW5hbWllbnRvCm1jcmUKbWNycCA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX3BydWViYSxwcnVlYmEkdGFyZ2V0KSAjIG1hdHJpeiBkZSBjb25mdXNpw7NuIGRlbCByZXN1bHRhZG8gZGUgbGEgcHJ1ZWJhCm1jcnAKCnJlc3VsdGFkb3MgPC0gZGF0YS5mcmFtZSgiU1ZNIExpbmVhbCIgPSBjKG1jcmUkb3ZlcmFsbFsiQWNjdXJhY3kiXSwgbWNycCRvdmVyYWxsWyJBY2N1cmFjeSJdKSkKcm93bmFtZXMocmVzdWx0YWRvcykgPC0gYygiUHJlY2lzaW9uIGRlIGVudHJlbmFtaWVudG8iLCAiUHJlY2lzaW9uIGRlIHBydWViYSIpCnJlc3VsdGFkb3MKCmBgYAoKCmBgYHtyfQojIE9idGVuZXIgcHJlZGljY2nDs24KcGFjaWVudGUgPC0gZGF0YS5mcmFtZSgKICBhZ2UgPSA1OCwKICBzZXggPSAwLAogIGNwID0gMCwKICB0cmVzdGJwcyA9IDEwMCwKICBjaG9sID0gMjQ4LAogIGZicyA9IDAsCiAgcmVzdGVjZyA9IDAsCiAgdGhhbGFjaCA9IDEyMiwKICBleGFuZyA9IDAsCiAgb2xkcGVhayA9IDEsCiAgc2xvcGUgPSAxLAogIGNhID0gMCwKICB0aGFsID0gMgopCmBgYAoKYGBge3J9CiMgSGFjZXIgbGEgcHJlZGljY2nDs24KcHJlZGljY2lvbiA8LSBwcmVkaWN0KG1vZGVsbywgcGFjaWVudGUpCgppZihwcmVkaWNjaW9uID09IDEpIHsKICBwcmludCgiVGllbmUgZW5mZXJtZWRhZCBjYXJkw61hY2EiKQp9IGVsc2UgewogIHByaW50KCJObyB0aWVuZSBlbmZlcm1lZGFkIGNhcmTDrWFjYSIpCn0KYGBgCgojIENvbmNsdXNpb24KRW4gY29uY2x1c2lvbiwgbGEgTWFxdWluYSBkZSBWZWN0b3JlcyBkZSBTb3BvcnRlIGVzIHVuYSBoZXJyYW1pZW50YSByb2J1c3RhIHBhcmEgbGEgcGVkaWNjaW9uIGRlIGRpYWdub3N0aWNvIGVuIGVuZmVybWVkYWQgY2FyZGlhY2EuCg==