Predictions of the SMARTDEER models over the area of interest.
Values go from 0 to 1 nationwide, representing increasing likelihood of finding at least 1 deer in that area.
Resolution of the raster layer is 25 km2
Deer data used for the model span years 2007 - 2022
Reference: Morera-Pujol, V., Mostert, P.S., Murphy, K.J., Burkitt, T., Coad, B., McMahon, B.J., Nieuwenhuis, M., Morelle, K., Ward, A.I. and Ciuti, S. (2023), Bayesian species distribution models integrate presence-only and presence–absence data to predict deer distribution and relative abundance. Ecography, 2023: e06451. https://doi.org/10.1111/ecog.06451
Code
fallow_IG <-project(fallow, crs("EPSG:29902"))fallow_mean <-rescale0to1(fallow_IG$mean)fallow_mask <-mask(crop(fallow_mean, counties), counties)ggplot() +geom_spatraster(data = fallow_mask, aes(fill = mean)) +geom_sf(data = ded, fill =NA, col ="darkgray") +geom_sf(data = counties, col ="black", fill =NA) +scale_fill_viridis_c(na.value =NA) +theme_bw() +ggtitle("Fallow deer")
Code
sika_IG <-project(sika, crs("EPSG:29902"))sika_mean <-rescale0to1(sika_IG$mean)sika_mask <-mask(crop(sika_mean, counties), counties)ggplot() +geom_spatraster(data = sika_mask, aes(fill = mean)) +geom_sf(data = ded, fill =NA, col ="darkgray") +geom_sf(data = counties, col ="black", fill =NA) +scale_fill_viridis_c(na.value =NA) +theme_bw() +ggtitle("Sika deer")
Code
red_IG <-project(red, crs("EPSG:29902"))red_mean <-rescale0to1(red_IG$mean)red_mask <-mask(crop(red_mean, counties), counties)ggplot() +geom_spatraster(data = red_mask, aes(fill = mean)) +geom_sf(data = ded, fill =NA, col ="darkgray") +geom_sf(data = counties, col ="black", fill =NA) +scale_fill_viridis_c(na.value =NA) +theme_bw() +ggtitle("Red deer")
Disaggregation models
Predictions from the disaggregation models for 2018 and the area of interest
Resolution of the raster layer is 25 km2
Deer data used for the model span years 2007 - 2022
Data comes from the county-level culling returns and have been modelled to a higher resolution
Values represent the number of deer estimated to be culled in each 5 by 5 km cell
Reference: Murphy, Kilian J., Simone Ciuti, Tim Burkitt, and Virginia Morera-Pujol. 2023. “ Bayesian Areal Disaggregation Regression to Predict Wildlife Distribution and Relative Density with Low-Resolution Data.” Ecological Applications 33(8): e2924. https://doi.org/10.1002/eap.2924
Code
fallow_IG <-project(fallow18, crs("EPSG:29902"))fallow_mask <-mask(crop(fallow_IG, counties), counties)ggplot() +geom_spatraster(data = fallow_mask, aes(fill = Fallow18_Prediction)) +geom_sf(data = ded, fill =NA, col ="darkgray") +geom_sf(data = counties, col ="white", fill =NA) +scale_fill_viridis_c(na.value =NA, trans ="log") +theme_bw() +ggtitle("Culled fallow deer in 2018")
Code
sika_IG <-project(sika18, crs("EPSG:29902"))sika_mask <-mask(crop(sika_IG, counties), counties)ggplot() +geom_spatraster(data = sika_mask, aes(fill = Sika18_Prediction)) +geom_sf(data = ded, fill =NA, col ="darkgray") +geom_sf(data = counties, col ="white", fill =NA) +scale_fill_viridis_c(na.value =NA, trans ="log") +theme_bw() +ggtitle("Culled sika deer in 2018")
Code
red_IG <-project(red18, crs("EPSG:29902"))red_mask <-mask(crop(red_IG, counties), counties)ggplot() +geom_spatraster(data = red_mask, aes(fill = Red18_Prediction )) +geom_sf(data = ded, fill =NA, col ="darkgray") +geom_sf(data = counties, col ="white", fill =NA) +scale_fill_viridis_c(na.value =NA, trans ="log") +theme_bw() +ggtitle("Culled red deer in 2018")
Using the disaggregation predictions, we can calculate the total number of deer culled in the area, as well as the minimum, mean, and maximum number of deer culled by 25 km2 cell.