Structure

Structure of the Dataset

tibble [53,940 × 10] (S3: tbl_df/tbl/data.frame)
 $ carat  : num [1:53940] 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 ...
 $ cut    : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 ...
 $ color  : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 7 7 6 5 2 5 ...
 $ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 2 3 5 4 2 6 7 3 4 5 ...
 $ depth  : num [1:53940] 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ...
 $ table  : num [1:53940] 55 61 65 58 58 57 57 55 61 61 ...
 $ price  : int [1:53940] 326 326 327 334 335 336 336 337 337 338 ...
 $ x      : num [1:53940] 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 ...
 $ y      : num [1:53940] 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ...
 $ z      : num [1:53940] 2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ...

summary

Summary of the Dataset

     carat               cut        color        clarity          depth      
 Min.   :0.2000   Fair     : 1610   D: 6775   SI1    :13065   Min.   :43.00  
 1st Qu.:0.4000   Good     : 4906   E: 9797   VS2    :12258   1st Qu.:61.00  
 Median :0.7000   Very Good:12082   F: 9542   SI2    : 9194   Median :61.80  
 Mean   :0.7979   Premium  :13791   G:11292   VS1    : 8171   Mean   :61.75  
 3rd Qu.:1.0400   Ideal    :21551   H: 8304   VVS2   : 5066   3rd Qu.:62.50  
 Max.   :5.0100                     I: 5422   VVS1   : 3655   Max.   :79.00  
                                    J: 2808   (Other): 2531                  
     table           price             x                y         
 Min.   :43.00   Min.   :  326   Min.   : 0.000   Min.   : 0.000  
 1st Qu.:56.00   1st Qu.:  950   1st Qu.: 4.710   1st Qu.: 4.720  
 Median :57.00   Median : 2401   Median : 5.700   Median : 5.710  
 Mean   :57.46   Mean   : 3933   Mean   : 5.731   Mean   : 5.735  
 3rd Qu.:59.00   3rd Qu.: 5324   3rd Qu.: 6.540   3rd Qu.: 6.540  
 Max.   :95.00   Max.   :18823   Max.   :10.740   Max.   :58.900  
                                                                  
       z         
 Min.   : 0.000  
 1st Qu.: 2.910  
 Median : 3.530  
 Mean   : 3.539  
 3rd Qu.: 4.040  
 Max.   :31.800  
                 

Column

univariate Analysis

Histogram of Carat

Distribution of Price

Bar Plot of Cut

Bar Plot for Clarity

Bivariant Analysis

Scatter plot for carat vs. price

Multivariant Analysis

Outlier Detection

---
title: "EDA for Diamond Dataset"
output:
  flexdashboard::flex_dashboard:
    orientation: rows
    vertical_layout: scroll
    theme: journal
    social: menu
    source_code: embed
---

```{r setup, include=FALSE}
library(flexdashboard)
library(ggplot2)
library(dplyr)
data("diamonds")
```
# Structure
## Structure of the Dataset
   
```{r}
str(diamonds)

```
# summary
   
## Summary of the Dataset
   
```{r}
summary(diamonds)

```

Column{.tabset}
-------------------------------------
# univariate Analysis  
## Histogram of Carat
   
```{r}
Carat_Dist <- ggplot(diamonds, aes(x = carat)) +
  geom_histogram(binwidth = 0.1, color = "black", fill = "steelblue") +
  labs(title = "Histogram of Carat", x = "Carat", y = "Frequency") +
  theme_minimal()

Carat_Dist

```

## Distribution of Price

```{r}
Price_Dist <- ggplot(diamonds, aes(x = price)) +
  geom_histogram(binwidth = 100, color = "black", fill = "coral") +
  labs(title = "Histogram of Price", x = "Price", y = "Frequency") +
  theme_minimal()

Price_Dist

```

## Bar Plot of Cut
   
```{r}
Cut_Dist <- ggplot(diamonds, aes(x = cut)) +
  geom_bar(fill = "lightblue") +
  labs(title = "Bar plot of Cut", x = "Cut", y = "Frequency") +
  theme_minimal()

Cut_Dist

```

```{r}
Color_Dist <- ggplot(diamonds, aes(x = color)) +
  geom_bar(fill = "coral") +
  labs(title = "Bar plot of Diamond Color", x = "Color", y = "Count") +
  theme_minimal()

Color_Dist

```


## Bar Plot for Clarity
```{r}
Clarity_Dist <- ggplot(diamonds, aes(x = clarity)) +
  geom_bar(fill = "lightgreen") +
  labs(title = "Bar plot of Diamond Clarity", x = "Clarity", y = "Count") +
  theme_minimal()

Clarity_Dist

```

# Bivariant Analysis {.tabset}

## Scatter plot for carat vs. price
```{r}
ggplot(diamonds, aes(x = carat, y = price)) +
  geom_point(alpha = 0.5) +
  theme_minimal() +
  labs(title = "Carat vs. Price", x = "Carat", y = "Price")

```

```{r}
ggplot(diamonds, aes(x = cut, y = price, fill = cut)) +
  geom_boxplot() +
  theme_minimal() +
  labs(title = "Price Distribution by Cut", x = "Cut", y = "Price")
```

# Multivariant Analysis
```{r}
ggplot(diamonds, aes(x = carat, y = price, color = cut)) +
  geom_point(alpha = 0.5) +
  facet_wrap(~cut) +
  theme_minimal() +
  labs(title = "Price vs. Carat by Cut", x = "Carat", y = "Price")
```

# Outlier Detection
```{r}
Carat_Box <- ggplot(diamonds, aes(y = carat)) +
  geom_boxplot(fill = "steelblue") +
  labs(title = "Boxplot of Carat", y = "Carat") +
  theme_minimal()

Carat_Box

```
```{r}
Price_Box <- ggplot(diamonds, aes(y = price)) +
  geom_boxplot(fill = "coral") +
  labs(title = "Boxplot of Price", y = "Price") +
  theme_minimal()

Price_Box

```