El paquete caret (Classification and Regression Training) es un paquete integral con una amplia variedad de algoritmos para el aprendizaje automático.
#install.packages("ggplot2") #Gráficas con mejor diseño
library(ggplot2)
#install.packages("lattice") #Crear gráficos
library(lattice)
#install.packages("caret") #Algoritmos de aprendizaje automático
library(caret)
#install.packages("datasets") #Usar la base de datos "Iris"
library(datasets)
#install.packages("DataExplorer") #Exploración de datos
library(DataExplorer)
#install.packages("kernlab") #Paquete con métodos de aprendizaje automático
library(kernlab)
##
## Adjuntando el paquete: 'kernlab'
## The following object is masked from 'package:ggplot2':
##
## alpha
#install.packages("randomForest") #Paquete para este método de clasificación
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
##
## Adjuntando el paquete: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
## margin
df <- data.frame(iris)
summary(df)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
str(df)
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
plot_missing(df)
NOTA: La variable que queremos predecir debe tener formato de
FACTOR
set.seed(123)
renglones_entrenamiento <- createDataPartition(df$Species, p=0.8, list=FALSE)
entrenamiento <- iris[renglones_entrenamiento, ]
prueba <- iris[-renglones_entrenamiento, ]
Los métodos más utilizadps para modelar aprendizaje automático son:
modelo1 <- train(Species ~ ., data=entrenamiento,
method="svmLinear", # Cambiar
preProcess=c("scale","center"),
trControl = trainControl(method="cv", number=10),
tuneGrid=data.frame(C=1) #Cambiar
)
resultado_entrenamiento1 <- predict(modelo1,entrenamiento)
resultado_prueba1 <- predict(modelo1, prueba)
#Matriz de Confusión del Resultado del Entrenamiento
mcre1 <- confusionMatrix(resultado_entrenamiento1, entrenamiento$Species)
#Matriz de Confusión del Resultado de la Prueba
mcrp1 <- confusionMatrix(resultado_prueba1, prueba$Species)
modelo2 <- train(Species ~ ., data=entrenamiento,
method="svmRadial", # Cambiar
preProcess=c("scale","center"),
trControl = trainControl(method="cv", number=10),
tuneGrid=data.frame(sigma=1, C=1) #Cambiar
)
resultado_entrenamiento2 <- predict(modelo2,entrenamiento)
resultado_prueba2 <- predict(modelo2, prueba)
#Matriz de Confusión del Resultado del Entrenamiento
mcre2 <- confusionMatrix(resultado_entrenamiento2, entrenamiento$Species)
#Matriz de Confusión del Resultado de la Prueba
mcrp2 <- confusionMatrix(resultado_prueba2, prueba$Species)
modelo3 <- train(Species ~ ., data=entrenamiento,
method="svmPoly", # Cambiar
preProcess=c("scale","center"),
trControl = trainControl(method="cv", number=10),
tuneGrid=data.frame(degree=1, scale=1, C=1) #Cambiar
)
resultado_entrenamiento3 <- predict(modelo3,entrenamiento)
resultado_prueba3 <- predict(modelo3, prueba)
#Matriz de Confusión del Resultado del Entrenamiento
mcre3 <- confusionMatrix(resultado_entrenamiento3, entrenamiento$Species)
#Matriz de Confusión del Resultado de la Prueba
mcrp3 <- confusionMatrix(resultado_prueba3, prueba$Species)
modelo4 <- train(Species ~ ., data=entrenamiento,
method="svmPoly", # Cambiar
preProcess=c("scale","center"),
trControl = trainControl(method="cv", number=10),
tunelenght=10 #Cambiar
)
resultado_entrenamiento4 <- predict(modelo4,entrenamiento)
resultado_prueba4 <- predict(modelo4, prueba)
#Matriz de Confusión del Resultado del Entrenamiento
mcre4 <- confusionMatrix(resultado_entrenamiento4, entrenamiento$Species)
#Matriz de Confusión del Resultado de la Prueba
mcrp4 <- confusionMatrix(resultado_prueba4, prueba$Species)
modelo5 <- train(Species ~ ., data=entrenamiento,
method="nnet", # Cambiar
preProcess=c("scale","center"),
trControl = trainControl(method="cv", number=10)
#Cambiar
)
## # weights: 11
## initial value 126.348933
## iter 10 value 45.283968
## iter 20 value 27.236011
## iter 30 value 13.126662
## iter 40 value 1.204122
## iter 50 value 0.044707
## iter 60 value 0.024335
## iter 70 value 0.013756
## iter 80 value 0.011632
## iter 90 value 0.011473
## iter 100 value 0.011091
## final value 0.011091
## stopped after 100 iterations
## # weights: 27
## initial value 153.805487
## iter 10 value 5.884645
## iter 20 value 0.065399
## final value 0.000094
## converged
## # weights: 43
## initial value 136.925958
## iter 10 value 4.176971
## iter 20 value 0.036627
## iter 30 value 0.001248
## iter 40 value 0.000778
## iter 50 value 0.000119
## iter 50 value 0.000084
## iter 50 value 0.000083
## final value 0.000083
## converged
## # weights: 11
## initial value 126.097145
## iter 10 value 59.688435
## iter 20 value 55.529423
## iter 30 value 43.371147
## iter 40 value 42.568232
## iter 40 value 42.568231
## iter 40 value 42.568231
## final value 42.568231
## converged
## # weights: 27
## initial value 129.781479
## iter 10 value 25.110524
## iter 20 value 19.457422
## iter 30 value 19.381630
## final value 19.381189
## converged
## # weights: 43
## initial value 129.198595
## iter 10 value 22.485907
## iter 20 value 17.504302
## iter 30 value 17.324393
## iter 40 value 17.316280
## iter 50 value 17.297214
## iter 60 value 16.979787
## iter 70 value 16.882879
## iter 80 value 16.630912
## iter 90 value 16.596596
## iter 100 value 16.595708
## final value 16.595708
## stopped after 100 iterations
## # weights: 11
## initial value 127.189825
## iter 10 value 41.859141
## iter 20 value 7.917413
## iter 30 value 2.222034
## iter 40 value 2.106883
## iter 50 value 2.043818
## iter 60 value 1.937593
## iter 70 value 1.933542
## iter 80 value 1.923761
## iter 90 value 1.923480
## iter 100 value 1.923313
## final value 1.923313
## stopped after 100 iterations
## # weights: 27
## initial value 134.040229
## iter 10 value 50.594954
## iter 20 value 47.860782
## iter 30 value 46.616899
## iter 40 value 46.175132
## iter 50 value 45.616869
## iter 60 value 45.470118
## iter 70 value 44.516336
## iter 80 value 35.328954
## iter 90 value 7.266269
## iter 100 value 4.966966
## final value 4.966966
## stopped after 100 iterations
## # weights: 43
## initial value 114.133624
## iter 10 value 3.074204
## iter 20 value 0.144224
## iter 30 value 0.131416
## iter 40 value 0.127066
## iter 50 value 0.121410
## iter 60 value 0.116562
## iter 70 value 0.110580
## iter 80 value 0.107293
## iter 90 value 0.105369
## iter 100 value 0.103443
## final value 0.103443
## stopped after 100 iterations
## # weights: 11
## initial value 125.362502
## iter 10 value 18.024086
## iter 20 value 3.323887
## iter 30 value 2.521001
## iter 40 value 2.448407
## iter 50 value 2.427962
## iter 60 value 2.363968
## iter 70 value 2.185007
## iter 80 value 2.060087
## iter 90 value 1.956447
## iter 100 value 1.911704
## final value 1.911704
## stopped after 100 iterations
## # weights: 27
## initial value 141.145684
## iter 10 value 47.681748
## iter 20 value 4.078307
## iter 30 value 0.074327
## final value 0.000066
## converged
## # weights: 43
## initial value 153.806684
## iter 10 value 4.908159
## iter 20 value 1.836965
## iter 30 value 0.006636
## iter 40 value 0.000116
## iter 40 value 0.000060
## iter 40 value 0.000060
## final value 0.000060
## converged
## # weights: 11
## initial value 122.506113
## iter 10 value 61.094818
## iter 20 value 55.527048
## iter 30 value 43.923630
## final value 43.655656
## converged
## # weights: 27
## initial value 126.248046
## iter 10 value 60.261445
## iter 20 value 23.608543
## iter 30 value 21.383300
## iter 40 value 21.121094
## iter 50 value 21.116327
## final value 21.116318
## converged
## # weights: 43
## initial value 151.851569
## iter 10 value 21.913573
## iter 20 value 18.422629
## iter 30 value 18.108566
## iter 40 value 18.087698
## iter 50 value 18.082577
## iter 60 value 18.082490
## iter 60 value 18.082490
## iter 60 value 18.082490
## final value 18.082490
## converged
## # weights: 11
## initial value 125.241773
## iter 10 value 50.220893
## iter 20 value 49.981226
## iter 30 value 49.347479
## iter 40 value 43.617526
## iter 50 value 36.903940
## iter 60 value 8.552744
## iter 70 value 4.927776
## iter 80 value 4.369153
## iter 90 value 3.843006
## iter 100 value 3.618554
## final value 3.618554
## stopped after 100 iterations
## # weights: 27
## initial value 133.044172
## iter 10 value 13.869855
## iter 20 value 2.775198
## iter 30 value 0.489927
## iter 40 value 0.419535
## iter 50 value 0.372214
## iter 60 value 0.357699
## iter 70 value 0.338338
## iter 80 value 0.332235
## iter 90 value 0.322128
## iter 100 value 0.314573
## final value 0.314573
## stopped after 100 iterations
## # weights: 43
## initial value 130.214992
## iter 10 value 5.517948
## iter 20 value 2.310963
## iter 30 value 0.585169
## iter 40 value 0.529706
## iter 50 value 0.517016
## iter 60 value 0.499193
## iter 70 value 0.476777
## iter 80 value 0.464267
## iter 90 value 0.454208
## iter 100 value 0.410347
## final value 0.410347
## stopped after 100 iterations
## # weights: 11
## initial value 139.638769
## iter 10 value 49.034608
## iter 20 value 42.244285
## iter 30 value 15.138829
## iter 40 value 4.125554
## iter 50 value 2.749602
## iter 60 value 2.240977
## iter 70 value 2.125356
## iter 80 value 2.066408
## iter 90 value 1.945777
## iter 100 value 1.933465
## final value 1.933465
## stopped after 100 iterations
## # weights: 27
## initial value 109.061219
## iter 10 value 11.861165
## iter 20 value 2.380600
## iter 30 value 0.165447
## iter 40 value 0.001418
## final value 0.000067
## converged
## # weights: 43
## initial value 121.563588
## iter 10 value 6.290234
## iter 20 value 2.129517
## iter 30 value 0.007337
## iter 40 value 0.000746
## final value 0.000086
## converged
## # weights: 11
## initial value 118.947081
## iter 10 value 63.234518
## iter 20 value 44.395770
## iter 30 value 44.359193
## final value 44.358839
## converged
## # weights: 27
## initial value 140.180944
## iter 10 value 25.480639
## iter 20 value 22.262239
## iter 30 value 21.477022
## iter 40 value 20.104001
## iter 50 value 20.045869
## final value 20.045788
## converged
## # weights: 43
## initial value 123.360774
## iter 10 value 24.282277
## iter 20 value 19.287517
## iter 30 value 19.164635
## iter 40 value 19.141524
## iter 50 value 19.140907
## final value 19.140906
## converged
## # weights: 11
## initial value 118.690505
## iter 10 value 36.110104
## iter 20 value 4.709395
## iter 30 value 4.137682
## iter 40 value 3.912045
## iter 50 value 3.905925
## iter 60 value 3.872159
## iter 70 value 3.863478
## iter 80 value 3.863229
## iter 90 value 3.862598
## final value 3.862558
## converged
## # weights: 27
## initial value 137.075720
## iter 10 value 6.488157
## iter 20 value 0.888105
## iter 30 value 0.847520
## iter 40 value 0.579490
## iter 50 value 0.533659
## iter 60 value 0.513277
## iter 70 value 0.468199
## iter 80 value 0.436158
## iter 90 value 0.410471
## iter 100 value 0.386991
## final value 0.386991
## stopped after 100 iterations
## # weights: 43
## initial value 132.473917
## iter 10 value 7.795484
## iter 20 value 0.662051
## iter 30 value 0.562253
## iter 40 value 0.520220
## iter 50 value 0.496417
## iter 60 value 0.478427
## iter 70 value 0.463338
## iter 80 value 0.452511
## iter 90 value 0.446517
## iter 100 value 0.433997
## final value 0.433997
## stopped after 100 iterations
## # weights: 11
## initial value 116.163279
## iter 10 value 50.232719
## iter 20 value 49.908249
## final value 49.906700
## converged
## # weights: 27
## initial value 144.506292
## iter 10 value 3.269883
## iter 20 value 1.747312
## iter 30 value 0.050040
## final value 0.000061
## converged
## # weights: 43
## initial value 156.341433
## iter 10 value 5.277933
## iter 20 value 1.240524
## iter 30 value 0.004801
## iter 40 value 0.000537
## final value 0.000053
## converged
## # weights: 11
## initial value 127.404329
## iter 10 value 52.822448
## iter 20 value 43.624419
## iter 30 value 43.602533
## final value 43.602484
## converged
## # weights: 27
## initial value 120.883761
## iter 10 value 23.503375
## iter 20 value 19.890145
## iter 30 value 19.821144
## final value 19.821091
## converged
## # weights: 43
## initial value 121.109487
## iter 10 value 23.696089
## iter 20 value 18.650047
## iter 30 value 18.388295
## iter 40 value 18.371325
## iter 50 value 18.370683
## final value 18.370683
## converged
## # weights: 11
## initial value 125.119520
## iter 10 value 48.833424
## iter 20 value 11.318831
## iter 30 value 5.457618
## iter 40 value 4.857503
## iter 50 value 3.986311
## iter 60 value 3.890943
## iter 70 value 3.831966
## iter 80 value 3.829446
## iter 90 value 3.827797
## iter 100 value 3.825422
## final value 3.825422
## stopped after 100 iterations
## # weights: 27
## initial value 149.212542
## iter 10 value 9.999760
## iter 20 value 1.537203
## iter 30 value 0.708694
## iter 40 value 0.683294
## iter 50 value 0.558384
## iter 60 value 0.549856
## iter 70 value 0.525998
## iter 80 value 0.513096
## iter 90 value 0.463399
## iter 100 value 0.426530
## final value 0.426530
## stopped after 100 iterations
## # weights: 43
## initial value 123.075099
## iter 10 value 5.903355
## iter 20 value 0.918561
## iter 30 value 0.467470
## iter 40 value 0.399760
## iter 50 value 0.357967
## iter 60 value 0.343352
## iter 70 value 0.329755
## iter 80 value 0.317214
## iter 90 value 0.305007
## iter 100 value 0.278362
## final value 0.278362
## stopped after 100 iterations
## # weights: 11
## initial value 121.306723
## iter 10 value 43.835938
## iter 20 value 13.066240
## iter 30 value 5.110357
## iter 40 value 3.527988
## iter 50 value 3.283061
## iter 60 value 3.116983
## iter 70 value 2.928176
## iter 80 value 2.857502
## iter 90 value 2.803512
## iter 100 value 1.095393
## final value 1.095393
## stopped after 100 iterations
## # weights: 27
## initial value 150.149791
## iter 10 value 11.723647
## iter 20 value 0.726430
## iter 30 value 0.000205
## final value 0.000065
## converged
## # weights: 43
## initial value 143.468405
## iter 10 value 8.632825
## iter 20 value 0.965359
## iter 30 value 0.001248
## final value 0.000079
## converged
## # weights: 11
## initial value 118.079968
## iter 10 value 45.301123
## iter 20 value 43.823825
## final value 43.823812
## converged
## # weights: 27
## initial value 126.200073
## iter 10 value 31.408922
## iter 20 value 20.618842
## iter 30 value 19.972523
## iter 40 value 19.851558
## iter 50 value 19.845177
## final value 19.845174
## converged
## # weights: 43
## initial value 116.041220
## iter 10 value 24.046933
## iter 20 value 19.295133
## iter 30 value 18.514271
## iter 40 value 18.340015
## iter 50 value 18.316129
## iter 60 value 18.312878
## iter 70 value 18.312053
## final value 18.312052
## converged
## # weights: 11
## initial value 132.421279
## iter 10 value 25.052321
## iter 20 value 5.217602
## iter 30 value 4.000514
## iter 40 value 3.900098
## iter 50 value 3.867286
## iter 60 value 3.864784
## iter 70 value 3.862256
## final value 3.859146
## converged
## # weights: 27
## initial value 114.592014
## iter 10 value 4.664649
## iter 20 value 0.728406
## iter 30 value 0.580031
## iter 40 value 0.518858
## iter 50 value 0.507441
## iter 60 value 0.503440
## iter 70 value 0.499426
## iter 80 value 0.471934
## iter 90 value 0.456361
## iter 100 value 0.400168
## final value 0.400168
## stopped after 100 iterations
## # weights: 43
## initial value 150.023952
## iter 10 value 6.763524
## iter 20 value 1.877583
## iter 30 value 0.490259
## iter 40 value 0.451920
## iter 50 value 0.377326
## iter 60 value 0.357477
## iter 70 value 0.299600
## iter 80 value 0.270754
## iter 90 value 0.264034
## iter 100 value 0.255514
## final value 0.255514
## stopped after 100 iterations
## # weights: 11
## initial value 117.694437
## iter 10 value 11.857051
## iter 20 value 4.058017
## iter 30 value 2.827745
## iter 40 value 2.453217
## iter 50 value 1.438159
## iter 60 value 1.180057
## iter 70 value 0.841772
## iter 80 value 0.827177
## iter 90 value 0.713825
## iter 100 value 0.684278
## final value 0.684278
## stopped after 100 iterations
## # weights: 27
## initial value 125.955041
## iter 10 value 7.192851
## iter 20 value 0.283903
## iter 30 value 0.004017
## final value 0.000059
## converged
## # weights: 43
## initial value 119.052121
## iter 10 value 10.739741
## iter 20 value 1.654770
## iter 30 value 0.008253
## iter 40 value 0.002851
## iter 50 value 0.000772
## final value 0.000061
## converged
## # weights: 11
## initial value 118.248516
## iter 10 value 47.307766
## iter 20 value 43.829218
## final value 43.828430
## converged
## # weights: 27
## initial value 130.949126
## iter 10 value 27.409764
## iter 20 value 20.228781
## iter 30 value 19.851486
## iter 40 value 19.850717
## final value 19.850713
## converged
## # weights: 43
## initial value 138.109070
## iter 10 value 27.421870
## iter 20 value 18.349782
## iter 30 value 17.983076
## iter 40 value 17.967960
## iter 50 value 17.967387
## final value 17.967385
## converged
## # weights: 11
## initial value 125.083325
## iter 10 value 49.415126
## iter 20 value 31.652620
## iter 30 value 5.890386
## iter 40 value 4.194747
## iter 50 value 3.962184
## iter 60 value 3.611395
## iter 70 value 3.449522
## iter 80 value 3.309664
## iter 90 value 3.308831
## iter 100 value 3.304459
## final value 3.304459
## stopped after 100 iterations
## # weights: 27
## initial value 109.166293
## iter 10 value 9.435148
## iter 20 value 1.592793
## iter 30 value 0.487325
## iter 40 value 0.445670
## iter 50 value 0.391716
## iter 60 value 0.353762
## iter 70 value 0.317084
## iter 80 value 0.303649
## iter 90 value 0.294655
## iter 100 value 0.292499
## final value 0.292499
## stopped after 100 iterations
## # weights: 43
## initial value 118.079239
## iter 10 value 3.803919
## iter 20 value 0.712724
## iter 30 value 0.457326
## iter 40 value 0.395783
## iter 50 value 0.374912
## iter 60 value 0.353761
## iter 70 value 0.329184
## iter 80 value 0.311873
## iter 90 value 0.308367
## iter 100 value 0.298361
## final value 0.298361
## stopped after 100 iterations
## # weights: 11
## initial value 128.244501
## iter 10 value 53.884199
## iter 20 value 47.439735
## iter 30 value 22.700504
## iter 40 value 7.078076
## iter 50 value 4.971387
## iter 60 value 4.169778
## iter 70 value 3.629188
## iter 80 value 2.961938
## iter 90 value 2.705531
## iter 100 value 2.590326
## final value 2.590326
## stopped after 100 iterations
## # weights: 27
## initial value 123.142139
## iter 10 value 30.388030
## iter 20 value 6.429557
## iter 30 value 1.610004
## iter 40 value 0.077959
## final value 0.000085
## converged
## # weights: 43
## initial value 127.959122
## iter 10 value 5.643907
## iter 20 value 0.494155
## iter 30 value 0.001812
## final value 0.000099
## converged
## # weights: 11
## initial value 119.345670
## iter 10 value 59.261465
## iter 20 value 45.356707
## final value 43.751555
## converged
## # weights: 27
## initial value 138.016789
## iter 10 value 29.863071
## iter 20 value 19.754611
## iter 30 value 19.743473
## iter 30 value 19.743473
## iter 30 value 19.743473
## final value 19.743473
## converged
## # weights: 43
## initial value 131.892718
## iter 10 value 29.714024
## iter 20 value 19.792268
## iter 30 value 18.983007
## iter 40 value 18.779876
## iter 50 value 18.645085
## iter 60 value 18.488398
## iter 70 value 18.394874
## iter 80 value 18.297498
## iter 90 value 18.288225
## iter 100 value 18.286313
## final value 18.286313
## stopped after 100 iterations
## # weights: 11
## initial value 120.657851
## iter 10 value 47.604170
## iter 20 value 28.833097
## iter 30 value 8.334624
## iter 40 value 4.209702
## iter 50 value 4.063857
## iter 60 value 3.970924
## iter 70 value 3.861649
## iter 80 value 3.847342
## iter 90 value 3.837837
## iter 100 value 3.835862
## final value 3.835862
## stopped after 100 iterations
## # weights: 27
## initial value 145.964310
## iter 10 value 4.739934
## iter 20 value 0.751545
## iter 30 value 0.564508
## iter 40 value 0.525962
## iter 50 value 0.500348
## iter 60 value 0.460250
## iter 70 value 0.424385
## iter 80 value 0.414546
## iter 90 value 0.395197
## iter 100 value 0.385151
## final value 0.385151
## stopped after 100 iterations
## # weights: 43
## initial value 127.439185
## iter 10 value 9.017239
## iter 20 value 1.521482
## iter 30 value 0.693100
## iter 40 value 0.627167
## iter 50 value 0.604576
## iter 60 value 0.537495
## iter 70 value 0.469462
## iter 80 value 0.448122
## iter 90 value 0.438163
## iter 100 value 0.414089
## final value 0.414089
## stopped after 100 iterations
## # weights: 11
## initial value 121.911081
## iter 10 value 54.768119
## iter 20 value 49.915740
## final value 49.907223
## converged
## # weights: 27
## initial value 122.697432
## iter 10 value 6.665786
## iter 20 value 0.885638
## iter 30 value 0.001007
## final value 0.000067
## converged
## # weights: 43
## initial value 121.557301
## iter 10 value 6.316044
## iter 20 value 1.210760
## iter 30 value 0.029363
## iter 40 value 0.002753
## iter 50 value 0.000716
## final value 0.000077
## converged
## # weights: 11
## initial value 119.903696
## iter 10 value 86.609372
## iter 20 value 60.157748
## iter 30 value 44.754746
## final value 43.920794
## converged
## # weights: 27
## initial value 129.042275
## iter 10 value 29.733596
## iter 20 value 20.720932
## iter 30 value 20.643062
## iter 40 value 20.641037
## final value 20.641024
## converged
## # weights: 43
## initial value 121.118637
## iter 10 value 21.782751
## iter 20 value 18.528125
## iter 30 value 18.099899
## iter 40 value 17.969126
## iter 50 value 17.963419
## final value 17.963394
## converged
## # weights: 11
## initial value 134.331131
## iter 10 value 45.888242
## iter 20 value 20.436393
## iter 30 value 3.953311
## iter 40 value 3.756337
## iter 50 value 3.672029
## iter 60 value 3.667251
## iter 70 value 3.654873
## iter 80 value 3.653691
## iter 90 value 3.653581
## iter 100 value 3.653422
## final value 3.653422
## stopped after 100 iterations
## # weights: 27
## initial value 113.401005
## iter 10 value 17.052536
## iter 20 value 2.470876
## iter 30 value 0.609662
## iter 40 value 0.567727
## iter 50 value 0.526411
## iter 60 value 0.364588
## iter 70 value 0.344110
## iter 80 value 0.290238
## iter 90 value 0.256748
## iter 100 value 0.240687
## final value 0.240687
## stopped after 100 iterations
## # weights: 43
## initial value 142.327017
## iter 10 value 6.806568
## iter 20 value 0.749235
## iter 30 value 0.406973
## iter 40 value 0.282790
## iter 50 value 0.246343
## iter 60 value 0.229377
## iter 70 value 0.219262
## iter 80 value 0.211492
## iter 90 value 0.207866
## iter 100 value 0.203815
## final value 0.203815
## stopped after 100 iterations
## # weights: 11
## initial value 133.624089
## iter 10 value 46.432977
## iter 20 value 19.076176
## iter 30 value 5.491631
## iter 40 value 2.259366
## iter 50 value 1.950383
## iter 60 value 1.744482
## iter 70 value 1.359581
## iter 80 value 1.129637
## iter 90 value 0.835532
## iter 100 value 0.702069
## final value 0.702069
## stopped after 100 iterations
## # weights: 27
## initial value 129.919175
## iter 10 value 3.239666
## iter 20 value 0.006303
## iter 30 value 0.001331
## final value 0.000046
## converged
## # weights: 43
## initial value 150.357425
## iter 10 value 12.219305
## iter 20 value 0.107734
## iter 30 value 0.004397
## iter 40 value 0.000160
## iter 40 value 0.000100
## iter 40 value 0.000099
## final value 0.000099
## converged
## # weights: 11
## initial value 125.715888
## iter 10 value 60.754467
## iter 20 value 50.846765
## iter 30 value 43.927400
## final value 43.924110
## converged
## # weights: 27
## initial value 107.757973
## iter 10 value 22.733057
## iter 20 value 19.325034
## iter 30 value 19.274647
## final value 19.274480
## converged
## # weights: 43
## initial value 163.376444
## iter 10 value 33.717532
## iter 20 value 19.055814
## iter 30 value 17.678323
## iter 40 value 17.422214
## iter 50 value 17.379658
## iter 60 value 17.368193
## iter 70 value 17.368087
## final value 17.368085
## converged
## # weights: 11
## initial value 134.973458
## iter 10 value 49.112377
## iter 20 value 45.049809
## iter 30 value 13.680024
## iter 40 value 4.401525
## iter 50 value 3.726450
## iter 60 value 3.179391
## iter 70 value 2.869133
## iter 80 value 2.723382
## iter 90 value 2.662010
## iter 100 value 2.659647
## final value 2.659647
## stopped after 100 iterations
## # weights: 27
## initial value 129.718638
## iter 10 value 10.343871
## iter 20 value 0.544156
## iter 30 value 0.493563
## iter 40 value 0.478537
## iter 50 value 0.455482
## iter 60 value 0.420515
## iter 70 value 0.380996
## iter 80 value 0.331797
## iter 90 value 0.313101
## iter 100 value 0.276587
## final value 0.276587
## stopped after 100 iterations
## # weights: 43
## initial value 136.424295
## iter 10 value 2.900444
## iter 20 value 0.206942
## iter 30 value 0.192161
## iter 40 value 0.189829
## iter 50 value 0.188506
## iter 60 value 0.181346
## iter 70 value 0.179915
## iter 80 value 0.177630
## iter 90 value 0.174593
## iter 100 value 0.173508
## final value 0.173508
## stopped after 100 iterations
## # weights: 11
## initial value 122.118287
## iter 10 value 27.700279
## iter 20 value 4.420775
## iter 30 value 2.465950
## iter 40 value 2.323932
## iter 50 value 2.240343
## iter 60 value 2.106602
## iter 70 value 1.607482
## iter 80 value 1.214292
## iter 90 value 1.061191
## iter 100 value 1.049968
## final value 1.049968
## stopped after 100 iterations
## # weights: 27
## initial value 125.940127
## iter 10 value 5.769944
## iter 20 value 1.588670
## iter 30 value 0.013603
## final value 0.000052
## converged
## # weights: 43
## initial value 128.666408
## iter 10 value 3.486319
## iter 20 value 0.005997
## final value 0.000060
## converged
## # weights: 11
## initial value 133.321825
## iter 10 value 55.090302
## iter 20 value 42.816010
## final value 42.797724
## converged
## # weights: 27
## initial value 123.404940
## iter 10 value 39.530868
## iter 20 value 20.978524
## iter 30 value 18.838250
## iter 40 value 18.788654
## iter 50 value 18.788501
## final value 18.788497
## converged
## # weights: 43
## initial value 124.508655
## iter 10 value 21.266555
## iter 20 value 17.815742
## iter 30 value 17.288387
## iter 40 value 17.227837
## iter 50 value 17.227120
## final value 17.227109
## converged
## # weights: 11
## initial value 123.923502
## iter 10 value 37.380368
## iter 20 value 8.547210
## iter 30 value 3.796525
## iter 40 value 3.588555
## iter 50 value 3.274185
## iter 60 value 3.206527
## iter 70 value 3.164394
## iter 80 value 3.159082
## iter 90 value 3.157631
## iter 100 value 3.156288
## final value 3.156288
## stopped after 100 iterations
## # weights: 27
## initial value 129.498956
## iter 10 value 3.680369
## iter 20 value 0.529272
## iter 30 value 0.497398
## iter 40 value 0.362882
## iter 50 value 0.308514
## iter 60 value 0.300400
## iter 70 value 0.292238
## iter 80 value 0.282543
## iter 90 value 0.277364
## iter 100 value 0.248232
## final value 0.248232
## stopped after 100 iterations
## # weights: 43
## initial value 119.206389
## iter 10 value 16.628873
## iter 20 value 1.621567
## iter 30 value 0.637485
## iter 40 value 0.601582
## iter 50 value 0.520466
## iter 60 value 0.423120
## iter 70 value 0.371935
## iter 80 value 0.349324
## iter 90 value 0.338830
## iter 100 value 0.324720
## final value 0.324720
## stopped after 100 iterations
## # weights: 11
## initial value 141.120451
## iter 10 value 86.290143
## iter 20 value 68.209020
## iter 30 value 47.304237
## iter 40 value 46.796574
## final value 46.796573
## converged
resultado_entrenamiento5 <- predict(modelo5,entrenamiento)
resultado_prueba5 <- predict(modelo5, prueba)
#Matriz de Confusión del Resultado del Entrenamiento
mcre5 <- confusionMatrix(resultado_entrenamiento5, entrenamiento$Species)
#Matriz de Confusión del Resultado de la Prueba
mcrp5 <- confusionMatrix(resultado_prueba5, prueba$Species)
modelo6 <- train(Species ~ ., data=entrenamiento,
method="rf", # Cambiar
preProcess=c("scale","center"),
trControl = trainControl(method="cv", number=10),
tuneGrid=expand.grid(mtry=c(2,4,6)) #Cambiar
)
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
resultado_entrenamiento6 <- predict(modelo6,entrenamiento)
resultado_prueba6 <- predict(modelo6, prueba)
#Matriz de Confusión del Resultado del Entrenamiento
mcre6 <- confusionMatrix(resultado_entrenamiento6, entrenamiento$Species)
#Matriz de Confusión del Resultado de la Prueba
mcrp6 <- confusionMatrix(resultado_prueba6, prueba$Species)
resultados <- data.frame(
"svmLinear"=c(mcre1$overall["Accuracy"], mcrp1$overall["Accuracy"]),
"svmRadial"=c(mcre2$overall["Accuracy"], mcrp2$overall["Accuracy"]),
"svmPoly"=c(mcre3$overall["Accuracy"], mcrp3$overall["Accuracy"]),
"rpart"=c(mcre4$overall["Accuracy"], mcrp4$overall["Accuracy"]),
"nnet"=c(mcre5$overall["Accuracy"], mcrp5$overall["Accuracy"]),
"rf"=c(mcre6$overall["Accuracy"], mcrp6$overall["Accuracy"])
)
rownames(resultados) <- c("Precisión de Entrenamiento", "Prescisión de Prueba")
resultados
## svmLinear svmRadial svmPoly rpart nnet
## Precisión de Entrenamiento 0.9916667 0.9916667 0.9916667 0.9916667 0.9666667
## Prescisión de Prueba 0.9666667 0.9333333 0.9666667 0.9666667 0.9666667
## rf
## Precisión de Entrenamiento 1.0000000
## Prescisión de Prueba 0.9333333
El modelo con el método de bosques aleatorios (rf) presenta sobreajuste, ya que tiene una alta precisión en entrenamiento, pero baja en prueba.
Acorde al resumen de resultados, el modelo mejor evaluado es el de Máquina de Vectores de Soporte Lineal.