LME models (Project 1: Familial)

Sample description for model 1 (familial)

LME model 1: Mutation pos, baseline CDR 0 or .5

Presents graphs first, then a print out of the models. Note the failure to converge/warnings of several models.
Removed condition requiring age<=45. Using original CDR+NACC-FTLD sum of boxes.

## [1] "y.plot =  baseline_gonogo"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -381
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -11.2586  -0.0390  -0.0171   0.0059   3.3202 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.0500871 0.22380      
##            monthssincebaseline 0.0001084 0.01041  0.16
##  Residual                      0.0041197 0.06419      
## Number of obs: 282, groups:  unique_id, 55
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                -0.9894053  0.2361784 48.2836794  -4.189 0.000118
## y.plot                     -0.0579086  0.0295491 50.9145283  -1.960 0.055511
## monthssincebaseline         0.0018262  0.0018133 35.2622538   1.007 0.320733
## baseline_age                0.0006052  0.0027117 48.6612175   0.223 0.824322
## educ                        0.0286649  0.0137799 49.0984055   2.080 0.042748
## y.plot:monthssincebaseline  0.0008665  0.0017522 34.6590985   0.494 0.624081
##                               
## (Intercept)                ***
## y.plot                     .  
## monthssincebaseline           
## baseline_age                  
## educ                       *  
## y.plot:monthssincebaseline    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.190                            
## mnthssncbsl  0.024  0.001                     
## baseline_ag -0.372  0.237  0.006              
## educ        -0.846  0.068 -0.018 -0.163       
## y.plt:mnths -0.002  0.070 -0.035  0.012 -0.005
## [1] "y.plot =  baseline_strp"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -397.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -11.4796  -0.0434  -0.0124   0.0121   3.4059 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         4.276e-02 0.206795     
##            monthssincebaseline 9.501e-05 0.009747 0.31
##  Residual                      3.987e-03 0.063142     
## Number of obs: 283, groups:  unique_id, 57
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)                -0.769376   0.228222 47.257904  -3.371   0.0015 **
## y.plot                     -0.079589   0.036784 53.363230  -2.164   0.0350 * 
## monthssincebaseline         0.002274   0.001672 36.414281   1.360   0.1822   
## baseline_age               -0.003903   0.002900 49.773726  -1.346   0.1844   
## educ                        0.025973   0.012492 48.489549   2.079   0.0429 * 
## y.plot:monthssincebaseline -0.003212   0.001704 36.956254  -1.885   0.0673 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.459                            
## mnthssncbsl  0.026  0.021                     
## baseline_ag -0.468  0.596  0.040              
## educ        -0.813  0.132 -0.027 -0.120       
## y.plt:mnths  0.018  0.150 -0.092 -0.008 -0.014
## [1] "y.plot =  baseline_flk"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -430.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -11.6086  -0.0439  -0.0090   0.0110   3.4397 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         4.350e-02 0.208578     
##            monthssincebaseline 9.737e-05 0.009868 0.13
##  Residual                      3.876e-03 0.062260     
## Number of obs: 303, groups:  unique_id, 61
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.679764   0.225281 56.428125  -3.017 0.003820 ** 
## y.plot                     -0.136641   0.034727 58.798401  -3.935 0.000223 ***
## monthssincebaseline         0.001681   0.001643 40.205723   1.023 0.312332    
## baseline_age               -0.006234   0.002972 57.078591  -2.097 0.040405 *  
## educ                        0.029727   0.012234 56.548267   2.430 0.018305 *  
## y.plot:monthssincebaseline -0.001225   0.001663 40.741157  -0.737 0.465523    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.427                            
## mnthssncbsl  0.012  0.008                     
## baseline_ag -0.480  0.611  0.013              
## educ        -0.784  0.048 -0.014 -0.155       
## y.plt:mnths  0.010  0.032 -0.076 -0.011 -0.004
## [1] "y.plot =  baseline_nback"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -370.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -11.1657  -0.0528  -0.0150   0.0242   3.3029 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         3.448e-02 0.185681     
##            monthssincebaseline 9.016e-05 0.009495 0.40
##  Residual                      4.238e-03 0.065103     
## Number of obs: 261, groups:  unique_id, 50
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.896430   0.184604 39.218329  -4.856 1.95e-05 ***
## y.plot                     -0.091655   0.027130 47.028660  -3.378  0.00147 ** 
## monthssincebaseline         0.003070   0.001702 30.933179   1.804  0.08098 .  
## baseline_age               -0.003562   0.002381 43.352439  -1.496  0.14196    
## educ                        0.032652   0.011695 42.059041   2.792  0.00785 ** 
## y.plot:monthssincebaseline -0.005804   0.001736 33.691912  -3.343  0.00204 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.075                            
## mnthssncbsl  0.058  0.011                     
## baseline_ag -0.258  0.418  0.031              
## educ        -0.818 -0.169 -0.037 -0.327       
## y.plt:mnths  0.013  0.193 -0.140 -0.034  0.006
## [1] "y.plot =  baseline_humi"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -416.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -11.5027  -0.0441  -0.0134   0.0100   3.4065 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.044925 0.21196      
##            monthssincebaseline 0.000101 0.01005  0.19
##  Residual                      0.003949 0.06284      
## Number of obs: 297, groups:  unique_id, 59
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                -0.9672801  0.2104248 52.3069982  -4.597 2.75e-05
## y.plot                     -0.1031237  0.0319081 54.0650785  -3.232  0.00210
## monthssincebaseline         0.0017220  0.0016904 38.7454542   1.019  0.31466
## baseline_age               -0.0036767  0.0027690 52.5259243  -1.328  0.18998
## educ                        0.0393759  0.0130208 52.9084645   3.024  0.00384
## y.plot:monthssincebaseline -0.0007615  0.0016646 40.3053282  -0.457  0.64980
##                               
## (Intercept)                ***
## y.plot                     ** 
## monthssincebaseline           
## baseline_age                  
## educ                       ** 
## y.plot:monthssincebaseline    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.095                            
## mnthssncbsl  0.024  0.011                     
## baseline_ag -0.299  0.508  0.019              
## educ        -0.806 -0.215 -0.021 -0.310       
## y.plt:mnths  0.018  0.097 -0.101  0.014 -0.026
## [1] "y.plot =  baseline_test3meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -428.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -11.5966  -0.0455  -0.0103   0.0127   3.4386 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         4.462e-02 0.211237     
##            monthssincebaseline 9.788e-05 0.009893 0.17
##  Residual                      3.884e-03 0.062318     
## Number of obs: 303, groups:  unique_id, 61
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.881618   0.211190 55.214017  -4.175 0.000107 ***
## y.plot                     -0.125385   0.033856 56.547179  -3.704 0.000485 ***
## monthssincebaseline         0.001670   0.001649 40.217325   1.013 0.317254    
## baseline_age               -0.005522   0.002928 55.356780  -1.886 0.064527 .  
## educ                        0.039725   0.012507 55.701642   3.176 0.002433 ** 
## y.plot:monthssincebaseline -0.001071   0.001647 41.603584  -0.650 0.518946    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.226                            
## mnthssncbsl  0.019  0.011                     
## baseline_ag -0.373  0.583  0.018              
## educ        -0.776 -0.159 -0.020 -0.281       
## y.plt:mnths  0.012  0.073 -0.107  0.007 -0.017
## [1] "y.plot =  baseline_test5meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -442.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -11.6987  -0.0421  -0.0150   0.0152   3.4611 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         4.539e-02 0.213054     
##            monthssincebaseline 9.145e-05 0.009563 0.04
##  Residual                      3.812e-03 0.061737     
## Number of obs: 309, groups:  unique_id, 63
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.863057   0.215263 58.095053  -4.009 0.000176 ***
## y.plot                     -0.110714   0.033714 58.537091  -3.284 0.001731 ** 
## monthssincebaseline         0.001883   0.001604 39.935863   1.174 0.247348    
## baseline_age               -0.004289   0.002914 58.147612  -1.472 0.146425    
## educ                        0.034675   0.012461 58.121098   2.783 0.007261 ** 
## y.plot:monthssincebaseline -0.002553   0.001619 41.270094  -1.577 0.122405    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.270                            
## mnthssncbsl  0.001  0.004                     
## baseline_ag -0.396  0.600  0.004              
## educ        -0.787 -0.113 -0.005 -0.241       
## y.plt:mnths  0.004 -0.008 -0.116 -0.003 -0.003

Sample description for model 2 (familial)

Model 2 same as model 1, but in a sample with baseline CDR+NACC-FTLD global scores >= 0.5 ( no zeros). Sample size was too small to look at 1+. Removed condition requiring age<=45. Using original CDR+NACC-FTLD sum of boxes.
## [1] "N participants at each visit (NOT chapter)"
## 
##  1  2  3 
## 57 22 12 
## [1] "Gentic breakdown"
## 
##   C9 MAPT 
##   25   12 
## [1] "Baseline CDR-NACC+FTLD-motor global score"
## 
## 0.5   1   2 
##  14   3   2

LME model 2: Mutation pos baseline CDR 0.5+ or greater

Presents graphs first, then a print out of the models. Note the failure to converge/warnings of several models.
Removed condition requiring age<=45. Using original CDR+NACC-FTLD sum of boxes.

## [1] "y.plot =  baseline_gonogo"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 31.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.0308 -0.0427  0.0030  0.0616  1.5717 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr 
##  unique_id (Intercept)         0.2634902 0.51331       
##            monthssincebaseline 0.0009246 0.03041  -0.50
##  Residual                      0.0146029 0.12084       
## Number of obs: 69, groups:  unique_id, 17
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -2.149873   0.598307 12.158091  -3.593 0.003619 ** 
## y.plot                      0.106928   0.119174 12.457471   0.897 0.386598    
## monthssincebaseline         0.012361   0.010217  6.651204   1.210 0.267560    
## baseline_age                0.031699   0.011355 12.153092   2.792 0.016128 *  
## educ                        0.032605   0.005691  8.036632   5.729 0.000432 ***
## y.plot:monthssincebaseline  0.005873   0.011802  6.148022   0.498 0.636047    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.304                            
## mnthssncbsl -0.084 -0.015                     
## baseline_ag -0.957  0.344  0.016              
## educ        -0.034 -0.103 -0.074 -0.170       
## y.plt:mnths -0.034 -0.295  0.011  0.032 -0.006
## [1] "y.plot =  baseline_strp"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 18.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3273 -0.1101 -0.0059  0.1081  1.5028 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         0.135903 0.36865       
##            monthssincebaseline 0.000418 0.02045  -0.82
##  Residual                      0.018502 0.13602       
## Number of obs: 53, groups:  unique_id, 12
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)  
## (Intercept)                -2.238580   0.734013  6.990133  -3.050   0.0186 *
## y.plot                     -0.062312   0.147572  9.350818  -0.422   0.6824  
## monthssincebaseline         0.010963   0.007303  8.379862   1.501   0.1700  
## baseline_age                0.017221   0.008064  8.127343   2.136   0.0647 .
## educ                        0.085337   0.038364  8.512909   2.224   0.0548 .
## y.plot:monthssincebaseline -0.015268   0.009427  8.076944  -1.620   0.1436  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.149                            
## mnthssncbsl -0.314  0.170                     
## baseline_ag -0.467  0.136  0.098              
## educ        -0.820  0.047  0.174 -0.100       
## y.plt:mnths -0.038 -0.673 -0.188  0.242 -0.084
## [1] "y.plot =  baseline_flk"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 20.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.3484 -0.0776  0.0000  0.0603  1.7549 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr 
##  unique_id (Intercept)         0.2336763 0.48340       
##            monthssincebaseline 0.0004899 0.02213  -0.48
##  Residual                      0.0130509 0.11424       
## Number of obs: 78, groups:  unique_id, 19
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)                -1.932063   0.713679 14.847193  -2.707  0.01634 * 
## y.plot                      0.074725   0.179486 15.732820   0.416  0.68279   
## monthssincebaseline         0.008366   0.007019  9.354772   1.192  0.26268   
## baseline_age                0.027474   0.011876 14.637605   2.313  0.03569 * 
## educ                        0.032303   0.008728 13.022332   3.701  0.00266 **
## y.plot:monthssincebaseline -0.013414   0.005711  8.347454  -2.349  0.04552 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.665                            
## mnthssncbsl -0.156  0.068                     
## baseline_ag -0.958  0.546  0.095              
## educ        -0.573  0.743  0.058  0.364       
## y.plt:mnths -0.075 -0.158  0.172  0.046  0.135
## [1] "y.plot =  baseline_nback"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 22.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.0078 -0.0501  0.0169  0.1571  1.3720 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr 
##  unique_id (Intercept)         0.1593038 0.39913       
##            monthssincebaseline 0.0003747 0.01936  -0.90
##  Residual                      0.0210890 0.14522       
## Number of obs: 45, groups:  unique_id, 10
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)  
## (Intercept)                -1.665638   0.829090  3.215560  -2.009   0.1320  
## y.plot                     -0.235695   0.162348  7.932454  -1.452   0.1849  
## monthssincebaseline         0.011816   0.007513  5.605894   1.573   0.1703  
## baseline_age               -0.003645   0.011863  5.521325  -0.307   0.7699  
## educ                        0.111539   0.042883  6.122948   2.601   0.0399 *
## y.plot:monthssincebaseline -0.014213   0.007243  5.145846  -1.962   0.1054  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.289                            
## mnthssncbsl -0.377 -0.079                     
## baseline_ag -0.526  0.577  0.063              
## educ        -0.706 -0.110  0.246 -0.211       
## y.plt:mnths -0.162 -0.550  0.122  0.188  0.006
## [1] "y.plot =  baseline_humi"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 24.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.2910 -0.0541 -0.0020  0.0510  1.6679 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr 
##  unique_id (Intercept)         0.2263934 0.47581       
##            monthssincebaseline 0.0008425 0.02903  -0.24
##  Residual                      0.0133810 0.11568       
## Number of obs: 75, groups:  unique_id, 18
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -1.393657   0.714154 13.124140  -1.951 0.072675 .  
## y.plot                     -0.128879   0.134340 14.011093  -0.959 0.353648    
## monthssincebaseline         0.011833   0.009928  7.795363   1.192 0.268324    
## baseline_age                0.018836   0.013132 13.046681   1.434 0.175004    
## educ                        0.028243   0.006036 12.497520   4.679 0.000478 ***
## y.plot:monthssincebaseline -0.006474   0.012117  8.102851  -0.534 0.607501    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.633                            
## mnthssncbsl -0.070  0.019                     
## baseline_ag -0.971  0.614  0.040              
## educ        -0.222  0.215 -0.003  0.044       
## y.plt:mnths -0.035 -0.102  0.213  0.020  0.085
## [1] "y.plot =  baseline_test3meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 22
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.3596 -0.0469 -0.0017  0.0678  1.7335 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr 
##  unique_id (Intercept)         0.2185188 0.46746       
##            monthssincebaseline 0.0005803 0.02409  -0.29
##  Residual                      0.0130639 0.11430       
## Number of obs: 78, groups:  unique_id, 19
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)                -1.398006   0.785570 14.098653  -1.780  0.09670 . 
## y.plot                     -0.102896   0.159841 15.056965  -0.644  0.52943   
## monthssincebaseline         0.009837   0.007792  8.882347   1.262  0.23894   
## baseline_age                0.019662   0.013690 13.977498   1.436  0.17295   
## educ                        0.026426   0.007132 13.996020   3.705  0.00235 **
## y.plot:monthssincebaseline -0.012205   0.007155  8.727346  -1.706  0.12332   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.735                            
## mnthssncbsl -0.091  0.043                     
## baseline_ag -0.973  0.680  0.059              
## educ        -0.498  0.583  0.020  0.334       
## y.plt:mnths -0.043 -0.090  0.147  0.024  0.116
## [1] "y.plot =  baseline_test5meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 19.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.3553 -0.0645  0.0062  0.0764  1.7164 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         0.223086 0.47232       
##            monthssincebaseline 0.000451 0.02124  -0.42
##  Residual                      0.013098 0.11444       
## Number of obs: 78, groups:  unique_id, 19
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -1.380179   0.724184 14.472094  -1.906 0.076731 .  
## y.plot                     -0.092876   0.149710 15.466474  -0.620 0.544046    
## monthssincebaseline         0.009119   0.006789  8.680655   1.343 0.213268    
## baseline_age                0.018561   0.012820 14.283559   1.448 0.169255    
## educ                        0.028354   0.006430 11.626700   4.410 0.000917 ***
## y.plot:monthssincebaseline -0.015801   0.006606  8.590440  -2.392 0.041689 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.677                            
## mnthssncbsl -0.131  0.059                     
## baseline_ag -0.971  0.627  0.085              
## educ        -0.415  0.480  0.010  0.243       
## y.plt:mnths -0.090 -0.135  0.128  0.067  0.155

LME models (Project 2: Sporadic)

Sample description for model 1 (Sporadic)

LME model 1: Mutation- baseline CDR <=0.5

Presents graphs first, then a print out of the models. Note the failure to converge/warnings of several models.
Removed age 45 restriction. using OG FTLD CDR
## [1] "y.plot =  baseline_gonogo"
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00255417 (tol = 0.002, component 1)
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -262.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4149 -0.0686 -0.0064  0.0418  5.5919 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         6.701e-02 0.258859     
##            monthssincebaseline 5.101e-05 0.007142 0.49
##  Residual                      4.632e-03 0.068062     
## Number of obs: 205, groups:  unique_id, 40
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)                -0.5590434  0.2785901 31.8464904  -2.007   0.0533 .
## y.plot                     -0.0919632  0.0538670 36.7710004  -1.707   0.0962 .
## monthssincebaseline         0.0019029  0.0014697 30.1024393   1.295   0.2053  
## baseline_age                0.0071785  0.0033161 34.9142156   2.165   0.0373 *
## educ                       -0.0170555  0.0118312 29.6084493  -1.442   0.1599  
## y.plot:monthssincebaseline -0.0005716  0.0015495 25.9370769  -0.369   0.7152  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.195                            
## mnthssncbsl  0.033 -0.015                     
## baseline_ag -0.685  0.371  0.009              
## educ        -0.755 -0.066  0.016  0.064       
## y.plt:mnths -0.022  0.382  0.018  0.040 -0.009
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00255417 (tol = 0.002, component 1)
## [1] "y.plot =  baseline_strp"
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00434854 (tol = 0.002, component 1)

## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -758.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2069 -0.0385  0.0002  0.0352  5.5418 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         6.494e-02 0.254824     
##            monthssincebaseline 2.086e-06 0.001444 0.04
##  Residual                      2.458e-04 0.015677     
## Number of obs: 211, groups:  unique_id, 43
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)                -0.6122628  0.2970105 39.0954157  -2.061    0.046 *
## y.plot                     -0.0261604  0.0580324 39.1133869  -0.451    0.655  
## monthssincebaseline         0.0004510  0.0003147 28.5583435   1.433    0.163  
## baseline_age                0.0067892  0.0041697 39.1136396   1.628    0.112  
## educ                       -0.0140882  0.0119994 39.0800448  -1.174    0.247  
## y.plot:monthssincebaseline -0.0001065  0.0002970 29.3245499  -0.359    0.722  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.468                            
## mnthssncbsl -0.003  0.004                     
## baseline_ag -0.720  0.724  0.006              
## educ        -0.672 -0.094  0.002 -0.013       
## y.plt:mnths -0.002  0.014 -0.009  0.002  0.001
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00434854 (tol = 0.002, component 1)

## [1] "y.plot =  baseline_flk"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -334.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6643 -0.0850 -0.0019  0.0785  5.9466 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         5.682e-02 0.238376     
##            monthssincebaseline 4.607e-05 0.006787 0.64
##  Residual                      4.086e-03 0.063922     
## Number of obs: 234, groups:  unique_id, 47
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.406417   0.235844 37.216602  -1.723 0.093145 .  
## y.plot                     -0.149602   0.042181 46.968504  -3.547 0.000897 ***
## monthssincebaseline         0.001131   0.001271 37.278600   0.890 0.379393    
## baseline_age                0.001092   0.003269 43.675207   0.334 0.739836    
## educ                       -0.007347   0.010137 33.204857  -0.725 0.473667    
## y.plot:monthssincebaseline  0.000770   0.001181 43.185399   0.652 0.517945    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.282                            
## mnthssncbsl -0.007  0.066                     
## baseline_ag -0.673  0.615  0.095              
## educ        -0.674 -0.223  0.009 -0.073       
## y.plt:mnths -0.022  0.323 -0.042 -0.019  0.052
## [1] "y.plot =  baseline_nback"
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00335639 (tol = 0.002, component 1)

## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -661.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9923 -0.0378  0.0009  0.0524  5.2509 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr 
##  unique_id (Intercept)         7.187e-02 0.268092      
##            monthssincebaseline 2.123e-06 0.001457 -0.01
##  Residual                      2.734e-04 0.016534      
## Number of obs: 187, groups:  unique_id, 36
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)                -0.6122379  0.3158756 32.0431607  -1.938   0.0614 .
## y.plot                     -0.0670684  0.0506972 32.0436031  -1.323   0.1952  
## monthssincebaseline         0.0005399  0.0003396 24.4449832   1.590   0.1247  
## baseline_age                0.0071864  0.0038499 32.0465710   1.867   0.0711 .
## educ                       -0.0147369  0.0133046 32.0489769  -1.108   0.2763  
## y.plot:monthssincebaseline -0.0004086  0.0003153 26.5239046  -1.296   0.2062  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.238                            
## mnthssncbsl  0.000  0.000                     
## baseline_ag -0.690  0.429 -0.002              
## educ        -0.748 -0.060 -0.001  0.057       
## y.plt:mnths  0.000 -0.017 -0.072  0.000  0.000
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00335639 (tol = 0.002, component 1)

## [1] "y.plot =  baseline_humi"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -310.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5783 -0.0481 -0.0021  0.0244  5.8540 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         6.197e-02 0.248937     
##            monthssincebaseline 4.123e-05 0.006421 0.35
##  Residual                      4.233e-03 0.065058     
## Number of obs: 225, groups:  unique_id, 44
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)  
## (Intercept)                -0.464592   0.286949 38.835519  -1.619    0.114  
## y.plot                     -0.135514   0.052841 41.834941  -2.565    0.014 *
## monthssincebaseline         0.001841   0.001294 32.298687   1.423    0.164  
## baseline_age                0.003230   0.004080 40.814096   0.792    0.433  
## educ                       -0.008959   0.012412 37.189255  -0.722    0.475  
## y.plot:monthssincebaseline -0.001738   0.001247 37.018792  -1.394    0.172  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.328                            
## mnthssncbsl  0.013 -0.015                     
## baseline_ag -0.683  0.694  0.010              
## educ        -0.626 -0.306  0.011 -0.127       
## y.plt:mnths -0.011  0.140 -0.070  0.000  0.010

## [1] "y.plot =  baseline_test3meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -333.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6400 -0.0455 -0.0079  0.0385  5.9477 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         5.279e-02 0.229764     
##            monthssincebaseline 4.244e-05 0.006515 0.43
##  Residual                      4.097e-03 0.064012     
## Number of obs: 234, groups:  unique_id, 47
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                -3.550e-01  2.576e-01  4.073e+01  -1.378 0.175681
## y.plot                     -1.764e-01  4.985e-02  4.521e+01  -3.539 0.000943
## monthssincebaseline         1.626e-03  1.269e-03  3.444e+01   1.281 0.208726
## baseline_age               -2.141e-05  3.861e-03  4.359e+01  -0.006 0.995601
## educ                       -5.601e-03  1.111e-02  3.798e+01  -0.504 0.617068
## y.plot:monthssincebaseline -9.821e-04  1.204e-03  4.048e+01  -0.816 0.419524
##                               
## (Intercept)                   
## y.plot                     ***
## monthssincebaseline           
## baseline_age                  
## educ                          
## y.plot:monthssincebaseline    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.374                            
## mnthssncbsl  0.001 -0.001                     
## baseline_ag -0.687  0.739  0.030              
## educ        -0.596 -0.315  0.017 -0.160       
## y.plt:mnths -0.023  0.170 -0.065  0.000  0.025

## [1] "y.plot =  baseline_test5meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -368
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7692 -0.0452 -0.0017  0.0292  6.1741 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         6.308e-02 0.251154     
##            monthssincebaseline 3.957e-05 0.006291 0.41
##  Residual                      3.807e-03 0.061700     
## Number of obs: 251, groups:  unique_id, 50
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)                -0.4434478  0.2727029 45.5388735  -1.626   0.1108  
## y.plot                     -0.0963059  0.0511489 48.4406059  -1.883   0.0657 .
## monthssincebaseline         0.0015835  0.0011885 37.5877549   1.332   0.1908  
## baseline_age                0.0038546  0.0037525 47.4008391   1.027   0.3095  
## educ                       -0.0135563  0.0112846 42.8689374  -1.201   0.2362  
## y.plot:monthssincebaseline -0.0008985  0.0011246 40.2136998  -0.799   0.4290  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.429                            
## mnthssncbsl -0.012  0.010                     
## baseline_ag -0.710  0.709  0.048              
## educ        -0.661 -0.153  0.017 -0.043       
## y.plt:mnths -0.025  0.210 -0.062  0.023  0.004

Sample description for model 2 (Sporadic)

## [1] "N participants at each visit (NOT chapter)"
## 
##   1   2   3 
## 115  46  27 
## [1] "Gentic breakdown"
## 
## NONE 
##   76 
## [1] "Baseline CDR-NACC+FTLD-motor global score"
## 
## 0.5   1 
##  21  34

LME model 2: Mutation-, baseline CDR 0.5 or greater

Presents graphs first, then a print out of the models. Note the failure to converge/warnings of several models.
Models do not converge. We see a trend for the interaction of Nback and time.
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00394044 (tol = 0.002, component 1)

## [1] "y.plot =  baseline_gonogo"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 66.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.84290 -0.15434 -0.01260  0.06264  2.97988 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.804989 0.89721      
##            monthssincebaseline 0.003633 0.06027  0.20
##  Residual                      0.016371 0.12795      
## Number of obs: 134, groups:  unique_id, 28
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.071928   1.673579 24.459658  -0.043 0.966068    
## y.plot                     -0.524148   0.131974 24.313509  -3.972 0.000555 ***
## monthssincebaseline         0.026539   0.015845 13.359597   1.675 0.117190    
## baseline_age               -0.004940   0.022837 24.302143  -0.216 0.830546    
## educ                        0.066663   0.069936 24.019584   0.953 0.349990    
## y.plot:monthssincebaseline  0.005363   0.013879 13.355965   0.386 0.705265    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.047                            
## mnthssncbsl  0.034  0.032                     
## baseline_ag -0.727 -0.056 -0.012              
## educ        -0.496  0.039 -0.014 -0.227       
## y.plt:mnths -0.030  0.109  0.056  0.028  0.011
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00394044 (tol = 0.002, component 1)
## 
## [1] "y.plot =  baseline_strp"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -126.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.26409 -0.03335  0.00061  0.02450  2.91524 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.4110582 0.64114      
##            monthssincebaseline 0.0024987 0.04999  0.31
##  Residual                      0.0008692 0.02948      
## Number of obs: 73, groups:  unique_id, 13
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)  
## (Intercept)                -2.72204    2.22144  8.77069  -1.225   0.2523  
## y.plot                     -0.39806    0.18457  9.02947  -2.157   0.0593 .
## monthssincebaseline         0.01808    0.01661  9.42962   1.088   0.3034  
## baseline_age                0.03545    0.02459  8.30664   1.442   0.1860  
## educ                        0.03843    0.08363  7.86091   0.460   0.6583  
## y.plot:monthssincebaseline -0.04806    0.01477  8.72542  -3.253   0.0104 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.180                            
## mnthssncbsl  0.068  0.103                     
## baseline_ag -0.794  0.196 -0.024              
## educ        -0.722 -0.475 -0.045  0.161       
## y.plt:mnths -0.002  0.224  0.208  0.035 -0.023
## [1] "y.plot =  baseline_flk"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 78.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.92429 -0.07658 -0.00912  0.03387  3.10767 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.866070 0.93063      
##            monthssincebaseline 0.003406 0.05836  0.32
##  Residual                      0.015083 0.12281      
## Number of obs: 151, groups:  unique_id, 35
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                 0.697720   1.523939 29.489770   0.458    0.650    
## y.plot                     -0.742744   0.133473 30.997470  -5.565 4.25e-06 ***
## monthssincebaseline         0.028271   0.014153 15.201805   1.997    0.064 .  
## baseline_age               -0.022805   0.021880 26.953746  -1.042    0.307    
## educ                        0.099655   0.065745 26.530736   1.516    0.141    
## y.plot:monthssincebaseline  0.001958   0.011607 15.331433   0.169    0.868    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.026                            
## mnthssncbsl  0.059  0.062                     
## baseline_ag -0.714  0.218 -0.020              
## educ        -0.443 -0.204 -0.024 -0.303       
## y.plt:mnths -0.025  0.205  0.080  0.031  0.005
## [1] "y.plot =  baseline_nback"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -124.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.24313 -0.03148  0.00452  0.02120  2.87825 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.3304432 0.57484      
##            monthssincebaseline 0.0054189 0.07361  0.74
##  Residual                      0.0008891 0.02982      
## Number of obs: 71, groups:  unique_id, 12
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                 0.524685   1.826157  6.435219   0.287    0.783
## y.plot                     -0.113305   0.170569  9.555068  -0.664    0.522
## monthssincebaseline         0.032375   0.023143 10.661949   1.399    0.190
## baseline_age                0.011218   0.020422  5.713156   0.549    0.604
## educ                       -0.070184   0.053603  6.628790  -1.309    0.234
## y.plot:monthssincebaseline -0.008877   0.021607 10.046439  -0.411    0.690
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.280                            
## mnthssncbsl  0.113  0.191                     
## baseline_ag -0.904 -0.257 -0.051              
## educ        -0.764 -0.161 -0.025  0.429       
## y.plt:mnths  0.022  0.692  0.183  0.002 -0.012
## [1] "y.plot =  baseline_humi"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 75.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.88130 -0.11609 -0.00431  0.03889  3.08788 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         0.854373 0.92432       
##            monthssincebaseline 0.003056 0.05528  -0.07
##  Residual                      0.015217 0.12336       
## Number of obs: 149, groups:  unique_id, 34
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -1.158247   1.576711 30.059387  -0.735    0.468    
## y.plot                     -0.604461   0.130335 30.116160  -4.638 6.42e-05 ***
## monthssincebaseline         0.021135   0.013754 14.949026   1.537    0.145    
## baseline_age               -0.004159   0.021638 30.004166  -0.192    0.849    
## educ                        0.135409   0.069262 29.852174   1.955    0.060 .  
## y.plot:monthssincebaseline -0.014941   0.014507 15.362029  -1.030    0.319    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.098                            
## mnthssncbsl -0.015 -0.014                     
## baseline_ag -0.692  0.011  0.004              
## educ        -0.493 -0.108  0.005 -0.279       
## y.plt:mnths  0.004 -0.059 -0.004  0.002 -0.010
## [1] "y.plot =  baseline_test3meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 72.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.89796 -0.07188 -0.01013  0.05073  3.10587 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.703708 0.8389       
##            monthssincebaseline 0.003283 0.0573   0.18
##  Residual                      0.015084 0.1228       
## Number of obs: 151, groups:  unique_id, 35
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                 0.029963   1.393147 30.124400   0.022   0.9830    
## y.plot                     -0.792243   0.117495 30.782349  -6.743 1.57e-07 ***
## monthssincebaseline         0.024480   0.014127 15.086490   1.733   0.1035    
## baseline_age               -0.018556   0.019830 28.875311  -0.936   0.3571    
## educ                        0.120109   0.060830 28.579408   1.975   0.0581 .  
## y.plot:monthssincebaseline -0.001484   0.013230 15.503360  -0.112   0.9121    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.062                            
## mnthssncbsl  0.036  0.039                     
## baseline_ag -0.704  0.157 -0.013              
## educ        -0.455 -0.239 -0.017 -0.304       
## y.plt:mnths -0.008  0.077  0.038  0.006  0.009
## [1] "y.plot =  baseline_test5meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 78.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8733 -0.1095 -0.0040  0.0411  3.1112 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         0.90334  0.95044       
##            monthssincebaseline 0.00311  0.05577  -0.16
##  Residual                      0.01507  0.12275       
## Number of obs: 151, groups:  unique_id, 35
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                -0.40909    1.58212 30.84278  -0.259    0.798    
## y.plot                     -0.70691    0.13089 31.05037  -5.401 6.77e-06 ***
## monthssincebaseline         0.01884    0.01383 14.91262   1.363    0.193    
## baseline_age               -0.01285    0.02221 30.40534  -0.578    0.567    
## educ                        0.12658    0.06913 30.13965   1.831    0.077 .  
## y.plot:monthssincebaseline -0.01301    0.01261 15.36292  -1.032    0.318    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.134                            
## mnthssncbsl -0.031 -0.035                     
## baseline_ag -0.700  0.098  0.009              
## educ        -0.468 -0.264  0.012 -0.294       
## y.plt:mnths  0.014 -0.106  0.048 -0.013 -0.006

Sample description for model 3

## [1] "N participants at each visit (NOT chapter)"
## 
##   1   2   3 
## 220 101  60 
## [1] "Gentic breakdown"
## 
## NONE 
##  153 
## [1] "Baseline CDR-NACC+FTLD-motor global score"
## 
## 0.5   0   1 
##  23  58  34

LME model 3: mutation - full sample

## [1] "y.plot =  baseline_gonogo"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -18.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5672 -0.0323 -0.0045  0.0133  4.1382 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.572031 0.75633      
##            monthssincebaseline 0.001646 0.04057  0.34
##  Residual                      0.008509 0.09224      
## Number of obs: 266, groups:  unique_id, 57
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                -1.1140447  0.6992086 49.7545560  -1.593   0.1174
## y.plot                     -0.5361751  0.0816994 53.9472791  -6.563 2.12e-08
## monthssincebaseline         0.0120826  0.0069758 32.5483646   1.732   0.0927
## baseline_age                0.0172499  0.0078619 51.5988443   2.194   0.0328
## educ                        0.0085750  0.0319700 48.7010606   0.268   0.7897
## y.plot:monthssincebaseline -0.0007371  0.0065320 33.1463841  -0.113   0.9108
##                               
## (Intercept)                   
## y.plot                     ***
## monthssincebaseline        .  
## baseline_age               *  
## educ                          
## y.plot:monthssincebaseline    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.119                            
## mnthssncbsl  0.034  0.038                     
## baseline_ag -0.614  0.270 -0.006              
## educ        -0.759 -0.040  0.010 -0.028       
## y.plt:mnths -0.024  0.204  0.002  0.015  0.025

## [1] "y.plot =  baseline_strp"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -557.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7926 -0.0106 -0.0004  0.0055  4.8896 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.2140089 0.46261      
##            monthssincebaseline 0.0012066 0.03474  0.60
##  Residual                      0.0003093 0.01759      
## Number of obs: 222, groups:  unique_id, 47
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.515632   0.422991 26.438427  -1.219   0.2336    
## y.plot                     -0.262362   0.080709 44.551314  -3.251   0.0022 ** 
## monthssincebaseline         0.009516   0.005849 41.607209   1.627   0.1113    
## baseline_age                0.008325   0.005839 29.333041   1.426   0.1644    
## educ                       -0.017628   0.017599 22.583422  -1.002   0.3271    
## y.plot:monthssincebaseline -0.023904   0.005384 41.828587  -4.440 6.46e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.342                            
## mnthssncbsl  0.020  0.062                     
## baseline_ag -0.699  0.633  0.064              
## educ        -0.676 -0.151  0.023 -0.030       
## y.plt:mnths  0.025  0.386  0.007 -0.008 -0.020

## [1] "y.plot =  baseline_flk"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -25.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7303 -0.0295 -0.0045  0.0144  4.3870 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.668061 0.81735      
##            monthssincebaseline 0.001573 0.03967  0.46
##  Residual                      0.007578 0.08705      
## Number of obs: 306, groups:  unique_id, 70
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.907186   0.676767 47.122225  -1.340   0.1865    
## y.plot                     -0.691448   0.085948 67.342467  -8.045 1.93e-11 ***
## monthssincebaseline         0.012987   0.006192 35.298664   2.097   0.0432 *  
## baseline_age                0.011414   0.007797 49.494519   1.464   0.1495    
## educ                        0.021229   0.031549 42.260282   0.673   0.5047    
## y.plot:monthssincebaseline -0.003954   0.005439 37.997032  -0.727   0.4717    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.144                            
## mnthssncbsl  0.036  0.058                     
## baseline_ag -0.591  0.429  0.004              
## educ        -0.752 -0.136  0.016 -0.067       
## y.plt:mnths -0.027  0.278 -0.004  0.020  0.028

## [1] "y.plot =  baseline_nback"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -497.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6328 -0.0130 -0.0012  0.0090  4.6789 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.1663573 0.40787      
##            monthssincebaseline 0.0017930 0.04234  0.69
##  Residual                      0.0003375 0.01837      
## Number of obs: 196, groups:  unique_id, 39
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)  
## (Intercept)                -0.366103   0.360176 25.760400  -1.016   0.3189  
## y.plot                     -0.168779   0.070989 39.358154  -2.378   0.0224 *
## monthssincebaseline         0.009094   0.007509 38.322935   1.211   0.2333  
## baseline_age                0.007003   0.004497 27.777105   1.557   0.1307  
## educ                       -0.023391   0.014860 24.714631  -1.574   0.1282  
## y.plot:monthssincebaseline -0.010112   0.007269 35.642938  -1.391   0.1728  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.178                            
## mnthssncbsl  0.075  0.030                     
## baseline_ag -0.701  0.361  0.035              
## educ        -0.720 -0.085  0.019  0.045       
## y.plt:mnths  0.004  0.603 -0.010  0.019 -0.019

## [1] "y.plot =  baseline_humi"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -22.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6242 -0.0219 -0.0014  0.0113  4.3139 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.673871 0.82090      
##            monthssincebaseline 0.001333 0.03651  0.13
##  Residual                      0.007805 0.08834      
## Number of obs: 295, groups:  unique_id, 66
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.672053   0.782355 61.495355  -0.859   0.3937    
## y.plot                     -0.780553   0.115558 62.316713  -6.755 5.59e-09 ***
## monthssincebaseline         0.011821   0.006096 35.067870   1.939   0.0606 .  
## baseline_age               -0.003083   0.010155 61.920000  -0.304   0.7624    
## educ                        0.059204   0.035726 61.076112   1.657   0.1026    
## y.plot:monthssincebaseline -0.011552   0.005977 35.442945  -1.933   0.0613 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.307                            
## mnthssncbsl  0.010  0.010                     
## baseline_ag -0.623  0.644  0.003              
## educ        -0.671 -0.203 -0.001 -0.148       
## y.plt:mnths -0.001  0.042 -0.105 -0.011  0.014

## [1] "y.plot =  baseline_test3meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -42.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6783 -0.0236 -0.0044  0.0142  4.3833 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.509426 0.71374      
##            monthssincebaseline 0.001379 0.03714  0.24
##  Residual                      0.007576 0.08704      
## Number of obs: 306, groups:  unique_id, 70
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.360990   0.634870 60.433672  -0.569   0.5717    
## y.plot                     -0.869994   0.086447 65.866904 -10.064 5.97e-15 ***
## monthssincebaseline         0.011792   0.006036 36.136175   1.954   0.0585 .  
## baseline_age               -0.005693   0.008005 61.928246  -0.711   0.4797    
## educ                        0.046529   0.029825 58.031719   1.560   0.1242    
## y.plot:monthssincebaseline -0.008519   0.005862 37.489102  -1.453   0.1545    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.227                            
## mnthssncbsl  0.012  0.027                     
## baseline_ag -0.593  0.596  0.011              
## educ        -0.704 -0.221  0.004 -0.139       
## y.plt:mnths -0.003  0.087 -0.078 -0.018  0.024

## [1] "y.plot =  baseline_test5meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -43.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7402 -0.0189 -0.0031  0.0088  4.5173 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.700218 0.83679      
##            monthssincebaseline 0.001237 0.03517  0.14
##  Residual                      0.007141 0.08450      
## Number of obs: 323, groups:  unique_id, 73
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.347004   0.726513 67.801585  -0.478   0.6344    
## y.plot                     -0.800589   0.105641 69.061554  -7.578 1.17e-10 ***
## monthssincebaseline         0.010897   0.005617 38.271479   1.940   0.0598 .  
## baseline_age               -0.002750   0.009193 68.235290  -0.299   0.7657    
## educ                        0.036665   0.034451 66.740974   1.064   0.2910    
## y.plot:monthssincebaseline -0.011044   0.005350 39.015759  -2.065   0.0457 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.258                            
## mnthssncbsl  0.004  0.016                     
## baseline_ag -0.590  0.615  0.011              
## educ        -0.701 -0.205  0.002 -0.146       
## y.plt:mnths -0.001  0.058 -0.077 -0.005  0.007

Power analysis

Power anlaysis with Full Sample

Presents change over 1 year. Difference scores were calculated as annualized change ([~1 year score - baseline]/time). First presents a plot with all tests. Then presents a restricted plot showing only sample sizes <1000
## Warning: Using one column matrices in `filter()` was deprecated in dplyr 1.1.0.
## ℹ Please use one dimensional logical vectors instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.
## Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.

## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
Task n.with.test Z.Decline CI.low CI.high sample_size.25 sample_size.40
change_moca 44 0.0104035 -0.6478557 0.6686627 1005529 392785
change_ftlcdrm_sob 46 0.1713188 -0.3363173 0.6789549 2206 862
change_strp 37 0.0780440 -0.0809017 0.2369897 1042 407
change_flk 45 -0.1117156 -0.2102493 -0.0131818 196 77
change_nback 35 0.2691843 -0.1892757 0.7276443 729 285
change_humi 44 0.0788197 -0.0475274 0.2051669 646 253
change_gonogo 37 -27.1431066 -33.4097271 -20.8764860 14 6
change_trailsb 38 3.0008595 -10.9294388 16.9311578 5413 2115
change_animals 42 0.2456758 -1.4317130 1.9230645 11709 4574
change_uds3ef 43 0.0257309 -0.1291771 0.1806390 9104 3556
change_trailsb_ratio 38 -0.0039344 -0.0466109 0.0387421 29552 11544
change_test3meanZ 45 -0.0382077 -0.1886104 0.1121950 3892 1521
change_test5meanZ 46 0.0315872 -0.1504258 0.2136002 8340 3258

Power Familial

Presents change over 1 year. Difference scores were calculated as annualized change ([~1 year score - baseline]/time). First presents a plot with all tests. Then presents a restricted plot showing only sample sizes <1000
## Warning: Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.
## Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.

## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
Task n.with.test Z.Decline CI.low CI.high sample_size.25 sample_size.40
change_moca 20 0.3263958 -0.2228450 0.8756366 712 278
change_ftlcdrm_sob 21 0.1289899 -0.4621162 0.7200961 5275 2061
change_strp 20 0.0651410 -0.0706241 0.2009061 1091 427
change_flk 21 -0.1211937 -0.2148427 -0.0275448 150 59
change_nback 19 0.4156407 -0.0022629 0.8335442 254 100
change_humi 21 0.0700139 -0.0509873 0.1910151 751 294
change_gonogo 17 -27.1124517 -33.8396853 -20.3852182 16 7
change_trailsb 17 1.3883653 -9.5696159 12.3463465 15647 6112
change_animals 19 0.1046917 -1.6717601 1.8811435 72317 28249
change_uds3ef 20 0.0185432 -0.1236633 0.1607497 14772 5771
change_trailsb_ratio 17 -0.0075054 -0.0483390 0.0333281 7435 2904
change_test3meanZ 21 -0.0412737 -0.1480054 0.0654580 1680 657
change_test5meanZ 21 0.0705397 -0.0582554 0.1993349 838 328

Power Sporadic

Presents change over 1 year. Difference scores were calculated as annualized change ([~1 year score - baseline]/time). First presents a plot with all tests. Then presents a restricted plot showing only sample sizes <1000
## Warning: Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.
## Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.

## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
Task n.with.test Z.Decline CI.low CI.high sample_size.25 sample_size.40
change_moca 22 -0.2067335 -0.8050542 0.3915872 2104 822
change_ftlcdrm_sob 23 0.2165820 -0.2353659 0.6685299 1094 428
change_strp 16 0.0875933 -0.1027420 0.2779286 1186 464
change_flk 22 -0.1000289 -0.2080684 0.0080107 293 115
change_nback 15 0.0977832 -0.3735157 0.5690821 5835 2280
change_humi 21 0.0860915 -0.0524747 0.2246578 651 255
change_gonogo 18 -26.9446090 -33.2694596 -20.6197583 14 6
change_trailsb 19 4.1781463 -12.7440309 21.1003236 4121 1610
change_animals 21 0.2878007 -1.3760610 1.9516623 8395 3280
change_uds3ef 21 0.0258267 -0.1487428 0.2003961 11476 4483
change_trailsb_ratio 19 0.0017167 -0.0447079 0.0481413 183676 71749
change_test3meanZ 22 -0.0446723 -0.2326941 0.1433495 4450 1738
change_test5meanZ 23 -0.0082146 -0.2298488 0.2134195 182834 71420

Power baseline CDR 0.5 and 1

Presents change over 1 year. Difference scores were calculated as annualized change ([~1 year score - baseline]/time). First presents a plot with all tests. Then presents a restricted plot showing only sample sizes <1000
## Warning: Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.
## Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.

## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
Task n.with.test Z.Decline CI.low CI.high sample_size.25 sample_size.40
change_moca 11 -0.1676607 -1.0987822 0.7634607 7747 3026
change_ftlcdrm_sob 12 0.3499182 -0.1888556 0.8886921 596 233
change_strp 8 0.1796356 0.0144110 0.3448603 213 83
change_flk 12 -0.0786802 -0.1741220 0.0167617 370 145
change_nback 8 0.0965442 -0.5117842 0.7048726 9972 3896
change_humi 12 0.0567625 -0.0844454 0.1979705 1555 608
change_gonogo 11 -26.7714457 -32.7198005 -20.8230910 13 5
change_trailsb 10 9.2536561 -12.6574901 31.1648023 1409 551
change_animals 11 0.1985917 -1.6048098 2.0019932 20712 8091
change_uds3ef 11 -0.0031339 -0.2118314 0.2055636 1113853 435099
change_trailsb_ratio 10 -0.0100370 -0.0522874 0.0322135 4451 1739
change_test3meanZ 12 -0.0569793 -0.2780355 0.1640768 3781 1477
change_test5meanZ 12 -0.0169723 -0.2798492 0.2459045 60253 23537

Other analyses

Association of cognitive task and change in CDR+NACC FTLD SOB

Task n.with.task beta.store CI.low CI.high
change_moca 118 -0.2099112 -0.3763890 -0.0303016
change_strp 96 -0.0809956 -0.2769838 0.1214627
change_flk 120 0.0908792 -0.0898253 0.2657910
change_nback 88 -0.1735234 -0.3695355 0.0372735
change_humi 117 -0.0984351 -0.2750531 0.0846098
change_gonogo 85 0.1179789 -0.0975992 0.3229819
change_animals 109 -0.0938963 -0.2771038 0.0958992
change_uds3ef 79 -0.3537916 -0.5331920 -0.1439413
change_trailsb_ratio 74 -0.2427848 -0.4465128 -0.0151252
change_test3meanZ 120 -0.1094040 -0.2830939 0.0712343
change_test5meanZ 124 -0.1664203 -0.3329667 0.0101955

Post-hoc association of cognitive task and change in CDR+NACC FTLD SOB

limited to sample with animals, uds3ef, smartphone composites, and moca.

Task n.with.task beta.store CI.low CI.high
change_moca 65 -0.4277844 -0.6082237 -0.2053062
change_strp 52 0.1193574 -0.1587126 0.3798839
change_flk 65 -0.0714677 -0.3099639 0.1754904
change_nback 51 -0.0650439 -0.3346293 0.2143826
change_humi 63 -0.1472020 -0.3810689 0.1043696
change_gonogo 58 0.0450987 -0.2157098 0.2999010
change_animals 65 0.0710922 -0.1758561 0.3096227
change_uds3ef 65 -0.1644864 -0.3926338 0.0827318
change_trailsb_ratio 65 -0.0976619 -0.3336145 0.1498055
change_test3meanZ 65 -0.2805350 -0.4908491 -0.0393267
change_test5meanZ 65 -0.3371548 -0.5369034 -0.1016114

Association of smartphone composite and change in CDR

## [1] "Raw correlation"
## 
##  Pearson's product-moment correlation
## 
## data:  df.smartphone.other$baseline_test5meanZ and df.smartphone.other$change_ftlcdr_sob
## t = -2.7997, df = 134, p-value = 0.005871
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.38805902 -0.06949983
## sample estimates:
##        cor 
## -0.2350825
## [1] "Standardized correlation"
## 
##  Pearson's product-moment correlation
## 
## data:  df.smartphone.other$change_z and df.smartphone.other$composite5_z
## t = -2.5607, df = 134, p-value = 0.01155
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.37083874 -0.04945399
## sample estimates:
##        cor 
## -0.2159888