Teoria

El paquete CARET (Clafication and Regression Training) es un paquete integral con una amplia variedad de algoritmos para el; aprendizaje automatico.

Instalar paquetes y llamar librerias

#install.packages("ggplot2") 
library(ggplot2) #Graficas con mejor diseno
#install.packages("lattice") 
library(lattice) #Crear graficos
#install.packages("caret") 
library(caret) #Algoritmos de aprendizaje automatico
#install.packages("datasets") 
library(datasets) #Usar la base de datos "Iris"
#install.packages("DataExplorer") 
library(DataExplorer) #Exploracion de datos
#install.packages("kernlab") 
library(kernlab) #Metodos de aprendizaje automatico
#install.packages("randomForest") 
library(randomForest) #Exploracion de datos

Crear base de datos

df <- read.csv("C:\\Users\\maria\\OneDrive\\Desktop\\AD24\\Modulo 2\\heart.csv")

Analisis Exploratorio

summary(df)
##       age             sex               cp            trestbps    
##  Min.   :29.00   Min.   :0.0000   Min.   :0.0000   Min.   : 94.0  
##  1st Qu.:48.00   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:120.0  
##  Median :56.00   Median :1.0000   Median :1.0000   Median :130.0  
##  Mean   :54.43   Mean   :0.6956   Mean   :0.9424   Mean   :131.6  
##  3rd Qu.:61.00   3rd Qu.:1.0000   3rd Qu.:2.0000   3rd Qu.:140.0  
##  Max.   :77.00   Max.   :1.0000   Max.   :3.0000   Max.   :200.0  
##       chol          fbs            restecg          thalach     
##  Min.   :126   Min.   :0.0000   Min.   :0.0000   Min.   : 71.0  
##  1st Qu.:211   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:132.0  
##  Median :240   Median :0.0000   Median :1.0000   Median :152.0  
##  Mean   :246   Mean   :0.1493   Mean   :0.5298   Mean   :149.1  
##  3rd Qu.:275   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:166.0  
##  Max.   :564   Max.   :1.0000   Max.   :2.0000   Max.   :202.0  
##      exang           oldpeak          slope             ca        
##  Min.   :0.0000   Min.   :0.000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:1.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.800   Median :1.000   Median :0.0000  
##  Mean   :0.3366   Mean   :1.072   Mean   :1.385   Mean   :0.7541  
##  3rd Qu.:1.0000   3rd Qu.:1.800   3rd Qu.:2.000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :6.200   Max.   :2.000   Max.   :4.0000  
##       thal           target      
##  Min.   :0.000   Min.   :0.0000  
##  1st Qu.:2.000   1st Qu.:0.0000  
##  Median :2.000   Median :1.0000  
##  Mean   :2.324   Mean   :0.5132  
##  3rd Qu.:3.000   3rd Qu.:1.0000  
##  Max.   :3.000   Max.   :1.0000
str(df)
## 'data.frame':    1025 obs. of  14 variables:
##  $ age     : int  52 53 70 61 62 58 58 55 46 54 ...
##  $ sex     : int  1 1 1 1 0 0 1 1 1 1 ...
##  $ cp      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trestbps: int  125 140 145 148 138 100 114 160 120 122 ...
##  $ chol    : int  212 203 174 203 294 248 318 289 249 286 ...
##  $ fbs     : int  0 1 0 0 1 0 0 0 0 0 ...
##  $ restecg : int  1 0 1 1 1 0 2 0 0 0 ...
##  $ thalach : int  168 155 125 161 106 122 140 145 144 116 ...
##  $ exang   : int  0 1 1 0 0 0 0 1 0 1 ...
##  $ oldpeak : num  1 3.1 2.6 0 1.9 1 4.4 0.8 0.8 3.2 ...
##  $ slope   : int  2 0 0 2 1 1 0 1 2 1 ...
##  $ ca      : int  2 0 0 1 3 0 3 1 0 2 ...
##  $ thal    : int  3 3 3 3 2 2 1 3 3 2 ...
##  $ target  : int  0 0 0 0 0 1 0 0 0 0 ...
plot_missing(df)

Convertir variables a factores

df$sex <- as.factor(df$sex)
df$target <- as.factor(df$target) #variable que queremos predecir
df$cp <- as.factor(df$cp)
df$restecg <- as.factor(df$restecg)
df$ca <- as.factor(df$ca)
df$thal <- as.factor(df$thal)
df$exang <- as.factor(df$exang)
df$fbs <- as.factor(df$fbs)
df$slope <- as.factor(df$slope)


df
##      age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal
## 1     52   1  0      125  212   0       1     168     0     1.0     2  2    3
## 2     53   1  0      140  203   1       0     155     1     3.1     0  0    3
## 3     70   1  0      145  174   0       1     125     1     2.6     0  0    3
## 4     61   1  0      148  203   0       1     161     0     0.0     2  1    3
## 5     62   0  0      138  294   1       1     106     0     1.9     1  3    2
## 6     58   0  0      100  248   0       0     122     0     1.0     1  0    2
## 7     58   1  0      114  318   0       2     140     0     4.4     0  3    1
## 8     55   1  0      160  289   0       0     145     1     0.8     1  1    3
## 9     46   1  0      120  249   0       0     144     0     0.8     2  0    3
## 10    54   1  0      122  286   0       0     116     1     3.2     1  2    2
## 11    71   0  0      112  149   0       1     125     0     1.6     1  0    2
## 12    43   0  0      132  341   1       0     136     1     3.0     1  0    3
## 13    34   0  1      118  210   0       1     192     0     0.7     2  0    2
## 14    51   1  0      140  298   0       1     122     1     4.2     1  3    3
## 15    52   1  0      128  204   1       1     156     1     1.0     1  0    0
## 16    34   0  1      118  210   0       1     192     0     0.7     2  0    2
## 17    51   0  2      140  308   0       0     142     0     1.5     2  1    2
## 18    54   1  0      124  266   0       0     109     1     2.2     1  1    3
## 19    50   0  1      120  244   0       1     162     0     1.1     2  0    2
## 20    58   1  2      140  211   1       0     165     0     0.0     2  0    2
## 21    60   1  2      140  185   0       0     155     0     3.0     1  0    2
## 22    67   0  0      106  223   0       1     142     0     0.3     2  2    2
## 23    45   1  0      104  208   0       0     148     1     3.0     1  0    2
## 24    63   0  2      135  252   0       0     172     0     0.0     2  0    2
## 25    42   0  2      120  209   0       1     173     0     0.0     1  0    2
## 26    61   0  0      145  307   0       0     146     1     1.0     1  0    3
## 27    44   1  2      130  233   0       1     179     1     0.4     2  0    2
## 28    58   0  1      136  319   1       0     152     0     0.0     2  2    2
## 29    56   1  2      130  256   1       0     142     1     0.6     1  1    1
## 30    55   0  0      180  327   0       2     117     1     3.4     1  0    2
## 31    44   1  0      120  169   0       1     144     1     2.8     0  0    1
## 32    50   0  1      120  244   0       1     162     0     1.1     2  0    2
## 33    57   1  0      130  131   0       1     115     1     1.2     1  1    3
## 34    70   1  2      160  269   0       1     112     1     2.9     1  1    3
## 35    50   1  2      129  196   0       1     163     0     0.0     2  0    2
## 36    46   1  2      150  231   0       1     147     0     3.6     1  0    2
## 37    51   1  3      125  213   0       0     125     1     1.4     2  1    2
## 38    59   1  0      138  271   0       0     182     0     0.0     2  0    2
## 39    64   1  0      128  263   0       1     105     1     0.2     1  1    3
## 40    57   1  2      128  229   0       0     150     0     0.4     1  1    3
## 41    65   0  2      160  360   0       0     151     0     0.8     2  0    2
## 42    54   1  2      120  258   0       0     147     0     0.4     1  0    3
## 43    61   0  0      130  330   0       0     169     0     0.0     2  0    2
## 44    46   1  0      120  249   0       0     144     0     0.8     2  0    3
## 45    55   0  1      132  342   0       1     166     0     1.2     2  0    2
## 46    42   1  0      140  226   0       1     178     0     0.0     2  0    2
## 47    41   1  1      135  203   0       1     132     0     0.0     1  0    1
## 48    66   0  0      178  228   1       1     165     1     1.0     1  2    3
## 49    66   0  2      146  278   0       0     152     0     0.0     1  1    2
## 50    60   1  0      117  230   1       1     160     1     1.4     2  2    3
## 51    58   0  3      150  283   1       0     162     0     1.0     2  0    2
## 52    57   0  0      140  241   0       1     123     1     0.2     1  0    3
## 53    38   1  2      138  175   0       1     173     0     0.0     2  4    2
## 54    49   1  2      120  188   0       1     139     0     2.0     1  3    3
## 55    55   1  0      140  217   0       1     111     1     5.6     0  0    3
## 56    55   1  0      140  217   0       1     111     1     5.6     0  0    3
## 57    56   1  3      120  193   0       0     162     0     1.9     1  0    3
## 58    48   1  1      130  245   0       0     180     0     0.2     1  0    2
## 59    67   1  2      152  212   0       0     150     0     0.8     1  0    3
## 60    57   1  1      154  232   0       0     164     0     0.0     2  1    2
## 61    29   1  1      130  204   0       0     202     0     0.0     2  0    2
## 62    66   0  2      146  278   0       0     152     0     0.0     1  1    2
## 63    67   1  0      100  299   0       0     125     1     0.9     1  2    2
## 64    59   1  2      150  212   1       1     157     0     1.6     2  0    2
## 65    29   1  1      130  204   0       0     202     0     0.0     2  0    2
## 66    59   1  3      170  288   0       0     159     0     0.2     1  0    3
## 67    53   1  2      130  197   1       0     152     0     1.2     0  0    2
## 68    42   1  0      136  315   0       1     125     1     1.8     1  0    1
## 69    37   0  2      120  215   0       1     170     0     0.0     2  0    2
## 70    62   0  0      160  164   0       0     145     0     6.2     0  3    3
## 71    59   1  0      170  326   0       0     140     1     3.4     0  0    3
## 72    61   1  0      140  207   0       0     138     1     1.9     2  1    3
## 73    56   1  0      125  249   1       0     144     1     1.2     1  1    2
## 74    59   1  0      140  177   0       1     162     1     0.0     2  1    3
## 75    48   1  0      130  256   1       0     150     1     0.0     2  2    3
## 76    47   1  2      138  257   0       0     156     0     0.0     2  0    2
## 77    48   1  2      124  255   1       1     175     0     0.0     2  2    2
## 78    63   1  0      140  187   0       0     144     1     4.0     2  2    3
## 79    52   1  1      134  201   0       1     158     0     0.8     2  1    2
## 80    52   1  1      134  201   0       1     158     0     0.8     2  1    2
## 81    50   1  2      140  233   0       1     163     0     0.6     1  1    3
## 82    49   1  2      118  149   0       0     126     0     0.8     2  3    2
## 83    46   1  2      150  231   0       1     147     0     3.6     1  0    2
## 84    38   1  2      138  175   0       1     173     0     0.0     2  4    2
## 85    37   0  2      120  215   0       1     170     0     0.0     2  0    2
## 86    44   1  1      120  220   0       1     170     0     0.0     2  0    2
## 87    58   1  2      140  211   1       0     165     0     0.0     2  0    2
## 88    59   0  0      174  249   0       1     143     1     0.0     1  0    2
## 89    62   0  0      140  268   0       0     160     0     3.6     0  2    2
## 90    68   1  0      144  193   1       1     141     0     3.4     1  2    3
## 91    54   0  2      108  267   0       0     167     0     0.0     2  0    2
## 92    62   0  0      124  209   0       1     163     0     0.0     2  0    2
## 93    63   1  0      140  187   0       0     144     1     4.0     2  2    3
## 94    44   1  0      120  169   0       1     144     1     2.8     0  0    1
## 95    62   1  1      128  208   1       0     140     0     0.0     2  0    2
## 96    45   0  0      138  236   0       0     152     1     0.2     1  0    2
## 97    57   0  0      128  303   0       0     159     0     0.0     2  1    2
## 98    53   1  0      123  282   0       1      95     1     2.0     1  2    3
## 99    65   1  0      110  248   0       0     158     0     0.6     2  2    1
## 100   76   0  2      140  197   0       2     116     0     1.1     1  0    2
## 101   43   0  2      122  213   0       1     165     0     0.2     1  0    2
## 102   57   1  2      150  126   1       1     173     0     0.2     2  1    3
## 103   54   1  1      108  309   0       1     156     0     0.0     2  0    3
## 104   47   1  2      138  257   0       0     156     0     0.0     2  0    2
## 105   52   1  3      118  186   0       0     190     0     0.0     1  0    1
## 106   47   1  0      110  275   0       0     118     1     1.0     1  1    2
## 107   51   1  0      140  299   0       1     173     1     1.6     2  0    3
## 108   62   1  1      120  281   0       0     103     0     1.4     1  1    3
## 109   40   1  0      152  223   0       1     181     0     0.0     2  0    3
## 110   54   1  0      110  206   0       0     108     1     0.0     1  1    2
## 111   44   1  0      110  197   0       0     177     0     0.0     2  1    2
## 112   53   1  0      142  226   0       0     111     1     0.0     2  0    3
## 113   48   1  0      130  256   1       0     150     1     0.0     2  2    3
## 114   57   1  0      110  335   0       1     143     1     3.0     1  1    3
## 115   59   1  2      126  218   1       1     134     0     2.2     1  1    1
## 116   61   0  0      145  307   0       0     146     1     1.0     1  0    3
## 117   63   1  0      130  254   0       0     147     0     1.4     1  1    3
## 118   43   1  0      120  177   0       0     120     1     2.5     1  0    3
## 119   29   1  1      130  204   0       0     202     0     0.0     2  0    2
## 120   42   1  1      120  295   0       1     162     0     0.0     2  0    2
## 121   54   1  1      108  309   0       1     156     0     0.0     2  0    3
## 122   44   1  0      120  169   0       1     144     1     2.8     0  0    1
## 123   60   1  0      145  282   0       0     142     1     2.8     1  2    3
## 124   65   0  2      140  417   1       0     157     0     0.8     2  1    2
## 125   61   1  0      120  260   0       1     140     1     3.6     1  1    3
## 126   60   0  3      150  240   0       1     171     0     0.9     2  0    2
## 127   66   1  0      120  302   0       0     151     0     0.4     1  0    2
## 128   53   1  2      130  197   1       0     152     0     1.2     0  0    2
## 129   52   1  2      138  223   0       1     169     0     0.0     2  4    2
## 130   57   1  0      140  192   0       1     148     0     0.4     1  0    1
## 131   60   0  3      150  240   0       1     171     0     0.9     2  0    2
## 132   51   0  2      130  256   0       0     149     0     0.5     2  0    2
## 133   41   1  1      135  203   0       1     132     0     0.0     1  0    1
## 134   50   1  2      129  196   0       1     163     0     0.0     2  0    2
## 135   54   1  1      108  309   0       1     156     0     0.0     2  0    3
## 136   58   0  0      170  225   1       0     146     1     2.8     1  2    1
## 137   55   0  1      132  342   0       1     166     0     1.2     2  0    2
## 138   64   0  0      180  325   0       1     154     1     0.0     2  0    2
## 139   47   1  2      138  257   0       0     156     0     0.0     2  0    2
## 140   41   1  1      110  235   0       1     153     0     0.0     2  0    2
## 141   57   1  0      152  274   0       1      88     1     1.2     1  1    3
## 142   63   0  0      124  197   0       1     136     1     0.0     1  0    2
## 143   61   1  3      134  234   0       1     145     0     2.6     1  2    2
## 144   34   1  3      118  182   0       0     174     0     0.0     2  0    2
## 145   47   1  0      112  204   0       1     143     0     0.1     2  0    2
## 146   40   1  0      110  167   0       0     114     1     2.0     1  0    3
## 147   51   0  2      120  295   0       0     157     0     0.6     2  0    2
## 148   41   1  0      110  172   0       0     158     0     0.0     2  0    3
## 149   52   1  3      152  298   1       1     178     0     1.2     1  0    3
## 150   39   1  2      140  321   0       0     182     0     0.0     2  0    2
## 151   58   1  0      114  318   0       2     140     0     4.4     0  3    1
## 152   54   1  1      192  283   0       0     195     0     0.0     2  1    3
## 153   58   1  0      125  300   0       0     171     0     0.0     2  2    3
## 154   54   1  2      120  258   0       0     147     0     0.4     1  0    3
## 155   63   1  0      130  330   1       0     132     1     1.8     2  3    3
## 156   54   1  1      108  309   0       1     156     0     0.0     2  0    3
## 157   40   1  3      140  199   0       1     178     1     1.4     2  0    3
## 158   54   1  2      120  258   0       0     147     0     0.4     1  0    3
## 159   67   0  2      115  564   0       0     160     0     1.6     1  0    3
## 160   41   1  1      120  157   0       1     182     0     0.0     2  0    2
## 161   77   1  0      125  304   0       0     162     1     0.0     2  3    2
## 162   51   1  2      100  222   0       1     143     1     1.2     1  0    2
## 163   77   1  0      125  304   0       0     162     1     0.0     2  3    2
## 164   48   1  0      124  274   0       0     166     0     0.5     1  0    3
## 165   56   1  0      125  249   1       0     144     1     1.2     1  1    2
## 166   59   1  0      170  326   0       0     140     1     3.4     0  0    3
## 167   56   1  0      132  184   0       0     105     1     2.1     1  1    1
## 168   57   0  0      120  354   0       1     163     1     0.6     2  0    2
## 169   43   1  2      130  315   0       1     162     0     1.9     2  1    2
## 170   45   0  1      112  160   0       1     138     0     0.0     1  0    2
## 171   43   1  0      150  247   0       1     171     0     1.5     2  0    2
## 172   56   1  0      130  283   1       0     103     1     1.6     0  0    3
## 173   56   1  1      120  240   0       1     169     0     0.0     0  0    2
## 174   39   0  2       94  199   0       1     179     0     0.0     2  0    2
## 175   54   1  0      110  239   0       1     126     1     2.8     1  1    3
## 176   56   0  0      200  288   1       0     133     1     4.0     0  2    3
## 177   56   1  0      130  283   1       0     103     1     1.6     0  0    3
## 178   64   1  0      120  246   0       0      96     1     2.2     0  1    2
## 179   44   1  0      110  197   0       0     177     0     0.0     2  1    2
## 180   56   0  0      134  409   0       0     150     1     1.9     1  2    3
## 181   63   1  0      140  187   0       0     144     1     4.0     2  2    3
## 182   64   1  3      110  211   0       0     144     1     1.8     1  0    2
## 183   60   1  0      140  293   0       0     170     0     1.2     1  2    3
## 184   42   1  2      130  180   0       1     150     0     0.0     2  0    2
## 185   45   1  1      128  308   0       0     170     0     0.0     2  0    2
## 186   57   1  0      165  289   1       0     124     0     1.0     1  3    3
## 187   40   1  0      110  167   0       0     114     1     2.0     1  0    3
## 188   56   1  0      125  249   1       0     144     1     1.2     1  1    2
## 189   63   1  0      130  254   0       0     147     0     1.4     1  1    3
## 190   64   1  2      125  309   0       1     131     1     1.8     1  0    3
## 191   41   1  2      112  250   0       1     179     0     0.0     2  0    2
## 192   56   1  1      130  221   0       0     163     0     0.0     2  0    3
## 193   67   0  2      115  564   0       0     160     0     1.6     1  0    3
## 194   69   1  3      160  234   1       0     131     0     0.1     1  1    2
## 195   67   1  0      160  286   0       0     108     1     1.5     1  3    2
## 196   59   1  2      150  212   1       1     157     0     1.6     2  0    2
## 197   58   1  0      100  234   0       1     156     0     0.1     2  1    3
## 198   45   1  0      115  260   0       0     185     0     0.0     2  0    2
## 199   60   0  2      102  318   0       1     160     0     0.0     2  1    2
## 200   50   1  0      144  200   0       0     126     1     0.9     1  0    3
## 201   62   0  0      124  209   0       1     163     0     0.0     2  0    2
## 202   34   1  3      118  182   0       0     174     0     0.0     2  0    2
## 203   52   1  3      152  298   1       1     178     0     1.2     1  0    3
## 204   64   1  3      170  227   0       0     155     0     0.6     1  0    3
## 205   66   0  2      146  278   0       0     152     0     0.0     1  1    2
## 206   42   1  3      148  244   0       0     178     0     0.8     2  2    2
## 207   59   1  2      126  218   1       1     134     0     2.2     1  1    1
## 208   41   1  2      112  250   0       1     179     0     0.0     2  0    2
## 209   38   1  2      138  175   0       1     173     0     0.0     2  4    2
## 210   62   1  1      120  281   0       0     103     0     1.4     1  1    3
## 211   42   1  2      120  240   1       1     194     0     0.8     0  0    3
## 212   67   1  0      100  299   0       0     125     1     0.9     1  2    2
## 213   50   1  0      150  243   0       0     128     0     2.6     1  0    3
## 214   43   1  2      130  315   0       1     162     0     1.9     2  1    2
## 215   45   1  1      128  308   0       0     170     0     0.0     2  0    2
## 216   49   1  1      130  266   0       1     171     0     0.6     2  0    2
## 217   65   1  0      135  254   0       0     127     0     2.8     1  1    3
## 218   41   1  1      120  157   0       1     182     0     0.0     2  0    2
## 219   46   1  0      140  311   0       1     120     1     1.8     1  2    3
## 220   54   1  0      122  286   0       0     116     1     3.2     1  2    2
## 221   57   0  1      130  236   0       0     174     0     0.0     1  1    2
## 222   63   1  0      130  254   0       0     147     0     1.4     1  1    3
## 223   64   1  3      110  211   0       0     144     1     1.8     1  0    2
## 224   39   0  2       94  199   0       1     179     0     0.0     2  0    2
## 225   51   1  0      140  261   0       0     186     1     0.0     2  0    2
## 226   54   1  2      150  232   0       0     165     0     1.6     2  0    3
## 227   49   1  2      118  149   0       0     126     0     0.8     2  3    2
## 228   44   0  2      118  242   0       1     149     0     0.3     1  1    2
## 229   52   1  1      128  205   1       1     184     0     0.0     2  0    2
## 230   66   0  0      178  228   1       1     165     1     1.0     1  2    3
## 231   58   1  0      125  300   0       0     171     0     0.0     2  2    3
## 232   56   1  1      120  236   0       1     178     0     0.8     2  0    2
## 233   60   1  0      125  258   0       0     141     1     2.8     1  1    3
## 234   41   0  1      126  306   0       1     163     0     0.0     2  0    2
## 235   49   0  0      130  269   0       1     163     0     0.0     2  0    2
## 236   64   1  3      170  227   0       0     155     0     0.6     1  0    3
## 237   49   1  2      118  149   0       0     126     0     0.8     2  3    2
## 238   57   1  1      124  261   0       1     141     0     0.3     2  0    3
## 239   60   1  0      117  230   1       1     160     1     1.4     2  2    3
## 240   62   0  0      150  244   0       1     154     1     1.4     1  0    2
## 241   54   0  1      132  288   1       0     159     1     0.0     2  1    2
## 242   67   1  2      152  212   0       0     150     0     0.8     1  0    3
## 243   38   1  2      138  175   0       1     173     0     0.0     2  4    2
## 244   60   1  2      140  185   0       0     155     0     3.0     1  0    2
## 245   51   1  2      125  245   1       0     166     0     2.4     1  0    2
## 246   44   1  1      130  219   0       0     188     0     0.0     2  0    2
## 247   54   1  1      192  283   0       0     195     0     0.0     2  1    3
## 248   46   1  0      140  311   0       1     120     1     1.8     1  2    3
## 249   39   0  2      138  220   0       1     152     0     0.0     1  0    2
## 250   42   1  2      130  180   0       1     150     0     0.0     2  0    2
## 251   47   1  0      110  275   0       0     118     1     1.0     1  1    2
## 252   45   0  1      112  160   0       1     138     0     0.0     1  0    2
## 253   55   1  0      132  353   0       1     132     1     1.2     1  1    3
## 254   57   1  0      165  289   1       0     124     0     1.0     1  3    3
## 255   35   1  0      120  198   0       1     130     1     1.6     1  0    3
## 256   62   0  0      140  394   0       0     157     0     1.2     1  0    2
## 257   35   0  0      138  183   0       1     182     0     1.4     2  0    2
## 258   64   0  0      180  325   0       1     154     1     0.0     2  0    2
## 259   38   1  3      120  231   0       1     182     1     3.8     1  0    3
## 260   66   1  0      120  302   0       0     151     0     0.4     1  0    2
## 261   44   1  2      120  226   0       1     169     0     0.0     2  0    2
## 262   54   1  2      150  232   0       0     165     0     1.6     2  0    3
## 263   48   1  0      122  222   0       0     186     0     0.0     2  0    2
## 264   55   0  1      132  342   0       1     166     0     1.2     2  0    2
## 265   58   0  0      170  225   1       0     146     1     2.8     1  2    1
## 266   45   1  0      104  208   0       0     148     1     3.0     1  0    2
## 267   53   1  0      123  282   0       1      95     1     2.0     1  2    3
## 268   67   1  0      120  237   0       1      71     0     1.0     1  0    2
## 269   58   1  2      132  224   0       0     173     0     3.2     2  2    3
## 270   71   0  2      110  265   1       0     130     0     0.0     2  1    2
## 271   43   1  0      110  211   0       1     161     0     0.0     2  0    3
## 272   44   1  1      120  263   0       1     173     0     0.0     2  0    3
## 273   39   0  2      138  220   0       1     152     0     0.0     1  0    2
## 274   54   1  0      110  206   0       0     108     1     0.0     1  1    2
## 275   66   1  0      160  228   0       0     138     0     2.3     2  0    1
## 276   56   1  0      130  283   1       0     103     1     1.6     0  0    3
## 277   57   1  0      132  207   0       1     168     1     0.0     2  0    3
## 278   44   1  1      130  219   0       0     188     0     0.0     2  0    2
## 279   55   1  0      160  289   0       0     145     1     0.8     1  1    3
## 280   41   0  1      105  198   0       1     168     0     0.0     2  1    2
## 281   45   0  1      130  234   0       0     175     0     0.6     1  0    2
## 282   35   1  1      122  192   0       1     174     0     0.0     2  0    2
## 283   41   0  1      130  204   0       0     172     0     1.4     2  0    2
## 284   64   1  3      110  211   0       0     144     1     1.8     1  0    2
## 285   58   1  2      132  224   0       0     173     0     3.2     2  2    3
## 286   71   0  2      110  265   1       0     130     0     0.0     2  1    2
## 287   64   0  2      140  313   0       1     133     0     0.2     2  0    3
## 288   71   0  1      160  302   0       1     162     0     0.4     2  2    2
## 289   58   0  2      120  340   0       1     172     0     0.0     2  0    2
## 290   40   1  0      152  223   0       1     181     0     0.0     2  0    3
## 291   52   1  2      138  223   0       1     169     0     0.0     2  4    2
## 292   58   1  0      128  259   0       0     130     1     3.0     1  2    3
## 293   61   1  2      150  243   1       1     137     1     1.0     1  0    2
## 294   59   1  2      150  212   1       1     157     0     1.6     2  0    2
## 295   56   0  0      200  288   1       0     133     1     4.0     0  2    3
## 296   67   1  0      100  299   0       0     125     1     0.9     1  2    2
## 297   67   1  0      120  237   0       1      71     0     1.0     1  0    2
## 298   58   1  0      150  270   0       0     111     1     0.8     2  0    3
## 299   35   1  1      122  192   0       1     174     0     0.0     2  0    2
## 300   52   1  1      120  325   0       1     172     0     0.2     2  0    2
## 301   46   0  1      105  204   0       1     172     0     0.0     2  0    2
## 302   51   1  2       94  227   0       1     154     1     0.0     2  1    3
## 303   55   0  1      132  342   0       1     166     0     1.2     2  0    2
## 304   60   1  0      145  282   0       0     142     1     2.8     1  2    3
## 305   52   0  2      136  196   0       0     169     0     0.1     1  0    2
## 306   62   1  0      120  267   0       1      99     1     1.8     1  2    3
## 307   44   0  2      118  242   0       1     149     0     0.3     1  1    2
## 308   44   1  1      120  220   0       1     170     0     0.0     2  0    2
## 309   59   1  2      126  218   1       1     134     0     2.2     1  1    1
## 310   56   0  1      140  294   0       0     153     0     1.3     1  0    2
## 311   61   1  0      120  260   0       1     140     1     3.6     1  1    3
## 312   48   1  0      130  256   1       0     150     1     0.0     2  2    3
## 313   70   1  2      160  269   0       1     112     1     2.9     1  1    3
## 314   74   0  1      120  269   0       0     121     1     0.2     2  1    2
## 315   40   1  3      140  199   0       1     178     1     1.4     2  0    3
## 316   42   1  3      148  244   0       0     178     0     0.8     2  2    2
## 317   64   0  2      140  313   0       1     133     0     0.2     2  0    3
## 318   63   0  2      135  252   0       0     172     0     0.0     2  0    2
## 319   59   1  0      140  177   0       1     162     1     0.0     2  1    3
## 320   53   0  2      128  216   0       0     115     0     0.0     2  0    0
## 321   53   0  0      130  264   0       0     143     0     0.4     1  0    2
## 322   48   0  2      130  275   0       1     139     0     0.2     2  0    2
## 323   45   1  0      142  309   0       0     147     1     0.0     1  3    3
## 324   66   1  1      160  246   0       1     120     1     0.0     1  3    1
## 325   48   1  1      130  245   0       0     180     0     0.2     1  0    2
## 326   56   0  1      140  294   0       0     153     0     1.3     1  0    2
## 327   54   1  1      192  283   0       0     195     0     0.0     2  1    3
## 328   57   1  0      150  276   0       0     112     1     0.6     1  1    1
## 329   70   1  0      130  322   0       0     109     0     2.4     1  3    2
## 330   53   0  2      128  216   0       0     115     0     0.0     2  0    0
## 331   37   0  2      120  215   0       1     170     0     0.0     2  0    2
## 332   63   0  0      108  269   0       1     169     1     1.8     1  2    2
## 333   37   1  2      130  250   0       1     187     0     3.5     0  0    2
## 334   54   0  2      110  214   0       1     158     0     1.6     1  0    2
## 335   60   1  0      130  206   0       0     132     1     2.4     1  2    3
## 336   58   1  0      150  270   0       0     111     1     0.8     2  0    3
## 337   57   1  2      150  126   1       1     173     0     0.2     2  1    3
## 338   54   1  2      125  273   0       0     152     0     0.5     0  1    2
## 339   56   1  2      130  256   1       0     142     1     0.6     1  1    1
## 340   60   1  0      130  253   0       1     144     1     1.4     2  1    3
## 341   38   1  2      138  175   0       1     173     0     0.0     2  4    2
## 342   44   1  2      120  226   0       1     169     0     0.0     2  0    2
## 343   65   0  2      155  269   0       1     148     0     0.8     2  0    2
## 344   52   1  2      172  199   1       1     162     0     0.5     2  0    3
## 345   41   1  1      120  157   0       1     182     0     0.0     2  0    2
## 346   66   1  1      160  246   0       1     120     1     0.0     1  3    1
## 347   50   1  0      150  243   0       0     128     0     2.6     1  0    3
## 348   54   0  2      108  267   0       0     167     0     0.0     2  0    2
## 349   43   1  0      132  247   1       0     143     1     0.1     1  4    3
## 350   62   0  2      130  263   0       1      97     0     1.2     1  1    3
## 351   66   1  0      120  302   0       0     151     0     0.4     1  0    2
## 352   50   1  0      144  200   0       0     126     1     0.9     1  0    3
## 353   57   1  0      110  335   0       1     143     1     3.0     1  1    3
## 354   57   1  0      110  201   0       1     126     1     1.5     1  0    1
## 355   57   1  1      124  261   0       1     141     0     0.3     2  0    3
## 356   46   0  0      138  243   0       0     152     1     0.0     1  0    2
## 357   59   1  0      164  176   1       0      90     0     1.0     1  2    1
## 358   67   1  0      160  286   0       0     108     1     1.5     1  3    2
## 359   59   1  3      134  204   0       1     162     0     0.8     2  2    2
## 360   53   0  2      128  216   0       0     115     0     0.0     2  0    0
## 361   48   1  0      122  222   0       0     186     0     0.0     2  0    2
## 362   62   1  2      130  231   0       1     146     0     1.8     1  3    3
## 363   43   0  2      122  213   0       1     165     0     0.2     1  0    2
## 364   53   1  2      130  246   1       0     173     0     0.0     2  3    2
## 365   57   0  1      130  236   0       0     174     0     0.0     1  1    2
## 366   53   1  2      130  246   1       0     173     0     0.0     2  3    2
## 367   58   1  2      112  230   0       0     165     0     2.5     1  1    3
## 368   48   1  1      110  229   0       1     168     0     1.0     0  0    3
## 369   58   1  2      105  240   0       0     154     1     0.6     1  0    3
## 370   51   1  2      110  175   0       1     123     0     0.6     2  0    2
## 371   43   0  0      132  341   1       0     136     1     3.0     1  0    3
## 372   55   1  0      132  353   0       1     132     1     1.2     1  1    3
## 373   54   0  2      110  214   0       1     158     0     1.6     1  0    2
## 374   58   1  1      120  284   0       0     160     0     1.8     1  0    2
## 375   46   0  2      142  177   0       0     160     1     1.4     0  0    2
## 376   66   1  0      160  228   0       0     138     0     2.3     2  0    1
## 377   59   1  1      140  221   0       1     164     1     0.0     2  0    2
## 378   64   0  0      130  303   0       1     122     0     2.0     1  2    2
## 379   67   1  0      120  237   0       1      71     0     1.0     1  0    2
## 380   52   1  3      118  186   0       0     190     0     0.0     1  0    1
## 381   58   1  0      146  218   0       1     105     0     2.0     1  1    3
## 382   58   1  2      132  224   0       0     173     0     3.2     2  2    3
## 383   59   1  0      110  239   0       0     142     1     1.2     1  1    3
## 384   58   1  0      150  270   0       0     111     1     0.8     2  0    3
## 385   35   1  0      126  282   0       0     156     1     0.0     2  0    3
## 386   51   1  2      110  175   0       1     123     0     0.6     2  0    2
## 387   42   0  2      120  209   0       1     173     0     0.0     1  0    2
## 388   77   1  0      125  304   0       0     162     1     0.0     2  3    2
## 389   64   1  0      120  246   0       0      96     1     2.2     0  1    2
## 390   63   1  3      145  233   1       0     150     0     2.3     0  0    1
## 391   58   0  1      136  319   1       0     152     0     0.0     2  2    2
## 392   45   1  3      110  264   0       1     132     0     1.2     1  0    3
## 393   51   1  2      110  175   0       1     123     0     0.6     2  0    2
## 394   62   0  0      160  164   0       0     145     0     6.2     0  3    3
## 395   63   1  0      130  330   1       0     132     1     1.8     2  3    3
## 396   66   0  2      146  278   0       0     152     0     0.0     1  1    2
## 397   68   1  2      180  274   1       0     150     1     1.6     1  0    3
## 398   40   1  0      110  167   0       0     114     1     2.0     1  0    3
## 399   66   1  0      160  228   0       0     138     0     2.3     2  0    1
## 400   63   1  3      145  233   1       0     150     0     2.3     0  0    1
## 401   49   1  2      120  188   0       1     139     0     2.0     1  3    3
## 402   71   0  0      112  149   0       1     125     0     1.6     1  0    2
## 403   70   1  1      156  245   0       0     143     0     0.0     2  0    2
## 404   46   0  1      105  204   0       1     172     0     0.0     2  0    2
## 405   61   1  0      140  207   0       0     138     1     1.9     2  1    3
## 406   56   1  2      130  256   1       0     142     1     0.6     1  1    1
## 407   58   1  2      140  211   1       0     165     0     0.0     2  0    2
## 408   58   1  0      100  234   0       1     156     0     0.1     2  1    3
## 409   46   0  0      138  243   0       0     152     1     0.0     1  0    2
## 410   46   1  2      150  231   0       1     147     0     3.6     1  0    2
## 411   41   0  1      105  198   0       1     168     0     0.0     2  1    2
## 412   56   1  0      125  249   1       0     144     1     1.2     1  1    2
## 413   57   1  0      150  276   0       0     112     1     0.6     1  1    1
## 414   70   1  0      130  322   0       0     109     0     2.4     1  3    2
## 415   59   1  3      170  288   0       0     159     0     0.2     1  0    3
## 416   41   0  1      130  204   0       0     172     0     1.4     2  0    2
## 417   54   1  2      125  273   0       0     152     0     0.5     0  1    2
## 418   52   1  2      138  223   0       1     169     0     0.0     2  4    2
## 419   62   0  0      124  209   0       1     163     0     0.0     2  0    2
## 420   65   0  2      160  360   0       0     151     0     0.8     2  0    2
## 421   57   0  0      128  303   0       0     159     0     0.0     2  1    2
## 422   42   0  0      102  265   0       0     122     0     0.6     1  0    2
## 423   57   0  0      120  354   0       1     163     1     0.6     2  0    2
## 424   58   0  1      136  319   1       0     152     0     0.0     2  2    2
## 425   45   1  0      142  309   0       0     147     1     0.0     1  3    3
## 426   51   0  0      130  305   0       1     142     1     1.2     1  0    3
## 427   54   0  2      160  201   0       1     163     0     0.0     2  1    2
## 428   57   1  2      150  168   0       1     174     0     1.6     2  0    2
## 429   43   1  0      132  247   1       0     143     1     0.1     1  4    3
## 430   47   1  2      108  243   0       1     152     0     0.0     2  0    2
## 431   67   1  2      152  212   0       0     150     0     0.8     1  0    3
## 432   65   0  0      150  225   0       0     114     0     1.0     1  3    3
## 433   60   0  2      102  318   0       1     160     0     0.0     2  1    2
## 434   37   1  2      130  250   0       1     187     0     3.5     0  0    2
## 435   41   0  2      112  268   0       0     172     1     0.0     2  0    2
## 436   57   0  0      120  354   0       1     163     1     0.6     2  0    2
## 437   59   0  0      174  249   0       1     143     1     0.0     1  0    2
## 438   67   1  0      120  229   0       0     129     1     2.6     1  2    3
## 439   47   1  2      130  253   0       1     179     0     0.0     2  0    2
## 440   58   1  1      120  284   0       0     160     0     1.8     1  0    2
## 441   62   0  0      150  244   0       1     154     1     1.4     1  0    2
## 442   60   1  0      140  293   0       0     170     0     1.2     1  2    3
## 443   57   1  0      152  274   0       1      88     1     1.2     1  1    3
## 444   57   1  2      150  168   0       1     174     0     1.6     2  0    2
## 445   47   1  2      130  253   0       1     179     0     0.0     2  0    2
## 446   52   1  1      128  205   1       1     184     0     0.0     2  0    2
## 447   53   1  2      130  246   1       0     173     0     0.0     2  3    2
## 448   55   1  0      160  289   0       0     145     1     0.8     1  1    3
## 449   51   0  2      120  295   0       0     157     0     0.6     2  0    2
## 450   52   1  0      112  230   0       1     160     0     0.0     2  1    2
## 451   63   0  0      150  407   0       0     154     0     4.0     1  3    3
## 452   49   0  1      134  271   0       1     162     0     0.0     1  0    2
## 453   66   0  0      178  228   1       1     165     1     1.0     1  2    3
## 454   49   0  1      134  271   0       1     162     0     0.0     1  0    2
## 455   65   0  0      150  225   0       0     114     0     1.0     1  3    3
## 456   69   1  3      160  234   1       0     131     0     0.1     1  1    2
## 457   47   1  2      108  243   0       1     152     0     0.0     2  0    2
## 458   39   0  2      138  220   0       1     152     0     0.0     1  0    2
## 459   43   1  0      150  247   0       1     171     0     1.5     2  0    2
## 460   51   1  0      140  261   0       0     186     1     0.0     2  0    2
## 461   69   1  2      140  254   0       0     146     0     2.0     1  3    3
## 462   48   1  2      124  255   1       1     175     0     0.0     2  2    2
## 463   52   1  3      118  186   0       0     190     0     0.0     1  0    1
## 464   43   1  0      110  211   0       1     161     0     0.0     2  0    3
## 465   67   0  2      115  564   0       0     160     0     1.6     1  0    3
## 466   38   1  2      138  175   0       1     173     0     0.0     2  4    2
## 467   44   1  1      130  219   0       0     188     0     0.0     2  0    2
## 468   47   1  0      110  275   0       0     118     1     1.0     1  1    2
## 469   61   1  2      150  243   1       1     137     1     1.0     1  0    2
## 470   67   1  0      160  286   0       0     108     1     1.5     1  3    2
## 471   60   0  3      150  240   0       1     171     0     0.9     2  0    2
## 472   64   0  2      140  313   0       1     133     0     0.2     2  0    3
## 473   58   0  0      130  197   0       1     131     0     0.6     1  0    2
## 474   41   1  2      130  214   0       0     168     0     2.0     1  0    2
## 475   48   1  1      110  229   0       1     168     0     1.0     0  0    3
## 476   57   1  2      150  126   1       1     173     0     0.2     2  1    3
## 477   57   1  0      165  289   1       0     124     0     1.0     1  3    3
## 478   57   1  2      128  229   0       0     150     0     0.4     1  1    3
## 479   39   1  2      140  321   0       0     182     0     0.0     2  0    2
## 480   58   1  0      128  216   0       0     131     1     2.2     1  3    3
## 481   51   0  0      130  305   0       1     142     1     1.2     1  0    3
## 482   63   0  0      150  407   0       0     154     0     4.0     1  3    3
## 483   51   1  0      140  298   0       1     122     1     4.2     1  3    3
## 484   35   1  1      122  192   0       1     174     0     0.0     2  0    2
## 485   65   1  0      110  248   0       0     158     0     0.6     2  2    1
## 486   62   1  1      120  281   0       0     103     0     1.4     1  1    3
## 487   41   1  0      110  172   0       0     158     0     0.0     2  0    3
## 488   65   1  0      135  254   0       0     127     0     2.8     1  1    3
## 489   54   0  1      132  288   1       0     159     1     0.0     2  1    2
## 490   61   1  2      150  243   1       1     137     1     1.0     1  0    2
## 491   57   0  0      128  303   0       0     159     0     0.0     2  1    2
## 492   57   1  2      150  168   0       1     174     0     1.6     2  0    2
## 493   64   1  2      125  309   0       1     131     1     1.8     1  0    3
## 494   55   1  0      132  353   0       1     132     1     1.2     1  1    3
## 495   51   1  2      125  245   1       0     166     0     2.4     1  0    2
## 496   59   1  0      135  234   0       1     161     0     0.5     1  0    3
## 497   68   1  2      180  274   1       0     150     1     1.6     1  0    3
## 498   57   1  1      154  232   0       0     164     0     0.0     2  1    2
## 499   54   1  0      140  239   0       1     160     0     1.2     2  0    2
## 500   46   0  2      142  177   0       0     160     1     1.4     0  0    2
## 501   71   0  0      112  149   0       1     125     0     1.6     1  0    2
## 502   35   0  0      138  183   0       1     182     0     1.4     2  0    2
## 503   46   0  2      142  177   0       0     160     1     1.4     0  0    2
## 504   45   0  1      130  234   0       0     175     0     0.6     1  0    2
## 505   47   1  2      108  243   0       1     152     0     0.0     2  0    2
## 506   44   0  2      118  242   0       1     149     0     0.3     1  1    2
## 507   61   1  0      120  260   0       1     140     1     3.6     1  1    3
## 508   41   0  1      130  204   0       0     172     0     1.4     2  0    2
## 509   56   0  0      200  288   1       0     133     1     4.0     0  2    3
## 510   55   0  0      180  327   0       2     117     1     3.4     1  0    2
## 511   54   0  1      132  288   1       0     159     1     0.0     2  1    2
## 512   43   1  0      120  177   0       0     120     1     2.5     1  0    3
## 513   44   1  0      112  290   0       0     153     0     0.0     2  1    2
## 514   54   1  0      110  206   0       0     108     1     0.0     1  1    2
## 515   44   1  1      120  220   0       1     170     0     0.0     2  0    2
## 516   49   1  2      120  188   0       1     139     0     2.0     1  3    3
## 517   60   1  0      130  206   0       0     132     1     2.4     1  2    3
## 518   41   0  1      105  198   0       1     168     0     0.0     2  1    2
## 519   49   1  2      120  188   0       1     139     0     2.0     1  3    3
## 520   61   1  0      148  203   0       1     161     0     0.0     2  1    3
## 521   59   1  0      140  177   0       1     162     1     0.0     2  1    3
## 522   58   1  1      125  220   0       1     144     0     0.4     1  4    3
## 523   67   0  2      152  277   0       1     172     0     0.0     2  1    2
## 524   61   1  0      148  203   0       1     161     0     0.0     2  1    3
## 525   58   1  2      112  230   0       0     165     0     2.5     1  1    3
## 526   51   0  2      130  256   0       0     149     0     0.5     2  0    2
## 527   62   0  0      160  164   0       0     145     0     6.2     0  3    3
## 528   62   0  0      124  209   0       1     163     0     0.0     2  0    2
## 529   59   1  3      178  270   0       0     145     0     4.2     0  0    3
## 530   69   1  3      160  234   1       0     131     0     0.1     1  1    2
## 531   60   0  0      150  258   0       0     157     0     2.6     1  2    3
## 532   65   0  2      155  269   0       1     148     0     0.8     2  0    2
## 533   63   0  0      124  197   0       1     136     1     0.0     1  0    2
## 534   53   0  0      138  234   0       0     160     0     0.0     2  0    2
## 535   54   0  2      108  267   0       0     167     0     0.0     2  0    2
## 536   76   0  2      140  197   0       2     116     0     1.1     1  0    2
## 537   50   0  2      120  219   0       1     158     0     1.6     1  0    2
## 538   52   1  1      120  325   0       1     172     0     0.2     2  0    2
## 539   46   1  0      120  249   0       0     144     0     0.8     2  0    3
## 540   64   1  3      170  227   0       0     155     0     0.6     1  0    3
## 541   58   1  0      128  259   0       0     130     1     3.0     1  2    3
## 542   44   1  2      140  235   0       0     180     0     0.0     2  0    2
## 543   62   0  0      140  394   0       0     157     0     1.2     1  0    2
## 544   59   1  3      134  204   0       1     162     0     0.8     2  2    2
## 545   54   1  2      125  273   0       0     152     0     0.5     0  1    2
## 546   48   1  1      110  229   0       1     168     0     1.0     0  0    3
## 547   70   1  0      130  322   0       0     109     0     2.4     1  3    2
## 548   67   0  0      106  223   0       1     142     0     0.3     2  2    2
## 549   51   0  2      120  295   0       0     157     0     0.6     2  0    2
## 550   68   1  2      118  277   0       1     151     0     1.0     2  1    3
## 551   69   1  2      140  254   0       0     146     0     2.0     1  3    3
## 552   54   1  0      122  286   0       0     116     1     3.2     1  2    2
## 553   43   0  0      132  341   1       0     136     1     3.0     1  0    3
## 554   53   1  2      130  197   1       0     152     0     1.2     0  0    2
## 555   58   1  0      100  234   0       1     156     0     0.1     2  1    3
## 556   67   1  0      125  254   1       1     163     0     0.2     1  2    3
## 557   59   1  0      140  177   0       1     162     1     0.0     2  1    3
## 558   48   1  0      122  222   0       0     186     0     0.0     2  0    2
## 559   39   0  2       94  199   0       1     179     0     0.0     2  0    2
## 560   67   1  0      120  237   0       1      71     0     1.0     1  0    2
## 561   58   0  0      130  197   0       1     131     0     0.6     1  0    2
## 562   65   0  2      155  269   0       1     148     0     0.8     2  0    2
## 563   42   0  2      120  209   0       1     173     0     0.0     1  0    2
## 564   44   1  0      112  290   0       0     153     0     0.0     2  1    2
## 565   56   1  0      132  184   0       0     105     1     2.1     1  1    1
## 566   53   0  0      138  234   0       0     160     0     0.0     2  0    2
## 567   50   0  0      110  254   0       0     159     0     0.0     2  0    2
## 568   41   1  2      130  214   0       0     168     0     2.0     1  0    2
## 569   54   0  2      160  201   0       1     163     0     0.0     2  1    2
## 570   42   1  2      120  240   1       1     194     0     0.8     0  0    3
## 571   54   0  2      135  304   1       1     170     0     0.0     2  0    2
## 572   60   1  0      145  282   0       0     142     1     2.8     1  2    3
## 573   34   1  3      118  182   0       0     174     0     0.0     2  0    2
## 574   44   1  0      112  290   0       0     153     0     0.0     2  1    2
## 575   60   1  0      125  258   0       0     141     1     2.8     1  1    3
## 576   43   1  0      150  247   0       1     171     0     1.5     2  0    2
## 577   52   1  3      152  298   1       1     178     0     1.2     1  0    3
## 578   70   1  0      130  322   0       0     109     0     2.4     1  3    2
## 579   62   0  0      140  394   0       0     157     0     1.2     1  0    2
## 580   58   1  0      146  218   0       1     105     0     2.0     1  1    3
## 581   46   1  1      101  197   1       1     156     0     0.0     2  0    3
## 582   44   1  2      140  235   0       0     180     0     0.0     2  0    2
## 583   55   1  1      130  262   0       1     155     0     0.0     2  0    2
## 584   43   1  0      120  177   0       0     120     1     2.5     1  0    3
## 585   55   1  0      132  353   0       1     132     1     1.2     1  1    3
## 586   40   1  3      140  199   0       1     178     1     1.4     2  0    3
## 587   64   1  2      125  309   0       1     131     1     1.8     1  0    3
## 588   59   1  0      164  176   1       0      90     0     1.0     1  2    1
## 589   61   0  0      145  307   0       0     146     1     1.0     1  0    3
## 590   54   1  0      122  286   0       0     116     1     3.2     1  2    2
## 591   74   0  1      120  269   0       0     121     1     0.2     2  1    2
## 592   63   0  0      108  269   0       1     169     1     1.8     1  2    2
## 593   70   1  2      160  269   0       1     112     1     2.9     1  1    3
## 594   63   0  0      108  269   0       1     169     1     1.8     1  2    2
## 595   64   1  0      145  212   0       0     132     0     2.0     1  2    1
## 596   61   1  0      148  203   0       1     161     0     0.0     2  1    3
## 597   59   1  1      140  221   0       1     164     1     0.0     2  0    2
## 598   38   1  2      138  175   0       1     173     0     0.0     2  4    2
## 599   58   1  1      120  284   0       0     160     0     1.8     1  0    2
## 600   63   0  1      140  195   0       1     179     0     0.0     2  2    2
## 601   62   0  2      130  263   0       1      97     0     1.2     1  1    3
## 602   46   1  0      140  311   0       1     120     1     1.8     1  2    3
## 603   58   0  2      120  340   0       1     172     0     0.0     2  0    2
## 604   63   0  1      140  195   0       1     179     0     0.0     2  2    2
## 605   47   1  2      130  253   0       1     179     0     0.0     2  0    2
## 606   71   0  2      110  265   1       0     130     0     0.0     2  1    2
## 607   66   1  0      112  212   0       0     132     1     0.1     2  1    2
## 608   42   1  0      136  315   0       1     125     1     1.8     1  0    1
## 609   64   1  0      145  212   0       0     132     0     2.0     1  2    1
## 610   55   0  0      180  327   0       2     117     1     3.4     1  0    2
## 611   43   0  0      132  341   1       0     136     1     3.0     1  0    3
## 612   55   0  0      128  205   0       2     130     1     2.0     1  1    3
## 613   58   0  0      170  225   1       0     146     1     2.8     1  2    1
## 614   55   1  0      140  217   0       1     111     1     5.6     0  0    3
## 615   51   0  0      130  305   0       1     142     1     1.2     1  0    3
## 616   50   0  2      120  219   0       1     158     0     1.6     1  0    2
## 617   43   1  0      115  303   0       1     181     0     1.2     1  0    2
## 618   41   0  1      126  306   0       1     163     0     0.0     2  0    2
## 619   49   1  1      130  266   0       1     171     0     0.6     2  0    2
## 620   65   1  0      110  248   0       0     158     0     0.6     2  2    1
## 621   57   1  0      152  274   0       1      88     1     1.2     1  1    3
## 622   48   1  0      130  256   1       0     150     1     0.0     2  2    3
## 623   62   0  0      138  294   1       1     106     0     1.9     1  3    2
## 624   61   1  3      134  234   0       1     145     0     2.6     1  2    2
## 625   59   1  3      178  270   0       0     145     0     4.2     0  0    3
## 626   69   1  2      140  254   0       0     146     0     2.0     1  3    3
## 627   58   1  2      132  224   0       0     173     0     3.2     2  2    3
## 628   38   1  3      120  231   0       1     182     1     3.8     1  0    3
## 629   69   0  3      140  239   0       1     151     0     1.8     2  2    2
## 630   65   1  3      138  282   1       0     174     0     1.4     1  1    2
## 631   45   1  3      110  264   0       1     132     0     1.2     1  0    3
## 632   49   1  1      130  266   0       1     171     0     0.6     2  0    2
## 633   45   0  1      130  234   0       0     175     0     0.6     1  0    2
## 634   61   1  0      138  166   0       0     125     1     3.6     1  1    2
## 635   52   1  0      125  212   0       1     168     0     1.0     2  2    3
## 636   53   0  0      130  264   0       0     143     0     0.4     1  0    2
## 637   59   0  0      174  249   0       1     143     1     0.0     1  0    2
## 638   58   0  2      120  340   0       1     172     0     0.0     2  0    2
## 639   65   1  3      138  282   1       0     174     0     1.4     1  1    2
## 640   58   0  0      130  197   0       1     131     0     0.6     1  0    2
## 641   46   0  0      138  243   0       0     152     1     0.0     1  0    2
## 642   56   0  0      134  409   0       0     150     1     1.9     1  2    3
## 643   64   1  0      128  263   0       1     105     1     0.2     1  1    3
## 644   65   1  0      120  177   0       1     140     0     0.4     2  0    3
## 645   44   1  2      120  226   0       1     169     0     0.0     2  0    2
## 646   50   1  0      150  243   0       0     128     0     2.6     1  0    3
## 647   47   1  2      108  243   0       1     152     0     0.0     2  0    2
## 648   64   0  0      130  303   0       1     122     0     2.0     1  2    2
## 649   71   0  0      112  149   0       1     125     0     1.6     1  0    2
## 650   45   0  1      130  234   0       0     175     0     0.6     1  0    2
## 651   62   1  0      120  267   0       1      99     1     1.8     1  2    3
## 652   41   1  1      120  157   0       1     182     0     0.0     2  0    2
## 653   66   0  3      150  226   0       1     114     0     2.6     0  0    2
## 654   56   1  0      130  283   1       0     103     1     1.6     0  0    3
## 655   41   0  1      126  306   0       1     163     0     0.0     2  0    2
## 656   41   1  1      110  235   0       1     153     0     0.0     2  0    2
## 657   57   0  1      130  236   0       0     174     0     0.0     1  1    2
## 658   39   0  2      138  220   0       1     152     0     0.0     1  0    2
## 659   64   1  2      125  309   0       1     131     1     1.8     1  0    3
## 660   59   1  0      138  271   0       0     182     0     0.0     2  0    2
## 661   61   1  0      138  166   0       0     125     1     3.6     1  1    2
## 662   58   1  0      114  318   0       2     140     0     4.4     0  3    1
## 663   47   1  0      112  204   0       1     143     0     0.1     2  0    2
## 664   58   0  0      100  248   0       0     122     0     1.0     1  0    2
## 665   66   0  3      150  226   0       1     114     0     2.6     0  0    2
## 666   65   0  2      140  417   1       0     157     0     0.8     2  1    2
## 667   35   1  1      122  192   0       1     174     0     0.0     2  0    2
## 668   57   1  1      124  261   0       1     141     0     0.3     2  0    3
## 669   29   1  1      130  204   0       0     202     0     0.0     2  0    2
## 670   66   1  1      160  246   0       1     120     1     0.0     1  3    1
## 671   61   0  0      130  330   0       0     169     0     0.0     2  0    2
## 672   52   1  0      125  212   0       1     168     0     1.0     2  2    3
## 673   68   1  2      118  277   0       1     151     0     1.0     2  1    3
## 674   54   1  2      120  258   0       0     147     0     0.4     1  0    3
## 675   63   1  0      130  330   1       0     132     1     1.8     2  3    3
## 676   58   1  0      100  234   0       1     156     0     0.1     2  1    3
## 677   60   1  0      130  253   0       1     144     1     1.4     2  1    3
## 678   63   1  0      130  254   0       0     147     0     1.4     1  1    3
## 679   41   0  2      112  268   0       0     172     1     0.0     2  0    2
## 680   68   1  2      180  274   1       0     150     1     1.6     1  0    3
## 681   42   1  1      120  295   0       1     162     0     0.0     2  0    2
## 682   59   1  0      170  326   0       0     140     1     3.4     0  0    3
## 683   59   1  0      164  176   1       0      90     0     1.0     1  2    1
## 684   43   1  0      120  177   0       0     120     1     2.5     1  0    3
## 685   60   1  2      140  185   0       0     155     0     3.0     1  0    2
## 686   63   0  0      150  407   0       0     154     0     4.0     1  3    3
## 687   52   1  0      128  204   1       1     156     1     1.0     1  0    0
## 688   58   1  0      125  300   0       0     171     0     0.0     2  2    3
## 689   56   0  0      200  288   1       0     133     1     4.0     0  2    3
## 690   54   0  2      135  304   1       1     170     0     0.0     2  0    2
## 691   58   1  2      105  240   0       0     154     1     0.6     1  0    3
## 692   55   0  1      135  250   0       0     161     0     1.4     1  0    2
## 693   53   1  0      140  203   1       0     155     1     3.1     0  0    3
## 694   63   0  1      140  195   0       1     179     0     0.0     2  2    2
## 695   39   1  0      118  219   0       1     140     0     1.2     1  0    3
## 696   35   1  0      126  282   0       0     156     1     0.0     2  0    3
## 697   50   0  2      120  219   0       1     158     0     1.6     1  0    2
## 698   67   1  2      152  212   0       0     150     0     0.8     1  0    3
## 699   66   1  0      112  212   0       0     132     1     0.1     2  1    2
## 700   35   1  0      126  282   0       0     156     1     0.0     2  0    3
## 701   41   1  2      130  214   0       0     168     0     2.0     1  0    2
## 702   35   1  0      120  198   0       1     130     1     1.6     1  0    3
## 703   71   0  1      160  302   0       1     162     0     0.4     2  2    2
## 704   57   1  0      110  201   0       1     126     1     1.5     1  0    1
## 705   51   1  2       94  227   0       1     154     1     0.0     2  1    3
## 706   58   1  0      128  216   0       0     131     1     2.2     1  3    3
## 707   57   1  2      128  229   0       0     150     0     0.4     1  1    3
## 708   56   0  1      140  294   0       0     153     0     1.3     1  0    2
## 709   60   0  2      120  178   1       1      96     0     0.0     2  0    2
## 710   45   1  3      110  264   0       1     132     0     1.2     1  0    3
## 711   56   1  1      130  221   0       0     163     0     0.0     2  0    3
## 712   35   1  0      120  198   0       1     130     1     1.6     1  0    3
## 713   45   0  1      112  160   0       1     138     0     0.0     1  0    2
## 714   66   0  3      150  226   0       1     114     0     2.6     0  0    2
## 715   51   1  3      125  213   0       0     125     1     1.4     2  1    2
## 716   70   1  1      156  245   0       0     143     0     0.0     2  0    2
## 717   55   0  0      128  205   0       2     130     1     2.0     1  1    3
## 718   56   1  2      130  256   1       0     142     1     0.6     1  1    1
## 719   55   0  1      135  250   0       0     161     0     1.4     1  0    2
## 720   52   1  0      108  233   1       1     147     0     0.1     2  3    3
## 721   64   1  2      140  335   0       1     158     0     0.0     2  0    2
## 722   45   1  0      115  260   0       0     185     0     0.0     2  0    2
## 723   67   0  2      152  277   0       1     172     0     0.0     2  1    2
## 724   68   0  2      120  211   0       0     115     0     1.5     1  0    2
## 725   74   0  1      120  269   0       0     121     1     0.2     2  1    2
## 726   60   0  0      150  258   0       0     157     0     2.6     1  2    3
## 727   48   1  0      124  274   0       0     166     0     0.5     1  0    3
## 728   56   1  1      130  221   0       0     163     0     0.0     2  0    3
## 729   46   1  0      140  311   0       1     120     1     1.8     1  2    3
## 730   55   0  1      135  250   0       0     161     0     1.4     1  0    2
## 731   44   1  1      120  220   0       1     170     0     0.0     2  0    2
## 732   52   1  0      112  230   0       1     160     0     0.0     2  1    2
## 733   51   1  2       94  227   0       1     154     1     0.0     2  1    3
## 734   44   0  2      108  141   0       1     175     0     0.6     1  0    2
## 735   52   1  0      128  204   1       1     156     1     1.0     1  0    0
## 736   50   1  2      129  196   0       1     163     0     0.0     2  0    2
## 737   59   1  0      110  239   0       0     142     1     1.2     1  1    3
## 738   67   1  0      120  229   0       0     129     1     2.6     1  2    3
## 739   58   1  0      125  300   0       0     171     0     0.0     2  2    3
## 740   52   1  0      128  255   0       1     161     1     0.0     2  1    3
## 741   44   1  2      140  235   0       0     180     0     0.0     2  0    2
## 742   41   0  2      112  268   0       0     172     1     0.0     2  0    2
## 743   63   1  0      130  330   1       0     132     1     1.8     2  3    3
## 744   58   1  1      125  220   0       1     144     0     0.4     1  4    3
## 745   60   0  2      102  318   0       1     160     0     0.0     2  1    2
## 746   51   1  2      100  222   0       1     143     1     1.2     1  0    2
## 747   64   1  2      140  335   0       1     158     0     0.0     2  0    2
## 748   60   1  0      117  230   1       1     160     1     1.4     2  2    3
## 749   44   1  2      120  226   0       1     169     0     0.0     2  0    2
## 750   58   1  1      125  220   0       1     144     0     0.4     1  4    3
## 751   55   1  1      130  262   0       1     155     0     0.0     2  0    2
## 752   65   0  2      160  360   0       0     151     0     0.8     2  0    2
## 753   48   1  1      130  245   0       0     180     0     0.2     1  0    2
## 754   65   1  0      120  177   0       1     140     0     0.4     2  0    3
## 755   51   0  2      130  256   0       0     149     0     0.5     2  0    2
## 756   48   1  2      124  255   1       1     175     0     0.0     2  2    2
## 757   64   1  0      120  246   0       0      96     1     2.2     0  1    2
## 758   66   1  0      160  228   0       0     138     0     2.3     2  0    1
## 759   46   0  1      105  204   0       1     172     0     0.0     2  0    2
## 760   61   0  0      130  330   0       0     169     0     0.0     2  0    2
## 761   57   1  0      150  276   0       0     112     1     0.6     1  1    1
## 762   49   0  0      130  269   0       1     163     0     0.0     2  0    2
## 763   56   1  1      130  221   0       0     163     0     0.0     2  0    3
## 764   58   0  3      150  283   1       0     162     0     1.0     2  0    2
## 765   63   1  0      140  187   0       0     144     1     4.0     2  2    3
## 766   57   1  0      110  335   0       1     143     1     3.0     1  1    3
## 767   57   1  0      110  335   0       1     143     1     3.0     1  1    3
## 768   68   1  0      144  193   1       1     141     0     3.4     1  2    3
## 769   46   1  1      101  197   1       1     156     0     0.0     2  0    3
## 770   71   0  2      110  265   1       0     130     0     0.0     2  1    2
## 771   41   1  1      135  203   0       1     132     0     0.0     1  0    1
## 772   45   0  0      138  236   0       0     152     1     0.2     1  0    2
## 773   62   0  0      150  244   0       1     154     1     1.4     1  0    2
## 774   65   0  0      150  225   0       0     114     0     1.0     1  3    3
## 775   48   0  2      130  275   0       1     139     0     0.2     2  0    2
## 776   51   1  2      100  222   0       1     143     1     1.2     1  0    2
## 777   61   0  0      145  307   0       0     146     1     1.0     1  0    3
## 778   53   1  0      123  282   0       1      95     1     2.0     1  2    3
## 779   59   1  3      134  204   0       1     162     0     0.8     2  2    2
## 780   34   0  1      118  210   0       1     192     0     0.7     2  0    2
## 781   44   1  0      120  169   0       1     144     1     2.8     0  0    1
## 782   58   1  0      146  218   0       1     105     0     2.0     1  1    3
## 783   64   0  0      130  303   0       1     122     0     2.0     1  2    2
## 784   56   1  1      120  240   0       1     169     0     0.0     0  0    2
## 785   54   1  2      150  232   0       0     165     0     1.6     2  0    3
## 786   55   1  0      160  289   0       0     145     1     0.8     1  1    3
## 787   67   1  0      125  254   1       1     163     0     0.2     1  2    3
## 788   51   1  0      140  298   0       1     122     1     4.2     1  3    3
## 789   62   0  0      138  294   1       1     106     0     1.9     1  3    2
## 790   62   1  1      120  281   0       0     103     0     1.4     1  1    3
## 791   54   1  0      110  239   0       1     126     1     2.8     1  1    3
## 792   54   1  0      110  239   0       1     126     1     2.8     1  1    3
## 793   68   1  0      144  193   1       1     141     0     3.4     1  2    3
## 794   60   0  2      120  178   1       1      96     0     0.0     2  0    2
## 795   61   1  3      134  234   0       1     145     0     2.6     1  2    2
## 796   62   1  1      128  208   1       0     140     0     0.0     2  0    2
## 797   41   1  1      135  203   0       1     132     0     0.0     1  0    1
## 798   65   0  0      150  225   0       0     114     0     1.0     1  3    3
## 799   59   1  3      170  288   0       0     159     0     0.2     1  0    3
## 800   43   1  0      115  303   0       1     181     0     1.2     1  0    2
## 801   67   1  0      120  229   0       0     129     1     2.6     1  2    3
## 802   63   1  3      145  233   1       0     150     0     2.3     0  0    1
## 803   63   0  0      124  197   0       1     136     1     0.0     1  0    2
## 804   52   1  0      112  230   0       1     160     0     0.0     2  1    2
## 805   58   0  0      130  197   0       1     131     0     0.6     1  0    2
## 806   53   1  0      142  226   0       0     111     1     0.0     2  0    3
## 807   57   1  0      150  276   0       0     112     1     0.6     1  1    1
## 808   44   1  2      130  233   0       1     179     1     0.4     2  0    2
## 809   51   1  2       94  227   0       1     154     1     0.0     2  1    3
## 810   54   0  2      110  214   0       1     158     0     1.6     1  0    2
## 811   40   1  0      110  167   0       0     114     1     2.0     1  0    3
## 812   57   1  1      124  261   0       1     141     0     0.3     2  0    3
## 813   62   0  0      140  268   0       0     160     0     3.6     0  2    2
## 814   53   1  0      140  203   1       0     155     1     3.1     0  0    3
## 815   62   1  1      128  208   1       0     140     0     0.0     2  0    2
## 816   58   1  2      105  240   0       0     154     1     0.6     1  0    3
## 817   70   1  1      156  245   0       0     143     0     0.0     2  0    2
## 818   45   1  0      115  260   0       0     185     0     0.0     2  0    2
## 819   42   1  3      148  244   0       0     178     0     0.8     2  2    2
## 820   58   0  0      170  225   1       0     146     1     2.8     1  2    1
## 821   61   1  0      140  207   0       0     138     1     1.9     2  1    3
## 822   62   0  0      140  268   0       0     160     0     3.6     0  2    2
## 823   60   1  0      130  253   0       1     144     1     1.4     2  1    3
## 824   54   1  0      140  239   0       1     160     0     1.2     2  0    2
## 825   61   1  0      138  166   0       0     125     1     3.6     1  1    2
## 826   63   0  2      135  252   0       0     172     0     0.0     2  0    2
## 827   42   1  2      130  180   0       1     150     0     0.0     2  0    2
## 828   57   1  2      128  229   0       0     150     0     0.4     1  1    3
## 829   44   1  2      130  233   0       1     179     1     0.4     2  0    2
## 830   54   1  0      124  266   0       0     109     1     2.2     1  1    3
## 831   51   1  2      100  222   0       1     143     1     1.2     1  0    2
## 832   58   1  1      125  220   0       1     144     0     0.4     1  4    3
## 833   68   1  2      118  277   0       1     151     0     1.0     2  1    3
## 834   55   1  0      140  217   0       1     111     1     5.6     0  0    3
## 835   42   1  0      136  315   0       1     125     1     1.8     1  0    1
## 836   49   1  2      118  149   0       0     126     0     0.8     2  3    2
## 837   53   0  0      138  234   0       0     160     0     0.0     2  0    2
## 838   52   1  2      172  199   1       1     162     0     0.5     2  0    3
## 839   51   1  3      125  213   0       0     125     1     1.4     2  1    2
## 840   51   1  0      140  261   0       0     186     1     0.0     2  0    2
## 841   70   1  0      145  174   0       1     125     1     2.6     0  0    3
## 842   35   0  0      138  183   0       1     182     0     1.4     2  0    2
## 843   58   1  2      112  230   0       0     165     0     2.5     1  1    3
## 844   59   1  3      160  273   0       0     125     0     0.0     2  0    2
## 845   60   1  0      140  293   0       0     170     0     1.2     1  2    3
## 846   56   1  0      132  184   0       0     105     1     2.1     1  1    1
## 847   35   0  0      138  183   0       1     182     0     1.4     2  0    2
## 848   61   1  0      138  166   0       0     125     1     3.6     1  1    2
## 849   58   0  3      150  283   1       0     162     0     1.0     2  0    2
## 850   52   1  0      128  255   0       1     161     1     0.0     2  1    3
## 851   58   1  1      120  284   0       0     160     0     1.8     1  0    2
## 852   37   1  2      130  250   0       1     187     0     3.5     0  0    2
## 853   52   1  0      128  255   0       1     161     1     0.0     2  1    3
## 854   67   1  0      120  229   0       0     129     1     2.6     1  2    3
## 855   65   1  3      138  282   1       0     174     0     1.4     1  1    2
## 856   46   1  1      101  197   1       1     156     0     0.0     2  0    3
## 857   68   0  2      120  211   0       0     115     0     1.5     1  0    2
## 858   43   1  0      115  303   0       1     181     0     1.2     1  0    2
## 859   68   0  2      120  211   0       0     115     0     1.5     1  0    2
## 860   51   1  0      140  299   0       1     173     1     1.6     2  0    3
## 861   52   1  0      112  230   0       1     160     0     0.0     2  1    2
## 862   64   1  2      140  335   0       1     158     0     0.0     2  0    2
## 863   59   1  3      170  288   0       0     159     0     0.2     1  0    3
## 864   52   1  0      125  212   0       1     168     0     1.0     2  2    3
## 865   59   1  3      160  273   0       0     125     0     0.0     2  0    2
## 866   60   0  3      150  240   0       1     171     0     0.9     2  0    2
## 867   41   1  2      112  250   0       1     179     0     0.0     2  0    2
## 868   41   1  1      110  235   0       1     153     0     0.0     2  0    2
## 869   56   1  1      120  240   0       1     169     0     0.0     0  0    2
## 870   56   1  1      120  236   0       1     178     0     0.8     2  0    2
## 871   48   0  2      130  275   0       1     139     0     0.2     2  0    2
## 872   39   1  2      140  321   0       0     182     0     0.0     2  0    2
## 873   64   1  3      170  227   0       0     155     0     0.6     1  0    3
## 874   57   1  0      140  192   0       1     148     0     0.4     1  0    1
## 875   59   1  3      160  273   0       0     125     0     0.0     2  0    2
## 876   60   1  0      130  206   0       0     132     1     2.4     1  2    3
## 877   61   1  0      140  207   0       0     138     1     1.9     2  1    3
## 878   43   0  2      122  213   0       1     165     0     0.2     1  0    2
## 879   54   1  0      120  188   0       1     113     0     1.4     1  1    3
## 880   59   1  0      138  271   0       0     182     0     0.0     2  0    2
## 881   57   1  0      132  207   0       1     168     1     0.0     2  0    3
## 882   57   1  1      154  232   0       0     164     0     0.0     2  1    2
## 883   57   1  0      130  131   0       1     115     1     1.2     1  1    3
## 884   48   1  0      124  274   0       0     166     0     0.5     1  0    3
## 885   70   1  0      145  174   0       1     125     1     2.6     0  0    3
## 886   57   1  0      165  289   1       0     124     0     1.0     1  3    3
## 887   61   1  0      120  260   0       1     140     1     3.6     1  1    3
## 888   57   1  0      110  201   0       1     126     1     1.5     1  0    1
## 889   60   0  0      150  258   0       0     157     0     2.6     1  2    3
## 890   63   0  0      150  407   0       0     154     0     4.0     1  3    3
## 891   55   0  0      128  205   0       2     130     1     2.0     1  1    3
## 892   64   0  0      180  325   0       1     154     1     0.0     2  0    2
## 893   54   1  0      110  239   0       1     126     1     2.8     1  1    3
## 894   52   1  0      128  204   1       1     156     1     1.0     1  0    0
## 895   51   1  0      140  299   0       1     173     1     1.6     2  0    3
## 896   62   0  2      130  263   0       1      97     0     1.2     1  1    3
## 897   59   1  3      178  270   0       0     145     0     4.2     0  0    3
## 898   52   1  1      134  201   0       1     158     0     0.8     2  1    2
## 899   42   0  0      102  265   0       0     122     0     0.6     1  0    2
## 900   59   1  0      135  234   0       1     161     0     0.5     1  0    3
## 901   61   1  3      134  234   0       1     145     0     2.6     1  2    2
## 902   42   0  0      102  265   0       0     122     0     0.6     1  0    2
## 903   62   0  0      140  268   0       0     160     0     3.6     0  2    2
## 904   59   1  2      126  218   1       1     134     0     2.2     1  1    1
## 905   55   1  1      130  262   0       1     155     0     0.0     2  0    2
## 906   64   1  0      120  246   0       0      96     1     2.2     0  1    2
## 907   42   1  0      140  226   0       1     178     0     0.0     2  0    2
## 908   50   0  1      120  244   0       1     162     0     1.1     2  0    2
## 909   62   1  0      120  267   0       1      99     1     1.8     1  2    3
## 910   50   1  0      144  200   0       0     126     1     0.9     1  0    3
## 911   50   1  2      140  233   0       1     163     0     0.6     1  1    3
## 912   58   0  1      136  319   1       0     152     0     0.0     2  2    2
## 913   35   1  0      120  198   0       1     130     1     1.6     1  0    3
## 914   45   1  0      104  208   0       0     148     1     3.0     1  0    2
## 915   66   1  0      112  212   0       0     132     1     0.1     2  1    2
## 916   46   1  0      120  249   0       0     144     0     0.8     2  0    3
## 917   65   1  0      135  254   0       0     127     0     2.8     1  1    3
## 918   47   1  2      130  253   0       1     179     0     0.0     2  0    2
## 919   59   1  3      134  204   0       1     162     0     0.8     2  2    2
## 920   38   1  3      120  231   0       1     182     1     3.8     1  0    3
## 921   39   1  0      118  219   0       1     140     0     1.2     1  0    3
## 922   58   1  0      146  218   0       1     105     0     2.0     1  1    3
## 923   44   1  1      120  263   0       1     173     0     0.0     2  0    3
## 924   54   1  0      140  239   0       1     160     0     1.2     2  0    2
## 925   61   0  0      130  330   0       0     169     0     0.0     2  0    2
## 926   57   1  0      130  131   0       1     115     1     1.2     1  1    3
## 927   54   1  0      110  206   0       0     108     1     0.0     1  1    2
## 928   42   1  2      120  240   1       1     194     0     0.8     0  0    3
## 929   54   1  0      124  266   0       0     109     1     2.2     1  1    3
## 930   60   1  0      130  206   0       0     132     1     2.4     1  2    3
## 931   65   1  0      135  254   0       0     127     0     2.8     1  1    3
## 932   40   1  0      152  223   0       1     181     0     0.0     2  0    3
## 933   51   0  2      140  308   0       0     142     0     1.5     2  1    2
## 934   38   1  3      120  231   0       1     182     1     3.8     1  0    3
## 935   42   1  2      130  180   0       1     150     0     0.0     2  0    2
## 936   56   1  1      120  240   0       1     169     0     0.0     0  0    2
## 937   43   1  2      130  315   0       1     162     0     1.9     2  1    2
## 938   64   1  2      140  335   0       1     158     0     0.0     2  0    2
## 939   53   1  0      142  226   0       0     111     1     0.0     2  0    3
## 940   49   0  1      134  271   0       1     162     0     0.0     1  0    2
## 941   57   0  0      140  241   0       1     123     1     0.2     1  0    3
## 942   52   0  2      136  196   0       0     169     0     0.1     1  0    2
## 943   69   0  3      140  239   0       1     151     0     1.8     2  2    2
## 944   65   1  0      120  177   0       1     140     0     0.4     2  0    3
## 945   66   0  0      178  228   1       1     165     1     1.0     1  2    3
## 946   56   1  3      120  193   0       0     162     0     1.9     1  0    3
## 947   67   0  2      152  277   0       1     172     0     0.0     2  1    2
## 948   54   0  2      160  201   0       1     163     0     0.0     2  1    2
## 949   70   1  0      145  174   0       1     125     1     2.6     0  0    3
## 950   57   1  0      132  207   0       1     168     1     0.0     2  0    3
## 951   67   1  0      160  286   0       0     108     1     1.5     1  3    2
## 952   62   0  2      130  263   0       1      97     0     1.2     1  1    3
## 953   54   0  2      135  304   1       1     170     0     0.0     2  0    2
## 954   45   0  0      138  236   0       0     152     1     0.2     1  0    2
## 955   53   0  0      130  264   0       0     143     0     0.4     1  0    2
## 956   62   1  2      130  231   0       1     146     0     1.8     1  3    3
## 957   49   0  0      130  269   0       1     163     0     0.0     2  0    2
## 958   50   1  2      140  233   0       1     163     0     0.6     1  1    3
## 959   65   0  2      140  417   1       0     157     0     0.8     2  1    2
## 960   69   0  3      140  239   0       1     151     0     1.8     2  2    2
## 961   52   0  2      136  196   0       0     169     0     0.1     1  0    2
## 962   58   0  0      100  248   0       0     122     0     1.0     1  0    2
## 963   52   1  0      108  233   1       1     147     0     0.1     2  3    3
## 964   57   0  0      140  241   0       1     123     1     0.2     1  0    3
## 965   44   0  2      108  141   0       1     175     0     0.6     1  0    2
## 966   76   0  2      140  197   0       2     116     0     1.1     1  0    2
## 967   58   1  0      128  259   0       0     130     1     3.0     1  2    3
## 968   60   0  2      120  178   1       1      96     0     0.0     2  0    2
## 969   53   1  0      140  203   1       0     155     1     3.1     0  0    3
## 970   52   1  1      120  325   0       1     172     0     0.2     2  0    2
## 971   38   1  2      138  175   0       1     173     0     0.0     2  4    2
## 972   52   1  2      172  199   1       1     162     0     0.5     2  0    3
## 973   52   1  3      118  186   0       0     190     0     0.0     1  0    1
## 974   51   1  2      125  245   1       0     166     0     2.4     1  0    2
## 975   43   1  0      110  211   0       1     161     0     0.0     2  0    3
## 976   39   1  0      118  219   0       1     140     0     1.2     1  0    3
## 977   63   0  0      108  269   0       1     169     1     1.8     1  2    2
## 978   52   1  1      128  205   1       1     184     0     0.0     2  0    2
## 979   44   1  0      110  197   0       0     177     0     0.0     2  1    2
## 980   45   1  0      142  309   0       0     147     1     0.0     1  3    3
## 981   57   1  0      140  192   0       1     148     0     0.4     1  0    1
## 982   39   1  0      118  219   0       1     140     0     1.2     1  0    3
## 983   67   0  0      106  223   0       1     142     0     0.3     2  2    2
## 984   64   1  0      128  263   0       1     105     1     0.2     1  1    3
## 985   59   1  0      135  234   0       1     161     0     0.5     1  0    3
## 986   62   1  2      130  231   0       1     146     0     1.8     1  3    3
## 987   55   0  0      180  327   0       2     117     1     3.4     1  0    2
## 988   57   1  1      154  232   0       0     164     0     0.0     2  1    2
## 989   60   1  0      140  293   0       0     170     0     1.2     1  2    3
## 990   71   0  1      160  302   0       1     162     0     0.4     2  2    2
## 991   56   1  1      120  236   0       1     178     0     0.8     2  0    2
## 992   60   1  0      117  230   1       1     160     1     1.4     2  2    3
## 993   50   0  0      110  254   0       0     159     0     0.0     2  0    2
## 994   43   1  0      132  247   1       0     143     1     0.1     1  4    3
## 995   59   1  0      110  239   0       0     142     1     1.2     1  1    3
## 996   44   1  1      120  263   0       1     173     0     0.0     2  0    3
## 997   56   0  0      134  409   0       0     150     1     1.9     1  2    3
## 998   54   1  0      120  188   0       1     113     0     1.4     1  1    3
## 999   42   1  0      136  315   0       1     125     1     1.8     1  0    1
## 1000  67   1  0      125  254   1       1     163     0     0.2     1  2    3
## 1001  64   1  0      145  212   0       0     132     0     2.0     1  2    1
## 1002  42   1  0      140  226   0       1     178     0     0.0     2  0    2
## 1003  66   1  0      112  212   0       0     132     1     0.1     2  1    2
## 1004  52   1  0      108  233   1       1     147     0     0.1     2  3    3
## 1005  51   0  2      140  308   0       0     142     0     1.5     2  1    2
## 1006  55   0  0      128  205   0       2     130     1     2.0     1  1    3
## 1007  58   1  2      140  211   1       0     165     0     0.0     2  0    2
## 1008  56   1  3      120  193   0       0     162     0     1.9     1  0    3
## 1009  42   1  1      120  295   0       1     162     0     0.0     2  0    2
## 1010  40   1  0      152  223   0       1     181     0     0.0     2  0    3
## 1011  51   1  0      140  299   0       1     173     1     1.6     2  0    3
## 1012  45   1  1      128  308   0       0     170     0     0.0     2  0    2
## 1013  48   1  1      110  229   0       1     168     0     1.0     0  0    3
## 1014  58   1  0      114  318   0       2     140     0     4.4     0  3    1
## 1015  44   0  2      108  141   0       1     175     0     0.6     1  0    2
## 1016  58   1  0      128  216   0       0     131     1     2.2     1  3    3
## 1017  65   1  3      138  282   1       0     174     0     1.4     1  1    2
## 1018  53   1  0      123  282   0       1      95     1     2.0     1  2    3
## 1019  41   1  0      110  172   0       0     158     0     0.0     2  0    3
## 1020  47   1  0      112  204   0       1     143     0     0.1     2  0    2
## 1021  59   1  1      140  221   0       1     164     1     0.0     2  0    2
## 1022  60   1  0      125  258   0       0     141     1     2.8     1  1    3
## 1023  47   1  0      110  275   0       0     118     1     1.0     1  1    2
## 1024  50   0  0      110  254   0       0     159     0     0.0     2  0    2
## 1025  54   1  0      120  188   0       1     113     0     1.4     1  1    3
##      target
## 1         0
## 2         0
## 3         0
## 4         0
## 5         0
## 6         1
## 7         0
## 8         0
## 9         0
## 10        0
## 11        1
## 12        0
## 13        1
## 14        0
## 15        0
## 16        1
## 17        1
## 18        0
## 19        1
## 20        1
## 21        0
## 22        1
## 23        1
## 24        1
## 25        1
## 26        0
## 27        1
## 28        0
## 29        0
## 30        0
## 31        0
## 32        1
## 33        0
## 34        0
## 35        1
## 36        0
## 37        1
## 38        1
## 39        1
## 40        0
## 41        1
## 42        1
## 43        0
## 44        0
## 45        1
## 46        1
## 47        1
## 48        0
## 49        1
## 50        0
## 51        1
## 52        0
## 53        1
## 54        0
## 55        0
## 56        0
## 57        1
## 58        1
## 59        0
## 60        0
## 61        1
## 62        1
## 63        0
## 64        1
## 65        1
## 66        0
## 67        1
## 68        0
## 69        1
## 70        0
## 71        0
## 72        0
## 73        0
## 74        0
## 75        0
## 76        1
## 77        1
## 78        0
## 79        1
## 80        1
## 81        0
## 82        0
## 83        0
## 84        1
## 85        1
## 86        1
## 87        1
## 88        0
## 89        0
## 90        0
## 91        1
## 92        1
## 93        0
## 94        0
## 95        1
## 96        1
## 97        1
## 98        0
## 99        0
## 100       1
## 101       1
## 102       1
## 103       1
## 104       1
## 105       1
## 106       0
## 107       0
## 108       0
## 109       0
## 110       0
## 111       0
## 112       1
## 113       0
## 114       0
## 115       0
## 116       0
## 117       0
## 118       0
## 119       1
## 120       1
## 121       1
## 122       0
## 123       0
## 124       1
## 125       0
## 126       1
## 127       1
## 128       1
## 129       1
## 130       1
## 131       1
## 132       1
## 133       1
## 134       1
## 135       1
## 136       0
## 137       1
## 138       1
## 139       1
## 140       1
## 141       0
## 142       0
## 143       0
## 144       1
## 145       1
## 146       0
## 147       1
## 148       0
## 149       1
## 150       1
## 151       0
## 152       0
## 153       0
## 154       1
## 155       0
## 156       1
## 157       1
## 158       1
## 159       1
## 160       1
## 161       0
## 162       1
## 163       0
## 164       0
## 165       0
## 166       0
## 167       0
## 168       1
## 169       1
## 170       1
## 171       1
## 172       0
## 173       1
## 174       1
## 175       0
## 176       0
## 177       0
## 178       0
## 179       0
## 180       0
## 181       0
## 182       1
## 183       0
## 184       1
## 185       1
## 186       0
## 187       0
## 188       0
## 189       0
## 190       0
## 191       1
## 192       1
## 193       1
## 194       1
## 195       0
## 196       1
## 197       0
## 198       1
## 199       1
## 200       0
## 201       1
## 202       1
## 203       1
## 204       1
## 205       1
## 206       1
## 207       0
## 208       1
## 209       1
## 210       0
## 211       1
## 212       0
## 213       0
## 214       1
## 215       1
## 216       1
## 217       0
## 218       1
## 219       0
## 220       0
## 221       0
## 222       0
## 223       1
## 224       1
## 225       1
## 226       1
## 227       0
## 228       1
## 229       1
## 230       0
## 231       0
## 232       1
## 233       0
## 234       1
## 235       1
## 236       1
## 237       0
## 238       0
## 239       0
## 240       0
## 241       1
## 242       0
## 243       1
## 244       0
## 245       1
## 246       1
## 247       0
## 248       0
## 249       1
## 250       1
## 251       0
## 252       1
## 253       0
## 254       0
## 255       0
## 256       1
## 257       1
## 258       1
## 259       0
## 260       1
## 261       1
## 262       1
## 263       1
## 264       1
## 265       0
## 266       1
## 267       0
## 268       0
## 269       0
## 270       1
## 271       1
## 272       1
## 273       1
## 274       0
## 275       1
## 276       0
## 277       1
## 278       1
## 279       0
## 280       1
## 281       1
## 282       1
## 283       1
## 284       1
## 285       0
## 286       1
## 287       1
## 288       1
## 289       1
## 290       0
## 291       1
## 292       0
## 293       1
## 294       1
## 295       0
## 296       0
## 297       0
## 298       0
## 299       1
## 300       1
## 301       1
## 302       1
## 303       1
## 304       0
## 305       1
## 306       0
## 307       1
## 308       1
## 309       0
## 310       1
## 311       0
## 312       0
## 313       0
## 314       1
## 315       1
## 316       1
## 317       1
## 318       1
## 319       0
## 320       1
## 321       1
## 322       1
## 323       0
## 324       0
## 325       1
## 326       1
## 327       0
## 328       0
## 329       0
## 330       1
## 331       1
## 332       0
## 333       1
## 334       1
## 335       0
## 336       0
## 337       1
## 338       1
## 339       0
## 340       0
## 341       1
## 342       1
## 343       1
## 344       1
## 345       1
## 346       0
## 347       0
## 348       1
## 349       0
## 350       0
## 351       1
## 352       0
## 353       0
## 354       1
## 355       0
## 356       1
## 357       0
## 358       0
## 359       0
## 360       1
## 361       1
## 362       1
## 363       1
## 364       1
## 365       0
## 366       1
## 367       0
## 368       0
## 369       1
## 370       1
## 371       0
## 372       0
## 373       1
## 374       0
## 375       1
## 376       1
## 377       1
## 378       1
## 379       0
## 380       1
## 381       0
## 382       0
## 383       0
## 384       0
## 385       0
## 386       1
## 387       1
## 388       0
## 389       0
## 390       1
## 391       0
## 392       0
## 393       1
## 394       0
## 395       0
## 396       1
## 397       0
## 398       0
## 399       1
## 400       1
## 401       0
## 402       1
## 403       1
## 404       1
## 405       0
## 406       0
## 407       1
## 408       0
## 409       1
## 410       0
## 411       1
## 412       0
## 413       0
## 414       0
## 415       0
## 416       1
## 417       1
## 418       1
## 419       1
## 420       1
## 421       1
## 422       1
## 423       1
## 424       0
## 425       0
## 426       0
## 427       1
## 428       1
## 429       0
## 430       0
## 431       0
## 432       0
## 433       1
## 434       1
## 435       1
## 436       1
## 437       0
## 438       0
## 439       1
## 440       0
## 441       0
## 442       0
## 443       0
## 444       1
## 445       1
## 446       1
## 447       1
## 448       0
## 449       1
## 450       0
## 451       0
## 452       1
## 453       0
## 454       1
## 455       0
## 456       1
## 457       0
## 458       1
## 459       1
## 460       1
## 461       0
## 462       1
## 463       1
## 464       1
## 465       1
## 466       1
## 467       1
## 468       0
## 469       1
## 470       0
## 471       1
## 472       1
## 473       1
## 474       1
## 475       0
## 476       1
## 477       0
## 478       0
## 479       1
## 480       0
## 481       0
## 482       0
## 483       0
## 484       1
## 485       0
## 486       0
## 487       0
## 488       0
## 489       1
## 490       1
## 491       1
## 492       1
## 493       0
## 494       0
## 495       1
## 496       1
## 497       0
## 498       0
## 499       1
## 500       1
## 501       1
## 502       1
## 503       1
## 504       1
## 505       0
## 506       1
## 507       0
## 508       1
## 509       0
## 510       0
## 511       1
## 512       0
## 513       0
## 514       0
## 515       1
## 516       0
## 517       0
## 518       1
## 519       0
## 520       0
## 521       0
## 522       1
## 523       1
## 524       0
## 525       0
## 526       1
## 527       0
## 528       1
## 529       1
## 530       1
## 531       0
## 532       1
## 533       0
## 534       1
## 535       1
## 536       1
## 537       1
## 538       1
## 539       0
## 540       1
## 541       0
## 542       1
## 543       1
## 544       0
## 545       1
## 546       0
## 547       0
## 548       1
## 549       1
## 550       1
## 551       0
## 552       0
## 553       0
## 554       1
## 555       0
## 556       0
## 557       0
## 558       1
## 559       1
## 560       0
## 561       1
## 562       1
## 563       1
## 564       0
## 565       0
## 566       1
## 567       1
## 568       1
## 569       1
## 570       1
## 571       1
## 572       0
## 573       1
## 574       0
## 575       0
## 576       1
## 577       1
## 578       0
## 579       1
## 580       0
## 581       1
## 582       1
## 583       1
## 584       0
## 585       0
## 586       1
## 587       0
## 588       0
## 589       0
## 590       0
## 591       1
## 592       0
## 593       0
## 594       0
## 595       0
## 596       0
## 597       1
## 598       1
## 599       0
## 600       1
## 601       0
## 602       0
## 603       1
## 604       1
## 605       1
## 606       1
## 607       0
## 608       0
## 609       0
## 610       0
## 611       0
## 612       0
## 613       0
## 614       0
## 615       0
## 616       1
## 617       1
## 618       1
## 619       1
## 620       0
## 621       0
## 622       0
## 623       0
## 624       0
## 625       1
## 626       0
## 627       0
## 628       0
## 629       1
## 630       0
## 631       0
## 632       1
## 633       1
## 634       0
## 635       0
## 636       1
## 637       0
## 638       1
## 639       0
## 640       1
## 641       1
## 642       0
## 643       1
## 644       1
## 645       1
## 646       0
## 647       0
## 648       1
## 649       1
## 650       1
## 651       0
## 652       1
## 653       1
## 654       0
## 655       1
## 656       1
## 657       0
## 658       1
## 659       0
## 660       1
## 661       0
## 662       0
## 663       1
## 664       1
## 665       1
## 666       1
## 667       1
## 668       0
## 669       1
## 670       0
## 671       0
## 672       0
## 673       1
## 674       1
## 675       0
## 676       0
## 677       0
## 678       0
## 679       1
## 680       0
## 681       1
## 682       0
## 683       0
## 684       0
## 685       0
## 686       0
## 687       0
## 688       0
## 689       0
## 690       1
## 691       1
## 692       1
## 693       0
## 694       1
## 695       0
## 696       0
## 697       1
## 698       0
## 699       0
## 700       0
## 701       1
## 702       0
## 703       1
## 704       1
## 705       1
## 706       0
## 707       0
## 708       1
## 709       1
## 710       0
## 711       1
## 712       0
## 713       1
## 714       1
## 715       1
## 716       1
## 717       0
## 718       0
## 719       1
## 720       1
## 721       0
## 722       1
## 723       1
## 724       1
## 725       1
## 726       0
## 727       0
## 728       1
## 729       0
## 730       1
## 731       1
## 732       0
## 733       1
## 734       1
## 735       0
## 736       1
## 737       0
## 738       0
## 739       0
## 740       0
## 741       1
## 742       1
## 743       0
## 744       1
## 745       1
## 746       1
## 747       0
## 748       0
## 749       1
## 750       1
## 751       1
## 752       1
## 753       1
## 754       1
## 755       1
## 756       1
## 757       0
## 758       1
## 759       1
## 760       0
## 761       0
## 762       1
## 763       1
## 764       1
## 765       0
## 766       0
## 767       0
## 768       0
## 769       1
## 770       1
## 771       1
## 772       1
## 773       0
## 774       0
## 775       1
## 776       1
## 777       0
## 778       0
## 779       0
## 780       1
## 781       0
## 782       0
## 783       1
## 784       1
## 785       1
## 786       0
## 787       0
## 788       0
## 789       0
## 790       0
## 791       0
## 792       0
## 793       0
## 794       1
## 795       0
## 796       1
## 797       1
## 798       0
## 799       0
## 800       1
## 801       0
## 802       1
## 803       0
## 804       0
## 805       1
## 806       1
## 807       0
## 808       1
## 809       1
## 810       1
## 811       0
## 812       0
## 813       0
## 814       0
## 815       1
## 816       1
## 817       1
## 818       1
## 819       1
## 820       0
## 821       0
## 822       0
## 823       0
## 824       1
## 825       0
## 826       1
## 827       1
## 828       0
## 829       1
## 830       0
## 831       1
## 832       1
## 833       1
## 834       0
## 835       0
## 836       0
## 837       1
## 838       1
## 839       1
## 840       1
## 841       0
## 842       1
## 843       0
## 844       0
## 845       0
## 846       0
## 847       1
## 848       0
## 849       1
## 850       0
## 851       0
## 852       1
## 853       0
## 854       0
## 855       0
## 856       1
## 857       1
## 858       1
## 859       1
## 860       0
## 861       0
## 862       0
## 863       0
## 864       0
## 865       0
## 866       1
## 867       1
## 868       1
## 869       1
## 870       1
## 871       1
## 872       1
## 873       1
## 874       1
## 875       0
## 876       0
## 877       0
## 878       1
## 879       0
## 880       1
## 881       1
## 882       0
## 883       0
## 884       0
## 885       0
## 886       0
## 887       0
## 888       1
## 889       0
## 890       0
## 891       0
## 892       1
## 893       0
## 894       0
## 895       0
## 896       0
## 897       1
## 898       1
## 899       1
## 900       1
## 901       0
## 902       1
## 903       0
## 904       0
## 905       1
## 906       0
## 907       1
## 908       1
## 909       0
## 910       0
## 911       0
## 912       0
## 913       0
## 914       1
## 915       0
## 916       0
## 917       0
## 918       1
## 919       0
## 920       0
## 921       0
## 922       0
## 923       1
## 924       1
## 925       0
## 926       0
## 927       0
## 928       1
## 929       0
## 930       0
## 931       0
## 932       0
## 933       1
## 934       0
## 935       1
## 936       1
## 937       1
## 938       0
## 939       1
## 940       1
## 941       0
## 942       1
## 943       1
## 944       1
## 945       0
## 946       1
## 947       1
## 948       1
## 949       0
## 950       1
## 951       0
## 952       0
## 953       1
## 954       1
## 955       1
## 956       1
## 957       1
## 958       0
## 959       1
## 960       1
## 961       1
## 962       1
## 963       1
## 964       0
## 965       1
## 966       1
## 967       0
## 968       1
## 969       0
## 970       1
## 971       1
## 972       1
## 973       1
## 974       1
## 975       1
## 976       0
## 977       0
## 978       1
## 979       0
## 980       0
## 981       1
## 982       0
## 983       1
## 984       1
## 985       1
## 986       1
## 987       0
## 988       0
## 989       0
## 990       1
## 991       1
## 992       0
## 993       1
## 994       0
## 995       0
## 996       1
## 997       0
## 998       0
## 999       0
## 1000      0
## 1001      0
## 1002      1
## 1003      0
## 1004      1
## 1005      1
## 1006      0
## 1007      1
## 1008      1
## 1009      1
## 1010      0
## 1011      0
## 1012      1
## 1013      0
## 1014      0
## 1015      1
## 1016      0
## 1017      0
## 1018      0
## 1019      0
## 1020      1
## 1021      1
## 1022      0
## 1023      0
## 1024      1
## 1025      0

Partir los datos 80-20

set.seed(123)
renglones_entremiento <- createDataPartition(df$target, p=0.8, list=FALSE)
entrenamiento <- df[renglones_entremiento, ]
prueba <- df[-renglones_entremiento, ]

Metodos para Modelar

Los metodos mas utilizados para modelar aprendizaje automatico son:

  • SVM: Support Vector Machine o Maquina de Vectores de Soporte. Hay varios subtipos: Lineal (svmLinear), Radial (svmRadial), Polinomico (svmPoly), etc.
  • Arbol de Decision: rpart
  • Redes Neuronales: nnet
  • Random Forest: o Bosques Aleatorios: rf

1. Modelo con el Metodo svmLinear

modelo1 <- train(target ~. , data=entrenamiento,
                 method = "svmLinear", #Cambiar,
                 preProcess= c("scale", "center"), #Existe el pre-procesamiento pero asi esta bn
                 trControl = trainControl(method="cv", number=10), #Cross Validation SIEMPRE
                 tuneGrid = data.frame(C=1) #Cambiar
                 )

resultado_entrenamiento1 <- predict(modelo1, entrenamiento)
resultado_prueba1 <- predict(modelo1, prueba)

# Matriz de Confusion del Resultado del Entrenamiento1
mcre1 <- confusionMatrix(resultado_entrenamiento1, entrenamiento$target)

# Matriz de Confusion del Resultado de la Prueba1
mcrp1 <- confusionMatrix(resultado_prueba1, prueba$target)

2. Modelo con el Metodo svmRadial

modelo2 <- train(target ~. , data=entrenamiento,
                 method = "svmRadial", #Cambiar,
                 preProcess= c("scale", "center"), #Existe el pre-procesamiento pero asi esta bn
                 trControl = trainControl(method="cv", number=10), #Cross Validation SIEMPRE
                 tuneGrid = data.frame(sigma=1, C=1) #Cambiar
                 )

resultado_entrenamiento2 <- predict(modelo2, entrenamiento)
resultado_prueba2 <- predict(modelo2, prueba)

# Matriz de Confusion del Resultado del Entrenamiento1
mcre2 <- confusionMatrix(resultado_entrenamiento2, entrenamiento$target)

# Matriz de Confusion del Resultado de la Prueba1
mcrp2 <- confusionMatrix(resultado_prueba2, prueba$target)

3. Modelo con el Metodo svmPoly

modelo3 <- train(target ~. , data=entrenamiento,
                 method = "svmPoly", #Cambiar,
                 preProcess= c("scale", "center"), #Existe el pre-procesamiento pero asi esta bn
                 trControl = trainControl(method="cv", number=10), #Cross Validation SIEMPRE
                 tuneGrid = data.frame(degree=1, scale=1, C=1) #Cambiar
                 )

resultado_entrenamiento3 <- predict(modelo3, entrenamiento)
resultado_prueba3 <- predict(modelo3, prueba)

# Matriz de Confusion del Resultado del Entrenamiento1
mcre3 <- confusionMatrix(resultado_entrenamiento3, entrenamiento$target)

# Matriz de Confusion del Resultado de la Prueba1
mcrp3 <- confusionMatrix(resultado_prueba3, prueba$target)

4. Modelo con el Metodo rpart

modelo4 <- train(target ~. , data=entrenamiento,
                 method = "rpart", #Cambiar,
                 preProcess= c("scale", "center"), #Existe el pre-procesamiento pero asi esta bn
                 trControl = trainControl(method="cv", number=10), #Cross Validation SIEMPRE
                 tuneLength = 10 #Cambiar
                 )

resultado_entrenamiento4 <- predict(modelo4, entrenamiento)
resultado_prueba4 <- predict(modelo4, prueba)

# Matriz de Confusion del Resultado del Entrenamiento1
mcre4 <- confusionMatrix(resultado_entrenamiento4, entrenamiento$target)

# Matriz de Confusion del Resultado de la Prueba1
mcrp4 <- confusionMatrix(resultado_prueba4, prueba$target)

5. Modelo con el Metodo nnet

modelo5 <- train(target ~. , data=entrenamiento,
                 method = "nnet", #Cambiar,
                 preProcess= c("scale", "center"), #Existe el pre-procesamiento pero asi esta bn
                 trControl = trainControl(method="cv", number=10) #Cross Validation SIEMPRE
                  #Cambiar
                 )
## # weights:  25
## initial  value 534.715512 
## iter  10 value 223.363750
## iter  20 value 209.869954
## iter  30 value 198.570677
## iter  40 value 177.540547
## iter  50 value 177.395285
## final  value 177.395138 
## converged
## # weights:  73
## initial  value 572.745922 
## iter  10 value 194.246195
## iter  20 value 152.191711
## iter  30 value 126.614638
## iter  40 value 92.543694
## iter  50 value 78.746555
## iter  60 value 67.755667
## iter  70 value 66.078737
## iter  80 value 64.921139
## iter  90 value 64.707146
## iter 100 value 64.596336
## final  value 64.596336 
## stopped after 100 iterations
## # weights:  121
## initial  value 552.772751 
## iter  10 value 190.415083
## iter  20 value 118.504550
## iter  30 value 91.508326
## iter  40 value 85.984039
## iter  50 value 82.755252
## iter  60 value 82.213884
## iter  70 value 81.589103
## iter  80 value 81.273209
## iter  90 value 81.108966
## iter 100 value 80.984541
## final  value 80.984541 
## stopped after 100 iterations
## # weights:  25
## initial  value 532.758179 
## iter  10 value 298.830332
## iter  20 value 250.160990
## iter  30 value 222.766098
## iter  40 value 213.792124
## iter  50 value 211.150852
## iter  60 value 210.967881
## iter  70 value 210.947310
## final  value 210.941946 
## converged
## # weights:  73
## initial  value 616.455260 
## iter  10 value 220.367230
## iter  20 value 178.688409
## iter  30 value 161.690178
## iter  40 value 154.018812
## iter  50 value 149.620010
## iter  60 value 147.906537
## iter  70 value 146.746374
## iter  80 value 142.285114
## iter  90 value 140.188410
## iter 100 value 140.023100
## final  value 140.023100 
## stopped after 100 iterations
## # weights:  121
## initial  value 545.022132 
## iter  10 value 211.260881
## iter  20 value 170.581921
## iter  30 value 139.648122
## iter  40 value 117.500230
## iter  50 value 109.681950
## iter  60 value 107.651362
## iter  70 value 102.899352
## iter  80 value 96.582371
## iter  90 value 94.576403
## iter 100 value 92.591197
## final  value 92.591197 
## stopped after 100 iterations
## # weights:  25
## initial  value 537.456314 
## iter  10 value 240.443521
## iter  20 value 222.687610
## iter  30 value 214.577901
## iter  40 value 183.448119
## iter  50 value 175.384834
## iter  60 value 173.731786
## iter  70 value 172.667693
## iter  80 value 172.619775
## iter  90 value 172.461230
## iter 100 value 172.343854
## final  value 172.343854 
## stopped after 100 iterations
## # weights:  73
## initial  value 515.560933 
## iter  10 value 204.949223
## iter  20 value 159.397184
## iter  30 value 147.088050
## iter  40 value 139.616109
## iter  50 value 136.316037
## iter  60 value 130.467866
## iter  70 value 128.043107
## iter  80 value 127.993430
## iter  90 value 127.953418
## iter 100 value 127.560573
## final  value 127.560573 
## stopped after 100 iterations
## # weights:  121
## initial  value 485.119713 
## iter  10 value 176.720126
## iter  20 value 113.262373
## iter  30 value 79.493830
## iter  40 value 63.600350
## iter  50 value 57.875444
## iter  60 value 55.596528
## iter  70 value 55.118518
## iter  80 value 54.482878
## iter  90 value 53.590291
## iter 100 value 52.904660
## final  value 52.904660 
## stopped after 100 iterations
## # weights:  25
## initial  value 524.413808 
## iter  10 value 295.569975
## iter  20 value 217.571715
## iter  30 value 194.948517
## iter  40 value 187.872114
## iter  50 value 181.724110
## iter  60 value 174.102684
## iter  70 value 173.776396
## iter  80 value 171.829884
## iter  90 value 170.111166
## iter 100 value 169.517958
## final  value 169.517958 
## stopped after 100 iterations
## # weights:  73
## initial  value 524.120998 
## iter  10 value 212.471264
## iter  20 value 172.690059
## iter  30 value 140.941742
## iter  40 value 126.279258
## iter  50 value 113.987877
## iter  60 value 110.974564
## iter  70 value 109.794101
## iter  80 value 108.107517
## iter  90 value 107.380018
## iter 100 value 106.518703
## final  value 106.518703 
## stopped after 100 iterations
## # weights:  121
## initial  value 547.059822 
## iter  10 value 221.311315
## iter  20 value 166.044853
## iter  30 value 129.461313
## iter  40 value 114.292234
## iter  50 value 111.550705
## iter  60 value 108.587919
## iter  70 value 107.733316
## iter  80 value 107.558550
## iter  90 value 107.313274
## iter 100 value 107.278863
## final  value 107.278863 
## stopped after 100 iterations
## # weights:  25
## initial  value 540.296279 
## iter  10 value 297.914924
## iter  20 value 236.444748
## iter  30 value 207.296704
## iter  40 value 203.111193
## iter  50 value 203.077087
## final  value 203.076976 
## converged
## # weights:  73
## initial  value 536.723212 
## iter  10 value 206.418161
## iter  20 value 175.663989
## iter  30 value 153.396351
## iter  40 value 146.907331
## iter  50 value 136.384178
## iter  60 value 132.605976
## iter  70 value 131.960333
## iter  80 value 131.874042
## iter  90 value 131.872685
## final  value 131.872539 
## converged
## # weights:  121
## initial  value 551.272696 
## iter  10 value 189.097449
## iter  20 value 147.268490
## iter  30 value 122.671410
## iter  40 value 107.268407
## iter  50 value 100.484561
## iter  60 value 92.649410
## iter  70 value 83.206523
## iter  80 value 76.720238
## iter  90 value 74.042871
## iter 100 value 72.866357
## final  value 72.866357 
## stopped after 100 iterations
## # weights:  25
## initial  value 515.890725 
## iter  10 value 296.723613
## iter  20 value 223.065052
## iter  30 value 215.950306
## iter  40 value 210.458340
## iter  50 value 205.704425
## iter  60 value 194.387688
## iter  70 value 193.372333
## iter  80 value 191.829666
## iter  90 value 190.579366
## iter 100 value 190.568937
## final  value 190.568937 
## stopped after 100 iterations
## # weights:  73
## initial  value 563.534438 
## iter  10 value 246.941180
## iter  20 value 183.618271
## iter  30 value 141.671120
## iter  40 value 120.346910
## iter  50 value 115.625041
## iter  60 value 112.064574
## iter  70 value 107.948783
## iter  80 value 107.686302
## iter  90 value 107.155231
## iter 100 value 106.341384
## final  value 106.341384 
## stopped after 100 iterations
## # weights:  121
## initial  value 513.305500 
## iter  10 value 150.795079
## iter  20 value 88.198039
## iter  30 value 62.370165
## iter  40 value 52.342423
## iter  50 value 49.453440
## iter  60 value 46.372881
## iter  70 value 44.955872
## iter  80 value 42.525007
## iter  90 value 41.403307
## iter 100 value 41.199317
## final  value 41.199317 
## stopped after 100 iterations
## # weights:  25
## initial  value 530.576334 
## iter  10 value 273.812296
## iter  20 value 230.362649
## iter  30 value 213.487875
## iter  40 value 190.047267
## iter  50 value 184.808654
## iter  60 value 184.797714
## final  value 184.797642 
## converged
## # weights:  73
## initial  value 524.549909 
## iter  10 value 224.223441
## iter  20 value 171.688857
## iter  30 value 145.659287
## iter  40 value 133.859118
## iter  50 value 131.235786
## iter  60 value 129.271180
## iter  70 value 128.287737
## iter  80 value 127.968055
## iter  90 value 127.651321
## iter 100 value 127.131750
## final  value 127.131750 
## stopped after 100 iterations
## # weights:  121
## initial  value 561.614928 
## iter  10 value 168.924128
## iter  20 value 121.510553
## iter  30 value 93.639358
## iter  40 value 84.681283
## iter  50 value 78.413660
## iter  60 value 76.552322
## iter  70 value 75.446137
## iter  80 value 75.248354
## iter  90 value 75.063710
## iter 100 value 75.031249
## final  value 75.031249 
## stopped after 100 iterations
## # weights:  25
## initial  value 512.561986 
## iter  10 value 302.881228
## iter  20 value 260.945723
## iter  30 value 216.968473
## iter  40 value 206.127158
## iter  50 value 200.709312
## iter  60 value 200.608473
## iter  70 value 200.544339
## final  value 200.537956 
## converged
## # weights:  73
## initial  value 545.405531 
## iter  10 value 215.790810
## iter  20 value 185.017753
## iter  30 value 158.774358
## iter  40 value 144.323270
## iter  50 value 135.396610
## iter  60 value 132.940858
## iter  70 value 131.698254
## iter  80 value 131.264332
## iter  90 value 131.163203
## iter 100 value 131.084761
## final  value 131.084761 
## stopped after 100 iterations
## # weights:  121
## initial  value 671.606874 
## iter  10 value 182.491812
## iter  20 value 149.613896
## iter  30 value 138.626112
## iter  40 value 125.912307
## iter  50 value 116.779793
## iter  60 value 114.292329
## iter  70 value 99.436411
## iter  80 value 94.826645
## iter  90 value 90.191510
## iter 100 value 88.029433
## final  value 88.029433 
## stopped after 100 iterations
## # weights:  25
## initial  value 528.043339 
## iter  10 value 244.870616
## iter  20 value 201.635439
## iter  30 value 188.794163
## iter  40 value 173.448760
## iter  50 value 172.059521
## iter  60 value 171.916033
## iter  70 value 171.625049
## iter  80 value 171.576975
## iter  90 value 171.545543
## iter 100 value 171.493613
## final  value 171.493613 
## stopped after 100 iterations
## # weights:  73
## initial  value 657.506520 
## iter  10 value 190.289177
## iter  20 value 144.672084
## iter  30 value 129.545717
## iter  40 value 110.468785
## iter  50 value 104.403905
## iter  60 value 102.945795
## iter  70 value 102.473290
## iter  80 value 102.108009
## iter  90 value 101.902328
## iter 100 value 100.896297
## final  value 100.896297 
## stopped after 100 iterations
## # weights:  121
## initial  value 526.225241 
## iter  10 value 208.370011
## iter  20 value 123.114124
## iter  30 value 76.897954
## iter  40 value 58.387977
## iter  50 value 47.700504
## iter  60 value 44.996865
## iter  70 value 44.251733
## iter  80 value 43.823835
## iter  90 value 35.444655
## iter 100 value 31.988866
## final  value 31.988866 
## stopped after 100 iterations
## # weights:  25
## initial  value 496.906661 
## iter  10 value 227.927278
## iter  20 value 204.826169
## iter  30 value 195.942716
## iter  40 value 170.735448
## iter  50 value 159.636670
## iter  60 value 159.571738
## iter  70 value 159.564456
## iter  80 value 159.561491
## iter  90 value 159.561266
## iter 100 value 159.561047
## final  value 159.561047 
## stopped after 100 iterations
## # weights:  73
## initial  value 534.209669 
## iter  10 value 199.713573
## iter  20 value 151.862104
## iter  30 value 130.706034
## iter  40 value 121.202323
## iter  50 value 114.706192
## iter  60 value 111.864043
## iter  70 value 107.815705
## iter  80 value 106.800457
## iter  90 value 106.704295
## final  value 106.703846 
## converged
## # weights:  121
## initial  value 513.609801 
## iter  10 value 127.826039
## iter  20 value 62.397927
## iter  30 value 48.923657
## iter  40 value 44.048908
## iter  50 value 42.678562
## iter  60 value 41.025312
## iter  70 value 39.196341
## iter  80 value 38.718559
## iter  90 value 38.448806
## iter 100 value 37.497415
## final  value 37.497415 
## stopped after 100 iterations
## # weights:  25
## initial  value 518.151021 
## iter  10 value 318.678096
## iter  20 value 241.945332
## iter  30 value 229.638357
## iter  40 value 215.367969
## iter  50 value 206.469115
## iter  60 value 206.251369
## final  value 206.251364 
## converged
## # weights:  73
## initial  value 530.833849 
## iter  10 value 338.128042
## iter  20 value 270.513062
## iter  30 value 221.510693
## iter  40 value 178.916613
## iter  50 value 158.169247
## iter  60 value 154.261671
## iter  70 value 153.263984
## iter  80 value 152.546474
## iter  90 value 151.021312
## iter 100 value 150.566527
## final  value 150.566527 
## stopped after 100 iterations
## # weights:  121
## initial  value 565.658486 
## iter  10 value 280.189051
## iter  20 value 196.660781
## iter  30 value 143.227586
## iter  40 value 117.647916
## iter  50 value 103.919585
## iter  60 value 94.168347
## iter  70 value 86.161121
## iter  80 value 81.207663
## iter  90 value 78.711033
## iter 100 value 77.422134
## final  value 77.422134 
## stopped after 100 iterations
## # weights:  25
## initial  value 558.963055 
## iter  10 value 299.302652
## iter  20 value 227.724495
## iter  30 value 214.949887
## iter  40 value 211.230070
## iter  50 value 211.113771
## iter  60 value 207.671485
## iter  70 value 207.470557
## iter  80 value 207.428745
## iter  90 value 207.424099
## iter 100 value 207.423016
## final  value 207.423016 
## stopped after 100 iterations
## # weights:  73
## initial  value 555.065998 
## iter  10 value 180.867594
## iter  20 value 127.554671
## iter  30 value 97.180965
## iter  40 value 87.305561
## iter  50 value 85.099076
## iter  60 value 84.642955
## iter  70 value 84.184183
## iter  80 value 83.930768
## iter  90 value 83.197667
## iter 100 value 82.844331
## final  value 82.844331 
## stopped after 100 iterations
## # weights:  121
## initial  value 535.930796 
## iter  10 value 172.540069
## iter  20 value 106.929591
## iter  30 value 71.405229
## iter  40 value 53.528710
## iter  50 value 49.097767
## iter  60 value 41.476905
## iter  70 value 39.775296
## iter  80 value 32.149589
## iter  90 value 24.982120
## iter 100 value 23.739887
## final  value 23.739887 
## stopped after 100 iterations
## # weights:  25
## initial  value 514.080659 
## iter  10 value 268.555888
## iter  20 value 227.994652
## iter  30 value 213.904593
## iter  40 value 205.291511
## iter  50 value 196.076685
## iter  60 value 192.252637
## iter  70 value 189.517954
## iter  80 value 185.095985
## iter  90 value 176.724053
## iter 100 value 176.683031
## final  value 176.683031 
## stopped after 100 iterations
## # weights:  73
## initial  value 510.682499 
## iter  10 value 179.887314
## iter  20 value 127.635941
## iter  30 value 106.375525
## iter  40 value 97.626447
## iter  50 value 89.293499
## iter  60 value 87.930155
## iter  70 value 87.918810
## final  value 87.918765 
## converged
## # weights:  121
## initial  value 534.557153 
## iter  10 value 192.055188
## iter  20 value 106.471874
## iter  30 value 68.157389
## iter  40 value 60.303054
## iter  50 value 57.888174
## iter  60 value 56.108330
## iter  70 value 52.631391
## iter  80 value 52.311097
## iter  90 value 51.221122
## iter 100 value 50.179478
## final  value 50.179478 
## stopped after 100 iterations
## # weights:  25
## initial  value 586.762145 
## iter  10 value 279.756970
## iter  20 value 238.839745
## iter  30 value 222.078970
## iter  40 value 219.375113
## iter  50 value 218.660685
## iter  60 value 218.505140
## iter  70 value 213.041871
## iter  80 value 212.591090
## iter  90 value 212.541483
## final  value 212.541418 
## converged
## # weights:  73
## initial  value 537.824697 
## iter  10 value 222.473142
## iter  20 value 195.134011
## iter  30 value 169.929303
## iter  40 value 151.462068
## iter  50 value 143.005184
## iter  60 value 142.089657
## iter  70 value 141.677336
## iter  80 value 141.550118
## iter  90 value 141.535187
## iter 100 value 141.534488
## final  value 141.534488 
## stopped after 100 iterations
## # weights:  121
## initial  value 523.052725 
## iter  10 value 234.813273
## iter  20 value 151.115173
## iter  30 value 116.206558
## iter  40 value 105.017422
## iter  50 value 97.891829
## iter  60 value 93.755609
## iter  70 value 91.023653
## iter  80 value 89.234505
## iter  90 value 88.982824
## iter 100 value 88.826263
## final  value 88.826263 
## stopped after 100 iterations
## # weights:  25
## initial  value 577.005987 
## iter  10 value 243.205547
## iter  20 value 210.027134
## iter  30 value 198.598464
## iter  40 value 176.594694
## iter  50 value 175.697600
## iter  60 value 175.370267
## iter  70 value 175.271829
## iter  80 value 175.258453
## iter  90 value 175.246010
## iter 100 value 175.228476
## final  value 175.228476 
## stopped after 100 iterations
## # weights:  73
## initial  value 567.383546 
## iter  10 value 217.054749
## iter  20 value 163.272972
## iter  30 value 148.189837
## iter  40 value 142.441783
## iter  50 value 140.360317
## iter  60 value 138.386061
## iter  70 value 137.306698
## iter  80 value 137.039418
## iter  90 value 131.652550
## iter 100 value 131.544671
## final  value 131.544671 
## stopped after 100 iterations
## # weights:  121
## initial  value 580.015084 
## iter  10 value 175.219350
## iter  20 value 83.818059
## iter  30 value 51.814087
## iter  40 value 44.824881
## iter  50 value 41.480529
## iter  60 value 40.473464
## iter  70 value 40.042688
## iter  80 value 39.753456
## iter  90 value 39.568942
## iter 100 value 39.255546
## final  value 39.255546 
## stopped after 100 iterations
## # weights:  25
## initial  value 519.997176 
## iter  10 value 337.293526
## iter  20 value 237.014623
## iter  30 value 215.088561
## iter  40 value 212.545772
## iter  50 value 204.735089
## iter  60 value 192.552718
## iter  70 value 175.678167
## iter  80 value 174.270310
## iter  90 value 161.104875
## iter 100 value 159.920089
## final  value 159.920089 
## stopped after 100 iterations
## # weights:  73
## initial  value 532.030675 
## iter  10 value 266.200230
## iter  20 value 179.194837
## iter  30 value 146.521497
## iter  40 value 136.482376
## iter  50 value 131.371840
## iter  60 value 126.793256
## iter  70 value 118.170122
## iter  80 value 116.165280
## iter  90 value 113.316185
## iter 100 value 110.244552
## final  value 110.244552 
## stopped after 100 iterations
## # weights:  121
## initial  value 506.627907 
## iter  10 value 192.330945
## iter  20 value 127.738074
## iter  30 value 86.905957
## iter  40 value 67.978807
## iter  50 value 64.471510
## iter  60 value 62.819121
## iter  70 value 62.368601
## iter  80 value 62.344584
## iter  90 value 62.317026
## iter 100 value 62.005964
## final  value 62.005964 
## stopped after 100 iterations
## # weights:  25
## initial  value 531.998317 
## iter  10 value 316.540442
## iter  20 value 259.026321
## iter  30 value 232.489630
## iter  40 value 209.374541
## iter  50 value 204.875161
## iter  60 value 204.688415
## iter  70 value 204.636980
## final  value 204.634356 
## converged
## # weights:  73
## initial  value 513.857827 
## iter  10 value 260.197927
## iter  20 value 206.205019
## iter  30 value 178.847820
## iter  40 value 156.926288
## iter  50 value 146.791836
## iter  60 value 142.252923
## iter  70 value 139.017873
## iter  80 value 137.699279
## iter  90 value 137.463740
## iter 100 value 137.444569
## final  value 137.444569 
## stopped after 100 iterations
## # weights:  121
## initial  value 531.701345 
## iter  10 value 203.279757
## iter  20 value 132.176512
## iter  30 value 99.361285
## iter  40 value 80.392178
## iter  50 value 73.665138
## iter  60 value 71.350142
## iter  70 value 69.437480
## iter  80 value 68.213945
## iter  90 value 67.502894
## iter 100 value 66.286726
## final  value 66.286726 
## stopped after 100 iterations
## # weights:  25
## initial  value 520.025084 
## iter  10 value 293.197464
## iter  20 value 238.167433
## iter  30 value 216.126975
## iter  40 value 202.923973
## iter  50 value 189.376344
## iter  60 value 188.782848
## iter  70 value 188.586691
## iter  80 value 188.550752
## iter  90 value 188.533234
## iter 100 value 188.511786
## final  value 188.511786 
## stopped after 100 iterations
## # weights:  73
## initial  value 549.276565 
## iter  10 value 202.424577
## iter  20 value 120.498977
## iter  30 value 100.218470
## iter  40 value 85.569796
## iter  50 value 82.218717
## iter  60 value 80.805077
## iter  70 value 76.670669
## iter  80 value 76.100468
## iter  90 value 75.950664
## iter 100 value 75.837156
## final  value 75.837156 
## stopped after 100 iterations
## # weights:  121
## initial  value 486.801109 
## iter  10 value 162.586173
## iter  20 value 92.472285
## iter  30 value 63.280457
## iter  40 value 58.375504
## iter  50 value 56.479074
## iter  60 value 56.166020
## iter  70 value 56.034755
## iter  80 value 49.839032
## iter  90 value 47.800762
## iter 100 value 47.738452
## final  value 47.738452 
## stopped after 100 iterations
## # weights:  25
## initial  value 515.321427 
## iter  10 value 374.746642
## iter  20 value 264.816557
## iter  30 value 217.620535
## iter  40 value 199.793830
## iter  50 value 172.772090
## iter  60 value 168.882395
## iter  70 value 168.783296
## iter  80 value 168.738056
## iter  90 value 168.722188
## iter 100 value 168.714845
## final  value 168.714845 
## stopped after 100 iterations
## # weights:  73
## initial  value 572.217448 
## iter  10 value 254.080902
## iter  20 value 186.652289
## iter  30 value 163.244201
## iter  40 value 141.023448
## iter  50 value 134.881444
## iter  60 value 132.591327
## iter  70 value 125.242198
## iter  80 value 125.082199
## iter  90 value 125.032124
## iter 100 value 125.004077
## final  value 125.004077 
## stopped after 100 iterations
## # weights:  121
## initial  value 526.567787 
## iter  10 value 177.428831
## iter  20 value 109.604681
## iter  30 value 80.034681
## iter  40 value 71.246729
## iter  50 value 67.295835
## iter  60 value 61.091073
## iter  70 value 57.646852
## iter  80 value 56.382133
## iter  90 value 55.321039
## iter 100 value 54.170818
## final  value 54.170818 
## stopped after 100 iterations
## # weights:  25
## initial  value 510.269611 
## iter  10 value 240.884378
## iter  20 value 221.021402
## iter  30 value 213.662528
## iter  40 value 212.891130
## final  value 212.890763 
## converged
## # weights:  73
## initial  value 633.717883 
## iter  10 value 335.115868
## iter  20 value 221.363186
## iter  30 value 186.382241
## iter  40 value 154.570270
## iter  50 value 141.029164
## iter  60 value 133.763365
## iter  70 value 130.569600
## iter  80 value 125.288191
## iter  90 value 124.408629
## iter 100 value 124.269476
## final  value 124.269476 
## stopped after 100 iterations
## # weights:  121
## initial  value 519.420760 
## iter  10 value 202.494150
## iter  20 value 153.513345
## iter  30 value 132.994726
## iter  40 value 125.035358
## iter  50 value 122.480473
## iter  60 value 121.654446
## iter  70 value 121.533779
## iter  80 value 121.415922
## iter  90 value 118.241332
## iter 100 value 108.877918
## final  value 108.877918 
## stopped after 100 iterations
## # weights:  25
## initial  value 534.337762 
## iter  10 value 304.298241
## iter  20 value 269.384794
## iter  30 value 247.819230
## iter  40 value 235.887302
## iter  50 value 223.871379
## iter  60 value 221.359784
## iter  70 value 218.882279
## iter  80 value 218.841898
## iter  90 value 218.835967
## iter 100 value 218.835073
## final  value 218.835073 
## stopped after 100 iterations
## # weights:  73
## initial  value 545.502747 
## iter  10 value 285.531002
## iter  20 value 222.690559
## iter  30 value 178.709869
## iter  40 value 169.416660
## iter  50 value 161.293922
## iter  60 value 154.744867
## iter  70 value 151.961957
## iter  80 value 151.707400
## iter  90 value 151.489054
## iter 100 value 148.683822
## final  value 148.683822 
## stopped after 100 iterations
## # weights:  121
## initial  value 546.052860 
## iter  10 value 208.491524
## iter  20 value 116.493820
## iter  30 value 60.958446
## iter  40 value 45.114528
## iter  50 value 39.890971
## iter  60 value 34.546262
## iter  70 value 31.457760
## iter  80 value 28.161345
## iter  90 value 27.063840
## iter 100 value 26.695138
## final  value 26.695138 
## stopped after 100 iterations
## # weights:  25
## initial  value 514.188818 
## iter  10 value 284.843848
## iter  20 value 241.746632
## iter  30 value 226.575339
## iter  40 value 216.855770
## iter  50 value 213.619677
## iter  60 value 208.142256
## iter  70 value 206.641634
## iter  80 value 200.500824
## iter  90 value 195.762697
## iter 100 value 195.634168
## final  value 195.634168 
## stopped after 100 iterations
## # weights:  73
## initial  value 507.590751 
## iter  10 value 204.139765
## iter  20 value 151.372138
## iter  30 value 128.860421
## iter  40 value 115.145026
## iter  50 value 110.394294
## iter  60 value 108.504177
## iter  70 value 99.298406
## iter  80 value 97.902353
## iter  90 value 97.071562
## iter 100 value 96.782485
## final  value 96.782485 
## stopped after 100 iterations
## # weights:  121
## initial  value 642.257183 
## iter  10 value 177.785884
## iter  20 value 113.151299
## iter  30 value 80.971671
## iter  40 value 72.881241
## iter  50 value 70.038134
## iter  60 value 69.593229
## iter  70 value 69.552396
## iter  80 value 69.550653
## iter  90 value 69.549159
## iter 100 value 69.548639
## final  value 69.548639 
## stopped after 100 iterations
## # weights:  25
## initial  value 493.834895 
## iter  10 value 296.809643
## iter  20 value 232.191490
## iter  30 value 213.748731
## iter  40 value 211.396039
## iter  50 value 211.133742
## iter  60 value 211.132134
## iter  70 value 211.132070
## final  value 211.132045 
## converged
## # weights:  73
## initial  value 499.668010 
## iter  10 value 195.434887
## iter  20 value 177.953076
## iter  30 value 169.915107
## iter  40 value 165.354536
## iter  50 value 163.766019
## iter  60 value 163.196369
## iter  70 value 163.147981
## iter  80 value 163.143525
## final  value 163.143362 
## converged
## # weights:  121
## initial  value 659.457381 
## iter  10 value 221.448783
## iter  20 value 160.962283
## iter  30 value 130.930886
## iter  40 value 110.781236
## iter  50 value 105.351200
## iter  60 value 102.198898
## iter  70 value 99.486816
## iter  80 value 92.378229
## iter  90 value 83.236206
## iter 100 value 81.571272
## final  value 81.571272 
## stopped after 100 iterations
## # weights:  25
## initial  value 541.077503 
## iter  10 value 274.109078
## iter  20 value 241.264534
## iter  30 value 215.108242
## iter  40 value 203.156383
## iter  50 value 183.714258
## iter  60 value 183.349988
## iter  70 value 183.230116
## iter  80 value 183.183624
## iter  90 value 183.143481
## iter 100 value 183.050446
## final  value 183.050446 
## stopped after 100 iterations
## # weights:  73
## initial  value 523.529199 
## iter  10 value 207.785244
## iter  20 value 152.316322
## iter  30 value 127.302669
## iter  40 value 123.506949
## iter  50 value 120.328963
## iter  60 value 112.974902
## iter  70 value 109.949303
## iter  80 value 106.229783
## iter  90 value 104.356212
## iter 100 value 103.827350
## final  value 103.827350 
## stopped after 100 iterations
## # weights:  121
## initial  value 482.884400 
## iter  10 value 174.096457
## iter  20 value 119.073191
## iter  30 value 81.497925
## iter  40 value 76.493081
## iter  50 value 75.006680
## iter  60 value 74.324558
## iter  70 value 72.964427
## iter  80 value 72.187138
## iter  90 value 71.731750
## iter 100 value 71.594790
## final  value 71.594790 
## stopped after 100 iterations
## # weights:  25
## initial  value 536.081896 
## iter  10 value 276.490457
## iter  20 value 203.553763
## iter  30 value 186.245891
## iter  40 value 173.240115
## iter  50 value 168.305256
## iter  60 value 168.268019
## final  value 168.267957 
## converged
## # weights:  73
## initial  value 534.842360 
## iter  10 value 204.487422
## iter  20 value 163.482965
## iter  30 value 142.077628
## iter  40 value 130.803010
## iter  50 value 120.021725
## iter  60 value 111.420325
## iter  70 value 111.207750
## iter  80 value 111.202433
## final  value 111.202337 
## converged
## # weights:  121
## initial  value 542.961146 
## iter  10 value 166.950905
## iter  20 value 91.296277
## iter  30 value 69.961984
## iter  40 value 62.758711
## iter  50 value 59.420609
## iter  60 value 57.038624
## iter  70 value 55.251056
## iter  80 value 54.270606
## iter  90 value 53.959923
## iter 100 value 53.927938
## final  value 53.927938 
## stopped after 100 iterations
## # weights:  25
## initial  value 515.267926 
## iter  10 value 246.345973
## iter  20 value 213.836030
## iter  30 value 208.739181
## iter  40 value 204.212142
## iter  50 value 204.105596
## final  value 204.105120 
## converged
## # weights:  73
## initial  value 625.309381 
## iter  10 value 264.146252
## iter  20 value 217.948834
## iter  30 value 198.883808
## iter  40 value 176.291449
## iter  50 value 166.051322
## iter  60 value 164.630502
## iter  70 value 164.405111
## iter  80 value 163.375309
## iter  90 value 163.154796
## final  value 163.154530 
## converged
## # weights:  121
## initial  value 599.183888 
## iter  10 value 236.624956
## iter  20 value 167.261292
## iter  30 value 128.163768
## iter  40 value 114.274397
## iter  50 value 110.065972
## iter  60 value 97.949946
## iter  70 value 93.781613
## iter  80 value 93.222554
## iter  90 value 93.188822
## iter 100 value 93.185487
## final  value 93.185487 
## stopped after 100 iterations
## # weights:  25
## initial  value 561.034656 
## iter  10 value 258.618270
## iter  20 value 212.124442
## iter  30 value 194.052153
## iter  40 value 177.370931
## iter  50 value 174.933004
## iter  60 value 174.698747
## iter  70 value 174.651941
## iter  80 value 174.644548
## iter  90 value 172.886192
## iter 100 value 172.443430
## final  value 172.443430 
## stopped after 100 iterations
## # weights:  73
## initial  value 552.988008 
## iter  10 value 221.226391
## iter  20 value 177.487820
## iter  30 value 165.108687
## iter  40 value 156.678674
## iter  50 value 134.414061
## iter  60 value 124.006524
## iter  70 value 123.304463
## iter  80 value 123.174838
## iter  90 value 122.351418
## iter 100 value 122.019551
## final  value 122.019551 
## stopped after 100 iterations
## # weights:  121
## initial  value 655.149948 
## iter  10 value 215.334889
## iter  20 value 148.191549
## iter  30 value 100.220154
## iter  40 value 78.203750
## iter  50 value 59.669982
## iter  60 value 53.887870
## iter  70 value 50.365589
## iter  80 value 49.623528
## iter  90 value 49.427863
## iter 100 value 48.981994
## final  value 48.981994 
## stopped after 100 iterations
## # weights:  25
## initial  value 521.395089 
## iter  10 value 298.188677
## iter  20 value 227.343413
## iter  30 value 207.160393
## iter  40 value 193.771924
## iter  50 value 175.744701
## iter  60 value 174.513642
## iter  70 value 174.439729
## iter  80 value 174.417240
## iter  90 value 174.412429
## iter 100 value 174.411093
## final  value 174.411093 
## stopped after 100 iterations
## # weights:  73
## initial  value 542.939486 
## iter  10 value 201.122631
## iter  20 value 152.103509
## iter  30 value 122.539904
## iter  40 value 112.992128
## iter  50 value 111.537628
## iter  60 value 111.425610
## iter  70 value 111.417146
## iter  80 value 111.416119
## iter  90 value 111.415499
## iter 100 value 111.414872
## final  value 111.414872 
## stopped after 100 iterations
## # weights:  121
## initial  value 505.063995 
## iter  10 value 195.179821
## iter  20 value 138.949242
## iter  30 value 105.517771
## iter  40 value 95.531611
## iter  50 value 93.449423
## iter  60 value 91.974573
## iter  70 value 91.567722
## iter  80 value 91.023346
## iter  90 value 90.132920
## iter 100 value 89.713256
## final  value 89.713256 
## stopped after 100 iterations
## # weights:  25
## initial  value 559.491374 
## iter  10 value 236.028240
## iter  20 value 221.230015
## iter  30 value 215.652727
## iter  40 value 210.407669
## iter  50 value 208.772030
## iter  60 value 208.683838
## iter  60 value 208.683837
## iter  60 value 208.683837
## final  value 208.683837 
## converged
## # weights:  73
## initial  value 579.569202 
## iter  10 value 241.235821
## iter  20 value 201.161203
## iter  30 value 160.408181
## iter  40 value 150.538191
## iter  50 value 145.079949
## iter  60 value 143.857389
## iter  70 value 142.063201
## iter  80 value 132.961482
## iter  90 value 127.572778
## iter 100 value 125.252312
## final  value 125.252312 
## stopped after 100 iterations
## # weights:  121
## initial  value 560.419386 
## iter  10 value 183.624095
## iter  20 value 140.774385
## iter  30 value 130.152412
## iter  40 value 122.745435
## iter  50 value 118.598039
## iter  60 value 115.153661
## iter  70 value 109.489112
## iter  80 value 107.441487
## iter  90 value 102.719389
## iter 100 value 91.863748
## final  value 91.863748 
## stopped after 100 iterations
## # weights:  25
## initial  value 488.627550 
## iter  10 value 312.999827
## iter  20 value 272.858216
## iter  30 value 265.197504
## iter  40 value 262.641016
## iter  50 value 259.691543
## iter  60 value 252.911499
## iter  70 value 252.688698
## iter  80 value 252.578613
## iter  90 value 248.992990
## iter 100 value 248.958950
## final  value 248.958950 
## stopped after 100 iterations
## # weights:  73
## initial  value 712.924277 
## iter  10 value 256.041194
## iter  20 value 178.773677
## iter  30 value 136.959333
## iter  40 value 114.991123
## iter  50 value 110.118785
## iter  60 value 103.324028
## iter  70 value 100.700438
## iter  80 value 100.123497
## iter  90 value 98.877298
## iter 100 value 97.810751
## final  value 97.810751 
## stopped after 100 iterations
## # weights:  121
## initial  value 516.686136 
## iter  10 value 195.120076
## iter  20 value 95.899424
## iter  30 value 58.357049
## iter  40 value 42.613375
## iter  50 value 40.748384
## iter  60 value 40.057328
## iter  70 value 39.877527
## iter  80 value 39.658279
## iter  90 value 39.542782
## iter 100 value 39.507586
## final  value 39.507586 
## stopped after 100 iterations
## # weights:  121
## initial  value 594.845601 
## iter  10 value 201.099983
## iter  20 value 145.716833
## iter  30 value 122.488082
## iter  40 value 108.993378
## iter  50 value 100.363507
## iter  60 value 92.713815
## iter  70 value 89.727722
## iter  80 value 88.625205
## iter  90 value 87.353123
## iter 100 value 86.757997
## final  value 86.757997 
## stopped after 100 iterations
resultado_entrenamiento5 <- predict(modelo5, entrenamiento)
resultado_prueba5 <- predict(modelo5, prueba)

# Matriz de Confusion del Resultado del Entrenamiento1
mcre5 <- confusionMatrix(resultado_entrenamiento5, entrenamiento$target)

# Matriz de Confusion del Resultado de la Prueba1
mcrp5 <- confusionMatrix(resultado_prueba5, prueba$target)

6. Modelo con el Metodo rf

modelo6 <- train(target ~. , data=entrenamiento,
                 method = "rf", #Cambiar,
                 preProcess= c("scale", "center"), #Existe el pre-procesamiento pero asi esta bn
                 trControl = trainControl(method="cv", number=10), #Cross Validation SIEMPRE
                 tuneGrid = expand.grid(mtry = c(2,4,6)) #Cambiar
                 )

resultado_entrenamiento6 <- predict(modelo6, entrenamiento)
resultado_prueba6 <- predict(modelo6, prueba)

# Matriz de Confusion del Resultado del Entrenamiento1
mcre6 <- confusionMatrix(resultado_entrenamiento6, entrenamiento$target)

# Matriz de Confusion del Resultado de la Prueba1
mcrp6 <- confusionMatrix(resultado_prueba6, prueba$target)

Resumen de Resultados

resultados <- data.frame(
  "svmLinear" = c(mcre1$overall["Accuracy"], mcrp1$overall["Accuracy"]), #overall es la tabla de la matriz
  "svmRadial" = c(mcre2$overall["Accuracy"], mcrp2$overall["Accuracy"]),
  "svmPoly" = c(mcre3$overall["Accuracy"], mcrp3$overall["Accuracy"]),
  "rpart" = c(mcre4$overall["Accuracy"], mcrp4$overall["Accuracy"]),
  "nnet" = c(mcre5$overall["Accuracy"], mcrp5$overall["Accuracy"]),
  "rf" = c(mcre6$overall["Accuracy"], mcrp6$overall["Accuracy"])
)

rownames(resultados) <- c("Precision de Entrenamiento", "Precision de Prueba")
resultados
##                            svmLinear svmRadial   svmPoly     rpart      nnet rf
## Precision de Entrenamiento 0.8952497         1 0.8952497 0.8745432 0.9866017  1
## Precision de Prueba        0.8921569         1 0.8921569 0.8431373 1.0000000  1

Conclusiones

Tras evaluar todos los modelos, podemos observar como svmRadial, nnet y rf presentan sobreajuste, ya que tienen una alta precision.

Acorde al resumen de resultados, el modelo mejor evaluado es el de svmLinear.

LS0tDQp0aXRsZTogIkNBUkVUIC0gSGVhcnQgZGlzZWFzZSINCmF1dGhvcjogIk1hcmlhbmEgR2FyY2lhIEEwMTE3NzcwNSINCmRhdGU6ICIyMDI0LTA4LTIxIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6IGRhcmsNCi0tLQ0KDQpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0gDQprbml0cjo6b3B0c19jaHVuayRzZXQod2FybmluZyA9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0UpIA0KYGBgDQoNCiFbXShDOlxcVXNlcnNcXG1hcmlhXFxPbmVEcml2ZVxcRGVza3RvcFxcQUQyNFxcTW9kdWxvIDJcXGltYWdlX3Byb2Nlc3NpbmcyMDIxMDgzMS0yNTM2NS16aHVzMm0uZ2lmKQ0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogdmlvbGV0OyI+VGVvcmlhPC9zcGFuPg0KRWwgcGFxdWV0ZSAqQ0FSRVQgKENsYWZpY2F0aW9uIGFuZCBSZWdyZXNzaW9uIFRyYWluaW5nKSogZXMgdW4gcGFxdWV0ZSBpbnRlZ3JhbCBjb24gdW5hIGFtcGxpYSB2YXJpZWRhZCBkZSBhbGdvcml0bW9zIHBhcmEgZWw7IGFwcmVuZGl6YWplIGF1dG9tYXRpY28uDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiB2aW9sZXQ7Ij5JbnN0YWxhciBwYXF1ZXRlcyB5IGxsYW1hciBsaWJyZXJpYXM8L3NwYW4+DQpgYGB7ciB3YXJuaW5nPUZBTFNFfQ0KI2luc3RhbGwucGFja2FnZXMoImdncGxvdDIiKSANCmxpYnJhcnkoZ2dwbG90MikgI0dyYWZpY2FzIGNvbiBtZWpvciBkaXNlbm8NCiNpbnN0YWxsLnBhY2thZ2VzKCJsYXR0aWNlIikgDQpsaWJyYXJ5KGxhdHRpY2UpICNDcmVhciBncmFmaWNvcw0KI2luc3RhbGwucGFja2FnZXMoImNhcmV0IikgDQpsaWJyYXJ5KGNhcmV0KSAjQWxnb3JpdG1vcyBkZSBhcHJlbmRpemFqZSBhdXRvbWF0aWNvDQojaW5zdGFsbC5wYWNrYWdlcygiZGF0YXNldHMiKSANCmxpYnJhcnkoZGF0YXNldHMpICNVc2FyIGxhIGJhc2UgZGUgZGF0b3MgIklyaXMiDQojaW5zdGFsbC5wYWNrYWdlcygiRGF0YUV4cGxvcmVyIikgDQpsaWJyYXJ5KERhdGFFeHBsb3JlcikgI0V4cGxvcmFjaW9uIGRlIGRhdG9zDQojaW5zdGFsbC5wYWNrYWdlcygia2VybmxhYiIpIA0KbGlicmFyeShrZXJubGFiKSAjTWV0b2RvcyBkZSBhcHJlbmRpemFqZSBhdXRvbWF0aWNvDQojaW5zdGFsbC5wYWNrYWdlcygicmFuZG9tRm9yZXN0IikgDQpsaWJyYXJ5KHJhbmRvbUZvcmVzdCkgI0V4cGxvcmFjaW9uIGRlIGRhdG9zDQoNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogdmlvbGV0OyI+Q3JlYXIgYmFzZSBkZSBkYXRvczwvc3Bhbj4NCmBgYHtyfQ0KZGYgPC0gcmVhZC5jc3YoIkM6XFxVc2Vyc1xcbWFyaWFcXE9uZURyaXZlXFxEZXNrdG9wXFxBRDI0XFxNb2R1bG8gMlxcaGVhcnQuY3N2IikNCmBgYCANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IHZpb2xldDsiPkFuYWxpc2lzIEV4cGxvcmF0b3Jpbzwvc3Bhbj4NCmBgYHtyfQ0Kc3VtbWFyeShkZikNCnN0cihkZikNCnBsb3RfbWlzc2luZyhkZikNCg0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiB2aW9sZXQ7Ij5Db252ZXJ0aXIgdmFyaWFibGVzIGEgZmFjdG9yZXM8L3NwYW4+DQpgYGB7cn0NCmRmJHNleCA8LSBhcy5mYWN0b3IoZGYkc2V4KQ0KZGYkdGFyZ2V0IDwtIGFzLmZhY3RvcihkZiR0YXJnZXQpICN2YXJpYWJsZSBxdWUgcXVlcmVtb3MgcHJlZGVjaXINCmRmJGNwIDwtIGFzLmZhY3RvcihkZiRjcCkNCmRmJHJlc3RlY2cgPC0gYXMuZmFjdG9yKGRmJHJlc3RlY2cpDQpkZiRjYSA8LSBhcy5mYWN0b3IoZGYkY2EpDQpkZiR0aGFsIDwtIGFzLmZhY3RvcihkZiR0aGFsKQ0KZGYkZXhhbmcgPC0gYXMuZmFjdG9yKGRmJGV4YW5nKQ0KZGYkZmJzIDwtIGFzLmZhY3RvcihkZiRmYnMpDQpkZiRzbG9wZSA8LSBhcy5mYWN0b3IoZGYkc2xvcGUpDQoNCg0KZGYNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogdmlvbGV0OyI+UGFydGlyIGxvcyBkYXRvcyA4MC0yMDwvc3Bhbj4NCmBgYHtyfQ0Kc2V0LnNlZWQoMTIzKQ0KcmVuZ2xvbmVzX2VudHJlbWllbnRvIDwtIGNyZWF0ZURhdGFQYXJ0aXRpb24oZGYkdGFyZ2V0LCBwPTAuOCwgbGlzdD1GQUxTRSkNCmVudHJlbmFtaWVudG8gPC0gZGZbcmVuZ2xvbmVzX2VudHJlbWllbnRvLCBdDQpwcnVlYmEgPC0gZGZbLXJlbmdsb25lc19lbnRyZW1pZW50bywgXQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiB2aW9sZXQ7Ij5NZXRvZG9zIHBhcmEgTW9kZWxhcjwvc3Bhbj4NCkxvcyBtZXRvZG9zIG1hcyB1dGlsaXphZG9zIHBhcmEgbW9kZWxhciBhcHJlbmRpemFqZSBhdXRvbWF0aWNvIHNvbjogDQoNCiogKipTVk0qKjogKlN1cHBvcnQgVmVjdG9yIE1hY2hpbmUqIG8gTWFxdWluYSBkZSBWZWN0b3JlcyBkZSBTb3BvcnRlLiBIYXkgdmFyaW9zIHN1YnRpcG9zOiBMaW5lYWwgKHN2bUxpbmVhciksIFJhZGlhbCAoc3ZtUmFkaWFsKSwgUG9saW5vbWljbyAoc3ZtUG9seSksIGV0Yy4gIA0KKiAqKkFyYm9sIGRlIERlY2lzaW9uKio6IHJwYXJ0DQoqICoqUmVkZXMgTmV1cm9uYWxlcyoqOiBubmV0DQoqICoqUmFuZG9tIEZvcmVzdCoqOiBvIEJvc3F1ZXMgQWxlYXRvcmlvczogcmYNCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiB2aW9sZXQ7Ij4xLiBNb2RlbG8gY29uIGVsIE1ldG9kbyBzdm1MaW5lYXI8L3NwYW4+DQpgYGB7cn0NCm1vZGVsbzEgPC0gdHJhaW4odGFyZ2V0IH4uICwgZGF0YT1lbnRyZW5hbWllbnRvLA0KICAgICAgICAgICAgICAgICBtZXRob2QgPSAic3ZtTGluZWFyIiwgI0NhbWJpYXIsDQogICAgICAgICAgICAgICAgIHByZVByb2Nlc3M9IGMoInNjYWxlIiwgImNlbnRlciIpLCAjRXhpc3RlIGVsIHByZS1wcm9jZXNhbWllbnRvIHBlcm8gYXNpIGVzdGEgYm4NCiAgICAgICAgICAgICAgICAgdHJDb250cm9sID0gdHJhaW5Db250cm9sKG1ldGhvZD0iY3YiLCBudW1iZXI9MTApLCAjQ3Jvc3MgVmFsaWRhdGlvbiBTSUVNUFJFDQogICAgICAgICAgICAgICAgIHR1bmVHcmlkID0gZGF0YS5mcmFtZShDPTEpICNDYW1iaWFyDQogICAgICAgICAgICAgICAgICkNCg0KcmVzdWx0YWRvX2VudHJlbmFtaWVudG8xIDwtIHByZWRpY3QobW9kZWxvMSwgZW50cmVuYW1pZW50bykNCnJlc3VsdGFkb19wcnVlYmExIDwtIHByZWRpY3QobW9kZWxvMSwgcHJ1ZWJhKQ0KDQojIE1hdHJpeiBkZSBDb25mdXNpb24gZGVsIFJlc3VsdGFkbyBkZWwgRW50cmVuYW1pZW50bzENCm1jcmUxIDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fZW50cmVuYW1pZW50bzEsIGVudHJlbmFtaWVudG8kdGFyZ2V0KQ0KDQojIE1hdHJpeiBkZSBDb25mdXNpb24gZGVsIFJlc3VsdGFkbyBkZSBsYSBQcnVlYmExDQptY3JwMSA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX3BydWViYTEsIHBydWViYSR0YXJnZXQpDQpgYGANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiB2aW9sZXQ7Ij4yLiBNb2RlbG8gY29uIGVsIE1ldG9kbyBzdm1SYWRpYWw8L3NwYW4+DQpgYGB7cn0NCm1vZGVsbzIgPC0gdHJhaW4odGFyZ2V0IH4uICwgZGF0YT1lbnRyZW5hbWllbnRvLA0KICAgICAgICAgICAgICAgICBtZXRob2QgPSAic3ZtUmFkaWFsIiwgI0NhbWJpYXIsDQogICAgICAgICAgICAgICAgIHByZVByb2Nlc3M9IGMoInNjYWxlIiwgImNlbnRlciIpLCAjRXhpc3RlIGVsIHByZS1wcm9jZXNhbWllbnRvIHBlcm8gYXNpIGVzdGEgYm4NCiAgICAgICAgICAgICAgICAgdHJDb250cm9sID0gdHJhaW5Db250cm9sKG1ldGhvZD0iY3YiLCBudW1iZXI9MTApLCAjQ3Jvc3MgVmFsaWRhdGlvbiBTSUVNUFJFDQogICAgICAgICAgICAgICAgIHR1bmVHcmlkID0gZGF0YS5mcmFtZShzaWdtYT0xLCBDPTEpICNDYW1iaWFyDQogICAgICAgICAgICAgICAgICkNCg0KcmVzdWx0YWRvX2VudHJlbmFtaWVudG8yIDwtIHByZWRpY3QobW9kZWxvMiwgZW50cmVuYW1pZW50bykNCnJlc3VsdGFkb19wcnVlYmEyIDwtIHByZWRpY3QobW9kZWxvMiwgcHJ1ZWJhKQ0KDQojIE1hdHJpeiBkZSBDb25mdXNpb24gZGVsIFJlc3VsdGFkbyBkZWwgRW50cmVuYW1pZW50bzENCm1jcmUyIDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fZW50cmVuYW1pZW50bzIsIGVudHJlbmFtaWVudG8kdGFyZ2V0KQ0KDQojIE1hdHJpeiBkZSBDb25mdXNpb24gZGVsIFJlc3VsdGFkbyBkZSBsYSBQcnVlYmExDQptY3JwMiA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX3BydWViYTIsIHBydWViYSR0YXJnZXQpDQpgYGANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiB2aW9sZXQ7Ij4zLiBNb2RlbG8gY29uIGVsIE1ldG9kbyBzdm1Qb2x5PC9zcGFuPg0KYGBge3J9DQptb2RlbG8zIDwtIHRyYWluKHRhcmdldCB+LiAsIGRhdGE9ZW50cmVuYW1pZW50bywNCiAgICAgICAgICAgICAgICAgbWV0aG9kID0gInN2bVBvbHkiLCAjQ2FtYmlhciwNCiAgICAgICAgICAgICAgICAgcHJlUHJvY2Vzcz0gYygic2NhbGUiLCAiY2VudGVyIiksICNFeGlzdGUgZWwgcHJlLXByb2Nlc2FtaWVudG8gcGVybyBhc2kgZXN0YSBibg0KICAgICAgICAgICAgICAgICB0ckNvbnRyb2wgPSB0cmFpbkNvbnRyb2wobWV0aG9kPSJjdiIsIG51bWJlcj0xMCksICNDcm9zcyBWYWxpZGF0aW9uIFNJRU1QUkUNCiAgICAgICAgICAgICAgICAgdHVuZUdyaWQgPSBkYXRhLmZyYW1lKGRlZ3JlZT0xLCBzY2FsZT0xLCBDPTEpICNDYW1iaWFyDQogICAgICAgICAgICAgICAgICkNCg0KcmVzdWx0YWRvX2VudHJlbmFtaWVudG8zIDwtIHByZWRpY3QobW9kZWxvMywgZW50cmVuYW1pZW50bykNCnJlc3VsdGFkb19wcnVlYmEzIDwtIHByZWRpY3QobW9kZWxvMywgcHJ1ZWJhKQ0KDQojIE1hdHJpeiBkZSBDb25mdXNpb24gZGVsIFJlc3VsdGFkbyBkZWwgRW50cmVuYW1pZW50bzENCm1jcmUzIDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fZW50cmVuYW1pZW50bzMsIGVudHJlbmFtaWVudG8kdGFyZ2V0KQ0KDQojIE1hdHJpeiBkZSBDb25mdXNpb24gZGVsIFJlc3VsdGFkbyBkZSBsYSBQcnVlYmExDQptY3JwMyA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX3BydWViYTMsIHBydWViYSR0YXJnZXQpDQpgYGANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiB2aW9sZXQ7Ij40LiBNb2RlbG8gY29uIGVsIE1ldG9kbyBycGFydDwvc3Bhbj4NCmBgYHtyfQ0KbW9kZWxvNCA8LSB0cmFpbih0YXJnZXQgfi4gLCBkYXRhPWVudHJlbmFtaWVudG8sDQogICAgICAgICAgICAgICAgIG1ldGhvZCA9ICJycGFydCIsICNDYW1iaWFyLA0KICAgICAgICAgICAgICAgICBwcmVQcm9jZXNzPSBjKCJzY2FsZSIsICJjZW50ZXIiKSwgI0V4aXN0ZSBlbCBwcmUtcHJvY2VzYW1pZW50byBwZXJvIGFzaSBlc3RhIGJuDQogICAgICAgICAgICAgICAgIHRyQ29udHJvbCA9IHRyYWluQ29udHJvbChtZXRob2Q9ImN2IiwgbnVtYmVyPTEwKSwgI0Nyb3NzIFZhbGlkYXRpb24gU0lFTVBSRQ0KICAgICAgICAgICAgICAgICB0dW5lTGVuZ3RoID0gMTAgI0NhbWJpYXINCiAgICAgICAgICAgICAgICAgKQ0KDQpyZXN1bHRhZG9fZW50cmVuYW1pZW50bzQgPC0gcHJlZGljdChtb2RlbG80LCBlbnRyZW5hbWllbnRvKQ0KcmVzdWx0YWRvX3BydWViYTQgPC0gcHJlZGljdChtb2RlbG80LCBwcnVlYmEpDQoNCiMgTWF0cml6IGRlIENvbmZ1c2lvbiBkZWwgUmVzdWx0YWRvIGRlbCBFbnRyZW5hbWllbnRvMQ0KbWNyZTQgPC0gY29uZnVzaW9uTWF0cml4KHJlc3VsdGFkb19lbnRyZW5hbWllbnRvNCwgZW50cmVuYW1pZW50byR0YXJnZXQpDQoNCiMgTWF0cml6IGRlIENvbmZ1c2lvbiBkZWwgUmVzdWx0YWRvIGRlIGxhIFBydWViYTENCm1jcnA0IDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fcHJ1ZWJhNCwgcHJ1ZWJhJHRhcmdldCkNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHZpb2xldDsiPjUuIE1vZGVsbyBjb24gZWwgTWV0b2RvIG5uZXQ8L3NwYW4+DQpgYGB7cn0NCm1vZGVsbzUgPC0gdHJhaW4odGFyZ2V0IH4uICwgZGF0YT1lbnRyZW5hbWllbnRvLA0KICAgICAgICAgICAgICAgICBtZXRob2QgPSAibm5ldCIsICNDYW1iaWFyLA0KICAgICAgICAgICAgICAgICBwcmVQcm9jZXNzPSBjKCJzY2FsZSIsICJjZW50ZXIiKSwgI0V4aXN0ZSBlbCBwcmUtcHJvY2VzYW1pZW50byBwZXJvIGFzaSBlc3RhIGJuDQogICAgICAgICAgICAgICAgIHRyQ29udHJvbCA9IHRyYWluQ29udHJvbChtZXRob2Q9ImN2IiwgbnVtYmVyPTEwKSAjQ3Jvc3MgVmFsaWRhdGlvbiBTSUVNUFJFDQogICAgICAgICAgICAgICAgICAjQ2FtYmlhcg0KICAgICAgICAgICAgICAgICApDQoNCnJlc3VsdGFkb19lbnRyZW5hbWllbnRvNSA8LSBwcmVkaWN0KG1vZGVsbzUsIGVudHJlbmFtaWVudG8pDQpyZXN1bHRhZG9fcHJ1ZWJhNSA8LSBwcmVkaWN0KG1vZGVsbzUsIHBydWViYSkNCg0KIyBNYXRyaXogZGUgQ29uZnVzaW9uIGRlbCBSZXN1bHRhZG8gZGVsIEVudHJlbmFtaWVudG8xDQptY3JlNSA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX2VudHJlbmFtaWVudG81LCBlbnRyZW5hbWllbnRvJHRhcmdldCkNCg0KIyBNYXRyaXogZGUgQ29uZnVzaW9uIGRlbCBSZXN1bHRhZG8gZGUgbGEgUHJ1ZWJhMQ0KbWNycDUgPC0gY29uZnVzaW9uTWF0cml4KHJlc3VsdGFkb19wcnVlYmE1LCBwcnVlYmEkdGFyZ2V0KQ0KYGBgDQoNCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiB2aW9sZXQ7Ij42LiBNb2RlbG8gY29uIGVsIE1ldG9kbyByZjwvc3Bhbj4NCmBgYHtyfQ0KbW9kZWxvNiA8LSB0cmFpbih0YXJnZXQgfi4gLCBkYXRhPWVudHJlbmFtaWVudG8sDQogICAgICAgICAgICAgICAgIG1ldGhvZCA9ICJyZiIsICNDYW1iaWFyLA0KICAgICAgICAgICAgICAgICBwcmVQcm9jZXNzPSBjKCJzY2FsZSIsICJjZW50ZXIiKSwgI0V4aXN0ZSBlbCBwcmUtcHJvY2VzYW1pZW50byBwZXJvIGFzaSBlc3RhIGJuDQogICAgICAgICAgICAgICAgIHRyQ29udHJvbCA9IHRyYWluQ29udHJvbChtZXRob2Q9ImN2IiwgbnVtYmVyPTEwKSwgI0Nyb3NzIFZhbGlkYXRpb24gU0lFTVBSRQ0KICAgICAgICAgICAgICAgICB0dW5lR3JpZCA9IGV4cGFuZC5ncmlkKG10cnkgPSBjKDIsNCw2KSkgI0NhbWJpYXINCiAgICAgICAgICAgICAgICAgKQ0KDQpyZXN1bHRhZG9fZW50cmVuYW1pZW50bzYgPC0gcHJlZGljdChtb2RlbG82LCBlbnRyZW5hbWllbnRvKQ0KcmVzdWx0YWRvX3BydWViYTYgPC0gcHJlZGljdChtb2RlbG82LCBwcnVlYmEpDQoNCiMgTWF0cml6IGRlIENvbmZ1c2lvbiBkZWwgUmVzdWx0YWRvIGRlbCBFbnRyZW5hbWllbnRvMQ0KbWNyZTYgPC0gY29uZnVzaW9uTWF0cml4KHJlc3VsdGFkb19lbnRyZW5hbWllbnRvNiwgZW50cmVuYW1pZW50byR0YXJnZXQpDQoNCiMgTWF0cml6IGRlIENvbmZ1c2lvbiBkZWwgUmVzdWx0YWRvIGRlIGxhIFBydWViYTENCm1jcnA2IDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fcHJ1ZWJhNiwgcHJ1ZWJhJHRhcmdldCkNCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogdmlvbGV0OyI+UmVzdW1lbiBkZSBSZXN1bHRhZG9zPC9zcGFuPg0KYGBge3J9DQpyZXN1bHRhZG9zIDwtIGRhdGEuZnJhbWUoDQogICJzdm1MaW5lYXIiID0gYyhtY3JlMSRvdmVyYWxsWyJBY2N1cmFjeSJdLCBtY3JwMSRvdmVyYWxsWyJBY2N1cmFjeSJdKSwgI292ZXJhbGwgZXMgbGEgdGFibGEgZGUgbGEgbWF0cml6DQogICJzdm1SYWRpYWwiID0gYyhtY3JlMiRvdmVyYWxsWyJBY2N1cmFjeSJdLCBtY3JwMiRvdmVyYWxsWyJBY2N1cmFjeSJdKSwNCiAgInN2bVBvbHkiID0gYyhtY3JlMyRvdmVyYWxsWyJBY2N1cmFjeSJdLCBtY3JwMyRvdmVyYWxsWyJBY2N1cmFjeSJdKSwNCiAgInJwYXJ0IiA9IGMobWNyZTQkb3ZlcmFsbFsiQWNjdXJhY3kiXSwgbWNycDQkb3ZlcmFsbFsiQWNjdXJhY3kiXSksDQogICJubmV0IiA9IGMobWNyZTUkb3ZlcmFsbFsiQWNjdXJhY3kiXSwgbWNycDUkb3ZlcmFsbFsiQWNjdXJhY3kiXSksDQogICJyZiIgPSBjKG1jcmU2JG92ZXJhbGxbIkFjY3VyYWN5Il0sIG1jcnA2JG92ZXJhbGxbIkFjY3VyYWN5Il0pDQopDQoNCnJvd25hbWVzKHJlc3VsdGFkb3MpIDwtIGMoIlByZWNpc2lvbiBkZSBFbnRyZW5hbWllbnRvIiwgIlByZWNpc2lvbiBkZSBQcnVlYmEiKQ0KcmVzdWx0YWRvcw0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiB2aW9sZXQ7Ij5Db25jbHVzaW9uZXM8L3NwYW4+DQpUcmFzIGV2YWx1YXIgdG9kb3MgbG9zIG1vZGVsb3MsIHBvZGVtb3Mgb2JzZXJ2YXIgY29tbyAqc3ZtUmFkaWFsKiwgKm5uZXQqIHkgKnJmKiBwcmVzZW50YW4gc29icmVhanVzdGUsIHlhIHF1ZSB0aWVuZW4gdW5hIGFsdGEgcHJlY2lzaW9uLg0KDQpBY29yZGUgYWwgcmVzdW1lbiBkZSByZXN1bHRhZG9zLCBlbCBtb2RlbG8gbWVqb3IgZXZhbHVhZG8gZXMgZWwgZGUgKipzdm1MaW5lYXIqKi4=