Paso 1. Instalar paquetes y llamar librerias

#install.packages("DataExplorer")
library("DataExplorer")
#install.packages("nycflights13")
library(nycflights13)

Paso 2. Crear bases de datos

flights <- flights
weather <- weather
planes <- planes
airports <- airports
airlines <- airlines

Paso 3. Crear reporte

create_report(flights)
## 
## 
## processing file: report.rmd
##   |                                             |                                     |   0%  |                                             |.                                    |   2%                                   |                                             |..                                   |   5% [global_options]                  |                                             |...                                  |   7%                                   |                                             |....                                 |  10% [introduce]                       |                                             |....                                 |  12%                                   |                                             |.....                                |  14% [plot_intro]                      |                                             |......                               |  17%                                   |                                             |.......                              |  19% [data_structure]                  |                                             |........                             |  21%                                   |                                             |.........                            |  24% [missing_profile]                 |                                             |..........                           |  26%                                   |                                             |...........                          |  29% [univariate_distribution_header]  |                                             |...........                          |  31%                                   |                                             |............                         |  33% [plot_histogram]                  |                                             |.............                        |  36%                                   |                                             |..............                       |  38% [plot_density]                    |                                             |...............                      |  40%                                   |                                             |................                     |  43% [plot_frequency_bar]              |                                             |.................                    |  45%                                   |                                             |..................                   |  48% [plot_response_bar]               |                                             |..................                   |  50%                                   |                                             |...................                  |  52% [plot_with_bar]                   |                                             |....................                 |  55%                                   |                                             |.....................                |  57% [plot_normal_qq]                  |                                             |......................               |  60%                                   |                                             |.......................              |  62% [plot_response_qq]                |                                             |........................             |  64%                                   |                                             |.........................            |  67% [plot_by_qq]                      |                                             |..........................           |  69%                                   |                                             |..........................           |  71% [correlation_analysis]            |                                             |...........................          |  74%                                   |                                             |............................         |  76% [principal_component_analysis]    |                                             |.............................        |  79%                                   |                                             |..............................       |  81% [bivariate_distribution_header]   |                                             |...............................      |  83%                                   |                                             |................................     |  86% [plot_response_boxplot]           |                                             |.................................    |  88%                                   |                                             |.................................    |  90% [plot_by_boxplot]                 |                                             |..................................   |  93%                                   |                                             |...................................  |  95% [plot_response_scatterplot]       |                                             |.................................... |  98%                                   |                                             |.....................................| 100% [plot_by_scatterplot]           
## output file: C:/Users/valer/OneDrive/Escritorio/IA con impacto empresarial/RStudio/Portafolio/report.knit.md
## "C:/Program Files/RStudio/resources/app/bin/quarto/bin/tools/pandoc" +RTS -K512m -RTS "C:\Users\valer\OneDrive\ESCRIT~1\IACONI~1\RStudio\PORTAF~1\REPORT~1.MD" --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output pandoc6adc6db667a6.html --lua-filter "C:\Users\valer\AppData\Local\R\win-library\4.4\rmarkdown\rmarkdown\lua\pagebreak.lua" --lua-filter "C:\Users\valer\AppData\Local\R\win-library\4.4\rmarkdown\rmarkdown\lua\latex-div.lua" --embed-resources --standalone --variable bs3=TRUE --section-divs --table-of-contents --toc-depth 6 --template "C:\Users\valer\AppData\Local\R\win-library\4.4\rmarkdown\rmd\h\default.html" --no-highlight --variable highlightjs=1 --variable theme=yeti --mathjax --variable "mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" --include-in-header "C:\Users\valer\AppData\Local\Temp\RtmpK8cVSH\rmarkdown-str6adc436b4500.html"
## 
## Output created: report.html

Paso 4. Obtener una gráfica en particular

introduce(flights)
## # A tibble: 1 × 9
##     rows columns discrete_columns continuous_columns all_missing_columns
##    <int>   <int>            <int>              <int>               <int>
## 1 336776      19                5                 14                   0
## # ℹ 4 more variables: total_missing_values <int>, complete_rows <int>,
## #   total_observations <int>, memory_usage <dbl>
plot_intro(flights)

plot_missing(flights)

plot_histogram(flights)

plot_bar(flights)
## 3 columns ignored with more than 50 categories.
## tailnum: 4044 categories
## dest: 105 categories
## time_hour: 6936 categories

plot_correlation(flights)
## 3 features with more than 20 categories ignored!
## tailnum: 4044 categories
## dest: 105 categories
## time_hour: 6936 categories
## Warning in cor(x = structure(list(year = c(2013L, 2013L, 2013L, 2013L, 2013L, :
## La desviación estándar es cero

Conclusión

DataExplorer simplifica la exploración de datos en R, generando automáticamente gráficos y resúmenes clave. Esto te ayuda a entender rápidamente la estructura y los patrones en tus datos, facilitando un análisis más eficiente.

LS0tDQp0aXRsZTogIkRhdGEgRXhwbG9yZXIgLSBOWUMgRmxpZ2h0cyAxMyINCmF1dGhvcjogIlZhbGVyaWEgTmFuZ28gLSBBMDExNzQxMDYiDQpkYXRlOiAiMjAyNC0wOC0xMiINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiB0cnVlDQogICAgdG9jX2Zsb2F0OiB0cnVlDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZSANCiAgICB0aGVtZTogY2VydWxlYW4gDQotLS0NCg0KIVtdKEM6XFxVc2Vyc1xcdmFsZXJcXE9uZURyaXZlXFxFc2NyaXRvcmlvXFxJQSBjb24gaW1wYWN0byBlbXByZXNhcmlhbFxcUlN0dWRpb1xcSW3DoWdlbmVzXFxhdmlvbi5naWYpDQoNCiMjIFBhc28gMS4gSW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyaWFzDQpgYGB7cn0NCiNpbnN0YWxsLnBhY2thZ2VzKCJEYXRhRXhwbG9yZXIiKQ0KbGlicmFyeSgiRGF0YUV4cGxvcmVyIikNCiNpbnN0YWxsLnBhY2thZ2VzKCJueWNmbGlnaHRzMTMiKQ0KbGlicmFyeShueWNmbGlnaHRzMTMpDQpgYGANCg0KIyMgUGFzbyAyLiBDcmVhciBiYXNlcyBkZSBkYXRvcyANCmBgYHtyfQ0KZmxpZ2h0cyA8LSBmbGlnaHRzDQp3ZWF0aGVyIDwtIHdlYXRoZXINCnBsYW5lcyA8LSBwbGFuZXMNCmFpcnBvcnRzIDwtIGFpcnBvcnRzDQphaXJsaW5lcyA8LSBhaXJsaW5lcw0KYGBgDQoNCiMjIFBhc28gMy4gQ3JlYXIgcmVwb3J0ZQ0KYGBge3J9DQpjcmVhdGVfcmVwb3J0KGZsaWdodHMpDQpgYGANCg0KIyMgUGFzbyA0LiBPYnRlbmVyIHVuYSBncsOhZmljYSBlbiBwYXJ0aWN1bGFyDQpgYGB7cn0NCmludHJvZHVjZShmbGlnaHRzKQ0KcGxvdF9pbnRybyhmbGlnaHRzKQ0KcGxvdF9taXNzaW5nKGZsaWdodHMpDQpwbG90X2hpc3RvZ3JhbShmbGlnaHRzKQ0KcGxvdF9iYXIoZmxpZ2h0cykNCnBsb3RfY29ycmVsYXRpb24oZmxpZ2h0cykNCmBgYA0KDQoNCiMjIENvbmNsdXNpw7NuDQpEYXRhRXhwbG9yZXIgc2ltcGxpZmljYSBsYSBleHBsb3JhY2nDs24gZGUgZGF0b3MgZW4gUiwgZ2VuZXJhbmRvIGF1dG9tw6F0aWNhbWVudGUgZ3LDoWZpY29zIHkgcmVzw7ptZW5lcyBjbGF2ZS4gRXN0byB0ZSBheXVkYSBhIGVudGVuZGVyIHLDoXBpZGFtZW50ZSBsYSBlc3RydWN0dXJhIHkgbG9zIHBhdHJvbmVzIGVuIHR1cyBkYXRvcywgZmFjaWxpdGFuZG8gdW4gYW7DoWxpc2lzIG3DoXMgZWZpY2llbnRlLg0KDQo=