LME models (Project 1: Familial)

Sample description for model 1 (familial)

LME model 1: Mutation pos, baseline CDR 0 or .5

Presents graphs first, then a print out of the models. Note the failure to converge/warnings of several models.
Removed condition requiring age<=45. Using original CDR+NACC-FTLD sum of boxes.

## [1] "y.plot =  baseline_gonogo"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -474.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -11.9368  -0.0330  -0.0090   0.0061   3.4949 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.050737 0.22525      
##            monthssincebaseline 0.000102 0.01010  0.14
##  Residual                      0.003667 0.06056      
## Number of obs: 315, groups:  unique_id, 55
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                -0.9615111  0.2373767 48.5717351  -4.051 0.000183
## y.plot                     -0.0605132  0.0312129 50.5530135  -1.939 0.058127
## monthssincebaseline         0.0015001  0.0017248 35.4089733   0.870 0.390322
## baseline_age                0.0007501  0.0027227 48.8007409   0.275 0.784103
## educ                        0.0267250  0.0138372 49.2535999   1.931 0.059199
## y.plot:monthssincebaseline  0.0008837  0.0017735 34.4391876   0.498 0.621472
##                               
## (Intercept)                ***
## y.plot                     .  
## monthssincebaseline           
## baseline_age                  
## educ                       .  
## y.plot:monthssincebaseline    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.193                            
## mnthssncbsl  0.027 -0.003                     
## baseline_ag -0.374  0.236  0.007              
## educ        -0.846  0.069 -0.021 -0.162       
## y.plt:mnths -0.002  0.075 -0.054  0.012 -0.005
## [1] "y.plot =  baseline_strp"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -494.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -12.1878  -0.0349  -0.0077   0.0088   3.5877 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         4.320e-02 0.207857     
##            monthssincebaseline 8.974e-05 0.009473 0.29
##  Residual                      3.536e-03 0.059465     
## Number of obs: 317, groups:  unique_id, 57
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)                -0.727717   0.228528 48.034736  -3.184  0.00255 **
## y.plot                     -0.082219   0.036962 53.379565  -2.224  0.03037 * 
## monthssincebaseline         0.001745   0.001589 36.367393   1.099  0.27916   
## baseline_age               -0.003807   0.002911 50.137817  -1.308  0.19694   
## educ                        0.023019   0.012535 48.715905   1.836  0.07241 . 
## y.plot:monthssincebaseline -0.002951   0.001646 37.170535  -1.792  0.08123 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.454                            
## mnthssncbsl  0.031  0.028                     
## baseline_ag -0.467  0.597  0.042              
## educ        -0.815  0.133 -0.036 -0.118       
## y.plt:mnths  0.016  0.140 -0.040 -0.010 -0.010
## [1] "y.plot =  baseline_flk"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -527.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -12.2761  -0.0356  -0.0073   0.0122   3.6129 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         4.388e-02 0.209481     
##            monthssincebaseline 9.168e-05 0.009575 0.12
##  Residual                      3.468e-03 0.058890     
## Number of obs: 337, groups:  unique_id, 61
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.660507   0.225013 56.438008  -2.935 0.004811 ** 
## y.plot                     -0.135391   0.034340 58.621849  -3.943 0.000218 ***
## monthssincebaseline         0.001351   0.001560 40.248697   0.866 0.391808    
## baseline_age               -0.006129   0.002977 56.993202  -2.059 0.044069 *  
## educ                        0.027972   0.012257 56.526326   2.282 0.026262 *  
## y.plot:monthssincebaseline -0.001179   0.001582 41.111202  -0.746 0.460211    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.421                            
## mnthssncbsl  0.014  0.011                     
## baseline_ag -0.477  0.611  0.015              
## educ        -0.786  0.048 -0.017 -0.155       
## y.plt:mnths  0.010  0.032 -0.045 -0.010 -0.004
## [1] "y.plot =  baseline_nback"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -461.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -11.8705  -0.0411  -0.0069   0.0183   3.4766 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         3.477e-02 0.186463     
##            monthssincebaseline 8.745e-05 0.009351 0.32
##  Residual                      3.741e-03 0.061165     
## Number of obs: 294, groups:  unique_id, 50
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.858912   0.186974 40.944166  -4.594 4.11e-05 ***
## y.plot                     -0.094518   0.027515 46.403799  -3.435  0.00126 ** 
## monthssincebaseline         0.002183   0.001636 31.896114   1.334  0.19171    
## baseline_age               -0.003337   0.002404 44.007779  -1.388  0.17209    
## educ                        0.029477   0.011818 42.979765   2.494  0.01655 *  
## y.plot:monthssincebaseline -0.004965   0.001682 32.355292  -2.952  0.00584 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.068                            
## mnthssncbsl  0.057  0.024                     
## baseline_ag -0.259  0.420  0.032              
## educ        -0.821 -0.169 -0.043 -0.321       
## y.plt:mnths  0.004  0.169 -0.076 -0.032  0.015
## [1] "y.plot =  baseline_humi"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -512.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -12.1820  -0.0386  -0.0044   0.0120   3.5821 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         4.560e-02 0.21355      
##            monthssincebaseline 9.526e-05 0.00976  0.18
##  Residual                      3.523e-03 0.05935      
## Number of obs: 331, groups:  unique_id, 59
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.946013   0.211326 52.285275  -4.477 4.14e-05 ***
## y.plot                     -0.104430   0.032851 53.914199  -3.179  0.00245 ** 
## monthssincebaseline         0.001363   0.001602 38.771641   0.851  0.40014    
## baseline_age               -0.003491   0.002784 52.646498  -1.254  0.21540    
## educ                        0.037316   0.013087 52.897751   2.851  0.00620 ** 
## y.plot:monthssincebaseline -0.000608   0.001593 39.143630  -0.382  0.70482    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.087                            
## mnthssncbsl  0.030  0.019                     
## baseline_ag -0.295  0.508  0.022              
## educ        -0.808 -0.216 -0.028 -0.310       
## y.plt:mnths  0.011  0.102 -0.021  0.012 -0.017
## [1] "y.plot =  baseline_test3meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -525.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -12.2668  -0.0410  -0.0045   0.0123   3.6122 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         4.524e-02 0.212690     
##            monthssincebaseline 9.238e-05 0.009612 0.15
##  Residual                      3.473e-03 0.058930     
## Number of obs: 337, groups:  unique_id, 61
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                -0.8634930  0.2117020 55.1526351  -4.079 0.000147
## y.plot                     -0.1264186  0.0344857 56.3742944  -3.666 0.000547
## monthssincebaseline         0.0013042  0.0015636 40.2386482   0.834 0.409162
## baseline_age               -0.0053537  0.0029414 55.4003320  -1.820 0.074143
## educ                        0.0378315  0.0125631 55.6579835   3.011 0.003907
## y.plot:monthssincebaseline -0.0009371  0.0015860 40.7713688  -0.591 0.557874
##                               
## (Intercept)                ***
## y.plot                     ***
## monthssincebaseline           
## baseline_age               .  
## educ                       ** 
## y.plot:monthssincebaseline    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.217                            
## mnthssncbsl  0.023  0.017                     
## baseline_ag -0.369  0.583  0.021              
## educ        -0.779 -0.160 -0.026 -0.281       
## y.plt:mnths  0.007  0.075 -0.036  0.006 -0.011
## [1] "y.plot =  baseline_test5meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -540
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -12.3608  -0.0371  -0.0093   0.0136   3.6318 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         4.572e-02 0.213813     
##            monthssincebaseline 8.718e-05 0.009337 0.04
##  Residual                      3.417e-03 0.058451     
## Number of obs: 343, groups:  unique_id, 63
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.845893   0.215032 58.059956  -3.934 0.000226 ***
## y.plot                     -0.113123   0.034135 58.336671  -3.314 0.001584 ** 
## monthssincebaseline         0.001418   0.001525 40.156910   0.930 0.358141    
## baseline_age               -0.004231   0.002918 58.141757  -1.450 0.152387    
## educ                        0.033182   0.012479 58.127136   2.659 0.010106 *  
## y.plot:monthssincebaseline -0.002308   0.001561 40.264744  -1.478 0.147060    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.262                            
## mnthssncbsl  0.003  0.005                     
## baseline_ag -0.391  0.600  0.005              
## educ        -0.790 -0.114 -0.007 -0.241       
## y.plt:mnths  0.002 -0.003 -0.046 -0.002 -0.001

Sample description for model 2 (familial)

Model 2 same as model 1, but in a sample with baseline CDR+NACC-FTLD global scores >= 0.5 ( no zeros). Sample size was too small to look at 1+. Removed condition requiring age<=45. Using original CDR+NACC-FTLD sum of boxes.
## [1] "N participants at each visit (NOT chapter)"
## 
##  1  2  3 
## 39 33 24 
## [1] "Gentic breakdown"
## 
##   C9 MAPT 
##   46   19 
## [1] "Baseline CDR-NACC+FTLD-motor global score"
## 
## 0.5   1   2 
##  21   6   2

LME model 2: Mutation pos baseline CDR 0.5+ or greater

Presents graphs first, then a print out of the models. Note the failure to converge/warnings of several models.
Removed condition requiring age<=45. Using original CDR+NACC-FTLD sum of boxes.

## [1] "y.plot =  baseline_gonogo"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 26.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.2664 -0.0479 -0.0005  0.0728  1.6413 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr 
##  unique_id (Intercept)         0.2619936 0.51185       
##            monthssincebaseline 0.0008618 0.02936  -0.45
##  Residual                      0.0135121 0.11624       
## Number of obs: 74, groups:  unique_id, 17
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -2.138083   0.607486 12.602706  -3.520 0.003940 ** 
## y.plot                      0.103590   0.115171 12.014413   0.899 0.386090    
## monthssincebaseline         0.010141   0.009475  7.679127   1.070 0.316967    
## baseline_age                0.031612   0.011529 12.590982   2.742 0.017206 *  
## educ                        0.032394   0.005837  8.603580   5.550 0.000419 ***
## y.plot:monthssincebaseline  0.005436   0.011268  7.091907   0.482 0.644039    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.308                            
## mnthssncbsl -0.071 -0.020                     
## baseline_ag -0.957  0.350  0.005              
## educ        -0.043 -0.104 -0.047 -0.164       
## y.plt:mnths -0.030 -0.262  0.012  0.028 -0.005
## [1] "y.plot =  baseline_strp"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 13.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.5818 -0.1197 -0.0195  0.1068  1.5924 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr 
##  unique_id (Intercept)         0.1315387 0.36268       
##            monthssincebaseline 0.0003762 0.01939  -0.78
##  Residual                      0.0167830 0.12955       
## Number of obs: 58, groups:  unique_id, 12
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)  
## (Intercept)                -2.419048   0.746065  7.438535  -3.242   0.0131 *
## y.plot                     -0.057734   0.141364  9.587839  -0.408   0.6919  
## monthssincebaseline         0.009048   0.006821  8.258514   1.326   0.2202  
## baseline_age                0.015642   0.007997  7.910469   1.956   0.0866 .
## educ                        0.100753   0.036766  7.574910   2.740   0.0268 *
## y.plot:monthssincebaseline -0.016290   0.008691  8.451684  -1.874   0.0958 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.149                            
## mnthssncbsl -0.345  0.127                     
## baseline_ag -0.546  0.144  0.065              
## educ        -0.830  0.059  0.256  0.009       
## y.plt:mnths -0.070 -0.646 -0.172  0.202 -0.029
## [1] "y.plot =  baseline_flk"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 14.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.5657 -0.0708 -0.0021  0.0633  1.8293 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr 
##  unique_id (Intercept)         0.2326814 0.48237       
##            monthssincebaseline 0.0004349 0.02086  -0.46
##  Residual                      0.0121876 0.11040       
## Number of obs: 83, groups:  unique_id, 19
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)                -1.916773   0.703820 14.458749  -2.723  0.01611 * 
## y.plot                      0.071903   0.175989 15.594514   0.409  0.68841   
## monthssincebaseline         0.007203   0.006288 10.115109   1.146  0.27837   
## baseline_age                0.027302   0.011805 14.376039   2.313  0.03602 * 
## educ                        0.032175   0.008707 13.055527   3.695  0.00268 **
## y.plot:monthssincebaseline -0.013726   0.005138  8.997698  -2.672  0.02556 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.656                            
## mnthssncbsl -0.116  0.030                     
## baseline_ag -0.958  0.541  0.056              
## educ        -0.563  0.742  0.027  0.355       
## y.plt:mnths -0.043 -0.184  0.127  0.015  0.110
## [1] "y.plot =  baseline_nback"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 16.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.2798 -0.0260  0.0394  0.1167  1.4651 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr 
##  unique_id (Intercept)         0.2175510 0.4664        
##            monthssincebaseline 0.0006052 0.0246   -0.99
##  Residual                      0.0186318 0.1365        
## Number of obs: 50, groups:  unique_id, 10
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)  
## (Intercept)                -1.405299   0.523551  2.952328  -2.684   0.0761 .
## y.plot                     -0.351193   0.154669  8.097992  -2.271   0.0525 .
## monthssincebaseline         0.010386   0.008529  6.920641   1.218   0.2632  
## baseline_age               -0.020581   0.006509  1.583353  -3.162   0.1166  
## educ                        0.146356   0.024440  2.517151   5.988   0.0151 *
## y.plot:monthssincebaseline -0.014877   0.008027  6.394034  -1.853   0.1102  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.116                            
## mnthssncbsl -0.488 -0.179                     
## baseline_ag -0.560  0.315  0.003              
## educ        -0.736 -0.026  0.276 -0.067       
## y.plt:mnths -0.184 -0.859  0.190  0.145  0.050
## [1] "y.plot =  baseline_humi"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 19.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.5234 -0.0530 -0.0055  0.0484  1.7383 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr 
##  unique_id (Intercept)         0.2214142 0.47055       
##            monthssincebaseline 0.0007709 0.02777  -0.06
##  Residual                      0.0124671 0.11166       
## Number of obs: 80, groups:  unique_id, 18
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -1.258924   0.721032 13.891360  -1.746 0.102876    
## y.plot                     -0.144088   0.130585 13.861228  -1.103 0.288640    
## monthssincebaseline         0.011548   0.009157  8.824481   1.261 0.239585    
## baseline_age                0.017107   0.013235 13.872231   1.293 0.217287    
## educ                        0.026346   0.006101 14.009936   4.318 0.000707 ***
## y.plot:monthssincebaseline -0.006741   0.011404  9.381514  -0.591 0.568421    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.643                            
## mnthssncbsl -0.022 -0.002                     
## baseline_ag -0.971  0.620  0.010              
## educ        -0.223  0.222  0.003  0.045       
## y.plt:mnths -0.013 -0.054  0.236  0.008  0.018
## [1] "y.plot =  baseline_test3meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 16.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.5834 -0.0534  0.0009  0.0796  1.8051 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr 
##  unique_id (Intercept)         0.2162493 0.46503       
##            monthssincebaseline 0.0005228 0.02286  -0.21
##  Residual                      0.0121974 0.11044       
## Number of obs: 83, groups:  unique_id, 19
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)                -1.338274   0.791248 14.657175  -1.691  0.11192   
## y.plot                     -0.112156   0.155981 15.072272  -0.719  0.48312   
## monthssincebaseline         0.008899   0.007100  9.719164   1.253  0.23939   
## baseline_age                0.018881   0.013804 14.565561   1.368  0.19212   
## educ                        0.025564   0.007193 14.618616   3.554  0.00299 **
## y.plot:monthssincebaseline -0.012526   0.006625  9.678272  -1.891  0.08895 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.739                            
## mnthssncbsl -0.064  0.030                     
## baseline_ag -0.974  0.684  0.038              
## educ        -0.498  0.588  0.019  0.335       
## y.plt:mnths -0.030 -0.069  0.136  0.015  0.084
## [1] "y.plot =  baseline_test5meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 13.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.5763 -0.0596  0.0039  0.0767  1.7863 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr 
##  unique_id (Intercept)         0.2210089 0.47012       
##            monthssincebaseline 0.0004016 0.02004  -0.33
##  Residual                      0.0122362 0.11062       
## Number of obs: 83, groups:  unique_id, 19
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -1.367152   0.730505 14.845160  -1.872 0.081112 .  
## y.plot                     -0.094869   0.146366 15.328260  -0.648 0.526470    
## monthssincebaseline         0.008026   0.006192  9.343472   1.296 0.226002    
## baseline_age                0.018579   0.012957 14.698522   1.434 0.172534    
## educ                        0.027715   0.006557 12.988324   4.227 0.000991 ***
## y.plot:monthssincebaseline -0.016176   0.006120  9.417826  -2.643 0.025808 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.682                            
## mnthssncbsl -0.100  0.044                     
## baseline_ag -0.971  0.631  0.059              
## educ        -0.414  0.486  0.016  0.240       
## y.plt:mnths -0.070 -0.109  0.124  0.051  0.128

LME models (Project 2: Sporadic)

Sample description for model 1 (Sporadic)

LME model 1: Mutation- baseline CDR <=0.5

Presents graphs first, then a print out of the models. Note the failure to converge/warnings of several models.
Removed age 45 restriction. using OG FTLD CDR
## [1] "y.plot =  baseline_gonogo"
## boundary (singular) fit: see help('isSingular')
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -195.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.1367 -0.0633 -0.0145  0.0496  4.2753 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         7.807e-02 0.279403     
##            monthssincebaseline 1.202e-06 0.001096 1.00
##  Residual                      1.180e-02 0.108617     
## Number of obs: 239, groups:  unique_id, 40
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)                -5.329e-01  3.214e-01  4.019e+01  -1.658   0.1051  
## y.plot                     -9.175e-02  5.994e-02  3.616e+01  -1.531   0.1345  
## monthssincebaseline         6.802e-04  5.481e-04  1.004e+02   1.241   0.2175  
## baseline_age                8.182e-03  3.747e-03  3.916e+01   2.183   0.0351 *
## educ                       -2.082e-02  1.367e-02  4.037e+01  -1.523   0.1355  
## y.plot:monthssincebaseline -2.419e-04  4.328e-04  3.662e+01  -0.559   0.5797  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.214                            
## mnthssncbsl  0.057 -0.046                     
## baseline_ag -0.688  0.377 -0.008              
## educ        -0.764 -0.057 -0.030  0.080       
## y.plt:mnths  0.011  0.398  0.324  0.075 -0.098
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## [1] "y.plot =  baseline_strp"
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.305282 (tol = 0.002, component 1)

## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -874.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2507 -0.0339  0.0009  0.0281  5.3383 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev.  Corr
##  unique_id (Intercept)         6.179e-02 0.2485774     
##            monthssincebaseline 6.966e-07 0.0008346 0.04
##  Residual                      2.998e-04 0.0173154     
## Number of obs: 237, groups:  unique_id, 43
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)                -0.6278734  0.2904688 42.2922694  -2.162   0.0364 *
## y.plot                     -0.0232481  0.0563005 42.3153900  -0.413   0.6817  
## monthssincebaseline         0.0002856  0.0002044 29.5490400   1.397   0.1728  
## baseline_age                0.0070122  0.0040684 42.3149487   1.724   0.0921 .
## educ                       -0.0137389  0.0117082 42.2796047  -1.173   0.2472  
## y.plot:monthssincebaseline -0.0001846  0.0001981 33.4886884  -0.932   0.3580  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.472                            
## mnthssncbsl -0.003  0.003                     
## baseline_ag -0.722  0.724  0.005              
## educ        -0.670 -0.094  0.002 -0.014       
## y.plt:mnths -0.004  0.011 -0.016  0.004  0.002
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.305282 (tol = 0.002, component 1)
## [1] "y.plot =  baseline_flk"
## boundary (singular) fit: see help('isSingular')

## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -242.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.2946 -0.0729 -0.0183  0.0597  4.5455 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         6.737e-02 0.25955      
##            monthssincebaseline 1.166e-06 0.00108  1.00
##  Residual                      1.071e-02 0.10347      
## Number of obs: 265, groups:  unique_id, 47
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)                -4.717e-01  2.901e-01  4.803e+01  -1.626   0.1106  
## y.plot                     -1.169e-01  4.747e-02  4.518e+01  -2.463   0.0177 *
## monthssincebaseline         4.165e-04  4.899e-04  9.750e+01   0.850   0.3974  
## baseline_age                4.383e-03  3.893e-03  4.628e+01   1.126   0.2660  
## educ                       -1.327e-02  1.274e-02  4.862e+01  -1.042   0.3027  
## y.plot:monthssincebaseline  1.553e-04  5.346e-04  1.336e+02   0.290   0.7719  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.272                            
## mnthssncbsl -0.031  0.109                     
## baseline_ag -0.658  0.639  0.130              
## educ        -0.701 -0.233 -0.042 -0.058       
## y.plt:mnths -0.025  0.098 -0.212 -0.019  0.056
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## [1] "y.plot =  baseline_nback"
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.353007 (tol = 0.002, component 1)

## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -772.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0315 -0.0516  0.0018  0.0450  5.0650 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev.  Corr
##  unique_id (Intercept)         6.677e-02 0.2583969     
##            monthssincebaseline 6.576e-07 0.0008109 0.02
##  Residual                      3.322e-04 0.0182273     
## Number of obs: 212, groups:  unique_id, 36
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)                -0.6166726  0.3047950 35.7600766  -2.023   0.0506 .
## y.plot                     -0.0661497  0.0479367 35.7497729  -1.380   0.1762  
## monthssincebaseline         0.0003433  0.0002136 23.6524531   1.607   0.1213  
## baseline_age                0.0072418  0.0037119 35.7603992   1.951   0.0589 .
## educ                       -0.0144726  0.0128279 35.7687825  -1.128   0.2667  
## y.plot:monthssincebaseline -0.0003489  0.0002061 31.0891987  -1.693   0.1005  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.241                            
## mnthssncbsl  0.000  0.000                     
## baseline_ag -0.691  0.429  0.000              
## educ        -0.747 -0.060 -0.001  0.057       
## y.plt:mnths  0.000 -0.004 -0.062  0.001  0.000
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.353007 (tol = 0.002, component 1)
## [1] "y.plot =  baseline_humi"
## boundary (singular) fit: see help('isSingular')

## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -228.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.2937 -0.0696 -0.0062  0.0435  4.3660 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev.  Corr
##  unique_id (Intercept)         6.426e-02 0.2535004     
##            monthssincebaseline 5.720e-07 0.0007563 1.00
##  Residual                      1.124e-02 0.1060204     
## Number of obs: 256, groups:  unique_id, 44
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)                -4.134e-01  3.050e-01  4.631e+01  -1.356   0.1818  
## y.plot                     -1.448e-01  5.553e-02  4.708e+01  -2.608   0.0122 *
## monthssincebaseline         7.462e-04  4.715e-04  9.196e+01   1.583   0.1169  
## baseline_age                3.123e-03  4.331e-03  4.700e+01   0.721   0.4744  
## educ                       -1.081e-02  1.323e-02  4.619e+01  -0.817   0.4181  
## y.plot:monthssincebaseline -7.671e-04  5.227e-04  1.072e+02  -1.467   0.1452  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.334                            
## mnthssncbsl  0.023 -0.039                     
## baseline_ag -0.683  0.704 -0.016              
## educ        -0.624 -0.311  0.008 -0.130       
## y.plt:mnths  0.023  0.030  0.108 -0.043  0.008
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## [1] "y.plot =  baseline_test3meanZ"
## boundary (singular) fit: see help('isSingular')

## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -245.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3751 -0.0624 -0.0146  0.0509  4.4768 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev.  Corr
##  unique_id (Intercept)         6.078e-02 0.2465271     
##            monthssincebaseline 8.458e-07 0.0009197 1.00
##  Residual                      1.078e-02 0.1038103     
## Number of obs: 265, groups:  unique_id, 47
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)   
## (Intercept)                -3.282e-01  2.913e-01  4.602e+01  -1.127  0.26570   
## y.plot                     -1.737e-01  5.526e-02  4.554e+01  -3.143  0.00294 **
## monthssincebaseline         6.517e-04  4.654e-04  9.038e+01   1.400  0.16480   
## baseline_age                6.337e-04  4.361e-03  4.564e+01   0.145  0.88511   
## educ                       -8.581e-03  1.264e-02  4.612e+01  -0.679  0.50075   
## y.plot:monthssincebaseline -4.310e-04  5.293e-04  1.137e+02  -0.814  0.41716   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.377                            
## mnthssncbsl -0.001  0.006                     
## baseline_ag -0.684  0.751  0.033              
## educ        -0.596 -0.324 -0.004 -0.164       
## y.plt:mnths  0.017  0.029  0.010 -0.057  0.035
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## [1] "y.plot =  baseline_test5meanZ"
## boundary (singular) fit: see help('isSingular')

## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -271.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.5829 -0.0566 -0.0101  0.0273  4.6054 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev.  Corr
##  unique_id (Intercept)         7.182e-02 0.2679850     
##            monthssincebaseline 8.766e-07 0.0009363 1.00
##  Residual                      1.009e-02 0.1004674     
## Number of obs: 282, groups:  unique_id, 50
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                -4.394e-01  3.024e-01  5.028e+01  -1.453    0.153
## y.plot                     -8.497e-02  5.529e-02  4.899e+01  -1.537    0.131
## monthssincebaseline         6.333e-04  4.445e-04  1.122e+02   1.425    0.157
## baseline_age                5.047e-03  4.154e-03  5.002e+01   1.215    0.230
## educ                       -1.709e-02  1.259e-02  5.041e+01  -1.357    0.181
## y.plot:monthssincebaseline -5.685e-04  5.122e-04  1.544e+02  -1.110    0.269
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.432                            
## mnthssncbsl -0.014  0.017                     
## baseline_ag -0.707  0.719  0.051              
## educ        -0.661 -0.160  0.003 -0.047       
## y.plt:mnths  0.000  0.077 -0.016 -0.021  0.018
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

Sample description for model 2 (Sporadic)

## [1] "N participants at each visit (NOT chapter)"
## 
##  1  2  3  4  5  6 
## 86 72 51  3  4  1 
## [1] "Gentic breakdown"
## 
## NONE 
##  118 
## [1] "Baseline CDR-NACC+FTLD-motor global score"
## 
## 0.5   1 
##  28  54

LME model 2: Mutation-, baseline CDR 0.5 or greater

Presents graphs first, then a print out of the models. Note the failure to converge/warnings of several models.
Models do not converge. We see a trend for the interaction of Nback and time.

## [1] "y.plot =  baseline_gonogo"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 118.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.03520 -0.08189 -0.01522  0.08050  2.74173 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.796840 0.89266      
##            monthssincebaseline 0.003582 0.05985  0.20
##  Residual                      0.030254 0.17394      
## Number of obs: 155, groups:  unique_id, 28
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                 0.010297   1.673995 24.636151   0.006 0.995142    
## y.plot                     -0.496994   0.126818 24.513640  -3.919 0.000627 ***
## monthssincebaseline         0.023245   0.015897 12.294760   1.462 0.168768    
## baseline_age               -0.005358   0.022834 24.454921  -0.235 0.816448    
## educ                        0.064297   0.069825 24.037996   0.921 0.366293    
## y.plot:monthssincebaseline  0.003969   0.013417 12.648985   0.296 0.772177    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.048                            
## mnthssncbsl  0.034  0.032                     
## baseline_ag -0.728 -0.055 -0.013              
## educ        -0.496  0.038 -0.013 -0.225       
## y.plt:mnths -0.028  0.104  0.065  0.026  0.011
## [1] "y.plot =  baseline_strp"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -174.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.35672 -0.04215 -0.00046  0.02026  3.10289 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.4114780 0.64147      
##            monthssincebaseline 0.0024660 0.04966  0.37
##  Residual                      0.0009318 0.03053      
## Number of obs: 87, groups:  unique_id, 13
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)   
## (Intercept)                -2.65046    2.19724  8.53566  -1.206  0.26008   
## y.plot                     -0.37128    0.17832  9.05125  -2.082  0.06687 . 
## monthssincebaseline         0.01648    0.01663  9.40675   0.990  0.34673   
## baseline_age                0.03624    0.02424  7.80132   1.495  0.17415   
## educ                        0.03046    0.08226  7.17583   0.370  0.72190   
## y.plot:monthssincebaseline -0.04771    0.01420  8.60720  -3.359  0.00895 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.182                            
## mnthssncbsl  0.082  0.132                     
## baseline_ag -0.795  0.190 -0.028              
## educ        -0.726 -0.467 -0.056  0.170       
## y.plt:mnths -0.001  0.273  0.243  0.041 -0.028
## [1] "y.plot =  baseline_flk"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 137.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.10396 -0.08419 -0.00910  0.05452  2.81571 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.856466 0.92545      
##            monthssincebaseline 0.003269 0.05718  0.27
##  Residual                      0.028787 0.16967      
## Number of obs: 170, groups:  unique_id, 35
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 0.7717371  1.5310082 30.1458272   0.504    0.618
## y.plot                     -0.7012102  0.1274994 30.8309559  -5.500 5.21e-06
## monthssincebaseline         0.0239861  0.0142070 14.0460928   1.688    0.113
## baseline_age               -0.0235200  0.0220285 28.3183106  -1.068    0.295
## educ                        0.0961095  0.0661424 27.8531915   1.453    0.157
## y.plot:monthssincebaseline  0.0001947  0.0111136 14.6064651   0.018    0.986
##                               
## (Intercept)                   
## y.plot                     ***
## monthssincebaseline           
## baseline_age                  
## educ                          
## y.plot:monthssincebaseline    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.021                            
## mnthssncbsl  0.049  0.060                     
## baseline_ag -0.713  0.220 -0.017              
## educ        -0.442 -0.207 -0.020 -0.305       
## y.plt:mnths -0.019  0.163  0.126  0.024  0.004
## [1] "y.plot =  baseline_nback"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -172.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.33028 -0.06867  0.00231  0.01858  3.06869 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.3255404 0.57056      
##            monthssincebaseline 0.0054735 0.07398  0.74
##  Residual                      0.0009472 0.03078      
## Number of obs: 85, groups:  unique_id, 12
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                 0.490938   1.812552  6.508624   0.271    0.795
## y.plot                     -0.112679   0.173405  9.575193  -0.650    0.531
## monthssincebaseline         0.031321   0.023706 10.473968   1.321    0.215
## baseline_age                0.010776   0.020196  5.768623   0.534    0.614
## educ                       -0.066520   0.053079  6.695627  -1.253    0.252
## y.plot:monthssincebaseline -0.009601   0.022253 10.031777  -0.431    0.675
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.287                            
## mnthssncbsl  0.116  0.246                     
## baseline_ag -0.904 -0.256 -0.051              
## educ        -0.765 -0.161 -0.027  0.431       
## y.plt:mnths  0.028  0.696  0.261  0.002 -0.011
## [1] "y.plot =  baseline_humi"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 133.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.11416 -0.08299 -0.00647  0.05428  2.79101 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         0.829114 0.91056       
##            monthssincebaseline 0.002996 0.05474  -0.04
##  Residual                      0.028998 0.17029       
## Number of obs: 168, groups:  unique_id, 34
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                -1.12340    1.56289 30.09185  -0.719   0.4778    
## y.plot                     -0.58759    0.12567 30.18181  -4.676 5.74e-05 ***
## monthssincebaseline         0.01802    0.01379 13.83295   1.307   0.2125    
## baseline_age               -0.00408    0.02143 30.00162  -0.190   0.8503    
## educ                        0.13236    0.06855 29.74841   1.931   0.0631 .  
## y.plot:monthssincebaseline -0.01361    0.01421 14.21126  -0.958   0.3542    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.101                            
## mnthssncbsl -0.008 -0.011                     
## baseline_ag -0.693  0.012  0.001              
## educ        -0.493 -0.109  0.003 -0.277       
## y.plt:mnths  0.004 -0.046  0.039  0.000 -0.006
## [1] "y.plot =  baseline_test3meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 130.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.10735 -0.08072 -0.00504  0.06190  2.81223 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.688394 0.82970      
##            monthssincebaseline 0.003179 0.05638  0.15
##  Residual                      0.028804 0.16972      
## Number of obs: 170, groups:  unique_id, 35
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                 0.069449   1.388378 30.313858   0.050   0.9604    
## y.plot                     -0.754524   0.112288 30.650571  -6.720 1.71e-07 ***
## monthssincebaseline         0.020884   0.014144 13.926695   1.477   0.1620    
## baseline_age               -0.018960   0.019758 29.351903  -0.960   0.3451    
## educ                        0.117290   0.060540 28.939433   1.937   0.0625 .  
## y.plot:monthssincebaseline -0.002823   0.012740 14.570022  -0.222   0.8277    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.067                            
## mnthssncbsl  0.032  0.036                     
## baseline_ag -0.704  0.158 -0.013              
## educ        -0.456 -0.241 -0.014 -0.303       
## y.plt:mnths -0.005  0.059  0.092  0.003  0.008
## [1] "y.plot =  baseline_test5meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 137.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.11383 -0.08561 -0.00505  0.05974  2.81167 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         0.891757 0.94433       
##            monthssincebaseline 0.002991 0.05469  -0.17
##  Residual                      0.028767 0.16961       
## Number of obs: 170, groups:  unique_id, 35
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                -0.38762    1.57915 30.84369  -0.245   0.8077    
## y.plot                     -0.67431    0.12610 31.02452  -5.347 7.92e-06 ***
## monthssincebaseline         0.01509    0.01375 13.74393   1.098   0.2912    
## baseline_age               -0.01302    0.02214 30.29780  -0.588   0.5607    
## educ                        0.12456    0.06885 29.95399   1.809   0.0805 .  
## y.plot:monthssincebaseline -0.01399    0.01212 14.52249  -1.154   0.2669    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.139                            
## mnthssncbsl -0.033 -0.044                     
## baseline_ag -0.700  0.098  0.009              
## educ        -0.470 -0.264  0.014 -0.293       
## y.plt:mnths  0.015 -0.113  0.095 -0.015 -0.006

Sample description for model 3

## [1] "N participants at each visit (NOT chapter)"
## 
##   1   2   3   4   5   6 
## 170 142 101   5   5   2 
## [1] "Gentic breakdown"
## 
## NONE 
##  227 
## [1] "Baseline CDR-NACC+FTLD-motor global score"
## 
## 0.5   0   1 
##  32  77  54

LME model 3: mutation - full sample

## [1] "y.plot =  baseline_gonogo"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 65.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1507 -0.0307 -0.0062  0.0148  3.7674 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.575352 0.75852      
##            monthssincebaseline 0.001546 0.03932  0.34
##  Residual                      0.016090 0.12685      
## Number of obs: 302, groups:  unique_id, 57
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                -1.1076558  0.7051567 50.0664822  -1.571    0.123
## y.plot                     -0.5180017  0.0800176 54.2106384  -6.474  2.9e-08
## monthssincebaseline         0.0105122  0.0068259 29.9227286   1.540    0.134
## baseline_age                0.0180465  0.0079310 52.0263023   2.275    0.027
## educ                        0.0067169  0.0322154 48.8533807   0.208    0.836
## y.plot:monthssincebaseline -0.0009868  0.0062595 31.3134875  -0.158    0.876
##                               
## (Intercept)                   
## y.plot                     ***
## monthssincebaseline           
## baseline_age               *  
## educ                          
## y.plot:monthssincebaseline    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.121                            
## mnthssncbsl  0.033  0.033                     
## baseline_ag -0.615  0.270 -0.006              
## educ        -0.758 -0.040  0.009 -0.027       
## y.plt:mnths -0.024  0.194 -0.018  0.014  0.024

## [1] "y.plot =  baseline_strp"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -655.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7915 -0.0102 -0.0005  0.0059  5.0101 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.2144721 0.46311      
##            monthssincebaseline 0.0012368 0.03517  0.63
##  Residual                      0.0003577 0.01891      
## Number of obs: 248, groups:  unique_id, 47
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.539727   0.415854 25.713286  -1.298   0.2059    
## y.plot                     -0.252431   0.078794 44.805329  -3.204   0.0025 ** 
## monthssincebaseline         0.009957   0.005916 40.902295   1.683   0.1000 .  
## baseline_age                0.008857   0.005749 28.577642   1.541   0.1344    
## educ                       -0.017605   0.017232 21.767294  -1.022   0.3182    
## y.plot:monthssincebaseline -0.024099   0.005342 41.116043  -4.511  5.3e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.342                            
## mnthssncbsl  0.021  0.061                     
## baseline_ag -0.701  0.627  0.068              
## educ        -0.673 -0.149  0.025 -0.030       
## y.plt:mnths  0.024  0.406 -0.001 -0.007 -0.021

## [1] "y.plot =  baseline_flk"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 78.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.3219 -0.0293 -0.0065  0.0160  3.9314 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.670053 0.81857      
##            monthssincebaseline 0.001428 0.03779  0.42
##  Residual                      0.014802 0.12167      
## Number of obs: 339, groups:  unique_id, 70
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.951482   0.689767 50.779892  -1.379   0.1738    
## y.plot                     -0.653923   0.083041 66.885142  -7.875 4.09e-11 ***
## monthssincebaseline         0.010982   0.006015 33.085664   1.826   0.0769 .  
## baseline_age                0.012768   0.007953 53.510195   1.605   0.1143    
## educ                        0.018420   0.032221 46.003237   0.572   0.5703    
## y.plot:monthssincebaseline -0.004132   0.005125 36.463366  -0.806   0.4254    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.142                            
## mnthssncbsl  0.030  0.060                     
## baseline_ag -0.589  0.434  0.004              
## educ        -0.754 -0.139  0.015 -0.068       
## y.plt:mnths -0.023  0.241  0.016  0.017  0.026

## [1] "y.plot =  baseline_nback"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -591
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6424 -0.0131 -0.0008  0.0085  4.8090 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.1657487 0.40712      
##            monthssincebaseline 0.0018192 0.04265  0.69
##  Residual                      0.0003875 0.01968      
## Number of obs: 221, groups:  unique_id, 39
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)  
## (Intercept)                -0.373228   0.356899 25.574905  -1.046   0.3055  
## y.plot                     -0.165865   0.069392 39.424402  -2.390   0.0217 *
## monthssincebaseline         0.009231   0.007576 38.120052   1.218   0.2305  
## baseline_age                0.007068   0.004459 27.605532   1.585   0.1244  
## educ                       -0.022938   0.014709 24.474129  -1.559   0.1317  
## y.plot:monthssincebaseline -0.010118   0.007183 35.397011  -1.409   0.1677  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.180                            
## mnthssncbsl  0.075  0.022                     
## baseline_ag -0.702  0.359  0.037              
## educ        -0.719 -0.085  0.019  0.044       
## y.plt:mnths  0.002  0.610 -0.025  0.020 -0.019

## [1] "y.plot =  baseline_humi"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 75.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.3005 -0.0262 -0.0019  0.0103  3.8609 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.66350  0.81456      
##            monthssincebaseline 0.00127  0.03564  0.15
##  Residual                      0.01518  0.12319      
## Number of obs: 328, groups:  unique_id, 66
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.651188   0.777476 61.223078  -0.838   0.4055    
## y.plot                     -0.773291   0.113523 62.461913  -6.812 4.41e-09 ***
## monthssincebaseline         0.010443   0.006006 32.503649   1.739   0.0915 .  
## baseline_age               -0.002945   0.010101 61.898757  -0.292   0.7716    
## educ                        0.057890   0.035479 60.535375   1.632   0.1079    
## y.plot:monthssincebaseline -0.010244   0.005826 33.097846  -1.758   0.0879 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.308                            
## mnthssncbsl  0.011  0.011                     
## baseline_ag -0.623  0.644  0.003              
## educ        -0.670 -0.203 -0.001 -0.148       
## y.plt:mnths -0.001  0.048 -0.106 -0.012  0.015

## [1] "y.plot =  baseline_test3meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 60.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.3352 -0.0296 -0.0053  0.0180  3.9221 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.505135 0.71073      
##            monthssincebaseline 0.001293 0.03596  0.24
##  Residual                      0.014805 0.12168      
## Number of obs: 339, groups:  unique_id, 70
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.373664   0.634305 60.393825  -0.589   0.5580    
## y.plot                     -0.840147   0.083808 65.758141 -10.025 7.12e-15 ***
## monthssincebaseline         0.010208   0.005901 33.400039   1.730   0.0929 .  
## baseline_age               -0.005122   0.008008 62.125551  -0.640   0.5247    
## educ                        0.044855   0.029799 57.784046   1.505   0.1377    
## y.plot:monthssincebaseline -0.007820   0.005602 35.359141  -1.396   0.1714    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.225                            
## mnthssncbsl  0.011  0.029                     
## baseline_ag -0.592  0.596  0.010              
## educ        -0.704 -0.221  0.004 -0.138       
## y.plt:mnths -0.003  0.083 -0.066 -0.018  0.023

## [1] "y.plot =  baseline_test5meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 67.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.4528 -0.0257 -0.0023  0.0099  4.0209 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.698562 0.8358       
##            monthssincebaseline 0.001156 0.0340   0.14
##  Residual                      0.014064 0.1186       
## Number of obs: 356, groups:  unique_id, 73
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.355738   0.727290 67.753549  -0.489   0.6263    
## y.plot                     -0.776376   0.103109 69.010666  -7.530 1.45e-10 ***
## monthssincebaseline         0.009437   0.005486 35.230180   1.720   0.0942 .  
## baseline_age               -0.002240   0.009211 68.262156  -0.243   0.8086    
## educ                        0.035257   0.034498 66.629692   1.022   0.3105    
## y.plot:monthssincebaseline -0.010434   0.005123 36.562652  -2.037   0.0490 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.256                            
## mnthssncbsl  0.003  0.017                     
## baseline_ag -0.589  0.615  0.010              
## educ        -0.702 -0.205  0.002 -0.146       
## y.plt:mnths  0.000  0.054 -0.069 -0.005  0.007

Power analysis

Power anlaysis with Full Sample

Presents change over 1 year. Difference scores were calculated as annualized change ([~1 year score - baseline]/time). First presents a plot with all tests. Then presents a restricted plot showing only sample sizes <1000
## Warning: Using one column matrices in `filter()` was deprecated in dplyr 1.1.0.
## ℹ Please use one dimensional logical vectors instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.
## Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.

## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
Task n.with.test Z.Decline CI.low CI.high sample_size.25 sample_size.40
change_moca 44 0.0104035 -0.6478557 0.6686627 1005529 392785
change_ftlcdrm_sob 46 0.1713188 -0.3363173 0.6789549 2206 862
change_strp 37 0.0780440 -0.0809017 0.2369897 1042 407
change_flk 45 -0.1117156 -0.2102493 -0.0131818 196 77
change_nback 35 0.2691843 -0.1892757 0.7276443 729 285
change_humi 44 0.0788197 -0.0475274 0.2051669 646 253
change_gonogo 37 -27.1431066 -33.4097271 -20.8764860 14 6
change_trailsb 38 3.0008595 -10.9294388 16.9311578 5413 2115
change_animals 42 0.2456758 -1.4317130 1.9230645 11709 4574
change_uds3ef 43 0.0257309 -0.1291771 0.1806390 9104 3556
change_trailsb_ratio 38 -0.0039344 -0.0466109 0.0387421 29552 11544
change_test3meanZ 45 -0.0422802 -0.1904704 0.1059100 3086 1206
change_test5meanZ 46 0.0256067 -0.1537859 0.2049993 12327 4816

Power Familial

Presents change over 1 year. Difference scores were calculated as annualized change ([~1 year score - baseline]/time). First presents a plot with all tests. Then presents a restricted plot showing only sample sizes <1000
## Warning: Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.
## Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.

## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
Task n.with.test Z.Decline CI.low CI.high sample_size.25 sample_size.40
change_moca 20 0.3263958 -0.2228450 0.8756366 712 278
change_ftlcdrm_sob 21 0.1289899 -0.4621162 0.7200961 5275 2061
change_strp 20 0.0651410 -0.0706241 0.2009061 1091 427
change_flk 21 -0.1211937 -0.2148427 -0.0275448 150 59
change_nback 19 0.4156407 -0.0022629 0.8335442 254 100
change_humi 21 0.0700139 -0.0509873 0.1910151 751 294
change_gonogo 17 -27.1124517 -33.8396853 -20.3852182 16 7
change_trailsb 17 1.3883653 -9.5696159 12.3463465 15647 6112
change_animals 19 0.1046917 -1.6717601 1.8811435 72317 28249
change_uds3ef 20 0.0185432 -0.1236633 0.1607497 14772 5771
change_trailsb_ratio 17 -0.0075054 -0.0483390 0.0333281 7435 2904
change_test3meanZ 21 -0.0459534 -0.1516137 0.0597068 1328 519
change_test5meanZ 21 0.0631541 -0.0634504 0.1897587 1010 395

Power Sporadic

Presents change over 1 year. Difference scores were calculated as annualized change ([~1 year score - baseline]/time). First presents a plot with all tests. Then presents a restricted plot showing only sample sizes <1000
## Warning: Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.
## Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.

## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
Task n.with.test Z.Decline CI.low CI.high sample_size.25 sample_size.40
change_moca 22 -0.2067335 -0.8050542 0.3915872 2104 822
change_ftlcdrm_sob 23 0.2165820 -0.2353659 0.6685299 1094 428
change_strp 16 0.0875933 -0.1027420 0.2779286 1186 464
change_flk 22 -0.1000289 -0.2080684 0.0080107 293 115
change_nback 15 0.0977832 -0.3735157 0.5690821 5835 2280
change_humi 21 0.0860915 -0.0524747 0.2246578 651 255
change_gonogo 18 -26.9446090 -33.2694596 -20.6197583 14 6
change_trailsb 19 4.1781463 -12.7440309 21.1003236 4121 1610
change_animals 21 0.2878007 -1.3760610 1.9516623 8395 3280
change_uds3ef 21 0.0258267 -0.1487428 0.2003961 11476 4483
change_trailsb_ratio 19 0.0017167 -0.0447079 0.0481413 183676 71749
change_test3meanZ 22 -0.0482329 -0.2331190 0.1366533 3691 1442
change_test5meanZ 23 -0.0130740 -0.2319168 0.2057689 70374 27490

Power baseline CDR 0.5 and 1

Presents change over 1 year. Difference scores were calculated as annualized change ([~1 year score - baseline]/time). First presents a plot with all tests. Then presents a restricted plot showing only sample sizes <1000
## Warning: Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.
## Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.

## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
Task n.with.test Z.Decline CI.low CI.high sample_size.25 sample_size.40
change_moca 11 -0.1676607 -1.0987822 0.7634607 7747 3026
change_ftlcdrm_sob 12 0.3499182 -0.1888556 0.8886921 596 233
change_strp 8 0.1796356 0.0144110 0.3448603 213 83
change_flk 12 -0.0786802 -0.1741220 0.0167617 370 145
change_nback 8 0.0965442 -0.5117842 0.7048726 9972 3896
change_humi 12 0.0567625 -0.0844454 0.1979705 1555 608
change_gonogo 11 -26.7714457 -32.7198005 -20.8230910 13 5
change_trailsb 10 9.2536561 -12.6574901 31.1648023 1409 551
change_animals 11 0.1985917 -1.6048098 2.0019932 20712 8091
change_uds3ef 11 -0.0031339 -0.2118314 0.2055636 1113853 435099
change_trailsb_ratio 10 -0.0100370 -0.0522874 0.0322135 4451 1739
change_test3meanZ 12 -0.0581246 -0.2767255 0.1604762 3553 1388
change_test5meanZ 12 -0.0195084 -0.2790557 0.2400389 44458 17367

Other analyses

Association of cognitive task and change in CDR+NACC FTLD SOB

Task n.with.task beta.store CI.low CI.high
change_moca 119 -0.1948138 -0.3621116 -0.0153567
change_strp 97 -0.1157481 -0.3080812 0.0856751
change_flk 120 0.0962503 -0.0844479 0.2708195
change_nback 88 -0.1863733 -0.3809456 0.0240060
change_humi 117 -0.1111952 -0.2869362 0.0717869
change_gonogo 85 0.1055816 -0.1100182 0.3116920
change_animals 110 -0.1002516 -0.2821959 0.0886540
change_uds3ef 80 -0.3473058 -0.5268215 -0.1381294
change_trailsb_ratio 75 -0.2461222 -0.4480555 -0.0202940
change_test3meanZ 120 -0.1051794 -0.2791579 0.0754850
change_test5meanZ 125 -0.1621786 -0.3284324 0.0138226

Post-hoc association of cognitive task and change in CDR+NACC FTLD SOB

limited to sample with animals, uds3ef, smartphone composites, and moca.

Task n.with.task beta.store CI.low CI.high
change_moca 66 -0.4043314 -0.5887484 -0.1799043
change_strp 52 0.0487425 -0.2271797 0.3174205
change_flk 66 -0.0688232 -0.3057628 0.1761436
change_nback 51 -0.0027108 -0.2780868 0.2730768
change_humi 64 -0.1770920 -0.4052600 0.0718447
change_gonogo 59 0.0260349 -0.2315914 0.2802487
change_animals 66 0.0448907 -0.1993076 0.2838395
change_uds3ef 66 -0.1472479 -0.3758846 0.0982877
change_trailsb_ratio 66 -0.0696584 -0.3065233 0.1753304
change_test3meanZ 66 -0.2077374 -0.4282386 0.0361110
change_test5meanZ 66 -0.2812354 -0.4899202 -0.0420660

Association of smartphone composite and change in CDR

## [1] "Raw correlation"
## 
##  Pearson's product-moment correlation
## 
## data:  df.smartphone.other$baseline_test5meanZ and df.smartphone.other$change_ftlcdr_sob
## t = -2.77, df = 135, p-value = 0.006395
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.38466050 -0.06678828
## sample estimates:
##        cor 
## -0.2319061
## [1] "Standardized correlation"
## 
##  Pearson's product-moment correlation
## 
## data:  df.smartphone.other$change_z and df.smartphone.other$composite5_z
## t = -2.6152, df = 135, p-value = 0.009931
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.37354757 -0.05385728
## sample estimates:
##        cor 
## -0.2195893