Count of responses to “check all that apply” questions
Do you take any of the following actions when using Gen AI tools? Check all that apply
What does your organization have?
What types of challenges have you or your team faced in regards to using gen AI responsibly?
Q1: For what types of work tasks/purposes do you use Gen AI (check all that apply)?
Merrick’s Shorthand | Item Text |
---|---|
ai_usage_prod | “As a component of a product we are developing (e.g., using/integrating gen AI in new products)” |
ai_usage_content | “Content generation (e.g., written content to support marketing and customer engagement) |
ai_usage_prodtasks | “Productivity tasks (e.g., summarizing meeting notes, writing emails)” |
ai_usage_uidesign | “UI/UX design” |
ai_usage_productideation | “Product ideation and brainstorming” |
ai_usage_data | “Data analysis and insights” |
ai_usage_coding | Coding |
ai_usage_customer | Customer support automation |
ai_usage_other | Other |
(worktasks <- genaiclean %>%
select(ai_usage_prod:ai_usage_other) %>%
ungroup() %>%
dplyr::summarize_all(sum) %>%
t()) %>%
as.data.frame() %>%
rename(Count = 1)
workresources <- c(
"As a component of a product we are developing (e.g., using/integrating gen AI in new products)",
"Content generation (e.g., written content to support marketing and customer engagement)",
"Productivity tasks (e.g., summarizing meeting notes, writing emails)",
"UI/UX design",
"Product ideation and brainstorming",
"Data analysis and insights",
"Coding",
"Customer support automation",
"Other"
)
rownames(worktasks) <- workresources
toString(genaiclean %>% as.data.frame() %>% filter(Q1_4_TEXT != "") %>% select(Q1_4_TEXT))
## [1] "c(\"To eliminate the blank page in product descriptions, brochures, and scripts\", \"Proofreading the packaging info.\")"
What gen AI tools/models do you use?
Merrick’s Shorthand | Item Text |
---|---|
foundmodels | “My company’s own gen AI tools/models developed by our research teams using our own foundational model(s)” |
thirdparty | “My company’s own gen AI tools/models developed by our research teams based on third-party foundation model(s)” |
externalprop | “External proprietary gen AI model” |
externalopensource | “External open-source gen AI tool” |
(genaitools <- genaiclean %>%
select(foundmodels:externalopensource) %>%
ungroup() %>%
dplyr::summarize_all(sum) %>%
t() %>%
as.data.frame() %>%
rename(Count = 1))
genaitoolsname = c(
"My company's own gen AI tools/models developed by our research teams using our own foundational model(s)",
"My company's own gen AI tools/models developed by our research teams based on third-party foundation model(s)",
"External proprietary gen AI model",
"External open-source gen AI tool")
rownames(genaitools) <- genaitoolsname
paste("Those who listed more than one tool:", genaiclean %>% filter(numtools > 1) %>% nrow())
## [1] "Those who listed more than one tool: 67"
Demographics
% of women
##
## Female Male NonBinary
## 46.41% 53.04% 0.55%
Race distribution
Note: had trouble with race variable in R. Qualtrics downloads the data so that each cell can have multiple values (i.e., 1,7), which
##
## American Indian Black East Asian Multiracial Other South Asian White
## 0.55% 18.23% 3.31% 3.31% 5.52% 7.18% 61.88%
Age Distribution
##
## 18-24 25-34 35-44 45-54 55-64 65 over
## 8.3% 40.9% 28.2% 14.9% 6.1% 1.7%
Country Distribution
##
## Canada CANADA Denmark England England Germany India India Ireland New york Scotland Spain U.S. uk Uk UK United Kingdom UNITED KINGDOM united Kingdom United Kingdom United state of america United State Of America UNITED STATE OF AMERICA united states United states United States United States UNITED STATES united states of america United States of America us US usa Usa USA USA
## 7.73% 0.55% 0.55% 1.66% 1.10% 2.21% 1.10% 0.55% 0.55% 0.55% 0.55% 0.55% 0.55% 1.10% 0.55% 5.52% 11.05% 1.10% 0.55% 4.97% 0.55% 0.55% 0.55% 1.10% 1.66% 23.20% 2.76% 0.55% 1.10% 5.52% 0.55% 3.31% 2.21% 0.55% 12.15% 0.55%
Roles
##
## Engineer Product designer Product Manager Product marketing
## 7.7% 7.2% 47.5% 27.6%
Number of employees
##
## 1. 1-49 2. 50-499 3. 499-1000 4. 1000-4999 5. 5000+
## 26.5% 33.1% 14.4% 9.4% 14.4%
Power hierarchy
paste("Mean role power hierarchy:", mean(genaiclean$OD2)); paste("Median role power hierarchy:", median(genaiclean$OD2)); paste("SD role power hierarchy:", sd(genaiclean$OD2))
## [1] "Mean role power hierarchy: 5.35911602209945"
## [1] "Median role power hierarchy: 6"
## [1] "SD role power hierarchy: 2.19805148378125"
Industry
Printed off the text of people’s responses to “other” category
##
## Agr. and farm Arts and enter. Construction Customer Relationship Management Education Finance and insuranec Healthcare and pharm. Hospitality IT and/or software Manufacturing Retail Telecommunications Transportation and logistics
## 2.76% 6.08% 2.76% 2.21% 3.31% 12.15% 5.52% 2.76% 19.34% 17.13% 11.05% 0.55% 5.52%
## [1] "c(\"Nonprofit human services \", \"MARKETING COORDINATOR \", \"Meteorology and science\", \"Online Retail \", \"Wholesale Trade\", \"Management\", \"consulting agency\", \"Safety and Consulting\", \"Engineering\", \"Publishing \", \"consultant\", \"Non-profit\", \"Charity \", \"We resell vintage clothing, accessories, collectibles, and home decor\", \"Professional services\", \"Government & Public Administration\")"
Likert Dependent Variables
Item in Qualtrics | Item Text | Merrick’s Shorthand |
---|---|---|
Q8 | To what extent do you agree or disagree with the following statement: “Being responsible in using gen AI is important to gain business benefits | ResponsibleBusiness |
Q13_1 | On a scale of 1 to 5, to what extent do you agree that the following are challenges to using AI responsibly? - Business pressures (e.g., speed to market) | BusinessPressure |
Q13_2 | On a scale of 1 to 5, to what extent do you agree that the following are challenges to using AI responsibly? - Concerns about being labeled a “troublemaker” | Concerns |
Q13_3 | On a scale of 1 to 5, to what extent do you agree that the following are challenges to using AI responsibly? - Discomfort raising issues around responsibility | Discomfort |
Q13_4 | On a scale of 1 to 5, to what extent do you agree that the following are challenges to using AI responsibly? - Other | Other |
Q15_1 | To what extent do you agree with the following… - I have suggestions for my supervisor about how to use gen AI more responsibly | Suggestions for use |
Q15_2 | To what extent do you agree with the following… - I feel comfortable volunteering suggestions to my supervisor about how to use gen AI more responsibly | Feel comfortable volunteering suggestions |
Q15_3 | To what extent do you agree with the following… - My supervisor asks and/or encourages me to think about and take actions to help the team be more responsible in using gen AI. | Take actions |
Correlations
Analysis plan
Predictions 1 - Firm Size and Adoption of Open Vs. Closed Models
Prediction A. Smaller firms are more likely to adopt open models because of cost
Prediction B. Larger firms are more likely to use open models because they can easily retrain on their own data
adoptionopenclosed <- genaiclean %>%
select(approxnum, foundmodels:externalopensource) %>% as.data.frame()
for(column in 2:ncol(adoptionopenclosed)){
print(genaitoolsname[column-1])
print(table(cbind(as.data.frame(adoptionopenclosed["approxnum"]), as.data.frame(adoptionopenclosed[column]))))
print(chisq.test(table(cbind(as.data.frame(adoptionopenclosed["approxnum"]), as.data.frame(adoptionopenclosed[column])))))
y <- colnames(adoptionopenclosed[column])
yvariable <- as.numeric(unlist(as.data.frame(adoptionopenclosed[y])))
print(summary(glm(yvariable~approxnum, adoptionopenclosed, family = "binomial")))
print(summary(glm(yvariable~approxnum, adoptionopenclosed, family = "binomial"))$coefficient)
left_join(
as.data.frame(exp(summary(glm(yvariable~approxnum, adoptionopenclosed, family = "binomial"))$coefficients))["Estimate"] %>% rownames_to_column(),
exp(confint(glm(yvariable~approxnum, adoptionopenclosed, family = "binomial"))) %>% as.data.frame() %>% rownames_to_column())
}
## [1] "My company's own gen AI tools/models developed by our research teams using our own foundational model(s)"
## foundmodels
## approxnum 0 1
## 1. 1-49 41 7
## 2. 50-499 46 14
## 3. 499-1000 20 6
## 4. 1000-4999 12 5
## 5. 5000+ 20 6
## Warning in chisq.test(table(cbind(as.data.frame(adoptionopenclosed["approxnum"]), : Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: table(cbind(as.data.frame(adoptionopenclosed["approxnum"]), as.data.frame(adoptionopenclosed[column])))
## X-squared = 2.2, df = 4, p-value = 0.7
##
##
## Call:
## glm(formula = yvariable ~ approxnum, family = "binomial", data = adoptionopenclosed)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.768 0.409 -4.32 0.000015 ***
## approxnum2. 50-499 0.578 0.510 1.13 0.26
## approxnum3. 499-1000 0.564 0.620 0.91 0.36
## approxnum4. 1000-4999 0.892 0.671 1.33 0.18
## approxnum5. 5000+ 0.564 0.620 0.91 0.36
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 184.12 on 176 degrees of freedom
## Residual deviance: 181.85 on 172 degrees of freedom
## (4 observations deleted due to missingness)
## AIC: 191.9
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.7677 0.4090 -4.3223 0.00001544
## approxnum2. 50-499 0.5781 0.5103 1.1328 0.25729808
## approxnum3. 499-1000 0.5637 0.6196 0.9098 0.36295352
## approxnum4. 1000-4999 0.8922 0.6713 1.3291 0.18379974
## approxnum5. 5000+ 0.5637 0.6196 0.9098 0.36295352
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "My company's own gen AI tools/models developed by our research teams based on third-party foundation model(s)"
## thirdparty
## approxnum 0 1
## 1. 1-49 45 3
## 2. 50-499 46 14
## 3. 499-1000 18 8
## 4. 1000-4999 12 5
## 5. 5000+ 18 8
## Warning in chisq.test(table(cbind(as.data.frame(adoptionopenclosed["approxnum"]), : Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: table(cbind(as.data.frame(adoptionopenclosed["approxnum"]), as.data.frame(adoptionopenclosed[column])))
## X-squared = 10, df = 4, p-value = 0.04
##
##
## Call:
## glm(formula = yvariable ~ approxnum, family = "binomial", data = adoptionopenclosed)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.708 0.596 -4.54 0.0000056 ***
## approxnum2. 50-499 1.518 0.670 2.27 0.0234 *
## approxnum3. 499-1000 1.897 0.732 2.59 0.0096 **
## approxnum4. 1000-4999 1.833 0.799 2.29 0.0219 *
## approxnum5. 5000+ 1.897 0.732 2.59 0.0096 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 184.12 on 176 degrees of freedom
## Residual deviance: 172.43 on 172 degrees of freedom
## (4 observations deleted due to missingness)
## AIC: 182.4
##
## Number of Fisher Scoring iterations: 5
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.708 0.5963 -4.542 0.000005584
## approxnum2. 50-499 1.518 0.6699 2.267 0.023400893
## approxnum3. 499-1000 1.897 0.7322 2.591 0.009569439
## approxnum4. 1000-4999 1.833 0.7993 2.293 0.021863770
## approxnum5. 5000+ 1.897 0.7322 2.591 0.009569439
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "External proprietary gen AI model"
## externalprop
## approxnum 0 1
## 1. 1-49 8 40
## 2. 50-499 12 48
## 3. 499-1000 4 22
## 4. 1000-4999 1 16
## 5. 5000+ 4 22
## Warning in chisq.test(table(cbind(as.data.frame(adoptionopenclosed["approxnum"]), : Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: table(cbind(as.data.frame(adoptionopenclosed["approxnum"]), as.data.frame(adoptionopenclosed[column])))
## X-squared = 2, df = 4, p-value = 0.7
##
##
## Call:
## glm(formula = yvariable ~ approxnum, family = "binomial", data = adoptionopenclosed)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.6094 0.3873 4.16 0.000032 ***
## approxnum2. 50-499 -0.2231 0.5041 -0.44 0.66
## approxnum3. 499-1000 0.0953 0.6674 0.14 0.89
## approxnum4. 1000-4999 1.1632 1.1011 1.06 0.29
## approxnum5. 5000+ 0.0953 0.6674 0.14 0.89
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 157.88 on 176 degrees of freedom
## Residual deviance: 155.56 on 172 degrees of freedom
## (4 observations deleted due to missingness)
## AIC: 165.6
##
## Number of Fisher Scoring iterations: 5
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.60944 0.3873 4.1556 0.00003245
## approxnum2. 50-499 -0.22314 0.5041 -0.4426 0.65804503
## approxnum3. 499-1000 0.09531 0.6674 0.1428 0.88644570
## approxnum4. 1000-4999 1.16315 1.1011 1.0563 0.29081733
## approxnum5. 5000+ 0.09531 0.6674 0.1428 0.88644570
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "External open-source gen AI tool"
## externalopensource
## approxnum 0 1
## 1. 1-49 35 13
## 2. 50-499 53 7
## 3. 499-1000 19 7
## 4. 1000-4999 13 4
## 5. 5000+ 21 5
## Warning in chisq.test(table(cbind(as.data.frame(adoptionopenclosed["approxnum"]), : Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: table(cbind(as.data.frame(adoptionopenclosed["approxnum"]), as.data.frame(adoptionopenclosed[column])))
## X-squared = 5, df = 4, p-value = 0.3
##
##
## Call:
## glm(formula = yvariable ~ approxnum, family = "binomial", data = adoptionopenclosed)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.99040 0.32480 -3.05 0.0023 **
## approxnum2. 50-499 -1.03398 0.51693 -2.00 0.0455 *
## approxnum3. 499-1000 -0.00813 0.54862 -0.01 0.9882
## approxnum4. 1000-4999 -0.18826 0.65758 -0.29 0.7747
## approxnum5. 5000+ -0.44469 0.59423 -0.75 0.4543
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 178.79 on 176 degrees of freedom
## Residual deviance: 173.60 on 172 degrees of freedom
## (4 observations deleted due to missingness)
## AIC: 183.6
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.99040 0.3248 -3.04927 0.002294
## approxnum2. 50-499 -1.03398 0.5169 -2.00024 0.045474
## approxnum3. 499-1000 -0.00813 0.5486 -0.01482 0.988176
## approxnum4. 1000-4999 -0.18826 0.6576 -0.28628 0.774660
## approxnum5. 5000+ -0.44469 0.5942 -0.74834 0.454258
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
Prediction 2:
Prediction 3: Firm size predict Adoption of responsible AI strategies
responsiblegenai <- genaiclean %>%
select(approxnum, takeaction_workwithcol:takeaction_noactions) %>% as.data.frame()
adoptionname <- c(
"Work with colleagues who have job responsibilities",
"Take ethical AI trainings",
"Conduct audits of the gen AI tools",
"Conduct fairness testing",
"Consider data privacy implications and take actions to protect data privacy",
"Ask about the data or model to understand potential limitations it has",
"Conduct adversarial testing or red teaming",
"Use explainability methods",
"Build transparency approaches",
"No actions taken"
)
for(column in 2:ncol(responsiblegenai)){
print(adoptionname[column-1])
print(
graphtable <- as.data.frame(table(cbind(as.data.frame(responsiblegenai["approxnum"]), as.data.frame(responsiblegenai[column])))) %>%
rename(yesno = 2) %>%
mutate(yesno = case_when(yesno == 0 ~ "No",
yesno == 1 ~ "Yes")))
print(graphtable %>%
ggplot(aes(x = approxnum, y = Freq, fill = yesno)) +
geom_bar(stat = "identity", position = "dodge")+
labs(
x = "Company Size",
y = "Count"
)+
jtools::theme_apa())
print(chisq.test(table(cbind(as.data.frame(responsiblegenai["approxnum"]), as.data.frame(responsiblegenai[column])))))
y <- colnames(responsiblegenai[column])
yvariable <- as.numeric(unlist(as.data.frame(responsiblegenai[y])))
print(summary(glm(yvariable~approxnum, responsiblegenai, family = "binomial")))
print(summary(glm(yvariable~approxnum, responsiblegenai, family = "binomial"))$coefficient)
left_join(
as.data.frame(exp(summary(glm(yvariable~approxnum, responsiblegenai, family = "binomial"))$coefficients))["Estimate"] %>% rownames_to_column(),
exp(confint(glm(yvariable~approxnum, responsiblegenai, family = "binomial"))) %>% as.data.frame() %>% rownames_to_column())
}
## [1] "Work with colleagues who have job responsibilities"
## approxnum yesno Freq
## 1 1. 1-49 No 34
## 2 2. 50-499 No 29
## 3 3. 499-1000 No 12
## 4 4. 1000-4999 No 8
## 5 5. 5000+ No 13
## 6 1. 1-49 Yes 14
## 7 2. 50-499 Yes 31
## 8 3. 499-1000 Yes 14
## 9 4. 1000-4999 Yes 9
## 10 5. 5000+ Yes 13
##
## Pearson's Chi-squared test
##
## data: table(cbind(as.data.frame(responsiblegenai["approxnum"]), as.data.frame(responsiblegenai[column])))
## X-squared = 7.4, df = 4, p-value = 0.1
##
##
## Call:
## glm(formula = yvariable ~ approxnum, family = "binomial", data = responsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.887 0.318 -2.79 0.0052 **
## approxnum2. 50-499 0.954 0.409 2.33 0.0198 *
## approxnum3. 499-1000 1.041 0.506 2.06 0.0394 *
## approxnum4. 1000-4999 1.005 0.580 1.73 0.0834 .
## approxnum5. 5000+ 0.887 0.505 1.76 0.0787 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 244.1 on 176 degrees of freedom
## Residual deviance: 236.5 on 172 degrees of freedom
## (4 observations deleted due to missingness)
## AIC: 246.5
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8873 0.3176 -2.794 0.005203
## approxnum2. 50-499 0.9540 0.4094 2.330 0.019784
## approxnum3. 499-1000 1.0415 0.5056 2.060 0.039403
## approxnum4. 1000-4999 1.0051 0.5805 1.731 0.083365
## approxnum5. 5000+ 0.8873 0.5047 1.758 0.078713
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "Take ethical AI trainings"
## approxnum yesno Freq
## 1 1. 1-49 No 36
## 2 2. 50-499 No 31
## 3 3. 499-1000 No 6
## 4 4. 1000-4999 No 9
## 5 5. 5000+ No 14
## 6 1. 1-49 Yes 12
## 7 2. 50-499 Yes 29
## 8 3. 499-1000 Yes 20
## 9 4. 1000-4999 Yes 8
## 10 5. 5000+ Yes 12
##
## Pearson's Chi-squared test
##
## data: table(cbind(as.data.frame(responsiblegenai["approxnum"]), as.data.frame(responsiblegenai[column])))
## X-squared = 19, df = 4, p-value = 0.0009
##
##
## Call:
## glm(formula = yvariable ~ approxnum, family = "binomial", data = responsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.099 0.333 -3.30 0.00098 ***
## approxnum2. 50-499 1.032 0.422 2.45 0.01441 *
## approxnum3. 499-1000 2.303 0.573 4.02 0.000058 ***
## approxnum4. 1000-4999 0.981 0.589 1.66 0.09601 .
## approxnum5. 5000+ 0.944 0.516 1.83 0.06700 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 244.10 on 176 degrees of freedom
## Residual deviance: 224.58 on 172 degrees of freedom
## (4 observations deleted due to missingness)
## AIC: 234.6
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.0986 0.3333 -3.296 0.00098128
## approxnum2. 50-499 1.0319 0.4217 2.447 0.01440883
## approxnum3. 499-1000 2.3026 0.5725 4.022 0.00005774
## approxnum4. 1000-4999 0.9808 0.5893 1.665 0.09600798
## approxnum5. 5000+ 0.9445 0.5156 1.832 0.06700054
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "Conduct audits of the gen AI tools"
## approxnum yesno Freq
## 1 1. 1-49 No 41
## 2 2. 50-499 No 39
## 3 3. 499-1000 No 15
## 4 4. 1000-4999 No 11
## 5 5. 5000+ No 18
## 6 1. 1-49 Yes 7
## 7 2. 50-499 Yes 21
## 8 3. 499-1000 Yes 11
## 9 4. 1000-4999 Yes 6
## 10 5. 5000+ Yes 8
##
## Pearson's Chi-squared test
##
## data: table(cbind(as.data.frame(responsiblegenai["approxnum"]), as.data.frame(responsiblegenai[column])))
## X-squared = 8.3, df = 4, p-value = 0.08
##
##
## Call:
## glm(formula = yvariable ~ approxnum, family = "binomial", data = responsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.768 0.409 -4.32 0.000015 ***
## approxnum2. 50-499 1.149 0.490 2.34 0.019 *
## approxnum3. 499-1000 1.458 0.570 2.56 0.011 *
## approxnum4. 1000-4999 1.162 0.652 1.78 0.075 .
## approxnum5. 5000+ 0.957 0.590 1.62 0.105
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 216.08 on 176 degrees of freedom
## Residual deviance: 207.17 on 172 degrees of freedom
## (4 observations deleted due to missingness)
## AIC: 217.2
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.7677 0.4090 -4.322 0.00001544
## approxnum2. 50-499 1.1486 0.4904 2.342 0.01917344
## approxnum3. 499-1000 1.4575 0.5699 2.557 0.01054784
## approxnum4. 1000-4999 1.1615 0.6518 1.782 0.07473771
## approxnum5. 5000+ 0.9567 0.5897 1.622 0.10474515
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "Conduct fairness testing"
## approxnum yesno Freq
## 1 1. 1-49 No 34
## 2 2. 50-499 No 40
## 3 3. 499-1000 No 13
## 4 4. 1000-4999 No 10
## 5 5. 5000+ No 20
## 6 1. 1-49 Yes 14
## 7 2. 50-499 Yes 20
## 8 3. 499-1000 Yes 13
## 9 4. 1000-4999 Yes 7
## 10 5. 5000+ Yes 6
##
## Pearson's Chi-squared test
##
## data: table(cbind(as.data.frame(responsiblegenai["approxnum"]), as.data.frame(responsiblegenai[column])))
## X-squared = 5.3, df = 4, p-value = 0.3
##
##
## Call:
## glm(formula = yvariable ~ approxnum, family = "binomial", data = responsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.887 0.318 -2.79 0.0052 **
## approxnum2. 50-499 0.194 0.419 0.46 0.6434
## approxnum3. 499-1000 0.887 0.505 1.76 0.0787 .
## approxnum4. 1000-4999 0.531 0.586 0.91 0.3654
## approxnum5. 5000+ -0.317 0.563 -0.56 0.5741
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 226.69 on 176 degrees of freedom
## Residual deviance: 221.50 on 172 degrees of freedom
## (4 observations deleted due to missingness)
## AIC: 231.5
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8873 0.3176 -2.7942 0.005203
## approxnum2. 50-499 0.1942 0.4193 0.4630 0.643356
## approxnum3. 499-1000 0.8873 0.5047 1.7582 0.078713
## approxnum4. 1000-4999 0.5306 0.5863 0.9051 0.365406
## approxnum5. 5000+ -0.3167 0.5635 -0.5620 0.574122
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "Consider data privacy implications and take actions to protect data privacy"
## approxnum yesno Freq
## 1 1. 1-49 No 29
## 2 2. 50-499 No 34
## 3 3. 499-1000 No 9
## 4 4. 1000-4999 No 12
## 5 5. 5000+ No 17
## 6 1. 1-49 Yes 19
## 7 2. 50-499 Yes 26
## 8 3. 499-1000 Yes 17
## 9 4. 1000-4999 Yes 5
## 10 5. 5000+ Yes 9
##
## Pearson's Chi-squared test
##
## data: table(cbind(as.data.frame(responsiblegenai["approxnum"]), as.data.frame(responsiblegenai[column])))
## X-squared = 7.6, df = 4, p-value = 0.1
##
##
## Call:
## glm(formula = yvariable ~ approxnum, family = "binomial", data = responsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.423 0.295 -1.43 0.152
## approxnum2. 50-499 0.155 0.394 0.39 0.695
## approxnum3. 499-1000 1.059 0.507 2.09 0.037 *
## approxnum4. 1000-4999 -0.453 0.609 -0.74 0.457
## approxnum5. 5000+ -0.213 0.507 -0.42 0.674
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 241.83 on 176 degrees of freedom
## Residual deviance: 234.23 on 172 degrees of freedom
## (4 observations deleted due to missingness)
## AIC: 244.2
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.4229 0.2952 -1.4327 0.15195
## approxnum2. 50-499 0.1546 0.3937 0.3927 0.69455
## approxnum3. 499-1000 1.0588 0.5070 2.0885 0.03676
## approxnum4. 1000-4999 -0.4526 0.6086 -0.7436 0.45709
## approxnum5. 5000+ -0.2131 0.5070 -0.4204 0.67421
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "Ask about the data or model to understand potential limitations it has"
## approxnum yesno Freq
## 1 1. 1-49 No 33
## 2 2. 50-499 No 36
## 3 3. 499-1000 No 16
## 4 4. 1000-4999 No 8
## 5 5. 5000+ No 17
## 6 1. 1-49 Yes 15
## 7 2. 50-499 Yes 24
## 8 3. 499-1000 Yes 10
## 9 4. 1000-4999 Yes 9
## 10 5. 5000+ Yes 9
##
## Pearson's Chi-squared test
##
## data: table(cbind(as.data.frame(responsiblegenai["approxnum"]), as.data.frame(responsiblegenai[column])))
## X-squared = 2.8, df = 4, p-value = 0.6
##
##
## Call:
## glm(formula = yvariable ~ approxnum, family = "binomial", data = responsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.788 0.311 -2.53 0.011 *
## approxnum2. 50-499 0.383 0.408 0.94 0.348
## approxnum3. 499-1000 0.318 0.509 0.63 0.532
## approxnum4. 1000-4999 0.906 0.577 1.57 0.116
## approxnum5. 5000+ 0.152 0.517 0.30 0.768
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 234.82 on 176 degrees of freedom
## Residual deviance: 232.08 on 172 degrees of freedom
## (4 observations deleted due to missingness)
## AIC: 242.1
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.7885 0.3114 -2.5320 0.01134
## approxnum2. 50-499 0.3830 0.4079 0.9388 0.34781
## approxnum3. 499-1000 0.3185 0.5094 0.6252 0.53185
## approxnum4. 1000-4999 0.9062 0.5771 1.5702 0.11636
## approxnum5. 5000+ 0.1525 0.5166 0.2951 0.76790
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "Conduct adversarial testing or red teaming"
## approxnum yesno Freq
## 1 1. 1-49 No 43
## 2 2. 50-499 No 57
## 3 3. 499-1000 No 18
## 4 4. 1000-4999 No 13
## 5 5. 5000+ No 23
## 6 1. 1-49 Yes 5
## 7 2. 50-499 Yes 3
## 8 3. 499-1000 Yes 8
## 9 4. 1000-4999 Yes 4
## 10 5. 5000+ Yes 3
## Warning in chisq.test(table(cbind(as.data.frame(responsiblegenai["approxnum"]), : Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: table(cbind(as.data.frame(responsiblegenai["approxnum"]), as.data.frame(responsiblegenai[column])))
## X-squared = 13, df = 4, p-value = 0.01
##
##
## Call:
## glm(formula = yvariable ~ approxnum, family = "binomial", data = responsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.152 0.472 -4.55 0.0000053 ***
## approxnum2. 50-499 -0.793 0.758 -1.05 0.295
## approxnum3. 499-1000 1.341 0.635 2.11 0.035 *
## approxnum4. 1000-4999 0.973 0.742 1.31 0.190
## approxnum5. 5000+ 0.115 0.775 0.15 0.882
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 136.74 on 176 degrees of freedom
## Residual deviance: 125.14 on 172 degrees of freedom
## (4 observations deleted due to missingness)
## AIC: 135.1
##
## Number of Fisher Scoring iterations: 5
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.1518 0.4725 -4.5540 0.000005264
## approxnum2. 50-499 -0.7927 0.7577 -1.0462 0.295481124
## approxnum3. 499-1000 1.3408 0.6355 2.1100 0.034857253
## approxnum4. 1000-4999 0.9731 0.7417 1.3119 0.189545727
## approxnum5. 5000+ 0.1149 0.7746 0.1483 0.882104857
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "Use explainability methods"
## approxnum yesno Freq
## 1 1. 1-49 No 35
## 2 2. 50-499 No 40
## 3 3. 499-1000 No 12
## 4 4. 1000-4999 No 12
## 5 5. 5000+ No 21
## 6 1. 1-49 Yes 13
## 7 2. 50-499 Yes 20
## 8 3. 499-1000 Yes 14
## 9 4. 1000-4999 Yes 5
## 10 5. 5000+ Yes 5
##
## Pearson's Chi-squared test
##
## data: table(cbind(as.data.frame(responsiblegenai["approxnum"]), as.data.frame(responsiblegenai[column])))
## X-squared = 8.3, df = 4, p-value = 0.08
##
##
## Call:
## glm(formula = yvariable ~ approxnum, family = "binomial", data = responsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.990 0.325 -3.05 0.0023 **
## approxnum2. 50-499 0.297 0.425 0.70 0.4841
## approxnum3. 499-1000 1.145 0.510 2.24 0.0249 *
## approxnum4. 1000-4999 0.115 0.624 0.18 0.8538
## approxnum5. 5000+ -0.445 0.594 -0.75 0.4543
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 222.45 on 176 degrees of freedom
## Residual deviance: 214.40 on 172 degrees of freedom
## (4 observations deleted due to missingness)
## AIC: 224.4
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.9904 0.3248 -3.0493 0.002294
## approxnum2. 50-499 0.2973 0.4248 0.6997 0.484134
## approxnum3. 499-1000 1.1445 0.5102 2.2435 0.024862
## approxnum4. 1000-4999 0.1149 0.6236 0.1843 0.853768
## approxnum5. 5000+ -0.4447 0.5942 -0.7483 0.454258
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "Build transparency approaches"
## approxnum yesno Freq
## 1 1. 1-49 No 40
## 2 2. 50-499 No 41
## 3 3. 499-1000 No 16
## 4 4. 1000-4999 No 10
## 5 5. 5000+ No 20
## 6 1. 1-49 Yes 8
## 7 2. 50-499 Yes 19
## 8 3. 499-1000 Yes 10
## 9 4. 1000-4999 Yes 7
## 10 5. 5000+ Yes 6
## Warning in chisq.test(table(cbind(as.data.frame(responsiblegenai["approxnum"]), : Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: table(cbind(as.data.frame(responsiblegenai["approxnum"]), as.data.frame(responsiblegenai[column])))
## X-squared = 6.6, df = 4, p-value = 0.2
##
##
## Call:
## glm(formula = yvariable ~ approxnum, family = "binomial", data = responsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.609 0.387 -4.16 0.000032 ***
## approxnum2. 50-499 0.840 0.476 1.76 0.078 .
## approxnum3. 499-1000 1.139 0.559 2.04 0.042 *
## approxnum4. 1000-4999 1.253 0.627 2.00 0.046 *
## approxnum5. 5000+ 0.405 0.606 0.67 0.503
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 210.73 on 176 degrees of freedom
## Residual deviance: 203.95 on 172 degrees of freedom
## (4 observations deleted due to missingness)
## AIC: 213.9
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.6094 0.3873 -4.1556 0.00003245
## approxnum2. 50-499 0.8403 0.4765 1.7636 0.07779729
## approxnum3. 499-1000 1.1394 0.5590 2.0383 0.04152174
## approxnum4. 1000-4999 1.2528 0.6268 1.9987 0.04563885
## approxnum5. 5000+ 0.4055 0.6055 0.6696 0.50311034
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "No actions taken"
## approxnum yesno Freq
## 1 1. 1-49 No 32
## 2 2. 50-499 No 50
## 3 3. 499-1000 No 25
## 4 4. 1000-4999 No 11
## 5 5. 5000+ No 22
## 6 1. 1-49 Yes 16
## 7 2. 50-499 Yes 10
## 8 3. 499-1000 Yes 1
## 9 4. 1000-4999 Yes 6
## 10 5. 5000+ Yes 4
## Warning in chisq.test(table(cbind(as.data.frame(responsiblegenai["approxnum"]), : Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: table(cbind(as.data.frame(responsiblegenai["approxnum"]), as.data.frame(responsiblegenai[column])))
## X-squared = 12, df = 4, p-value = 0.02
##
##
## Call:
## glm(formula = yvariable ~ approxnum, family = "binomial", data = responsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.693 0.306 -2.26 0.024 *
## approxnum2. 50-499 -0.916 0.462 -1.98 0.047 *
## approxnum3. 499-1000 -2.526 1.064 -2.37 0.018 *
## approxnum4. 1000-4999 0.087 0.593 0.15 0.883
## approxnum5. 5000+ -1.012 0.624 -1.62 0.105
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 181.49 on 176 degrees of freedom
## Residual deviance: 168.05 on 172 degrees of freedom
## (4 observations deleted due to missingness)
## AIC: 178
##
## Number of Fisher Scoring iterations: 5
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.69315 0.3062 -2.2638 0.02359
## approxnum2. 50-499 -0.91629 0.4623 -1.9819 0.04749
## approxnum3. 499-1000 -2.52573 1.0644 -2.3728 0.01765
## approxnum4. 1000-4999 0.08701 0.5927 0.1468 0.88329
## approxnum5. 5000+ -1.01160 0.6239 -1.6215 0.10491
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
Prediction 4:
orgsresponsiblegenai <- genaiclean %>%
select(orghave_leadership:orghave_neither,
takeaction_workwithcol:takeaction_noactions) %>% as.data.frame() %>%
mutate_at(
vars(orghave_leadership:orghave_neither),
funs(
case_when(
. == 0 ~ "No",
. == 1 ~ "Yes")))
## Warning: `funs()` was deprecated in dplyr 0.8.0.
## ℹ Please use a list of either functions or lambdas:
##
## # Simple named list: list(mean = mean, median = median)
##
## # Auto named with `tibble::lst()`: tibble::lst(mean, median)
##
## # Using lambdas list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
ethicalpolicies <- c(
"Leadership that has expressed commitment to responsible AI",
"Responsible or ethical AI principles",
"Policies that inform the use of gen AI",
"Clear incentives for using implementing gen AI responsibly",
"Neither"
)
adoptionname <- c(
"Work with colleagues who have job responsibilities",
"Take ethical AI trainings",
"Conduct audits of the gen AI tools",
"Conduct fairness testing",
"Consider data privacy implications and take actions to protect data privacy",
"Ask about the data or model to understand potential limitations it has",
"Conduct adversarial testing or red teaming",
"Use explainability methods",
"Build transparency approaches",
"No actions taken"
)
for(iv in 1:5){
for(column in 6:ncol(orgsresponsiblegenai)){
print(colnames(orgsresponsiblegenai)[iv])
print(adoptionname[column-1])
print(
graphtable <- as.data.frame(table(cbind(as.data.frame(orgsresponsiblegenai[iv]),
as.data.frame(orgsresponsiblegenai[column]))))%>%
rename(variable = 1,
yesno = 2) %>%
mutate(yesno = case_when(yesno == 0 ~ "No",
yesno == 1 ~ "Yes")))
print(
graphtable %>%
ggplot(aes(x = variable, y = Freq, fill = yesno)) +
geom_bar(stat = "identity", position = "dodge")+
labs(
x = colnames(orgsresponsiblegenai)[iv],
y = "Count")+
jtools::theme_apa())
print(chisq.test(table(cbind(as.data.frame(orgsresponsiblegenai[iv]),
as.data.frame(orgsresponsiblegenai[column])))))
independentvariable <- as.character(unlist(orgsresponsiblegenai[iv]))
y <- colnames(orgsresponsiblegenai[column])
yvariable <- as.numeric(unlist(as.data.frame(orgsresponsiblegenai[y])))
print(summary(glm(yvariable~independentvariable, orgsresponsiblegenai, family = "binomial")))
print(summary(glm(yvariable~independentvariable, orgsresponsiblegenai, family = "binomial"))$coefficient)
left_join(
as.data.frame(exp(summary(glm(yvariable~independentvariable, orgsresponsiblegenai, family = "binomial"))$coefficients))["Estimate"] %>%
rownames_to_column(),
exp(confint(glm(yvariable~independentvariable, orgsresponsiblegenai, family = "binomial"))) %>% as.data.frame() %>% rownames_to_column())
}}
## [1] "orghave_leadership"
## [1] "Consider data privacy implications and take actions to protect data privacy"
## variable yesno Freq
## 1 No No 69
## 2 Yes No 28
## 3 No Yes 34
## 4 Yes Yes 50
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 16, df = 1, p-value = 0.00006
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.708 0.210 -3.38 0.00073 ***
## independentvariableYes 1.288 0.316 4.08 0.000045 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 249.98 on 180 degrees of freedom
## Residual deviance: 232.50 on 179 degrees of freedom
## AIC: 236.5
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.7077 0.2095 -3.378 0.00073091
## independentvariableYes 1.2876 0.3156 4.079 0.00004515
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_leadership"
## [1] "Ask about the data or model to understand potential limitations it has"
## variable yesno Freq
## 1 No No 72
## 2 Yes No 25
## 3 No Yes 31
## 4 Yes Yes 53
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 24, df = 1, p-value = 0.0000009
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.843 0.215 -3.92 0.00008754 ***
## independentvariableYes 1.594 0.324 4.92 0.00000087 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 249.98 on 180 degrees of freedom
## Residual deviance: 223.86 on 179 degrees of freedom
## AIC: 227.9
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8427 0.2148 -3.923 0.0000875434
## independentvariableYes 1.5941 0.3241 4.919 0.0000008693
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_leadership"
## [1] "Conduct adversarial testing or red teaming"
## variable yesno Freq
## 1 No No 83
## 2 Yes No 43
## 3 No Yes 20
## 4 Yes Yes 35
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 12, df = 1, p-value = 0.0004
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.423 0.249 -5.71 0.000000011 ***
## independentvariableYes 1.217 0.337 3.61 0.00031 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 222.31 on 180 degrees of freedom
## Residual deviance: 208.71 on 179 degrees of freedom
## AIC: 212.7
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.423 0.2491 -5.713 0.00000001109
## independentvariableYes 1.217 0.3375 3.607 0.00030955063
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_leadership"
## [1] "Use explainability methods"
## variable yesno Freq
## 1 No No 78
## 2 Yes No 42
## 3 No Yes 25
## 4 Yes Yes 36
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 8.6, df = 1, p-value = 0.003
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.138 0.230 -4.95 0.00000074 ***
## independentvariableYes 0.984 0.323 3.04 0.0023 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 231.33 on 180 degrees of freedom
## Residual deviance: 221.83 on 179 degrees of freedom
## AIC: 225.8
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.1378 0.2298 -4.951 0.000000739
## independentvariableYes 0.9837 0.3231 3.044 0.002332165
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_leadership"
## [1] "Build transparency approaches"
## variable yesno Freq
## 1 No No 64
## 2 Yes No 37
## 3 No Yes 39
## 4 Yes Yes 41
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 3.3, df = 1, p-value = 0.07
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.495 0.203 -2.44 0.015 *
## independentvariableYes 0.598 0.304 1.96 0.050 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 248.48 on 180 degrees of freedom
## Residual deviance: 244.59 on 179 degrees of freedom
## AIC: 248.6
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.4953 0.2031 -2.438 0.01476
## independentvariableYes 0.5980 0.3044 1.964 0.04951
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_leadership"
## [1] "No actions taken"
## variable yesno Freq
## 1 No No 70
## 2 Yes No 41
## 3 No Yes 33
## 4 Yes Yes 37
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 3.8, df = 1, p-value = 0.05
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.752 0.211 -3.56 0.00037 ***
## independentvariableYes 0.649 0.310 2.10 0.03611 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 241.55 on 180 degrees of freedom
## Residual deviance: 237.12 on 179 degrees of freedom
## AIC: 241.1
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.7520 0.2112 -3.561 0.0003691
## independentvariableYes 0.6493 0.3098 2.096 0.0361133
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_leadership"
## [1] NA
## variable yesno Freq
## 1 No No 94
## 2 Yes No 63
## 3 No Yes 9
## 4 Yes Yes 15
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 3.4, df = 1, p-value = 0.07
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.346 0.349 -6.72 0.000000000018 ***
## independentvariableYes 0.911 0.452 2.02 0.044 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 141.65 on 180 degrees of freedom
## Residual deviance: 137.43 on 179 degrees of freedom
## AIC: 141.4
##
## Number of Fisher Scoring iterations: 5
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.346 0.3489 -6.724 0.00000000001772
## independentvariableYes 0.911 0.4520 2.016 0.04384928390533
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_leadership"
## [1] NA
## variable yesno Freq
## 1 No No 76
## 2 Yes No 45
## 3 No Yes 27
## 4 Yes Yes 33
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 4.5, df = 1, p-value = 0.03
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.035 0.224 -4.62 0.0000039 ***
## independentvariableYes 0.725 0.320 2.26 0.024 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 229.95 on 180 degrees of freedom
## Residual deviance: 224.78 on 179 degrees of freedom
## AIC: 228.8
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.0349 0.2240 -4.619 0.000003852
## independentvariableYes 0.7247 0.3205 2.261 0.023741570
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_leadership"
## [1] NA
## variable yesno Freq
## 1 No No 86
## 2 Yes No 41
## 3 No Yes 17
## 4 Yes Yes 37
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 19, df = 1, p-value = 0.00001
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.621 0.265 -6.11 0.000000001 ***
## independentvariableYes 1.518 0.349 4.35 0.000013629 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 220.62 on 180 degrees of freedom
## Residual deviance: 200.20 on 179 degrees of freedom
## AIC: 204.2
##
## Number of Fisher Scoring iterations: 3
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.621 0.2654 -6.108 0.000000001011
## independentvariableYes 1.518 0.3491 4.350 0.000013628964
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_leadership"
## [1] NA
## variable yesno Freq
## 1 No No 72
## 2 Yes No 72
## 3 No Yes 31
## 4 Yes Yes 6
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 12, df = 1, p-value = 0.0004
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.843 0.215 -3.92 0.000088 ***
## independentvariableYes -1.642 0.476 -3.45 0.00056 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 183.34 on 180 degrees of freedom
## Residual deviance: 168.31 on 179 degrees of freedom
## AIC: 172.3
##
## Number of Fisher Scoring iterations: 5
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8427 0.2148 -3.923 0.00008754
## independentvariableYes -1.6422 0.4761 -3.449 0.00056246
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_responsible"
## [1] "Consider data privacy implications and take actions to protect data privacy"
## variable yesno Freq
## 1 No No 64
## 2 Yes No 33
## 3 No Yes 34
## 4 Yes Yes 50
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 11, df = 1, p-value = 0.001
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.633 0.212 -2.98 0.00288 **
## independentvariableYes 1.048 0.309 3.39 0.00069 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 249.98 on 180 degrees of freedom
## Residual deviance: 238.08 on 179 degrees of freedom
## AIC: 242.1
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.6325 0.2122 -2.981 0.0028776
## independentvariableYes 1.0480 0.3088 3.394 0.0006882
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_responsible"
## [1] "Ask about the data or model to understand potential limitations it has"
## variable yesno Freq
## 1 No No 75
## 2 Yes No 22
## 3 No Yes 23
## 4 Yes Yes 61
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 43, df = 1, p-value = 0.00000000005
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.182 0.238 -4.96 0.00000070845 ***
## independentvariableYes 2.202 0.344 6.39 0.00000000016 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 249.98 on 180 degrees of freedom
## Residual deviance: 202.79 on 179 degrees of freedom
## AIC: 206.8
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.182 0.2384 -4.959 0.0000007084457
## independentvariableYes 2.202 0.3445 6.392 0.0000000001638
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_responsible"
## [1] "Conduct adversarial testing or red teaming"
## variable yesno Freq
## 1 No No 76
## 2 Yes No 50
## 3 No Yes 22
## 4 Yes Yes 33
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 5.6, df = 1, p-value = 0.02
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.240 0.242 -5.12 0.0000003 ***
## independentvariableYes 0.824 0.330 2.50 0.013 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 222.31 on 180 degrees of freedom
## Residual deviance: 215.93 on 179 degrees of freedom
## AIC: 219.9
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.2397 0.2421 -5.121 0.0000003046
## independentvariableYes 0.8242 0.3300 2.497 0.0125134264
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_responsible"
## [1] "Use explainability methods"
## variable yesno Freq
## 1 No No 80
## 2 Yes No 40
## 3 No Yes 18
## 4 Yes Yes 43
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 21, df = 1, p-value = 0.000005
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.492 0.261 -5.72 0.000000011 ***
## independentvariableYes 1.564 0.341 4.59 0.000004522 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 231.33 on 180 degrees of freedom
## Residual deviance: 208.43 on 179 degrees of freedom
## AIC: 212.4
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.492 0.2609 -5.718 0.00000001078
## independentvariableYes 1.564 0.3410 4.586 0.00000452165
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_responsible"
## [1] "Build transparency approaches"
## variable yesno Freq
## 1 No No 58
## 2 Yes No 43
## 3 No Yes 40
## 4 Yes Yes 40
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 0.71, df = 1, p-value = 0.4
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.372 0.206 -1.81 0.071 .
## independentvariableYes 0.299 0.301 0.99 0.320
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 248.48 on 180 degrees of freedom
## Residual deviance: 247.49 on 179 degrees of freedom
## AIC: 251.5
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.3716 0.2055 -1.8079 0.07063
## independentvariableYes 0.2992 0.3008 0.9947 0.31987
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_responsible"
## [1] "No actions taken"
## variable yesno Freq
## 1 No No 67
## 2 Yes No 44
## 3 No Yes 31
## 4 Yes Yes 39
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 3.8, df = 1, p-value = 0.05
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.771 0.217 -3.55 0.00039 ***
## independentvariableYes 0.650 0.309 2.10 0.03546 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 241.55 on 180 degrees of freedom
## Residual deviance: 237.08 on 179 degrees of freedom
## AIC: 241.1
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.7707 0.2172 -3.548 0.000388
## independentvariableYes 0.6501 0.3091 2.103 0.035463
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_responsible"
## [1] NA
## variable yesno Freq
## 1 No No 93
## 2 Yes No 64
## 3 No Yes 5
## 4 Yes Yes 19
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 11, df = 1, p-value = 0.001
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.923 0.459 -6.37 0.00000000019 ***
## independentvariableYes 1.709 0.528 3.24 0.0012 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 141.65 on 180 degrees of freedom
## Residual deviance: 128.80 on 179 degrees of freedom
## AIC: 132.8
##
## Number of Fisher Scoring iterations: 5
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.923 0.4591 -6.368 0.0000000001918
## independentvariableYes 1.709 0.5282 3.235 0.0012163968156
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_responsible"
## [1] NA
## variable yesno Freq
## 1 No No 73
## 2 Yes No 48
## 3 No Yes 25
## 4 Yes Yes 35
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 4.9, df = 1, p-value = 0.03
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.072 0.232 -4.62 0.0000038 ***
## independentvariableYes 0.756 0.321 2.35 0.019 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 229.95 on 180 degrees of freedom
## Residual deviance: 224.32 on 179 degrees of freedom
## AIC: 228.3
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.0716 0.2317 -4.624 0.000003759
## independentvariableYes 0.7557 0.3211 2.354 0.018593119
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_responsible"
## [1] NA
## variable yesno Freq
## 1 No No 81
## 2 Yes No 46
## 3 No Yes 17
## 4 Yes Yes 37
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 15, df = 1, p-value = 0.0001
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.561 0.267 -5.85 0.0000000048 ***
## independentvariableYes 1.344 0.346 3.88 0.0001 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 220.62 on 180 degrees of freedom
## Residual deviance: 204.51 on 179 degrees of freedom
## AIC: 208.5
##
## Number of Fisher Scoring iterations: 3
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.561 0.2668 -5.853 0.000000004836
## independentvariableYes 1.344 0.3463 3.880 0.000104618445
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_responsible"
## [1] NA
## variable yesno Freq
## 1 No No 66
## 2 Yes No 78
## 3 No Yes 32
## 4 Yes Yes 5
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 18, df = 1, p-value = 0.00002
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.724 0.215 -3.36 0.00078 ***
## independentvariableYes -2.023 0.509 -3.97 0.000071 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 183.34 on 180 degrees of freedom
## Residual deviance: 161.60 on 179 degrees of freedom
## AIC: 165.6
##
## Number of Fisher Scoring iterations: 5
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.7239 0.2154 -3.361 0.00077758
## independentvariableYes -2.0234 0.5091 -3.974 0.00007065
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_policy"
## [1] "Consider data privacy implications and take actions to protect data privacy"
## variable yesno Freq
## 1 No No 70
## 2 Yes No 27
## 3 No Yes 44
## 4 Yes Yes 40
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 6.7, df = 1, p-value = 0.009
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.464 0.192 -2.41 0.0158 *
## independentvariableYes 0.857 0.315 2.72 0.0064 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 249.98 on 180 degrees of freedom
## Residual deviance: 242.40 on 179 degrees of freedom
## AIC: 246.4
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.4643 0.1924 -2.413 0.015805
## independentvariableYes 0.8573 0.3147 2.724 0.006447
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_policy"
## [1] "Ask about the data or model to understand potential limitations it has"
## variable yesno Freq
## 1 No No 78
## 2 Yes No 19
## 3 No Yes 36
## 4 Yes Yes 48
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 26, df = 1, p-value = 0.0000004
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.773 0.201 -3.84 0.00012 ***
## independentvariableYes 1.700 0.338 5.03 0.00000048 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 249.98 on 180 degrees of freedom
## Residual deviance: 222.10 on 179 degrees of freedom
## AIC: 226.1
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.7732 0.2015 -3.837 0.0001243646
## independentvariableYes 1.7000 0.3377 5.033 0.0000004818
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_policy"
## [1] "Conduct adversarial testing or red teaming"
## variable yesno Freq
## 1 No No 84
## 2 Yes No 42
## 3 No Yes 30
## 4 Yes Yes 25
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 1.9, df = 1, p-value = 0.2
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.030 0.213 -4.84 0.0000013 ***
## independentvariableYes 0.511 0.330 1.55 0.12
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 222.31 on 180 degrees of freedom
## Residual deviance: 219.92 on 179 degrees of freedom
## AIC: 223.9
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.0296 0.2127 -4.841 0.000001293
## independentvariableYes 0.5108 0.3302 1.547 0.121885215
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_policy"
## [1] "Use explainability methods"
## variable yesno Freq
## 1 No No 82
## 2 Yes No 38
## 3 No Yes 32
## 4 Yes Yes 29
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 3.7, df = 1, p-value = 0.05
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.941 0.208 -4.51 0.0000063 ***
## independentvariableYes 0.671 0.323 2.08 0.038 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 231.33 on 180 degrees of freedom
## Residual deviance: 227.01 on 179 degrees of freedom
## AIC: 231
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.9410 0.2084 -4.515 0.000006346
## independentvariableYes 0.6707 0.3229 2.077 0.037773949
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_policy"
## [1] "Build transparency approaches"
## variable yesno Freq
## 1 No No 70
## 2 Yes No 31
## 3 No Yes 44
## 4 Yes Yes 36
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 3.3, df = 1, p-value = 0.07
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.464 0.192 -2.41 0.016 *
## independentvariableYes 0.614 0.312 1.97 0.049 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 248.48 on 180 degrees of freedom
## Residual deviance: 244.56 on 179 degrees of freedom
## AIC: 248.6
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.4643 0.1924 -2.413 0.01581
## independentvariableYes 0.6138 0.3115 1.970 0.04879
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_policy"
## [1] "No actions taken"
## variable yesno Freq
## 1 No No 78
## 2 Yes No 33
## 3 No Yes 36
## 4 Yes Yes 34
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 5.8, df = 1, p-value = 0.02
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.773 0.201 -3.84 0.00012 ***
## independentvariableYes 0.803 0.317 2.54 0.01123 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 241.55 on 180 degrees of freedom
## Residual deviance: 235.06 on 179 degrees of freedom
## AIC: 239.1
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.7732 0.2015 -3.837 0.0001244
## independentvariableYes 0.8030 0.3167 2.535 0.0112294
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_policy"
## [1] NA
## variable yesno Freq
## 1 No No 107
## 2 Yes No 50
## 3 No Yes 7
## 4 Yes Yes 17
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 12, df = 1, p-value = 0.0005
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.727 0.390 -6.99 0.0000000000028 ***
## independentvariableYes 1.648 0.481 3.43 0.00061 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 141.65 on 180 degrees of freedom
## Residual deviance: 128.52 on 179 degrees of freedom
## AIC: 132.5
##
## Number of Fisher Scoring iterations: 5
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.727 0.3901 -6.990 0.000000000002753
## independentvariableYes 1.648 0.4806 3.429 0.000605988717020
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_policy"
## [1] NA
## variable yesno Freq
## 1 No No 85
## 2 Yes No 36
## 3 No Yes 29
## 4 Yes Yes 31
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 7.3, df = 1, p-value = 0.007
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.075 0.215 -5.00 0.00000057 ***
## independentvariableYes 0.926 0.326 2.84 0.0045 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 229.95 on 180 degrees of freedom
## Residual deviance: 221.81 on 179 degrees of freedom
## AIC: 225.8
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.0754 0.2151 -5.00 0.000000572
## independentvariableYes 0.9258 0.3260 2.84 0.004513427
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_policy"
## [1] NA
## variable yesno Freq
## 1 No No 87
## 2 Yes No 40
## 3 No Yes 27
## 4 Yes Yes 27
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 4.8, df = 1, p-value = 0.03
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.170 0.220 -5.31 0.00000011 ***
## independentvariableYes 0.777 0.333 2.34 0.019 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 220.62 on 180 degrees of freedom
## Residual deviance: 215.15 on 179 degrees of freedom
## AIC: 219.2
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.170 0.2203 -5.311 0.0000001088
## independentvariableYes 0.777 0.3325 2.337 0.0194495073
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_policy"
## [1] NA
## variable yesno Freq
## 1 No No 81
## 2 Yes No 63
## 3 No Yes 33
## 4 Yes Yes 4
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 12, df = 1, p-value = 0.0004
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.898 0.207 -4.35 0.000014 ***
## independentvariableYes -1.859 0.555 -3.35 0.00082 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 183.34 on 180 degrees of freedom
## Residual deviance: 167.49 on 179 degrees of freedom
## AIC: 171.5
##
## Number of Fisher Scoring iterations: 5
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8979 0.2065 -4.348 0.00001373
## independentvariableYes -1.8589 0.5554 -3.347 0.00081780
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_incentives"
## [1] "Consider data privacy implications and take actions to protect data privacy"
## variable yesno Freq
## 1 No No 82
## 2 Yes No 15
## 3 No Yes 60
## 4 Yes Yes 24
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 3.8, df = 1, p-value = 0.05
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.312 0.170 -1.84 0.066 .
## independentvariableYes 0.782 0.370 2.11 0.035 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 249.98 on 180 degrees of freedom
## Residual deviance: 245.40 on 179 degrees of freedom
## AIC: 249.4
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.3124 0.1699 -1.839 0.06596
## independentvariableYes 0.7824 0.3704 2.112 0.03466
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_incentives"
## [1] "Ask about the data or model to understand potential limitations it has"
## variable yesno Freq
## 1 No No 84
## 2 Yes No 13
## 3 No Yes 58
## 4 Yes Yes 26
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 7.2, df = 1, p-value = 0.007
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.370 0.171 -2.17 0.0300 *
## independentvariableYes 1.064 0.380 2.80 0.0052 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 249.98 on 180 degrees of freedom
## Residual deviance: 241.71 on 179 degrees of freedom
## AIC: 245.7
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.3704 0.1707 -2.169 0.03005
## independentvariableYes 1.0635 0.3802 2.797 0.00515
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_incentives"
## [1] "Conduct adversarial testing or red teaming"
## variable yesno Freq
## 1 No No 109
## 2 Yes No 17
## 3 No Yes 33
## 4 Yes Yes 22
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 14, df = 1, p-value = 0.0001
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.195 0.199 -6.01 0.0000000018 ***
## independentvariableYes 1.453 0.379 3.83 0.00013 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 222.31 on 180 degrees of freedom
## Residual deviance: 207.39 on 179 degrees of freedom
## AIC: 211.4
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.195 0.1987 -6.014 0.000000001814
## independentvariableYes 1.453 0.3792 3.831 0.000127428575
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_incentives"
## [1] "Use explainability methods"
## variable yesno Freq
## 1 No No 98
## 2 Yes No 22
## 3 No Yes 44
## 4 Yes Yes 17
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 1.6, df = 1, p-value = 0.2
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.801 0.181 -4.41 0.00001 ***
## independentvariableYes 0.543 0.370 1.47 0.14
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 231.33 on 180 degrees of freedom
## Residual deviance: 229.22 on 179 degrees of freedom
## AIC: 233.2
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8008 0.1815 -4.413 0.00001021
## independentvariableYes 0.5429 0.3704 1.466 0.14270998
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_incentives"
## [1] "Build transparency approaches"
## variable yesno Freq
## 1 No No 82
## 2 Yes No 19
## 3 No Yes 60
## 4 Yes Yes 20
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 0.68, df = 1, p-value = 0.4
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.312 0.170 -1.84 0.066 .
## independentvariableYes 0.364 0.363 1.00 0.316
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 248.48 on 180 degrees of freedom
## Residual deviance: 247.47 on 179 degrees of freedom
## AIC: 251.5
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.3124 0.1699 -1.839 0.06596
## independentvariableYes 0.3637 0.3626 1.003 0.31591
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_incentives"
## [1] "No actions taken"
## variable yesno Freq
## 1 No No 93
## 2 Yes No 18
## 3 No Yes 49
## 4 Yes Yes 21
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 4, df = 1, p-value = 0.04
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.641 0.177 -3.63 0.00028 ***
## independentvariableYes 0.795 0.367 2.17 0.03009 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 241.55 on 180 degrees of freedom
## Residual deviance: 236.83 on 179 degrees of freedom
## AIC: 240.8
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.6408 0.1765 -3.630 0.0002834
## independentvariableYes 0.7949 0.3665 2.169 0.0300926
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_incentives"
## [1] NA
## variable yesno Freq
## 1 No No 130
## 2 Yes No 27
## 3 No Yes 12
## 4 Yes Yes 12
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 11, df = 1, p-value = 0.0007
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.383 0.302 -7.90 0.0000000000000029 ***
## independentvariableYes 1.572 0.460 3.42 0.00063 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 141.65 on 180 degrees of freedom
## Residual deviance: 130.40 on 179 degrees of freedom
## AIC: 134.4
##
## Number of Fisher Scoring iterations: 5
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.383 0.3017 -7.897 0.000000000000002852
## independentvariableYes 1.572 0.4598 3.418 0.000629945814988855
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_incentives"
## [1] NA
## variable yesno Freq
## 1 No No 98
## 2 Yes No 23
## 3 No Yes 44
## 4 Yes Yes 16
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 0.98, df = 1, p-value = 0.3
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.801 0.181 -4.41 0.00001 ***
## independentvariableYes 0.438 0.373 1.17 0.24
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 229.95 on 180 degrees of freedom
## Residual deviance: 228.59 on 179 degrees of freedom
## AIC: 232.6
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8008 0.1815 -4.413 0.00001021
## independentvariableYes 0.4379 0.3727 1.175 0.24005583
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_incentives"
## [1] NA
## variable yesno Freq
## 1 No No 106
## 2 Yes No 21
## 3 No Yes 36
## 4 Yes Yes 18
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 5.4, df = 1, p-value = 0.02
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.080 0.193 -5.60 0.000000022 ***
## independentvariableYes 0.926 0.375 2.47 0.013 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 220.62 on 180 degrees of freedom
## Residual deviance: 214.63 on 179 degrees of freedom
## AIC: 218.6
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.0799 0.1929 -5.598 0.00000002165
## independentvariableYes 0.9258 0.3747 2.471 0.01348049011
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_incentives"
## [1] NA
## variable yesno Freq
## 1 No No 108
## 2 Yes No 36
## 3 No Yes 34
## 4 Yes Yes 3
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 4, df = 1, p-value = 0.04
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.156 0.197 -5.88 0.0000000042 ***
## independentvariableYes -1.329 0.632 -2.10 0.036 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 183.34 on 180 degrees of freedom
## Residual deviance: 177.47 on 179 degrees of freedom
## AIC: 181.5
##
## Number of Fisher Scoring iterations: 5
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.156 0.1966 -5.877 0.00000000417
## independentvariableYes -1.329 0.6323 -2.102 0.03554258538
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_neither"
## [1] "Consider data privacy implications and take actions to protect data privacy"
## variable yesno Freq
## 1 No No 68
## 2 Yes No 29
## 3 No Yes 76
## 4 Yes Yes 8
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 10, df = 1, p-value = 0.001
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.111 0.167 0.67 0.5052
## independentvariableYes -1.399 0.433 -3.23 0.0012 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 249.98 on 180 degrees of freedom
## Residual deviance: 237.82 on 179 degrees of freedom
## AIC: 241.8
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.1112 0.1669 0.6663 0.505205
## independentvariableYes -1.3991 0.4328 -3.2324 0.001228
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_neither"
## [1] "Ask about the data or model to understand potential limitations it has"
## variable yesno Freq
## 1 No No 62
## 2 Yes No 35
## 3 No Yes 82
## 4 Yes Yes 2
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 29, df = 1, p-value = 0.00000006
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.280 0.168 1.66 0.097 .
## independentvariableYes -3.142 0.746 -4.21 0.000026 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 249.98 on 180 degrees of freedom
## Residual deviance: 212.40 on 179 degrees of freedom
## AIC: 216.4
##
## Number of Fisher Scoring iterations: 5
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.2796 0.1683 1.661 0.09666311
## independentvariableYes -3.1418 0.7462 -4.210 0.00002552
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_neither"
## [1] "Conduct adversarial testing or red teaming"
## variable yesno Freq
## 1 No No 96
## 2 Yes No 30
## 3 No Yes 48
## 4 Yes Yes 7
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 2.3, df = 1, p-value = 0.1
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.693 0.177 -3.92 0.000088 ***
## independentvariableYes -0.762 0.455 -1.67 0.094 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 222.31 on 180 degrees of freedom
## Residual deviance: 219.21 on 179 degrees of freedom
## AIC: 223.2
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.6931 0.1768 -3.921 0.00008817
## independentvariableYes -0.7621 0.4555 -1.673 0.09425743
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_neither"
## [1] "Use explainability methods"
## variable yesno Freq
## 1 No No 89
## 2 Yes No 31
## 3 No Yes 55
## 4 Yes Yes 6
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 5.4, df = 1, p-value = 0.02
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.481 0.172 -2.81 0.005 **
## independentvariableYes -1.161 0.478 -2.43 0.015 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 231.33 on 180 degrees of freedom
## Residual deviance: 224.32 on 179 degrees of freedom
## AIC: 228.3
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.4813 0.1715 -2.806 0.005013
## independentvariableYes -1.1609 0.4779 -2.429 0.015121
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_neither"
## [1] "Build transparency approaches"
## variable yesno Freq
## 1 No No 82
## 2 Yes No 19
## 3 No Yes 62
## 4 Yes Yes 18
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 0.18, df = 1, p-value = 0.7
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.280 0.168 -1.66 0.097 .
## independentvariableYes 0.226 0.369 0.61 0.542
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 248.48 on 180 degrees of freedom
## Residual deviance: 248.11 on 179 degrees of freedom
## AIC: 252.1
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.2796 0.1683 -1.6613 0.09666
## independentvariableYes 0.2255 0.3695 0.6104 0.54161
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_neither"
## [1] "No actions taken"
## variable yesno Freq
## 1 No No 84
## 2 Yes No 27
## 3 No Yes 60
## 4 Yes Yes 10
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 2.1, df = 1, p-value = 0.1
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.336 0.169 -1.99 0.047 *
## independentvariableYes -0.657 0.407 -1.61 0.107
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 241.55 on 180 degrees of freedom
## Residual deviance: 238.79 on 179 degrees of freedom
## AIC: 242.8
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.3365 0.1690 -1.991 0.04653
## independentvariableYes -0.6568 0.4069 -1.614 0.10655
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_neither"
## [1] NA
## variable yesno Freq
## 1 No No 122
## 2 Yes No 35
## 3 No Yes 22
## 4 Yes Yes 2
## Warning in chisq.test(table(cbind(as.data.frame(orgsresponsiblegenai[iv]), : Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 1.7, df = 1, p-value = 0.2
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.713 0.232 -7.40 0.00000000000014 ***
## independentvariableYes -1.149 0.763 -1.51 0.13
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 141.65 on 180 degrees of freedom
## Residual deviance: 138.68 on 179 degrees of freedom
## AIC: 142.7
##
## Number of Fisher Scoring iterations: 5
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.713 0.2316 -7.395 0.000000000000141
## independentvariableYes -1.149 0.7630 -1.506 0.132027157691305
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_neither"
## [1] NA
## variable yesno Freq
## 1 No No 89
## 2 Yes No 32
## 3 No Yes 55
## 4 Yes Yes 5
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 7, df = 1, p-value = 0.008
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.481 0.172 -2.81 0.0050 **
## independentvariableYes -1.375 0.511 -2.69 0.0071 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 229.95 on 180 degrees of freedom
## Residual deviance: 220.83 on 179 degrees of freedom
## AIC: 224.8
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.4813 0.1715 -2.806 0.005013
## independentvariableYes -1.3750 0.5106 -2.693 0.007078
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_neither"
## [1] NA
## variable yesno Freq
## 1 No No 93
## 2 Yes No 34
## 3 No Yes 51
## 4 Yes Yes 3
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 9.2, df = 1, p-value = 0.002
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.601 0.174 -3.45 0.00056 ***
## independentvariableYes -1.827 0.627 -2.91 0.00357 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 220.62 on 180 degrees of freedom
## Residual deviance: 208.02 on 179 degrees of freedom
## AIC: 212
##
## Number of Fisher Scoring iterations: 5
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.6008 0.1742 -3.448 0.0005649
## independentvariableYes -1.8270 0.6270 -2.914 0.0035692
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`
## [1] "orghave_neither"
## [1] NA
## variable yesno Freq
## 1 No No 124
## 2 Yes No 20
## 3 No Yes 20
## 4 Yes Yes 17
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(cbind(as.data.frame(orgsresponsiblegenai[iv]), as.data.frame(orgsresponsiblegenai[column])))
## X-squared = 17, df = 1, p-value = 0.00004
##
##
## Call:
## glm(formula = yvariable ~ independentvariable, family = "binomial",
## data = orgsresponsiblegenai)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.825 0.241 -7.57 0.000000000000037 ***
## independentvariableYes 1.662 0.409 4.07 0.000047331845012 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 183.34 on 180 degrees of freedom
## Residual deviance: 167.10 on 179 degrees of freedom
## AIC: 171.1
##
## Number of Fisher Scoring iterations: 4
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.825 0.2410 -7.572 0.0000000000000368
## independentvariableYes 1.662 0.4085 4.068 0.0000473318450125
## Waiting for profiling to be done...
## Joining with `by = join_by(rowname)`