LME models (Project 1: Familial)

Sample description for model 1 (familial)

LME model 1: Mutation pos, baseline CDR 0 or .5

Presents graphs first, then a print out of the models. Note the failure to converge/warnings of several models.
Removed condition requiring age<=45. Using original CDR+NACC-FTLD sum of boxes.

## [1] "y.plot =  baseline_gonogo"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 251.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -11.9366  -0.0330  -0.0090   0.0061   3.4948 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         0.53221  0.72952      
##            monthssincebaseline 0.00107  0.03271  0.14
##  Residual                      0.03847  0.19614      
## Number of obs: 315, groups:  unique_id, 55
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)  
## (Intercept)                -1.129275   0.768810 48.581986  -1.469   0.1483  
## y.plot                     -0.195999   0.101091 50.562995  -1.939   0.0581 .
## monthssincebaseline         0.004859   0.005587 35.409451   0.870   0.3903  
## baseline_age                0.002430   0.008818 48.810876   0.276   0.7840  
## educ                        0.086560   0.044815 49.263624   1.931   0.0592 .
## y.plot:monthssincebaseline  0.002863   0.005744 34.439278   0.498   0.6214  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.193                            
## mnthssncbsl  0.027 -0.003                     
## baseline_ag -0.374  0.236  0.007              
## educ        -0.846  0.069 -0.021 -0.162       
## y.plt:mnths -0.002  0.075 -0.054  0.012 -0.005
## [1] "y.plot =  baseline_strp"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 236.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -12.1883  -0.0349  -0.0077   0.0088   3.5878 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.4534602 0.67339      
##            monthssincebaseline 0.0009413 0.03068  0.29
##  Residual                      0.0370942 0.19260      
## Number of obs: 317, groups:  unique_id, 57
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)  
## (Intercept)                -0.372014   0.740357 48.004741  -0.502   0.6176  
## y.plot                     -0.266306   0.119745 53.344973  -2.224   0.0304 *
## monthssincebaseline         0.005653   0.005145 36.374904   1.099   0.2791  
## baseline_age               -0.012331   0.009431 50.106048  -1.307   0.1970  
## educ                        0.074560   0.040610 48.685336   1.836   0.0725 .
## y.plot:monthssincebaseline -0.009558   0.005332 37.178449  -1.792   0.0812 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.454                            
## mnthssncbsl  0.031  0.028                     
## baseline_ag -0.467  0.597  0.042              
## educ        -0.815  0.133 -0.036 -0.118       
## y.plt:mnths  0.016  0.140 -0.040 -0.010 -0.010
## [1] "y.plot =  baseline_flk"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 250.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -12.2762  -0.0356  -0.0073   0.0122   3.6129 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.4603744 0.67851      
##            monthssincebaseline 0.0009618 0.03101  0.12
##  Residual                      0.0363828 0.19074      
## Number of obs: 337, groups:  unique_id, 61
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.154308   0.728815 56.436500  -0.212 0.833085    
## y.plot                     -0.438528   0.111227 58.620271  -3.943 0.000218 ***
## monthssincebaseline         0.004375   0.005053 40.248471   0.866 0.391809    
## baseline_age               -0.019853   0.009642 56.991685  -2.059 0.044070 *  
## educ                        0.090601   0.039699 56.524814   2.282 0.026263 *  
## y.plot:monthssincebaseline -0.003819   0.005123 41.110974  -0.746 0.460211    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.421                            
## mnthssncbsl  0.014  0.011                     
## baseline_ag -0.477  0.611  0.015              
## educ        -0.786  0.048 -0.017 -0.155       
## y.plt:mnths  0.010  0.032 -0.045 -0.010 -0.004
## [1] "y.plot =  baseline_nback"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 215.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -11.8705  -0.0411  -0.0069   0.0183   3.4766 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.3647526 0.60395      
##            monthssincebaseline 0.0009174 0.03029  0.32
##  Residual                      0.0392482 0.19811      
## Number of obs: 294, groups:  unique_id, 50
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)                -0.796937   0.605602 40.944176  -1.316  0.19551   
## y.plot                     -0.306141   0.089120 46.403800  -3.435  0.00126 **
## monthssincebaseline         0.007069   0.005300 31.896112   1.334  0.19171   
## baseline_age               -0.010809   0.007786 44.007780  -1.388  0.17209   
## educ                        0.095475   0.038279 42.979781   2.494  0.01655 * 
## y.plot:monthssincebaseline -0.016081   0.005448 32.355291  -2.952  0.00584 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.068                            
## mnthssncbsl  0.057  0.024                     
## baseline_ag -0.259  0.420  0.032              
## educ        -0.821 -0.169 -0.043 -0.321       
## y.plt:mnths  0.004  0.169 -0.076 -0.032  0.015
## [1] "y.plot =  baseline_humi"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 251
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -12.1821  -0.0386  -0.0044   0.0120   3.5820 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.4784153 0.69168      
##            monthssincebaseline 0.0009995 0.03161  0.18
##  Residual                      0.0369540 0.19223      
## Number of obs: 331, groups:  unique_id, 59
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)                -1.079057   0.684477 52.286719  -1.576  0.12095   
## y.plot                     -0.338245   0.106404 53.915213  -3.179  0.00245 **
## monthssincebaseline         0.004414   0.005189 38.766238   0.851  0.40016   
## baseline_age               -0.011306   0.009017 52.647863  -1.254  0.21542   
## educ                        0.120864   0.042390 52.899062   2.851  0.00620 **
## y.plot:monthssincebaseline -0.001969   0.005161 39.138119  -0.382  0.70484   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.087                            
## mnthssncbsl  0.030  0.019                     
## baseline_ag -0.295  0.508  0.022              
## educ        -0.808 -0.216 -0.028 -0.310       
## y.plt:mnths  0.011  0.102 -0.021  0.012 -0.017
## [1] "y.plot =  baseline_test3meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 252.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -12.2668  -0.0410  -0.0045   0.0123   3.6122 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.4745789 0.68890      
##            monthssincebaseline 0.0009692 0.03113  0.15
##  Residual                      0.0364319 0.19087      
## Number of obs: 337, groups:  unique_id, 61
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                -0.811773   0.685696 55.152706  -1.184 0.241543    
## y.plot                     -0.409466   0.111698 56.374295  -3.666 0.000547 ***
## monthssincebaseline         0.004224   0.005065 40.238648   0.834 0.409162    
## baseline_age               -0.017340   0.009527 55.400335  -1.820 0.074143 .  
## educ                        0.122535   0.040692 55.658041   3.011 0.003907 ** 
## y.plot:monthssincebaseline -0.003035   0.005137 40.771369  -0.591 0.557874    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.217                            
## mnthssncbsl  0.023  0.017                     
## baseline_ag -0.369  0.583  0.021              
## educ        -0.779 -0.160 -0.026 -0.281       
## y.plt:mnths  0.007  0.075 -0.036  0.006 -0.011
## [1] "y.plot =  baseline_test5meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 252.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -12.3608  -0.0371  -0.0093   0.0136   3.6318 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         0.4795919 0.69253      
##            monthssincebaseline 0.0009145 0.03024  0.04
##  Residual                      0.0358432 0.18932      
## Number of obs: 343, groups:  unique_id, 63
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)   
## (Intercept)                -0.754767   0.696474 58.061637  -1.084  0.28298   
## y.plot                     -0.366402   0.110560 58.338460  -3.314  0.00158 **
## monthssincebaseline         0.004592   0.004940 40.157402   0.930  0.35814   
## baseline_age               -0.013705   0.009450 58.143548  -1.450  0.15238   
## educ                        0.107476   0.040418 58.128838   2.659  0.01011 * 
## y.plot:monthssincebaseline -0.007477   0.005057 40.265241  -1.478  0.14706   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.262                            
## mnthssncbsl  0.003  0.005                     
## baseline_ag -0.391  0.600  0.005              
## educ        -0.790 -0.114 -0.007 -0.241       
## y.plt:mnths  0.002 -0.003 -0.046 -0.002 -0.001

Sample description for model 2 (familial)

Model 2 same as model 1, but in a sample with baseline CDR+NACC-FTLD global scores >= 0.5 ( no zeros). Sample size was too small to look at 1+. Removed condition requiring age<=45. Using original CDR+NACC-FTLD sum of boxes.
## [1] "N participants at each visit (NOT chapter)"
## 
##  1  2  3 
## 39 33 24 
## [1] "Gentic breakdown"
## 
##   C9 MAPT 
##   46   19 
## [1] "Baseline CDR-NACC+FTLD-motor global score"
## 
## 0.5   1   2 
##  21   6   2

LME model 2: Mutation pos baseline CDR 0.5+ or greater

Presents graphs first, then a print out of the models. Note the failure to converge/warnings of several models.
Removed condition requiring age<=45. Using original CDR+NACC-FTLD sum of boxes.

## [1] "y.plot =  baseline_gonogo"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 186.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.2664 -0.0479 -0.0005  0.0728  1.6413 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         2.748555 1.65788       
##            monthssincebaseline 0.009041 0.09508  -0.45
##  Residual                      0.141754 0.37650       
## Number of obs: 74, groups:  unique_id, 17
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                -4.94013    1.96763 12.60271  -2.511 0.026553 *  
## y.plot                      0.33552    0.37304 12.01441   0.899 0.386090    
## monthssincebaseline         0.03285    0.03069  7.67913   1.070 0.316967    
## baseline_age                0.10239    0.03734 12.59098   2.742 0.017206 *  
## educ                        0.10492    0.01891  8.60358   5.550 0.000419 ***
## y.plot:monthssincebaseline  0.01761    0.03650  7.09191   0.482 0.644039    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.308                            
## mnthssncbsl -0.071 -0.020                     
## baseline_ag -0.957  0.350  0.005              
## educ        -0.043 -0.104 -0.047 -0.164       
## y.plt:mnths -0.030 -0.262  0.012  0.028 -0.005
## [1] "y.plot =  baseline_strp"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 135.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.5817 -0.1197 -0.0195  0.1068  1.5924 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         1.379838 1.17467       
##            monthssincebaseline 0.003946 0.06281  -0.78
##  Residual                      0.176073 0.41961       
## Number of obs: 58, groups:  unique_id, 12
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)  
## (Intercept)                -5.85024    2.41644  7.43900  -2.421   0.0440 *
## y.plot                     -0.18699    0.45785  9.58896  -0.408   0.6919  
## monthssincebaseline         0.02931    0.02209  8.25963   1.327   0.2202  
## baseline_age                0.05066    0.02590  7.91096   1.956   0.0866 .
## educ                        0.32634    0.11908  7.57539   2.740   0.0268 *
## y.plot:monthssincebaseline -0.05276    0.02815  8.45289  -1.875   0.0957 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.149                            
## mnthssncbsl -0.345  0.127                     
## baseline_ag -0.546  0.144  0.065              
## educ        -0.830  0.059  0.256  0.009       
## y.plt:mnths -0.070 -0.646 -0.172  0.202 -0.029
## [1] "y.plot =  baseline_flk"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 195
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.5657 -0.0708 -0.0021  0.0633  1.8293 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         2.440995 1.56237       
##            monthssincebaseline 0.004563 0.06755  -0.46
##  Residual                      0.127859 0.35757       
## Number of obs: 83, groups:  unique_id, 19
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)   
## (Intercept)                -4.22328    2.27963 14.45922  -1.853  0.08446 . 
## y.plot                      0.23288    0.57002 15.59500   0.409  0.68842   
## monthssincebaseline         0.02333    0.02037 10.11459   1.145  0.27838   
## baseline_age                0.08843    0.03824 14.37650   2.313  0.03602 * 
## educ                        0.10421    0.02820 13.05595   3.695  0.00268 **
## y.plot:monthssincebaseline -0.04446    0.01664  8.99733  -2.672  0.02556 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.656                            
## mnthssncbsl -0.116  0.030                     
## baseline_ag -0.958  0.541  0.056              
## educ        -0.563  0.742  0.027  0.355       
## y.plt:mnths -0.043 -0.184  0.127  0.015  0.110
## [1] "y.plot =  baseline_nback"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 120.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.2799 -0.0260  0.0394  0.1167  1.4651 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         2.28240  1.51076       
##            monthssincebaseline 0.00635  0.07969  -0.99
##  Residual                      0.19546  0.44211       
## Number of obs: 50, groups:  unique_id, 10
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)  
## (Intercept)                -2.56658    1.69565  2.95324  -1.514   0.2287  
## y.plot                     -1.13751    0.50097  8.09772  -2.271   0.0525 .
## monthssincebaseline         0.03364    0.02763  6.92034   1.218   0.2632  
## baseline_age               -0.06666    0.02108  1.58372  -3.162   0.1165  
## educ                        0.47404    0.07916  2.51783   5.989   0.0151 *
## y.plot:monthssincebaseline -0.04818    0.02600  6.39384  -1.853   0.1103  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.116                            
## mnthssncbsl -0.488 -0.179                     
## baseline_ag -0.560  0.315  0.003              
## educ        -0.736 -0.026  0.276 -0.067       
## y.plt:mnths -0.184 -0.859  0.190  0.145  0.050
## [1] "y.plot =  baseline_humi"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 193.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.5234 -0.0530 -0.0055  0.0484  1.7383 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         2.322839 1.52409       
##            monthssincebaseline 0.008087 0.08993  -0.06
##  Residual                      0.130791 0.36165       
## Number of obs: 80, groups:  unique_id, 18
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                -2.09256    2.33540 13.89136  -0.896 0.385508    
## y.plot                     -0.46670    0.42296 13.86123  -1.103 0.288640    
## monthssincebaseline         0.03740    0.02966  8.82448   1.261 0.239585    
## baseline_age                0.05541    0.04287 13.87223   1.293 0.217287    
## educ                        0.08533    0.01976 14.00994   4.318 0.000707 ***
## y.plot:monthssincebaseline -0.02183    0.03694  9.38151  -0.591 0.568421    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.643                            
## mnthssncbsl -0.022 -0.002                     
## baseline_ag -0.971  0.620  0.010              
## educ        -0.223  0.222  0.003  0.045       
## y.plt:mnths -0.013 -0.054  0.236  0.008  0.018
## [1] "y.plot =  baseline_test3meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 197.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.5835 -0.0533  0.0009  0.0796  1.8051 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         2.268839 1.50627       
##            monthssincebaseline 0.005484 0.07406  -0.21
##  Residual                      0.127960 0.35771       
## Number of obs: 83, groups:  unique_id, 19
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)   
## (Intercept)                -2.34978    2.56290 14.65548  -0.917  0.37407   
## y.plot                     -0.36322    0.50523 15.07081  -0.719  0.48319   
## monthssincebaseline         0.02882    0.02300  9.71928   1.253  0.23942   
## baseline_age                0.06116    0.04471 14.56386   1.368  0.19212   
## educ                        0.08280    0.02330 14.61692   3.554  0.00299 **
## y.plot:monthssincebaseline -0.04057    0.02146  9.67829  -1.891  0.08896 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.739                            
## mnthssncbsl -0.064  0.030                     
## baseline_ag -0.974  0.684  0.038              
## educ        -0.498  0.588  0.019  0.335       
## y.plt:mnths -0.030 -0.069  0.136  0.015  0.084
## [1] "y.plot =  baseline_test5meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 194.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.5763 -0.0596  0.0039  0.0767  1.7863 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         2.318587 1.5227        
##            monthssincebaseline 0.004213 0.0649   -0.33
##  Residual                      0.128369 0.3583        
## Number of obs: 83, groups:  unique_id, 19
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                -2.44311    2.36608 14.84516  -1.033 0.318342    
## y.plot                     -0.30728    0.47407 15.32826  -0.648 0.526470    
## monthssincebaseline         0.02600    0.02005  9.34347   1.296 0.226002    
## baseline_age                0.06018    0.04197 14.69852   1.434 0.172534    
## educ                        0.08977    0.02124 12.98832   4.227 0.000991 ***
## y.plot:monthssincebaseline -0.05239    0.01982  9.41783  -2.643 0.025808 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.682                            
## mnthssncbsl -0.100  0.044                     
## baseline_ag -0.971  0.631  0.059              
## educ        -0.414  0.486  0.016  0.240       
## y.plt:mnths -0.070 -0.109  0.124  0.051  0.128

LME models (Project 2: Sporadic)

Sample description for model 1 (Sporadic)

LME model 1: Mutation- baseline CDR <=0.5

Presents graphs first, then a print out of the models. Note the failure to converge/warnings of several models.
Removed age 45 restriction. using OG FTLD CDR
## [1] "y.plot =  baseline_gonogo"
## boundary (singular) fit: see help('isSingular')
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 352.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.1363 -0.0633 -0.0145  0.0496  4.2756 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         8.190e-01 0.904985     
##            monthssincebaseline 1.263e-05 0.003553 1.00
##  Residual                      1.238e-01 0.351805     
## Number of obs: 239, groups:  unique_id, 40
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)                 2.591e-01  1.041e+00  4.020e+01   0.249    0.805  
## y.plot                     -2.972e-01  1.941e-01  3.616e+01  -1.531    0.135  
## monthssincebaseline         2.202e-03  1.776e-03  1.003e+02   1.240    0.218  
## baseline_age                2.650e-02  1.214e-02  3.917e+01   2.184    0.035 *
## educ                       -6.743e-02  4.426e-02  4.037e+01  -1.524    0.135  
## y.plot:monthssincebaseline -7.838e-04  1.402e-03  3.659e+01  -0.559    0.580  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.214                            
## mnthssncbsl  0.057 -0.046                     
## baseline_ag -0.689  0.377 -0.008              
## educ        -0.764 -0.057 -0.030  0.080       
## y.plt:mnths  0.011  0.398  0.324  0.075 -0.098
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## [1] "y.plot =  baseline_strp"
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.305282 (tol = 0.002, component 1)

## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -331.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2507 -0.0339  0.0009  0.0281  5.3383 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         6.482e-01 0.805135     
##            monthssincebaseline 7.308e-06 0.002703 0.04
##  Residual                      3.145e-03 0.056084     
## Number of obs: 237, groups:  unique_id, 43
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)                -0.0486082  0.9408195 42.2921312  -0.052   0.9590  
## y.plot                     -0.0752999  0.1823556 42.3154071  -0.413   0.6817  
## monthssincebaseline         0.0009251  0.0006622 29.5490405   1.397   0.1728  
## baseline_age                0.0227123  0.0131775 42.3149213   1.724   0.0921 .
## educ                       -0.0444999  0.0379225 42.2797956  -1.173   0.2472  
## y.plot:monthssincebaseline -0.0005979  0.0006415 33.4886890  -0.932   0.3580  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.472                            
## mnthssncbsl -0.003  0.003                     
## baseline_ag -0.722  0.724  0.005              
## educ        -0.670 -0.094  0.002 -0.014       
## y.plt:mnths -0.004  0.011 -0.016  0.004  0.002
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.305282 (tol = 0.002, component 1)
## [1] "y.plot =  baseline_flk"
## boundary (singular) fit: see help('isSingular')

## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 366.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.2944 -0.0729 -0.0183  0.0597  4.5454 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         7.065e-01 0.840532     
##            monthssincebaseline 1.222e-05 0.003496 1.00
##  Residual                      1.123e-01 0.335145     
## Number of obs: 265, groups:  unique_id, 47
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)                 4.573e-01  9.396e-01  4.805e+01   0.487   0.6287  
## y.plot                     -3.787e-01  1.537e-01  4.520e+01  -2.463   0.0177 *
## monthssincebaseline         1.349e-03  1.587e-03  9.753e+01   0.850   0.3973  
## baseline_age                1.420e-02  1.261e-02  4.631e+01   1.126   0.2659  
## educ                       -4.298e-02  4.125e-02  4.864e+01  -1.042   0.3026  
## y.plot:monthssincebaseline  5.029e-04  1.732e-03  1.336e+02   0.290   0.7719  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.272                            
## mnthssncbsl -0.031  0.109                     
## baseline_ag -0.658  0.639  0.130              
## educ        -0.701 -0.233 -0.042 -0.058       
## y.plt:mnths -0.025  0.098 -0.212 -0.019  0.056
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## [1] "y.plot =  baseline_nback"
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.353007 (tol = 0.002, component 1)

## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: -288.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0315 -0.0516  0.0018  0.0450  5.0650 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         7.005e-01 0.836940     
##            monthssincebaseline 6.899e-06 0.002627 0.02
##  Residual                      3.485e-03 0.059038     
## Number of obs: 212, groups:  unique_id, 36
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)                -0.0123290  0.9872214 35.7601143  -0.012   0.9901  
## y.plot                     -0.2142567  0.1552653 35.7497869  -1.380   0.1762  
## monthssincebaseline         0.0011118  0.0006917 23.6524519   1.607   0.1213  
## baseline_age                0.0234561  0.0120227 35.7604521   1.951   0.0589 .
## educ                       -0.0468761  0.0415493 35.7687096  -1.128   0.2667  
## y.plot:monthssincebaseline -0.0011302  0.0006677 31.0891969  -1.693   0.1005  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.241                            
## mnthssncbsl  0.000  0.000                     
## baseline_ag -0.691  0.429  0.000              
## educ        -0.747 -0.060 -0.001  0.057       
## y.plt:mnths  0.000 -0.004 -0.062  0.001  0.000
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.353007 (tol = 0.002, component 1)
## [1] "y.plot =  baseline_humi"
## boundary (singular) fit: see help('isSingular')

## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 359.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.2937 -0.0696 -0.0062  0.0435  4.3660 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         6.742e-01 0.82108      
##            monthssincebaseline 6.001e-06 0.00245  1.00
##  Residual                      1.179e-01 0.34340      
## Number of obs: 256, groups:  unique_id, 44
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)                  0.645979   0.987742  46.312541   0.654   0.5163  
## y.plot                      -0.469061   0.179866  47.078637  -2.608   0.0122 *
## monthssincebaseline          0.002417   0.001527  91.961965   1.583   0.1169  
## baseline_age                 0.010116   0.014028  47.004536   0.721   0.4744  
## educ                        -0.035017   0.042861  46.187331  -0.817   0.4181  
## y.plot:monthssincebaseline  -0.002485   0.001693 107.155892  -1.467   0.1452  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.334                            
## mnthssncbsl  0.023 -0.039                     
## baseline_ag -0.683  0.704 -0.016              
## educ        -0.624 -0.311  0.008 -0.130       
## y.plt:mnths  0.023  0.030  0.108 -0.043  0.008
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## [1] "y.plot =  baseline_test3meanZ"
## boundary (singular) fit: see help('isSingular')

## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 362.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3749 -0.0624 -0.0145  0.0509  4.4769 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         6.376e-01 0.79848      
##            monthssincebaseline 8.879e-06 0.00298  1.00
##  Residual                      1.131e-01 0.33624      
## Number of obs: 265, groups:  unique_id, 47
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)   
## (Intercept)                  0.922155   0.943352  46.026088   0.978  0.33342   
## y.plot                      -0.562510   0.178985  45.546519  -3.143  0.00294 **
## monthssincebaseline          0.002110   0.001507  90.358536   1.400  0.16492   
## baseline_age                 0.002053   0.014127  45.646609   0.145  0.88510   
## educ                        -0.027796   0.040954  46.123168  -0.679  0.50071   
## y.plot:monthssincebaseline  -0.001395   0.001714 113.650800  -0.814  0.41735   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.377                            
## mnthssncbsl -0.001  0.006                     
## baseline_ag -0.684  0.751  0.033              
## educ        -0.596 -0.324 -0.004 -0.164       
## y.plt:mnths  0.017  0.029  0.010 -0.057  0.035
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## [1] "y.plot =  baseline_test5meanZ"
## boundary (singular) fit: see help('isSingular')

## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 376.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.5812 -0.0568 -0.0101  0.0273  4.6051 
## 
## Random effects:
##  Groups    Name                Variance  Std.Dev. Corr
##  unique_id (Intercept)         7.519e-01 0.867139     
##            monthssincebaseline 9.193e-06 0.003032 1.00
##  Residual                      1.059e-01 0.325470     
## Number of obs: 282, groups:  unique_id, 50
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                  0.562143   0.978772  50.415477   0.574    0.568
## y.plot                      -0.275245   0.178927  49.125787  -1.538    0.130
## monthssincebaseline          0.002050   0.001440 112.248083   1.424    0.157
## baseline_age                 0.016344   0.013443  50.155597   1.216    0.230
## educ                        -0.055348   0.040740  50.544704  -1.359    0.180
## y.plot:monthssincebaseline  -0.001841   0.001659 154.405959  -1.109    0.269
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.432                            
## mnthssncbsl -0.014  0.017                     
## baseline_ag -0.707  0.719  0.051              
## educ        -0.661 -0.160  0.003 -0.047       
## y.plt:mnths  0.000  0.077 -0.016 -0.021  0.018
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

Sample description for model 2 (Sporadic)

## [1] "N participants at each visit (NOT chapter)"
## 
##  1  2  3  4  5  6 
## 86 72 51  3  4  1 
## [1] "Gentic breakdown"
## 
## NONE 
##  118 
## [1] "Baseline CDR-NACC+FTLD-motor global score"
## 
## 0.5   1 
##  28  54

LME model 2: Mutation-, baseline CDR 0.5 or greater

Presents graphs first, then a print out of the models. Note the failure to converge/warnings of several models.
Models do not converge. We see a trend for the interaction of Nback and time.

## [1] "y.plot =  baseline_gonogo"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 468.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.03520 -0.08189 -0.01522  0.08050  2.74173 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         8.35959  2.8913       
##            monthssincebaseline 0.03757  0.1938   0.20
##  Residual                      0.31739  0.5634       
## Number of obs: 155, groups:  unique_id, 28
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                 2.01840    5.42202 24.63614   0.372 0.712882    
## y.plot                     -1.60975    0.41076 24.51363  -3.919 0.000627 ***
## monthssincebaseline         0.07529    0.05149 12.29476   1.462 0.168768    
## baseline_age               -0.01735    0.07396 24.45492  -0.235 0.816448    
## educ                        0.20826    0.22616 24.03798   0.921 0.366293    
## y.plot:monthssincebaseline  0.01286    0.04346 12.64899   0.296 0.772177    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.048                            
## mnthssncbsl  0.034  0.032                     
## baseline_ag -0.728 -0.055 -0.013              
## educ        -0.496  0.038 -0.013 -0.225       
## y.plt:mnths -0.028  0.104  0.065  0.026  0.011
## [1] "y.plot =  baseline_strp"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 16
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.35671 -0.04215 -0.00046  0.02026  3.10288 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         4.316715 2.07767      
##            monthssincebaseline 0.025870 0.16084  0.37
##  Residual                      0.009775 0.09887      
## Number of obs: 87, groups:  unique_id, 13
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)   
## (Intercept)                -6.59978    7.11677  8.53587  -0.927  0.37922   
## y.plot                     -1.20256    0.57758  9.05144  -2.082  0.06686 . 
## monthssincebaseline         0.05336    0.05388  9.40692   0.990  0.34673   
## baseline_age                0.11739    0.07851  7.80165   1.495  0.17415   
## educ                        0.09866    0.26645  7.17584   0.370  0.72187   
## y.plot:monthssincebaseline -0.15454    0.04601  8.60732  -3.359  0.00895 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.182                            
## mnthssncbsl  0.082  0.132                     
## baseline_ag -0.795  0.190 -0.028              
## educ        -0.726 -0.467 -0.056  0.170       
## y.plt:mnths -0.001  0.273  0.243  0.041 -0.028
## [1] "y.plot =  baseline_flk"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 523.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.10396 -0.08419 -0.00910  0.05452  2.81571 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         8.9851   2.9975       
##            monthssincebaseline 0.0343   0.1852   0.27
##  Residual                      0.3020   0.5496       
## Number of obs: 170, groups:  unique_id, 35
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 4.4846866  4.9588885 30.1457731   0.904    0.373
## y.plot                     -2.2711980  0.4129668 30.8309498  -5.500 5.21e-06
## monthssincebaseline         0.0776902  0.0460160 14.0460918   1.688    0.113
## baseline_age               -0.0761805  0.0713495 28.3182950  -1.068    0.295
## educ                        0.3112957  0.2142331 27.8531390   1.453    0.157
## y.plot:monthssincebaseline  0.0006305  0.0359966 14.6064641   0.018    0.986
##                               
## (Intercept)                   
## y.plot                     ***
## monthssincebaseline           
## baseline_age                  
## educ                          
## y.plot:monthssincebaseline    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot      -0.021                            
## mnthssncbsl  0.049  0.060                     
## baseline_ag -0.713  0.220 -0.017              
## educ        -0.442 -0.207 -0.020 -0.305       
## y.plt:mnths -0.019  0.163  0.126  0.024  0.004
## [1] "y.plot =  baseline_nback"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 13.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.33027 -0.06868  0.00231  0.01858  3.06867 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         3.415036 1.84798      
##            monthssincebaseline 0.057421 0.23963  0.74
##  Residual                      0.009937 0.09969      
## Number of obs: 85, groups:  unique_id, 12
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)                 3.57529    5.87054  6.50924   0.609    0.563
## y.plot                     -0.36496    0.56164  9.57600  -0.650    0.531
## monthssincebaseline         0.10145    0.07678 10.47417   1.321    0.215
## baseline_age                0.03490    0.06541  5.76912   0.534    0.614
## educ                       -0.21546    0.17191  6.69622  -1.253    0.252
## y.plot:monthssincebaseline -0.03110    0.07208 10.03201  -0.431    0.675
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.287                            
## mnthssncbsl  0.116  0.246                     
## baseline_ag -0.904 -0.256 -0.051              
## educ        -0.765 -0.161 -0.027  0.431       
## y.plt:mnths  0.028  0.696  0.261  0.002 -0.011
## [1] "y.plot =  baseline_humi"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 514.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.11416 -0.08299 -0.00647  0.05428  2.79101 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         8.69817  2.9493        
##            monthssincebaseline 0.03143  0.1773   -0.04
##  Residual                      0.30421  0.5516        
## Number of obs: 168, groups:  unique_id, 34
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                -1.65359    5.06217 30.09184  -0.327   0.7462    
## y.plot                     -1.90318    0.40704 30.18182  -4.676 5.74e-05 ***
## monthssincebaseline         0.05837    0.04466 13.83295   1.307   0.2125    
## baseline_age               -0.01322    0.06942 30.00158  -0.190   0.8503    
## educ                        0.42870    0.22202 29.74840   1.931   0.0631 .  
## y.plot:monthssincebaseline -0.04407    0.04601 14.21126  -0.958   0.3542    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.101                            
## mnthssncbsl -0.008 -0.011                     
## baseline_ag -0.693  0.012  0.001              
## educ        -0.493 -0.109  0.003 -0.277       
## y.plt:mnths  0.004 -0.046  0.039  0.000 -0.006
## [1] "y.plot =  baseline_test3meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 516.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.10735 -0.08072 -0.00504  0.06190  2.81223 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr
##  unique_id (Intercept)         7.22189  2.6874       
##            monthssincebaseline 0.03335  0.1826   0.15
##  Residual                      0.30218  0.5497       
## Number of obs: 170, groups:  unique_id, 35
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                 2.209997   4.496914 30.313916   0.491   0.6266    
## y.plot                     -2.443881   0.363698 30.650571  -6.720 1.71e-07 ***
## monthssincebaseline         0.067644   0.045811 13.926695   1.477   0.1620    
## baseline_age               -0.061409   0.063994 29.351913  -0.960   0.3451    
## educ                        0.379899   0.196088 28.939392   1.937   0.0625 .  
## y.plot:monthssincebaseline -0.009143   0.041266 14.570022  -0.222   0.8277    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.067                            
## mnthssncbsl  0.032  0.036                     
## baseline_ag -0.704  0.158 -0.013              
## educ        -0.456 -0.241 -0.014 -0.303       
## y.plt:mnths -0.005  0.059  0.092  0.003  0.008
## [1] "y.plot =  baseline_test5meanZ"
## [1] "ftldcdr_box.computed~y.plot*monthssincebaseline+baseline_age+educ+(1+monthssincebaseline | unique_id)"
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: fml.lme
##    Data: df.lme.loop
## 
## REML criterion at convergence: 523
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.11383 -0.08561 -0.00505  0.05974  2.81166 
## 
## Random effects:
##  Groups    Name                Variance Std.Dev. Corr 
##  unique_id (Intercept)         9.35522  3.0586        
##            monthssincebaseline 0.03138  0.1771   -0.17
##  Residual                      0.30180  0.5494        
## Number of obs: 170, groups:  unique_id, 35
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)                 0.72957    5.11478 30.84430   0.143   0.8875    
## y.plot                     -2.18408    0.40845 31.02515  -5.347 7.91e-06 ***
## monthssincebaseline         0.04889    0.04454 13.74394   1.098   0.2912    
## baseline_age               -0.04218    0.07170 30.29845  -0.588   0.5607    
## educ                        0.40346    0.22300 29.95461   1.809   0.0805 .  
## y.plot:monthssincebaseline -0.04531    0.03925 14.52246  -1.154   0.2669    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y.plot mnthss bsln_g educ  
## y.plot       0.139                            
## mnthssncbsl -0.033 -0.044                     
## baseline_ag -0.700  0.098  0.009              
## educ        -0.470 -0.264  0.014 -0.293       
## y.plt:mnths  0.015 -0.113  0.095 -0.015 -0.006

Power analysis

Power anlaysis with Full Sample

Presents change over 1 year. Difference scores were calculated as annualized change ([~1 year score - baseline]/time). First presents a plot with all tests. Then presents a restricted plot showing only sample sizes <1000
## Warning: Using one column matrices in `filter()` was deprecated in dplyr 1.1.0.
## ℹ Please use one dimensional logical vectors instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.
## Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.

## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
Task n.with.test Z.Decline CI.low CI.high sample_size.25 sample_size.40
change_moca 44 0.0104035 -0.6478557 0.6686627 1005529 392785
change_ftlcdrm_sob 46 0.1713188 -0.3363173 0.6789549 2206 862
change_strp 37 0.0780440 -0.0809017 0.2369897 1042 407
change_flk 45 -0.1117156 -0.2102493 -0.0131818 196 77
change_nback 35 0.2691843 -0.1892757 0.7276443 729 285
change_humi 44 0.0788197 -0.0475274 0.2051669 646 253
change_gonogo 37 -27.1431066 -33.4097271 -20.8764860 14 6
change_trailsb 38 3.0008595 -10.9294388 16.9311578 5413 2115
change_animals 41 0.2891625 -1.3849230 1.9632480 8419 3289
change_uds3ef 43 0.0257309 -0.1291771 0.1806390 9104 3556
change_trailsb_ratio 38 -0.0039344 -0.0466109 0.0387421 29552 11544
change_test3meanZ 45 -0.0422802 -0.1904704 0.1059100 3086 1206
change_test5meanZ 46 0.0256067 -0.1537859 0.2049993 12327 4816

Power Familial

Presents change over 1 year. Difference scores were calculated as annualized change ([~1 year score - baseline]/time). First presents a plot with all tests. Then presents a restricted plot showing only sample sizes <1000
## Warning: Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.
## Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.

## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
Task n.with.test Z.Decline CI.low CI.high sample_size.25 sample_size.40
change_moca 20 0.3263958 -0.2228450 0.8756366 712 278
change_ftlcdrm_sob 21 0.1289899 -0.4621162 0.7200961 5275 2061
change_strp 20 0.0651410 -0.0706241 0.2009061 1091 427
change_flk 21 -0.1211937 -0.2148427 -0.0275448 150 59
change_nback 19 0.4156407 -0.0022629 0.8335442 254 100
change_humi 21 0.0700139 -0.0509873 0.1910151 751 294
change_gonogo 17 -27.1124517 -33.8396853 -20.3852182 16 7
change_trailsb 17 1.3883653 -9.5696159 12.3463465 15647 6112
change_animals 19 0.1046917 -1.6717601 1.8811435 72317 28249
change_uds3ef 20 0.0185432 -0.1236633 0.1607497 14772 5771
change_trailsb_ratio 17 -0.0075054 -0.0483390 0.0333281 7435 2904
change_test3meanZ 21 -0.0459534 -0.1516137 0.0597068 1328 519
change_test5meanZ 21 0.0631541 -0.0634504 0.1897587 1010 395

Power Sporadic

Presents change over 1 year. Difference scores were calculated as annualized change ([~1 year score - baseline]/time). First presents a plot with all tests. Then presents a restricted plot showing only sample sizes <1000
## Warning: Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.
## Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.

## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
Task n.with.test Z.Decline CI.low CI.high sample_size.25 sample_size.40
change_moca 22 -0.2067335 -0.8050542 0.3915872 2104 822
change_ftlcdrm_sob 23 0.2165820 -0.2353659 0.6685299 1094 428
change_strp 16 0.0875933 -0.1027420 0.2779286 1186 464
change_flk 22 -0.1000289 -0.2080684 0.0080107 293 115
change_nback 15 0.0977832 -0.3735157 0.5690821 5835 2280
change_humi 21 0.0860915 -0.0524747 0.2246578 651 255
change_gonogo 18 -26.9446090 -33.2694596 -20.6197583 14 6
change_trailsb 19 4.1781463 -12.7440309 21.1003236 4121 1610
change_animals 20 0.3790547 -1.2732363 2.0313457 4773 1865
change_uds3ef 21 0.0258267 -0.1487428 0.2003961 11476 4483
change_trailsb_ratio 19 0.0017167 -0.0447079 0.0481413 183676 71749
change_test3meanZ 22 -0.0482329 -0.2331190 0.1366533 3691 1442
change_test5meanZ 23 -0.0130740 -0.2319168 0.2057689 70374 27490

Power baseline CDR 0.5 and 1

Presents change over 1 year. Difference scores were calculated as annualized change ([~1 year score - baseline]/time). First presents a plot with all tests. Then presents a restricted plot showing only sample sizes <1000
## Warning: Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.
## Use of `df.model$Task` is discouraged.
## ℹ Use `Task` instead.

## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
## Warning: Use of `df.model.rest$Task` is discouraged.
## ℹ Use `Task` instead.
Task n.with.test Z.Decline CI.low CI.high sample_size.25 sample_size.40
change_moca 11 -0.1676607 -1.0987822 0.7634607 7747 3026
change_ftlcdrm_sob 12 0.3499182 -0.1888556 0.8886921 596 233
change_strp 8 0.1796356 0.0144110 0.3448603 213 83
change_flk 12 -0.0786802 -0.1741220 0.0167617 370 145
change_nback 8 0.0965442 -0.5117842 0.7048726 9972 3896
change_humi 12 0.0567625 -0.0844454 0.1979705 1555 608
change_gonogo 11 -26.7714457 -32.7198005 -20.8230910 13 5
change_trailsb 10 9.2536561 -12.6574901 31.1648023 1409 551
change_animals 11 0.1985917 -1.6048098 2.0019932 20712 8091
change_uds3ef 11 -0.0031339 -0.2118314 0.2055636 1113853 435099
change_trailsb_ratio 10 -0.0100370 -0.0522874 0.0322135 4451 1739
change_test3meanZ 12 -0.0581246 -0.2767255 0.1604762 3553 1388
change_test5meanZ 12 -0.0195084 -0.2790557 0.2400389 44458 17367