Cisplatin treated mice
##
## TRUE
## 32
Male samples are straying to the left of plot, high variance in Day 0 samples (unclear if Day 0 samples received cisplatin based on metadata).
Will not be including male samples going forward
PCA <- prcomp(t(v$E), scale = FALSE)
percentVar <- round(100*PCA$sdev^2/sum(PCA$sdev^2),1)
sd_ratio <- sqrt(percentVar[2] / percentVar[1])
dataGG <- data.frame(PC1 = PCA$x[,1], PC2 = PCA$x[,2],
sex =
pheno$sex,
day = pheno $day)
ggplot(dataGG, aes(PC1, PC2)) +
geom_point(aes(shape = sex, colour = day)) +
ggtitle("PCA plot of the calibrated, summarized data") +
xlab(paste0("PC1, VarExp: ", percentVar[1], "%")) +
ylab(paste0("PC2, VarExp: ", percentVar[2], "%")) +
theme(plot.title = element_text(hjust = 0.5)) +
coord_fixed(ratio = sd_ratio) +
scale_shape_manual(values = c(4,15)) +
scale_color_manual(values = c("darkorange2", "dodgerblue4", "forestgreen", "purple"))
pheno <- pheno %>% filter(stringr::str_detect(status, "female"))
counts <- counts %>% select(contains("f"))
design = model.matrix( ~ 0 + status, data=pheno)
colnames(design) <- sub("status", "", colnames(design))
y <- edgeR::DGEList(counts)
keep <- edgeR::filterByExpr(y, design)
y <- y[keep, ]
y <- edgeR::calcNormFactors(y)
v <- limma::voom(y, design, plot = F)
contrast <- limma::makeContrasts(
day2_0 = female_2 - female_0,
day2_all = female_2 - (female_0 + female_3 + female_5)/3,
day3_0 = female_3 - female_0,
day3_2 = female_3 - female_2,
day3_all = female_3 - (female_0 + female_2 + female_5)/3,
day5_0 = female_5 - female_0,
day5_3 = female_5 - female_3,
day5_all = female_5 - (female_0 + female_2 + female_3)/3,
levels = colnames(design))
fit <- limma::lmFit(v, design = design)
fit <- limma::eBayes(limma::contrasts.fit(limma::lmFit(v, design = design), contrast))