Una Red Neural Artificial (ANN) modela la relación entre un conjunto de entradas y una salida, resolviendo un problema de aprendizaje.
Ejemplos de aplicación de Redes Neuronales son:
1. La recomendación de contenido de Netflix.
2. El feed de Instagram o TikTok.
3. Determinar el número o letra escrito a mano.
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.3.2
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 4.3.2
prediccion <- compute(red_neuronal, prueba) # función de computar para hacer predicción
prediccion$net.result
## [,1] [,2]
## 13 0.6272036 0.3727860
## 14 0.6272036 0.3727860
## 15 0.6272036 0.3727860
## 17 0.6272036 0.3727860
## 22 0.6272036 0.3727860
## 26 0.6272036 0.3727860
## 30 0.6272036 0.3727860
## 45 0.6272036 0.3727860
## 46 0.6272036 0.3727860
## 49 0.6272036 0.3727860
## 51 0.6272036 0.3727860
## 62 0.6272036 0.3727860
## 68 0.6272036 0.3727860
## 69 0.6272036 0.3727860
## 71 0.6272036 0.3727860
## 84 0.6272036 0.3727860
## 89 0.6272036 0.3727860
## 96 0.6272036 0.3727860
## 100 0.6272036 0.3727860
## 109 0.6272036 0.3727860
## 118 0.6272036 0.3727860
## 120 0.6272036 0.3727860
## 130 0.6272036 0.3727860
## 132 0.6272036 0.3727860
## 134 0.6272036 0.3727860
## 138 0.6272036 0.3727860
## 141 0.6272036 0.3727860
## 144 0.6272036 0.3727860
## 147 0.6272036 0.3727860
## 148 0.6272036 0.3727860
## 151 0.6272036 0.3727860
## 162 0.6272036 0.3727860
## 163 0.6272036 0.3727860
## 166 0.6272036 0.3727860
## 169 0.6272036 0.3727860
## 173 0.6272036 0.3727860
## 189 0.6272036 0.3727860
## 204 0.6272036 0.3727860
## 213 0.6272032 0.3727834
## 217 0.6272036 0.3727860
## 229 0.6272036 0.3727860
## 233 0.6272036 0.3727860
## 240 0.6272036 0.3727860
## 245 0.6272036 0.3727860
## 247 0.6272036 0.3727860
## 248 0.6272036 0.3727860
## 258 0.6272036 0.3727860
## 260 0.6272036 0.3727860
## 265 0.6272036 0.3727860
## 267 0.6272036 0.3727860
## 269 0.6272036 0.3727860
## 270 0.6272036 0.3727860
## 278 0.6272036 0.3727860
## 280 0.6272036 0.3727860
## 282 0.6272036 0.3727860
## 283 0.6272036 0.3727860
## 284 0.6272036 0.3727860
## 285 0.6272036 0.3727860
## 289 0.6272036 0.3727860
## 291 0.6272036 0.3727860
## 293 0.6272036 0.3727860
## 294 0.6272036 0.3727860
## 295 0.6272036 0.3727860
## 319 0.6272036 0.3727860
## 324 0.6272036 0.3727860
## 335 0.6272036 0.3727860
## 336 0.6272036 0.3727860
## 348 0.6272036 0.3727860
## 350 0.6272036 0.3727860
## 351 0.6272036 0.3727860
## 353 0.6272036 0.3727860
## 362 0.6272036 0.3727860
## 365 0.6272036 0.3727860
## 366 0.6272036 0.3727860
## 368 0.6272036 0.3727860
## 376 0.6272036 0.3727860
## 385 0.6272036 0.3727860
## 394 0.6272036 0.3727860
## 395 0.6272036 0.3727860
## 400 0.6272036 0.3727860
## 402 0.6272036 0.3727860
## 407 0.6272036 0.3727860
## 409 0.6272036 0.3727860
## 412 0.6272036 0.3727860
## 414 0.6272036 0.3727860
## 417 0.6272036 0.3727860
## 423 0.6272036 0.3727860
## 424 0.6272036 0.3727860
## 436 0.6272036 0.3727860
## 439 0.6272036 0.3727860
## 445 0.6272036 0.3727860
## 457 0.6272036 0.3727860
## 474 0.6272036 0.3727860
## 477 0.6272036 0.3727860
## 481 0.6272036 0.3727860
## 487 0.6272036 0.3727860
## 495 0.6272036 0.3727860
## 497 0.6272036 0.3727860
## 508 0.6272036 0.3727860
## 509 0.6272036 0.3727860
## 510 0.6272036 0.3727860
## 512 0.6272036 0.3727860
## 514 0.6272036 0.3727860
## 520 0.6272036 0.3727860
## 525 0.6272036 0.3727860
## 533 0.6272036 0.3727860
## 541 0.6272036 0.3727860
## 543 0.6272036 0.3727860
## 550 0.6272036 0.3727860
## 551 0.6272036 0.3727860
## 556 0.6272036 0.3727860
## 559 0.6272036 0.3727860
## 565 0.6272036 0.3727860
## [,1] [,2]
## 13 1 0
## 14 1 0
## 15 1 0
## 17 1 0
## 22 1 0
## 26 1 0
## 30 1 0
## 45 1 0
## 46 1 0
## 49 1 0
## 51 1 0
## 62 1 0
## 68 1 0
## 69 1 0
## 71 1 0
## 84 1 0
## 89 1 0
## 96 1 0
## 100 1 0
## 109 1 0
## 118 1 0
## 120 1 0
## 130 1 0
## 132 1 0
## 134 1 0
## 138 1 0
## 141 1 0
## 144 1 0
## 147 1 0
## 148 1 0
## 151 1 0
## 162 1 0
## 163 1 0
## 166 1 0
## 169 1 0
## 173 1 0
## 189 1 0
## 204 1 0
## 213 1 0
## 217 1 0
## 229 1 0
## 233 1 0
## 240 1 0
## 245 1 0
## 247 1 0
## 248 1 0
## 258 1 0
## 260 1 0
## 265 1 0
## 267 1 0
## 269 1 0
## 270 1 0
## 278 1 0
## 280 1 0
## 282 1 0
## 283 1 0
## 284 1 0
## 285 1 0
## 289 1 0
## 291 1 0
## 293 1 0
## 294 1 0
## 295 1 0
## 319 1 0
## 324 1 0
## 335 1 0
## 336 1 0
## 348 1 0
## 350 1 0
## 351 1 0
## 353 1 0
## 362 1 0
## 365 1 0
## 366 1 0
## 368 1 0
## 376 1 0
## 385 1 0
## 394 1 0
## 395 1 0
## 400 1 0
## 402 1 0
## 407 1 0
## 409 1 0
## 412 1 0
## 414 1 0
## 417 1 0
## 423 1 0
## 424 1 0
## 436 1 0
## 439 1 0
## 445 1 0
## 457 1 0
## 474 1 0
## 477 1 0
## 481 1 0
## 487 1 0
## 495 1 0
## 497 1 0
## 508 1 0
## 509 1 0
## 510 1 0
## 512 1 0
## 514 1 0
## 520 1 0
## 525 1 0
## 533 1 0
## 541 1 0
## 543 1 0
## 550 1 0
## 551 1 0
## 556 1 0
## 559 1 0
## 565 1 0
Las redes neuronales permiten que los programas reconozcan patrones y resuelvan problemas comunes en inteligencia artificial y aprendizaje automático. Al obtener un resultado mayor a 0.5 se asume que es un caso positivo a un tumor maligno y al ser menor a 0.5 es un caso negativo.