El paquete caret (Clasification And REgression Training) es
un paquete integral con una amplia variedad de algoritmos para el
aprendizaje automático.
library(ggplot2)
library(lattice)
library(caret)
library(datasets)
library(DataExplorer)
library(kernlab)
##
## Attaching package: 'kernlab'
## The following object is masked from 'package:ggplot2':
##
## alpha
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
## margin
df <- data.frame(iris)
summary(df)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
str(df)
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
plot_missing(df)

set.seed(123)
renglones_entrenamiento <- createDataPartition(df$Species, p=0.8, list=FALSE)
entrenamiento <- iris[renglones_entrenamiento, ]
prueba <- iris[-renglones_entrenamiento, ]
RandomForestx o Bosques Aleatorios:rf
modelo1 <- train(Species ~ ., data=entrenamiento,
method = "svmLinear",
preProcess=c("scale","center"),
trControl = trainControl(method="cv", number=10),
tuneGrid = data.frame(C=1)
)
resultado_entrenamiento1 <- predict(modelo1, entrenamiento)
resultado_prueba1 <- predict(modelo1, prueba)
mcre1 <- confusionMatrix(resultado_entrenamiento1, entrenamiento$Species)
mcrp1 <- confusionMatrix(resultado_prueba1, prueba$Species)
modelo2 <- train(Species ~ ., data=entrenamiento,
method = "svmRadial",
preProcess=c("scale","center"),
trControl = trainControl(method="cv", number=10),
tuneGrid = data.frame(sigma=1, C=1)
)
resultado_entrenamiento2 <- predict(modelo2, entrenamiento)
resultado_prueba2 <- predict(modelo2, prueba)
mcre2 <- confusionMatrix(resultado_entrenamiento2, entrenamiento$Species)
mcrp2 <- confusionMatrix(resultado_prueba2, prueba$Species)
modelo3 <- train(Species ~ ., data=entrenamiento,
method = "svmPoly",
preProcess=c("scale","center"),
trControl = trainControl(method="cv", number=10),
tuneGrid = data.frame(degree=1, scale=1, C=1)
)
resultado_entrenamiento3 <- predict(modelo3, entrenamiento)
resultado_prueba3 <- predict(modelo3, prueba)
mcre3 <- confusionMatrix(resultado_entrenamiento3, entrenamiento$Species)
mcrp3 <- confusionMatrix(resultado_prueba3, prueba$Species)
modelo4 <- train(Species ~ ., data=entrenamiento,
method = "rpart",
preProcess=c("scale","center"),
trControl = trainControl(method="cv", number=10),
tuneLength = 10
)
resultado_entrenamiento4 <- predict(modelo4, entrenamiento)
resultado_prueba4 <- predict(modelo4, prueba)
mcre4 <- confusionMatrix(resultado_entrenamiento4, entrenamiento$Species)
mcrp4 <- confusionMatrix(resultado_prueba4, prueba$Species)
modelo5 <- train(Species ~ ., data=entrenamiento,
method = "nnet",
preProcess=c("scale","center"),
trControl = trainControl(method="cv", number=10)
)
## # weights: 11
## initial value 130.530132
## iter 10 value 50.031494
## iter 20 value 48.622939
## iter 30 value 46.051782
## iter 40 value 45.435982
## iter 50 value 45.023331
## iter 60 value 41.544443
## iter 70 value 18.376424
## iter 80 value 4.629967
## iter 90 value 3.675228
## iter 100 value 3.275824
## final value 3.275824
## stopped after 100 iterations
## # weights: 27
## initial value 132.517409
## iter 10 value 22.263231
## iter 20 value 2.574680
## iter 30 value 0.008513
## final value 0.000051
## converged
## # weights: 43
## initial value 136.160730
## iter 10 value 3.642258
## iter 20 value 0.051614
## iter 30 value 0.013220
## iter 40 value 0.001249
## final value 0.000086
## converged
## # weights: 11
## initial value 124.472165
## iter 10 value 57.985437
## iter 20 value 43.232595
## final value 43.170440
## converged
## # weights: 27
## initial value 118.611044
## iter 10 value 30.413305
## iter 20 value 21.077103
## iter 30 value 20.192922
## iter 40 value 20.153936
## final value 20.153924
## converged
## # weights: 43
## initial value 131.301286
## iter 10 value 26.646865
## iter 20 value 17.682102
## iter 30 value 17.633586
## iter 40 value 17.623573
## iter 50 value 17.364993
## iter 60 value 17.295129
## iter 70 value 17.290694
## final value 17.290666
## converged
## # weights: 11
## initial value 115.622911
## iter 10 value 33.350769
## iter 20 value 4.676969
## iter 30 value 3.131052
## iter 40 value 2.922591
## iter 50 value 2.825976
## iter 60 value 2.769974
## iter 70 value 2.741299
## iter 80 value 2.741136
## iter 90 value 2.739093
## final value 2.739035
## converged
## # weights: 27
## initial value 139.822975
## iter 10 value 37.447376
## iter 20 value 1.445699
## iter 30 value 0.316497
## iter 40 value 0.287713
## iter 50 value 0.260591
## iter 60 value 0.236249
## iter 70 value 0.224761
## iter 80 value 0.215415
## iter 90 value 0.194816
## iter 100 value 0.189471
## final value 0.189471
## stopped after 100 iterations
## # weights: 43
## initial value 123.298044
## iter 10 value 4.177632
## iter 20 value 0.257205
## iter 30 value 0.224601
## iter 40 value 0.200241
## iter 50 value 0.193031
## iter 60 value 0.182082
## iter 70 value 0.164800
## iter 80 value 0.149792
## iter 90 value 0.144373
## iter 100 value 0.142810
## final value 0.142810
## stopped after 100 iterations
## # weights: 11
## initial value 123.243079
## iter 10 value 49.923348
## iter 20 value 49.909994
## iter 30 value 49.907880
## final value 49.906719
## converged
## # weights: 27
## initial value 117.894759
## iter 10 value 9.481781
## iter 20 value 0.026637
## iter 30 value 0.001156
## final value 0.000052
## converged
## # weights: 43
## initial value 131.870976
## iter 10 value 17.010430
## iter 20 value 0.698814
## iter 30 value 0.001401
## final value 0.000067
## converged
## # weights: 11
## initial value 141.804121
## iter 10 value 63.315182
## iter 20 value 44.532148
## iter 30 value 42.998412
## final value 42.994034
## converged
## # weights: 27
## initial value 129.180442
## iter 10 value 44.217928
## iter 20 value 19.729677
## iter 30 value 18.527378
## iter 40 value 18.411074
## iter 50 value 18.393711
## iter 60 value 18.393129
## final value 18.393125
## converged
## # weights: 43
## initial value 143.533117
## iter 10 value 21.063126
## iter 20 value 17.843661
## iter 30 value 17.106737
## iter 40 value 16.985544
## iter 50 value 16.981278
## iter 60 value 16.980626
## final value 16.980585
## converged
## # weights: 11
## initial value 123.091645
## iter 10 value 49.148390
## iter 20 value 35.943210
## iter 30 value 10.736283
## iter 40 value 2.021433
## iter 50 value 1.687392
## iter 60 value 1.640809
## iter 70 value 1.636953
## iter 80 value 1.613389
## iter 90 value 1.611928
## iter 100 value 1.611137
## final value 1.611137
## stopped after 100 iterations
## # weights: 27
## initial value 113.416728
## iter 10 value 6.236444
## iter 20 value 0.187917
## iter 30 value 0.166748
## iter 40 value 0.155642
## iter 50 value 0.144249
## iter 60 value 0.141208
## iter 70 value 0.138463
## iter 80 value 0.136774
## iter 90 value 0.134567
## iter 100 value 0.132971
## final value 0.132971
## stopped after 100 iterations
## # weights: 43
## initial value 124.153763
## iter 10 value 6.673362
## iter 20 value 0.166533
## iter 30 value 0.154159
## iter 40 value 0.149227
## iter 50 value 0.136832
## iter 60 value 0.125718
## iter 70 value 0.121478
## iter 80 value 0.115540
## iter 90 value 0.113390
## iter 100 value 0.110992
## final value 0.110992
## stopped after 100 iterations
## # weights: 11
## initial value 128.347385
## iter 10 value 55.157651
## iter 20 value 47.800562
## iter 30 value 47.763719
## iter 40 value 47.763542
## iter 50 value 47.762534
## final value 47.762465
## converged
## # weights: 27
## initial value 115.590774
## iter 10 value 5.054265
## iter 20 value 1.048058
## iter 30 value 0.000979
## final value 0.000072
## converged
## # weights: 43
## initial value 123.951869
## iter 10 value 13.178443
## iter 20 value 0.965118
## iter 30 value 0.002392
## final value 0.000078
## converged
## # weights: 11
## initial value 123.195822
## iter 10 value 53.656490
## iter 20 value 43.803131
## iter 30 value 43.734766
## final value 43.734347
## converged
## # weights: 27
## initial value 123.651803
## iter 10 value 29.880588
## iter 20 value 19.921143
## iter 30 value 19.707388
## iter 40 value 19.705704
## final value 19.705624
## converged
## # weights: 43
## initial value 148.336280
## iter 10 value 27.474145
## iter 20 value 18.301737
## iter 30 value 18.138015
## iter 40 value 18.086240
## iter 50 value 18.084155
## iter 60 value 18.083934
## final value 18.083909
## converged
## # weights: 11
## initial value 122.563728
## iter 10 value 32.122176
## iter 20 value 10.269949
## iter 30 value 4.526292
## iter 40 value 3.900620
## iter 50 value 3.805816
## iter 60 value 3.743349
## iter 70 value 3.733207
## iter 80 value 3.721238
## iter 90 value 3.713938
## iter 100 value 3.705684
## final value 3.705684
## stopped after 100 iterations
## # weights: 27
## initial value 130.631378
## iter 10 value 4.944652
## iter 20 value 0.903581
## iter 30 value 0.602599
## iter 40 value 0.449328
## iter 50 value 0.416076
## iter 60 value 0.405323
## iter 70 value 0.397568
## iter 80 value 0.392801
## iter 90 value 0.386606
## iter 100 value 0.380965
## final value 0.380965
## stopped after 100 iterations
## # weights: 43
## initial value 152.884265
## iter 10 value 11.737646
## iter 20 value 1.402922
## iter 30 value 0.553654
## iter 40 value 0.456488
## iter 50 value 0.433353
## iter 60 value 0.391721
## iter 70 value 0.350673
## iter 80 value 0.322382
## iter 90 value 0.309362
## iter 100 value 0.302224
## final value 0.302224
## stopped after 100 iterations
## # weights: 11
## initial value 133.677265
## iter 10 value 49.425529
## iter 20 value 45.125104
## iter 30 value 24.714814
## iter 40 value 6.951374
## iter 50 value 3.962940
## iter 60 value 3.585057
## iter 70 value 2.556588
## iter 80 value 2.219301
## iter 90 value 2.033936
## iter 100 value 2.011517
## final value 2.011517
## stopped after 100 iterations
## # weights: 27
## initial value 120.219437
## iter 10 value 20.105178
## iter 20 value 0.691846
## iter 30 value 0.000424
## final value 0.000094
## converged
## # weights: 43
## initial value 130.013247
## iter 10 value 6.990719
## iter 20 value 0.117056
## final value 0.000078
## converged
## # weights: 11
## initial value 122.587894
## iter 10 value 55.646479
## iter 20 value 44.073616
## iter 30 value 44.056707
## final value 44.056649
## converged
## # weights: 27
## initial value 122.488484
## iter 10 value 30.042105
## iter 20 value 22.364237
## iter 30 value 21.402694
## iter 40 value 21.391770
## final value 21.391728
## converged
## # weights: 43
## initial value 151.848122
## iter 10 value 27.150882
## iter 20 value 20.889994
## iter 30 value 19.061592
## iter 40 value 18.857339
## iter 50 value 18.636402
## iter 60 value 18.597842
## iter 70 value 18.581420
## final value 18.581304
## converged
## # weights: 11
## initial value 125.447189
## iter 10 value 42.432302
## iter 20 value 14.708081
## iter 30 value 5.928158
## iter 40 value 4.717183
## iter 50 value 4.261072
## iter 60 value 3.990872
## iter 70 value 3.894028
## iter 80 value 3.877352
## iter 90 value 3.868846
## iter 100 value 3.865924
## final value 3.865924
## stopped after 100 iterations
## # weights: 27
## initial value 141.522247
## iter 10 value 19.693351
## iter 20 value 2.060082
## iter 30 value 0.713635
## iter 40 value 0.684010
## iter 50 value 0.651024
## iter 60 value 0.599068
## iter 70 value 0.534726
## iter 80 value 0.525302
## iter 90 value 0.477461
## iter 100 value 0.468104
## final value 0.468104
## stopped after 100 iterations
## # weights: 43
## initial value 117.492171
## iter 10 value 5.474776
## iter 20 value 0.633193
## iter 30 value 0.523049
## iter 40 value 0.506835
## iter 50 value 0.486677
## iter 60 value 0.470314
## iter 70 value 0.423468
## iter 80 value 0.413761
## iter 90 value 0.406423
## iter 100 value 0.383741
## final value 0.383741
## stopped after 100 iterations
## # weights: 11
## initial value 128.494859
## iter 10 value 67.868204
## iter 20 value 40.370984
## iter 30 value 8.030160
## iter 40 value 3.602779
## iter 50 value 3.354456
## iter 60 value 3.245703
## iter 70 value 3.148381
## iter 80 value 3.017232
## iter 90 value 2.916738
## iter 100 value 2.698927
## final value 2.698927
## stopped after 100 iterations
## # weights: 27
## initial value 121.387618
## iter 10 value 17.333188
## iter 20 value 6.562404
## iter 30 value 4.218606
## iter 40 value 0.023796
## iter 50 value 0.013835
## iter 60 value 0.007181
## iter 70 value 0.000265
## final value 0.000094
## converged
## # weights: 43
## initial value 131.764022
## iter 10 value 6.923964
## iter 20 value 0.585918
## iter 30 value 0.001510
## final value 0.000094
## converged
## # weights: 11
## initial value 117.924376
## iter 10 value 59.153858
## iter 20 value 45.980503
## iter 30 value 43.965813
## final value 43.965807
## converged
## # weights: 27
## initial value 122.524569
## iter 10 value 28.252379
## iter 20 value 20.308998
## iter 30 value 19.983255
## iter 40 value 19.969846
## final value 19.969845
## converged
## # weights: 43
## initial value 175.722543
## iter 10 value 24.152694
## iter 20 value 19.351652
## iter 30 value 18.570128
## iter 40 value 18.540253
## iter 50 value 18.531786
## iter 60 value 18.531273
## final value 18.531272
## converged
## # weights: 11
## initial value 125.626851
## iter 10 value 50.695359
## iter 20 value 28.615271
## iter 30 value 12.424432
## iter 40 value 5.029030
## iter 50 value 4.166888
## iter 60 value 3.979676
## iter 70 value 3.882211
## iter 80 value 3.873043
## iter 90 value 3.872674
## iter 100 value 3.871442
## final value 3.871442
## stopped after 100 iterations
## # weights: 27
## initial value 123.025871
## iter 10 value 27.020381
## iter 20 value 2.694706
## iter 30 value 1.092737
## iter 40 value 0.872715
## iter 50 value 0.758401
## iter 60 value 0.630276
## iter 70 value 0.571755
## iter 80 value 0.515264
## iter 90 value 0.475373
## iter 100 value 0.452080
## final value 0.452080
## stopped after 100 iterations
## # weights: 43
## initial value 134.385829
## iter 10 value 5.396493
## iter 20 value 1.952502
## iter 30 value 0.810078
## iter 40 value 0.740163
## iter 50 value 0.700944
## iter 60 value 0.648312
## iter 70 value 0.581811
## iter 80 value 0.540064
## iter 90 value 0.513923
## iter 100 value 0.483298
## final value 0.483298
## stopped after 100 iterations
## # weights: 11
## initial value 124.033991
## iter 10 value 53.598901
## iter 20 value 53.094417
## iter 30 value 51.710795
## iter 40 value 44.732729
## iter 50 value 17.281237
## iter 60 value 6.529030
## iter 70 value 3.473730
## iter 80 value 3.279187
## iter 90 value 3.156556
## iter 100 value 2.981555
## final value 2.981555
## stopped after 100 iterations
## # weights: 27
## initial value 126.207925
## iter 10 value 6.867316
## iter 20 value 0.342203
## iter 30 value 0.000889
## final value 0.000071
## converged
## # weights: 43
## initial value 146.268437
## iter 10 value 7.061711
## iter 20 value 1.073309
## iter 30 value 0.000467
## final value 0.000066
## converged
## # weights: 11
## initial value 120.866935
## iter 10 value 85.950877
## iter 20 value 60.671406
## iter 30 value 50.749580
## iter 40 value 43.846120
## final value 43.846095
## converged
## # weights: 27
## initial value 126.514320
## iter 10 value 46.451931
## iter 20 value 22.288378
## iter 30 value 21.611509
## iter 40 value 21.142364
## iter 50 value 20.374688
## iter 60 value 19.975509
## iter 70 value 19.860029
## final value 19.859991
## converged
## # weights: 43
## initial value 113.521981
## iter 10 value 27.307122
## iter 20 value 19.069629
## iter 30 value 18.496103
## iter 40 value 18.414947
## iter 50 value 18.412091
## iter 60 value 18.411932
## final value 18.411927
## converged
## # weights: 11
## initial value 119.931364
## iter 10 value 33.212563
## iter 20 value 6.825543
## iter 30 value 4.153607
## iter 40 value 3.996719
## iter 50 value 3.936301
## iter 60 value 3.900913
## iter 70 value 3.868653
## iter 80 value 3.868193
## iter 90 value 3.864798
## iter 100 value 3.860658
## final value 3.860658
## stopped after 100 iterations
## # weights: 27
## initial value 125.980953
## iter 10 value 3.828376
## iter 20 value 1.757039
## iter 30 value 1.084888
## iter 40 value 0.779504
## iter 50 value 0.534913
## iter 60 value 0.521705
## iter 70 value 0.515783
## iter 80 value 0.504124
## iter 90 value 0.485201
## iter 100 value 0.483827
## final value 0.483827
## stopped after 100 iterations
## # weights: 43
## initial value 143.013185
## iter 10 value 7.195354
## iter 20 value 1.984745
## iter 30 value 0.713672
## iter 40 value 0.552459
## iter 50 value 0.437450
## iter 60 value 0.403627
## iter 70 value 0.363382
## iter 80 value 0.356303
## iter 90 value 0.346628
## iter 100 value 0.337926
## final value 0.337926
## stopped after 100 iterations
## # weights: 11
## initial value 119.603843
## iter 10 value 66.519353
## iter 20 value 48.085237
## iter 30 value 10.691129
## iter 40 value 4.343493
## iter 50 value 3.486657
## iter 60 value 2.937962
## iter 70 value 2.185862
## iter 80 value 1.910157
## iter 90 value 1.802781
## iter 100 value 1.791736
## final value 1.791736
## stopped after 100 iterations
## # weights: 27
## initial value 120.493313
## iter 10 value 14.568437
## iter 20 value 1.413139
## iter 30 value 0.002421
## final value 0.000049
## converged
## # weights: 43
## initial value 131.990396
## iter 10 value 3.607345
## iter 20 value 0.869522
## iter 30 value 0.000776
## final value 0.000079
## converged
## # weights: 11
## initial value 127.213395
## iter 10 value 58.997762
## iter 20 value 44.424763
## final value 43.139243
## converged
## # weights: 27
## initial value 117.195869
## iter 10 value 28.619024
## iter 20 value 19.206476
## iter 30 value 18.621574
## iter 40 value 18.619068
## iter 40 value 18.619068
## iter 40 value 18.619068
## final value 18.619068
## converged
## # weights: 43
## initial value 165.598734
## iter 10 value 24.205649
## iter 20 value 17.629535
## iter 30 value 17.222776
## iter 40 value 17.168752
## iter 50 value 17.168464
## iter 60 value 17.168428
## iter 60 value 17.168428
## iter 60 value 17.168428
## final value 17.168428
## converged
## # weights: 11
## initial value 115.941037
## iter 10 value 48.705139
## iter 20 value 47.783092
## iter 30 value 43.562064
## iter 40 value 11.101593
## iter 50 value 4.031437
## iter 60 value 3.116711
## iter 70 value 3.019260
## iter 80 value 2.993105
## iter 90 value 2.981303
## iter 100 value 2.969047
## final value 2.969047
## stopped after 100 iterations
## # weights: 27
## initial value 132.813339
## iter 10 value 3.715700
## iter 20 value 1.056815
## iter 30 value 0.558748
## iter 40 value 0.530262
## iter 50 value 0.467614
## iter 60 value 0.445847
## iter 70 value 0.424130
## iter 80 value 0.373259
## iter 90 value 0.354379
## iter 100 value 0.342801
## final value 0.342801
## stopped after 100 iterations
## # weights: 43
## initial value 126.886256
## iter 10 value 3.942342
## iter 20 value 1.736816
## iter 30 value 0.630651
## iter 40 value 0.552680
## iter 50 value 0.489807
## iter 60 value 0.396264
## iter 70 value 0.356221
## iter 80 value 0.340605
## iter 90 value 0.328238
## iter 100 value 0.321359
## final value 0.321359
## stopped after 100 iterations
## # weights: 11
## initial value 128.489378
## iter 10 value 49.909576
## iter 20 value 49.876540
## iter 30 value 47.945970
## iter 40 value 39.847983
## iter 50 value 8.016537
## iter 60 value 4.619364
## iter 70 value 2.386452
## iter 80 value 1.338165
## iter 90 value 1.178344
## iter 100 value 1.100248
## final value 1.100248
## stopped after 100 iterations
## # weights: 27
## initial value 141.912242
## iter 10 value 7.102731
## iter 20 value 0.339738
## final value 0.000079
## converged
## # weights: 43
## initial value 128.771330
## iter 10 value 21.354630
## iter 20 value 2.784172
## iter 30 value 0.013786
## iter 40 value 0.000332
## final value 0.000076
## converged
## # weights: 11
## initial value 120.181179
## iter 10 value 46.347790
## iter 20 value 43.064428
## iter 30 value 43.054040
## final value 43.054021
## converged
## # weights: 27
## initial value 126.647230
## iter 10 value 25.682812
## iter 20 value 20.660342
## iter 30 value 19.500529
## iter 40 value 19.121600
## iter 50 value 19.088454
## iter 60 value 19.083697
## final value 19.083689
## converged
## # weights: 43
## initial value 132.234904
## iter 10 value 29.615687
## iter 20 value 19.279132
## iter 30 value 17.877712
## iter 40 value 17.806996
## iter 50 value 17.793960
## iter 60 value 17.793819
## final value 17.793686
## converged
## # weights: 11
## initial value 121.579687
## iter 10 value 49.472914
## iter 20 value 48.410085
## iter 30 value 45.340464
## iter 40 value 37.104905
## iter 50 value 8.129202
## iter 60 value 4.703745
## iter 70 value 4.278312
## iter 80 value 3.668066
## iter 90 value 3.605900
## iter 100 value 3.568123
## final value 3.568123
## stopped after 100 iterations
## # weights: 27
## initial value 135.360878
## iter 10 value 10.436945
## iter 20 value 2.222820
## iter 30 value 0.763058
## iter 40 value 0.725440
## iter 50 value 0.677966
## iter 60 value 0.570628
## iter 70 value 0.518380
## iter 80 value 0.502364
## iter 90 value 0.462332
## iter 100 value 0.455880
## final value 0.455880
## stopped after 100 iterations
## # weights: 43
## initial value 125.924213
## iter 10 value 3.865138
## iter 20 value 1.025246
## iter 30 value 0.422681
## iter 40 value 0.379135
## iter 50 value 0.353145
## iter 60 value 0.335865
## iter 70 value 0.319622
## iter 80 value 0.303895
## iter 90 value 0.289299
## iter 100 value 0.271561
## final value 0.271561
## stopped after 100 iterations
## # weights: 11
## initial value 114.925820
## iter 10 value 45.333263
## iter 20 value 21.250608
## iter 30 value 6.082611
## iter 40 value 4.448976
## iter 50 value 3.266614
## iter 60 value 1.880390
## iter 70 value 1.733764
## iter 80 value 1.089267
## iter 90 value 1.045776
## iter 100 value 0.950636
## final value 0.950636
## stopped after 100 iterations
## # weights: 27
## initial value 116.607224
## iter 10 value 6.159810
## iter 20 value 1.197702
## iter 30 value 0.000196
## final value 0.000057
## converged
## # weights: 43
## initial value 123.125697
## iter 10 value 4.793414
## iter 20 value 0.073094
## iter 30 value 0.000393
## final value 0.000088
## converged
## # weights: 11
## initial value 120.471214
## iter 10 value 45.420303
## iter 20 value 43.694661
## iter 30 value 43.690235
## final value 43.690202
## converged
## # weights: 27
## initial value 168.714249
## iter 10 value 28.073376
## iter 20 value 21.126580
## iter 30 value 20.968508
## iter 40 value 20.968134
## final value 20.968117
## converged
## # weights: 43
## initial value 134.057733
## iter 10 value 44.240823
## iter 20 value 19.621880
## iter 30 value 18.596469
## iter 40 value 18.220014
## iter 50 value 18.200869
## iter 60 value 18.194706
## final value 18.194547
## converged
## # weights: 11
## initial value 137.081572
## iter 10 value 53.546736
## iter 20 value 49.263649
## iter 30 value 49.116099
## iter 40 value 49.041348
## iter 50 value 48.683090
## iter 60 value 48.634845
## iter 70 value 48.489442
## iter 80 value 48.480790
## iter 90 value 48.451846
## iter 100 value 48.179024
## final value 48.179024
## stopped after 100 iterations
## # weights: 27
## initial value 143.490043
## iter 10 value 4.357251
## iter 20 value 1.321252
## iter 30 value 0.645280
## iter 40 value 0.616636
## iter 50 value 0.565996
## iter 60 value 0.521660
## iter 70 value 0.508617
## iter 80 value 0.487870
## iter 90 value 0.483152
## iter 100 value 0.479423
## final value 0.479423
## stopped after 100 iterations
## # weights: 43
## initial value 178.832632
## iter 10 value 8.121158
## iter 20 value 1.422046
## iter 30 value 0.568662
## iter 40 value 0.518952
## iter 50 value 0.434974
## iter 60 value 0.392568
## iter 70 value 0.345835
## iter 80 value 0.285289
## iter 90 value 0.268178
## iter 100 value 0.253675
## final value 0.253675
## stopped after 100 iterations
## # weights: 11
## initial value 123.307045
## iter 10 value 43.672929
## iter 20 value 8.049676
## iter 30 value 3.773651
## iter 40 value 3.173208
## iter 50 value 3.060201
## iter 60 value 2.971167
## iter 70 value 2.563371
## iter 80 value 2.471224
## iter 90 value 2.341221
## iter 100 value 2.320048
## final value 2.320048
## stopped after 100 iterations
## # weights: 27
## initial value 129.270569
## iter 10 value 10.575847
## iter 20 value 2.930770
## iter 30 value 1.689612
## iter 40 value 0.097359
## iter 50 value 0.000123
## iter 50 value 0.000057
## iter 50 value 0.000057
## final value 0.000057
## converged
## # weights: 43
## initial value 119.634242
## iter 10 value 6.310691
## iter 20 value 1.591412
## iter 30 value 0.028391
## iter 40 value 0.000902
## final value 0.000069
## converged
## # weights: 11
## initial value 120.069235
## iter 10 value 60.195069
## iter 20 value 51.394914
## iter 30 value 43.991436
## final value 43.991141
## converged
## # weights: 27
## initial value 152.809198
## iter 10 value 25.471737
## iter 20 value 21.511163
## iter 30 value 21.387357
## iter 40 value 21.386800
## final value 21.386800
## converged
## # weights: 43
## initial value 137.024287
## iter 10 value 22.447246
## iter 20 value 19.002967
## iter 30 value 18.519064
## iter 40 value 18.404215
## iter 50 value 18.397540
## iter 60 value 18.396716
## final value 18.396607
## converged
## # weights: 11
## initial value 121.726735
## iter 10 value 50.373336
## iter 20 value 50.105529
## iter 30 value 49.998791
## iter 40 value 49.958270
## iter 50 value 49.774790
## iter 60 value 48.541266
## iter 70 value 18.978222
## iter 80 value 6.742676
## iter 90 value 4.056469
## iter 100 value 3.922763
## final value 3.922763
## stopped after 100 iterations
## # weights: 27
## initial value 146.633351
## iter 10 value 6.579898
## iter 20 value 0.624311
## iter 30 value 0.562510
## iter 40 value 0.514462
## iter 50 value 0.457198
## iter 60 value 0.403961
## iter 70 value 0.382785
## iter 80 value 0.371306
## iter 90 value 0.358751
## iter 100 value 0.317469
## final value 0.317469
## stopped after 100 iterations
## # weights: 43
## initial value 127.981900
## iter 10 value 7.369546
## iter 20 value 0.839917
## iter 30 value 0.675447
## iter 40 value 0.617273
## iter 50 value 0.540482
## iter 60 value 0.477520
## iter 70 value 0.443309
## iter 80 value 0.359346
## iter 90 value 0.308424
## iter 100 value 0.292198
## final value 0.292198
## stopped after 100 iterations
## # weights: 11
## initial value 133.510869
## iter 10 value 66.279276
## iter 20 value 49.065891
## iter 30 value 46.607987
## final value 46.598156
## converged
resultado_entrenamiento5 <- predict(modelo5, entrenamiento)
resultado_prueba5 <- predict(modelo5, prueba)
mcre5 <- confusionMatrix(resultado_entrenamiento5, entrenamiento$Species)
mcrp5 <- confusionMatrix(resultado_prueba5, prueba$Species)
modelo6 <- train(Species ~ ., data=entrenamiento,
method = "rf",
preProcess=c("scale","center"),
trControl = trainControl(method="cv", number=10),
tuneGrid = expand.grid(mtry = c(2,4,6))
)
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
resultado_entrenamiento6 <- predict(modelo6, entrenamiento)
resultado_prueba6 <- predict(modelo6, prueba)
mcre6 <- confusionMatrix(resultado_entrenamiento6, entrenamiento$Species)
mcrp6 <- confusionMatrix(resultado_prueba6, prueba$Species)
LS0tDQp0aXRsZTogIkNhcmV0Ig0KYXV0aG9yOiAiRWR1YXJkbyBMZXl2YSINCmRhdGU6ICIyMDI0LTA4LTEzIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6IGNlcnVsZWFuDQplZGl0b3Jfb3B0aW9uczogDQogIGNodW5rX291dHB1dF90eXBlOiBjb25zb2xlDQotLS0NCg0KIyMjIyMgRWwgcGFxdWV0ZSAqY2FyZXQgKENsYXNpZmljYXRpb24gQW5kIFJFZ3Jlc3Npb24gVHJhaW5pbmcpKiBlcyB1biBwYXF1ZXRlIGludGVncmFsIGNvbiB1bmEgYW1wbGlhIHZhcmllZGFkIGRlIGFsZ29yaXRtb3MgcGFyYSBlbCBhcHJlbmRpemFqZSBhdXRvbcOhdGljby4NCg0KYGBge3Igd2FybmluZz1GQUxTRX0NCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkobGF0dGljZSkNCmxpYnJhcnkoY2FyZXQpDQpsaWJyYXJ5KGRhdGFzZXRzKQ0KbGlicmFyeShEYXRhRXhwbG9yZXIpDQpsaWJyYXJ5KGtlcm5sYWIpDQpsaWJyYXJ5KHJhbmRvbUZvcmVzdCkNCg0KYGBgDQoNCmBgYHtyfQ0KZGYgPC0gZGF0YS5mcmFtZShpcmlzKQ0Kc3VtbWFyeShkZikNCnN0cihkZikNCnBsb3RfbWlzc2luZyhkZikNCmBgYA0KDQpgYGB7cn0NCnNldC5zZWVkKDEyMykNCnJlbmdsb25lc19lbnRyZW5hbWllbnRvIDwtIGNyZWF0ZURhdGFQYXJ0aXRpb24oZGYkU3BlY2llcywgcD0wLjgsIGxpc3Q9RkFMU0UpDQplbnRyZW5hbWllbnRvIDwtIGlyaXNbcmVuZ2xvbmVzX2VudHJlbmFtaWVudG8sIF0NCnBydWViYSA8LSBpcmlzWy1yZW5nbG9uZXNfZW50cmVuYW1pZW50bywgXQ0KDQpgYGANCg0KIyMjIyMgTG9zIG3DqXRvZG9zIG3DoXMgdXRpbGl6YWRvcyBwYXJhIG1vZGVsYXIgYXByZW5kaXphamUgYXV0b23DoXRpY28gc29uOg0KDQojIyMjIyBTVkdNOiBTdXBwb3J0IFZlY3RvciBNYWNoaW5lIG8gTcOhcXVpbmEgZGUgVmVjdG9yZXMgZGUgU29wb3J0ZS4gSGF5IHZhcmlvcyBzdWJ0aXBvczpMaW5lYWwgKHN1bUxpbmVhciksIFJhZGlhbCAoc3ZtUmFkaWFsKSwgUG9saW7Ds21pY28gKHN2blBvbHkpLCBldGMuDQojIyMjIyBBcmJvbCBkZSBEZWNpc2nDs24gcnBhcnQNCiMjIyMjIFJlZGVzIE5ldXJvbmFsZXMmJu+8miBubmV0DQojIyMjIyBSYW5kb21Gb3Jlc3R4IG8gQm9zcXVlcyBBbGVhdG9yaW9zOnJmDQoNCmBgYHtyfQ0KbW9kZWxvMSA8LSB0cmFpbihTcGVjaWVzIH4gLiwgZGF0YT1lbnRyZW5hbWllbnRvLCANCiAgICAgICAgICAgICAgICAgbWV0aG9kID0gInN2bUxpbmVhciIsDQogICAgICAgICAgICAgICAgIHByZVByb2Nlc3M9Yygic2NhbGUiLCJjZW50ZXIiKSwNCiAgICAgICAgICAgICAgICAgdHJDb250cm9sID0gdHJhaW5Db250cm9sKG1ldGhvZD0iY3YiLCBudW1iZXI9MTApLA0KICAgICAgICAgICAgICAgICB0dW5lR3JpZCA9IGRhdGEuZnJhbWUoQz0xKQ0KICAgICAgICAgICAgICAgICApDQoNCnJlc3VsdGFkb19lbnRyZW5hbWllbnRvMSA8LSBwcmVkaWN0KG1vZGVsbzEsIGVudHJlbmFtaWVudG8pDQpyZXN1bHRhZG9fcHJ1ZWJhMSA8LSBwcmVkaWN0KG1vZGVsbzEsIHBydWViYSkNCg0KbWNyZTEgPC0gY29uZnVzaW9uTWF0cml4KHJlc3VsdGFkb19lbnRyZW5hbWllbnRvMSwgZW50cmVuYW1pZW50byRTcGVjaWVzKQ0KDQptY3JwMSA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX3BydWViYTEsIHBydWViYSRTcGVjaWVzKQ0KYGBgDQoNCmBgYHtyfQ0KbW9kZWxvMiA8LSB0cmFpbihTcGVjaWVzIH4gLiwgZGF0YT1lbnRyZW5hbWllbnRvLCANCiAgICAgICAgICAgICAgICAgbWV0aG9kID0gInN2bVJhZGlhbCIsDQogICAgICAgICAgICAgICAgIHByZVByb2Nlc3M9Yygic2NhbGUiLCJjZW50ZXIiKSwNCiAgICAgICAgICAgICAgICAgdHJDb250cm9sID0gdHJhaW5Db250cm9sKG1ldGhvZD0iY3YiLCBudW1iZXI9MTApLA0KICAgICAgICAgICAgICAgICB0dW5lR3JpZCA9IGRhdGEuZnJhbWUoc2lnbWE9MSwgQz0xKQ0KICAgICAgICAgICAgICAgICApDQoNCnJlc3VsdGFkb19lbnRyZW5hbWllbnRvMiA8LSBwcmVkaWN0KG1vZGVsbzIsIGVudHJlbmFtaWVudG8pDQpyZXN1bHRhZG9fcHJ1ZWJhMiA8LSBwcmVkaWN0KG1vZGVsbzIsIHBydWViYSkNCg0KbWNyZTIgPC0gY29uZnVzaW9uTWF0cml4KHJlc3VsdGFkb19lbnRyZW5hbWllbnRvMiwgZW50cmVuYW1pZW50byRTcGVjaWVzKQ0KDQptY3JwMiA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX3BydWViYTIsIHBydWViYSRTcGVjaWVzKQ0KYGBgDQoNCmBgYHtyfQ0KbW9kZWxvMyA8LSB0cmFpbihTcGVjaWVzIH4gLiwgZGF0YT1lbnRyZW5hbWllbnRvLCANCiAgICAgICAgICAgICAgICAgbWV0aG9kID0gInN2bVBvbHkiLA0KICAgICAgICAgICAgICAgICBwcmVQcm9jZXNzPWMoInNjYWxlIiwiY2VudGVyIiksDQogICAgICAgICAgICAgICAgIHRyQ29udHJvbCA9IHRyYWluQ29udHJvbChtZXRob2Q9ImN2IiwgbnVtYmVyPTEwKSwNCiAgICAgICAgICAgICAgICAgdHVuZUdyaWQgPSBkYXRhLmZyYW1lKGRlZ3JlZT0xLCBzY2FsZT0xLCBDPTEpDQogICAgICAgICAgICAgICAgICkNCg0KcmVzdWx0YWRvX2VudHJlbmFtaWVudG8zIDwtIHByZWRpY3QobW9kZWxvMywgZW50cmVuYW1pZW50bykNCnJlc3VsdGFkb19wcnVlYmEzIDwtIHByZWRpY3QobW9kZWxvMywgcHJ1ZWJhKQ0KDQptY3JlMyA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX2VudHJlbmFtaWVudG8zLCBlbnRyZW5hbWllbnRvJFNwZWNpZXMpDQoNCm1jcnAzIDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fcHJ1ZWJhMywgcHJ1ZWJhJFNwZWNpZXMpDQpgYGANCg0KYGBge3J9DQptb2RlbG80IDwtIHRyYWluKFNwZWNpZXMgfiAuLCBkYXRhPWVudHJlbmFtaWVudG8sIA0KICAgICAgICAgICAgICAgICBtZXRob2QgPSAicnBhcnQiLA0KICAgICAgICAgICAgICAgICBwcmVQcm9jZXNzPWMoInNjYWxlIiwiY2VudGVyIiksDQogICAgICAgICAgICAgICAgIHRyQ29udHJvbCA9IHRyYWluQ29udHJvbChtZXRob2Q9ImN2IiwgbnVtYmVyPTEwKSwNCiAgICAgICAgICAgICAgICAgdHVuZUxlbmd0aCA9IDEwDQogICAgICAgICAgICAgICAgICkNCg0KcmVzdWx0YWRvX2VudHJlbmFtaWVudG80IDwtIHByZWRpY3QobW9kZWxvNCwgZW50cmVuYW1pZW50bykNCnJlc3VsdGFkb19wcnVlYmE0IDwtIHByZWRpY3QobW9kZWxvNCwgcHJ1ZWJhKQ0KDQptY3JlNCA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX2VudHJlbmFtaWVudG80LCBlbnRyZW5hbWllbnRvJFNwZWNpZXMpDQoNCm1jcnA0IDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fcHJ1ZWJhNCwgcHJ1ZWJhJFNwZWNpZXMpDQpgYGANCg0KYGBge3J9DQptb2RlbG81IDwtIHRyYWluKFNwZWNpZXMgfiAuLCBkYXRhPWVudHJlbmFtaWVudG8sIA0KICAgICAgICAgICAgICAgICBtZXRob2QgPSAibm5ldCIsDQogICAgICAgICAgICAgICAgIHByZVByb2Nlc3M9Yygic2NhbGUiLCJjZW50ZXIiKSwNCiAgICAgICAgICAgICAgICAgdHJDb250cm9sID0gdHJhaW5Db250cm9sKG1ldGhvZD0iY3YiLCBudW1iZXI9MTApDQogICAgICAgICAgICAgICAgICkNCg0KcmVzdWx0YWRvX2VudHJlbmFtaWVudG81IDwtIHByZWRpY3QobW9kZWxvNSwgZW50cmVuYW1pZW50bykNCnJlc3VsdGFkb19wcnVlYmE1IDwtIHByZWRpY3QobW9kZWxvNSwgcHJ1ZWJhKQ0KDQptY3JlNSA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX2VudHJlbmFtaWVudG81LCBlbnRyZW5hbWllbnRvJFNwZWNpZXMpDQoNCm1jcnA1IDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fcHJ1ZWJhNSwgcHJ1ZWJhJFNwZWNpZXMpDQpgYGANCg0KYGBge3J9DQptb2RlbG82IDwtIHRyYWluKFNwZWNpZXMgfiAuLCBkYXRhPWVudHJlbmFtaWVudG8sIA0KICAgICAgICAgICAgICAgICBtZXRob2QgPSAicmYiLA0KICAgICAgICAgICAgICAgICBwcmVQcm9jZXNzPWMoInNjYWxlIiwiY2VudGVyIiksDQogICAgICAgICAgICAgICAgIHRyQ29udHJvbCA9IHRyYWluQ29udHJvbChtZXRob2Q9ImN2IiwgbnVtYmVyPTEwKSwNCiAgICAgICAgICAgICAgICAgdHVuZUdyaWQgPSBleHBhbmQuZ3JpZChtdHJ5ID0gYygyLDQsNikpDQogICAgICAgICAgICAgICAgICkNCg0KcmVzdWx0YWRvX2VudHJlbmFtaWVudG82IDwtIHByZWRpY3QobW9kZWxvNiwgZW50cmVuYW1pZW50bykNCnJlc3VsdGFkb19wcnVlYmE2IDwtIHByZWRpY3QobW9kZWxvNiwgcHJ1ZWJhKQ0KDQptY3JlNiA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX2VudHJlbmFtaWVudG82LCBlbnRyZW5hbWllbnRvJFNwZWNpZXMpDQoNCm1jcnA2IDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fcHJ1ZWJhNiwgcHJ1ZWJhJFNwZWNpZXMpDQpgYGANCg0KIyMjIyMgUmVzdWx0YWRvcw0KDQpgYGB7cn0NCnJlc3VsdGFkb3MgPC0gZGF0YS5mcmFtZSgNCiAgInN2bUxpbmVhciIgPWMobWNyZTEkb3ZlcmFsbFsiQWNjdXJhY3kiXSwgbWNycDEkb3ZlcmFsbFsiQWNjdXJhY3kiXSksDQogICJzdm1SYWRpYWwiID1jKG1jcmUyJG92ZXJhbGxbIkFjY3VyYWN5Il0sIG1jcnAyJG92ZXJhbGxbIkFjY3VyYWN5Il0pLA0KICAic3ZtUG9seSIgPWMobWNyZTMkb3ZlcmFsbFsiQWNjdXJhY3kiXSwgbWNycDMkb3ZlcmFsbFsiQWNjdXJhY3kiXSksDQogICJycGFydCIgPWMobWNyZTQkb3ZlcmFsbFsiQWNjdXJhY3kiXSwgbWNycDQkb3ZlcmFsbFsiQWNjdXJhY3kiXSksDQogICJubmV0IiA9YyhtY3JlNSRvdmVyYWxsWyJBY2N1cmFjeSJdLCBtY3JwNSRvdmVyYWxsWyJBY2N1cmFjeSJdKSwNCiAgInJmIiA9YyhtY3JlNiRvdmVyYWxsWyJBY2N1cmFjeSJdLCBtY3JwNiRvdmVyYWxsWyJBY2N1cmFjeSJdKQ0KICApDQoNCnJvd25hbWVzKHJlc3VsdGFkb3MpIDwtIGMoIlByZWNpc2lvbiBkZSBFbnRyZW5hbWllbnRvIiwgIlByZWNpc2lvbiBkZSBQcnVlYmEiKSANCnJlc3VsdGFkb3MNCmBgYA0KDQo=