Redes Neuronales

0. Concepto

Una Red Neural Artificial (ANN) modela la relación entre un conjunto de entradas y una salida, resolviendo un problema de aprendizaje.

Ejemplos de aplicación de Redes Neuronales son:
1. La recomendación de contenido de Netflix.
2. El feed de Instagram o TikTok.
3. Determinar el número o letra escrito a mano.

En este caso se realizará un análisis a una base de datos sobre cáncer de mama para identificar casos positivos y negativos de esta enfermedad.

1. Instalar paquetes y llamar librerías

# install.packages("neuralnet")
library(neuralnet)
#install.packages("caret")
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice

2. Alimentar con ejemplos

set.seed(123)

df <- read.csv("C:/Users/gamas/Downloads/cancer_de_mama.csv")

df$diagnosis <- ifelse(df$diagnosis == "M", 1 , 0)

r_entrenamiento <- createDataPartition(df$diagnosis, p=0.8, list = FALSE)
entrena <- df[r_entrenamiento,]
prueba <- df[-r_entrenamiento,]

3. Generar la Red Neuronal

red_neuronal <- neuralnet(diagnosis~., data=entrena)
plot(red_neuronal, rep = "best")

4. Predecir con la Red Neuronal

prediccion <- compute(red_neuronal, prueba)
prediccion$net.result
##          [,1]
## 1   0.3486923
## 9   0.3486923
## 15  0.3486923
## 17  0.3486923
## 18  0.3486923
## 28  0.3486923
## 35  0.3486923
## 44  0.3486923
## 46  0.3486923
## 56  0.3486923
## 58  0.3486923
## 60  0.3486923
## 65  0.3486923
## 68  0.3486923
## 71  0.3486923
## 79  0.3486923
## 82  0.3486923
## 86  0.3486923
## 95  0.3486923
## 99  0.3486923
## 101 0.3486923
## 109 0.3486923
## 124 0.3486923
## 133 0.3486923
## 138 0.3486923
## 140 0.3486923
## 142 0.3486923
## 157 0.3486923
## 162 0.3486923
## 171 0.3486923
## 173 0.3486923
## 183 0.3486923
## 188 0.3486923
## 189 0.3486923
## 193 0.3486923
## 201 0.3486923
## 203 0.3486923
## 206 0.3486923
## 207 0.3486923
## 216 0.3486923
## 220 0.3486923
## 227 0.3486923
## 233 0.3486923
## 240 0.3486923
## 242 0.3486923
## 247 0.3486923
## 251 0.3486923
## 256 0.3486923
## 259 0.3486923
## 261 0.3486923
## 262 0.3486923
## 275 0.3486923
## 284 0.3486923
## 293 0.3486923
## 296 0.3486923
## 303 0.3486923
## 305 0.3486923
## 317 0.3486923
## 318 0.3486923
## 320 0.3486923
## 323 0.3486923
## 329 0.3486923
## 332 0.3486923
## 340 0.3486923
## 341 0.3486923
## 352 0.3486923
## 354 0.3486923
## 358 0.3486923
## 359 0.3486923
## 369 0.3486923
## 370 0.3486923
## 371 0.3486923
## 375 0.3486923
## 386 0.3486923
## 387 0.3486923
## 394 0.3486923
## 400 0.3486923
## 405 0.3486923
## 407 0.3486923
## 412 0.3486923
## 417 0.3486923
## 418 0.3486923
## 429 0.3486923
## 432 0.3486923
## 434 0.3486923
## 437 0.3486923
## 453 0.3486923
## 454 0.3486923
## 466 0.3486923
## 481 0.3486923
## 484 0.3486923
## 487 0.3486923
## 492 0.3486923
## 510 0.3486923
## 515 0.3486923
## 518 0.3486923
## 520 0.3486923
## 522 0.3486923
## 529 0.3486923
## 531 0.3486923
## 532 0.3486923
## 541 0.3486923
## 545 0.3486923
## 547 0.3486923
## 551 0.3486923
## 554 0.3486923
## 556 0.3486923
## 557 0.3486923
## 558 0.3486923
## 560 0.3486923
## 561 0.3486923
## 562 0.3486923
## 564 0.3486923
probabilidad <- prediccion$net.result
resultado <- ifelse(probabilidad>0.5,1,0)
resultado
##     [,1]
## 1      0
## 9      0
## 15     0
## 17     0
## 18     0
## 28     0
## 35     0
## 44     0
## 46     0
## 56     0
## 58     0
## 60     0
## 65     0
## 68     0
## 71     0
## 79     0
## 82     0
## 86     0
## 95     0
## 99     0
## 101    0
## 109    0
## 124    0
## 133    0
## 138    0
## 140    0
## 142    0
## 157    0
## 162    0
## 171    0
## 173    0
## 183    0
## 188    0
## 189    0
## 193    0
## 201    0
## 203    0
## 206    0
## 207    0
## 216    0
## 220    0
## 227    0
## 233    0
## 240    0
## 242    0
## 247    0
## 251    0
## 256    0
## 259    0
## 261    0
## 262    0
## 275    0
## 284    0
## 293    0
## 296    0
## 303    0
## 305    0
## 317    0
## 318    0
## 320    0
## 323    0
## 329    0
## 332    0
## 340    0
## 341    0
## 352    0
## 354    0
## 358    0
## 359    0
## 369    0
## 370    0
## 371    0
## 375    0
## 386    0
## 387    0
## 394    0
## 400    0
## 405    0
## 407    0
## 412    0
## 417    0
## 418    0
## 429    0
## 432    0
## 434    0
## 437    0
## 453    0
## 454    0
## 466    0
## 481    0
## 484    0
## 487    0
## 492    0
## 510    0
## 515    0
## 518    0
## 520    0
## 522    0
## 529    0
## 531    0
## 532    0
## 541    0
## 545    0
## 547    0
## 551    0
## 554    0
## 556    0
## 557    0
## 558    0
## 560    0
## 561    0
## 562    0
## 564    0

Conclusion

Las redes neuronales permite a los programas reconocer patrones y resolver problemas comunes a través de la inteligencia artificial y aprendizaje automático. Permitiendo la simplificación de labores manuales.

LS0tDQp0aXRsZTogIkPDoW5jZXIgZGUgbWFtYSINCmF1dGhvcjogIkdhbWFsaWVsIE9zdG9zIC0gQTAxMjc3MDIzIg0KZGF0ZTogIjIwMjQtMDgtMTkiDQpvdXRwdXQ6IA0KIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiB0cnVlDQogICAgdG9jX2Zsb2F0OiB0cnVlDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KLS0tDQoNCiFbXShDOlxcVXNlcnNcXGdhbWFzXFxQaWN0dXJlc1xcbWVkaWNpbmEuZ2lmKQ0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPlJlZGVzIE5ldXJvbmFsZXM8L3NwYW4+DQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPjAuIENvbmNlcHRvPC9zcGFuPg0KVW5hIFJlZCBOZXVyYWwgQXJ0aWZpY2lhbCAoQU5OKSBtb2RlbGEgbGEgcmVsYWNpw7NuIGVudHJlIHVuIGNvbmp1bnRvIGRlIGVudHJhZGFzIHkgdW5hIHNhbGlkYSwgcmVzb2x2aWVuZG8gdW4gcHJvYmxlbWEgZGUgYXByZW5kaXphamUuICANCg0KRWplbXBsb3MgZGUgYXBsaWNhY2nDs24gZGUgUmVkZXMgTmV1cm9uYWxlcyBzb246ICANCjEuIExhIHJlY29tZW5kYWNpw7NuIGRlIGNvbnRlbmlkbyBkZSBOZXRmbGl4LiAgDQoyLiBFbCBmZWVkIGRlIEluc3RhZ3JhbSBvIFRpa1Rvay4gIA0KMy4gRGV0ZXJtaW5hciBlbCBuw7ptZXJvIG8gbGV0cmEgZXNjcml0byBhIG1hbm8uICANCg0KRW4gZXN0ZSBjYXNvIHNlIHJlYWxpemFyw6EgdW4gYW7DoWxpc2lzIGEgdW5hIGJhc2UgZGUgZGF0b3Mgc29icmUgY8OhbmNlciBkZSBtYW1hIHBhcmEgaWRlbnRpZmljYXIgY2Fzb3MgcG9zaXRpdm9zIHkgbmVnYXRpdm9zIGRlIGVzdGEgZW5mZXJtZWRhZC4NCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+MS4gSW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hczwvc3Bhbj4NCmBgYHtyfQ0KIyBpbnN0YWxsLnBhY2thZ2VzKCJuZXVyYWxuZXQiKQ0KbGlicmFyeShuZXVyYWxuZXQpDQojaW5zdGFsbC5wYWNrYWdlcygiY2FyZXQiKQ0KbGlicmFyeShjYXJldCkNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4yLiBBbGltZW50YXIgY29uIGVqZW1wbG9zPC9zcGFuPg0KYGBge3J9DQpzZXQuc2VlZCgxMjMpDQoNCmRmIDwtIHJlYWQuY3N2KCJDOi9Vc2Vycy9nYW1hcy9Eb3dubG9hZHMvY2FuY2VyX2RlX21hbWEuY3N2IikNCg0KZGYkZGlhZ25vc2lzIDwtIGlmZWxzZShkZiRkaWFnbm9zaXMgPT0gIk0iLCAxICwgMCkNCg0Kcl9lbnRyZW5hbWllbnRvIDwtIGNyZWF0ZURhdGFQYXJ0aXRpb24oZGYkZGlhZ25vc2lzLCBwPTAuOCwgbGlzdCA9IEZBTFNFKQ0KZW50cmVuYSA8LSBkZltyX2VudHJlbmFtaWVudG8sXQ0KcHJ1ZWJhIDwtIGRmWy1yX2VudHJlbmFtaWVudG8sXQ0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPjMuIEdlbmVyYXIgbGEgUmVkIE5ldXJvbmFsPC9zcGFuPg0KYGBge3J9DQpyZWRfbmV1cm9uYWwgPC0gbmV1cmFsbmV0KGRpYWdub3Npc34uLCBkYXRhPWVudHJlbmEpDQpwbG90KHJlZF9uZXVyb25hbCwgcmVwID0gImJlc3QiKQ0KYGBgDQoNCg0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij40LiBQcmVkZWNpciBjb24gbGEgUmVkIE5ldXJvbmFsPC9zcGFuPg0KYGBge3J9DQpwcmVkaWNjaW9uIDwtIGNvbXB1dGUocmVkX25ldXJvbmFsLCBwcnVlYmEpDQpwcmVkaWNjaW9uJG5ldC5yZXN1bHQNCnByb2JhYmlsaWRhZCA8LSBwcmVkaWNjaW9uJG5ldC5yZXN1bHQNCnJlc3VsdGFkbyA8LSBpZmVsc2UocHJvYmFiaWxpZGFkPjAuNSwxLDApDQpyZXN1bHRhZG8NCmBgYA0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkNvbmNsdXNpb248L3NwYW4+DQpMYXMgcmVkZXMgbmV1cm9uYWxlcyBwZXJtaXRlIGEgbG9zIHByb2dyYW1hcyByZWNvbm9jZXIgcGF0cm9uZXMgeSByZXNvbHZlciBwcm9ibGVtYXMgY29tdW5lcyBhIHRyYXbDqXMgZGUgbGEgaW50ZWxpZ2VuY2lhIGFydGlmaWNpYWwgeSBhcHJlbmRpemFqZSBhdXRvbcOhdGljby4gUGVybWl0aWVuZG8gbGEgc2ltcGxpZmljYWNpw7NuIGRlIGxhYm9yZXMgbWFudWFsZXMuDQoNCg==