library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.3.2
## Warning: package 'tidyr' was built under R version 4.3.2
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4          ✔ readr     2.1.5     
## ✔ forcats   1.0.0.9000     ✔ stringr   1.5.1     
## ✔ ggplot2   3.5.1          ✔ tibble    3.2.1     
## ✔ lubridate 1.9.3          ✔ tidyr     1.3.1     
## ✔ purrr     1.0.2          
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(plyr)
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
## 
## Attaching package: 'plyr'
## 
## The following objects are masked from 'package:dplyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## 
## The following object is masked from 'package:purrr':
## 
##     compact
library(dplyr)
library (readxl)
library(writexl)
## Warning: package 'writexl' was built under R version 4.3.2
library(gplots)
## Warning: package 'gplots' was built under R version 4.3.2
## 
## Attaching package: 'gplots'
## 
## The following object is masked from 'package:stats':
## 
##     lowess
library(ggrepel)
library(pheatmap)
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## 
## The following object is masked from 'package:dplyr':
## 
##     combine
## 
## The following object is masked from 'package:ggplot2':
## 
##     margin
library(pROC)
## Type 'citation("pROC")' for a citation.
## 
## Attaching package: 'pROC'
## 
## The following objects are masked from 'package:stats':
## 
##     cov, smooth, var
library(caret)
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 4.3.2
## 
## Attaching package: 'caret'
## 
## The following object is masked from 'package:purrr':
## 
##     lift
library(rsample)
## Warning: package 'rsample' was built under R version 4.3.2
library(variancePartition)
## Loading required package: limma
## Loading required package: BiocParallel
## Warning: package 'BiocParallel' was built under R version 4.3.1
## Registered S3 method overwritten by 'EnvStats':
##   method         from
##   print.estimate lava
## 
## Attaching package: 'variancePartition'
## 
## The following object is masked from 'package:limma':
## 
##     topTable
library(Matrix)
## 
## Attaching package: 'Matrix'
## 
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
library(limma)
library(BiocParallel)
library(ComplexHeatmap)
## Warning: package 'ComplexHeatmap' was built under R version 4.3.1
## Loading required package: grid
## ========================================
## ComplexHeatmap version 2.18.0
## Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
## Github page: https://github.com/jokergoo/ComplexHeatmap
## Documentation: http://jokergoo.github.io/ComplexHeatmap-reference
## 
## If you use it in published research, please cite either one:
## - Gu, Z. Complex Heatmap Visualization. iMeta 2022.
## - Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
##     genomic data. Bioinformatics 2016.
## 
## 
## The new InteractiveComplexHeatmap package can directly export static 
## complex heatmaps into an interactive Shiny app with zero effort. Have a try!
## 
## This message can be suppressed by:
##   suppressPackageStartupMessages(library(ComplexHeatmap))
## ========================================
## ! pheatmap() has been masked by ComplexHeatmap::pheatmap(). Most of the arguments
##    in the original pheatmap() are identically supported in the new function. You 
##    can still use the original function by explicitly calling pheatmap::pheatmap().
## 
## 
## Attaching package: 'ComplexHeatmap'
## 
## The following object is masked from 'package:pheatmap':
## 
##     pheatmap
library(org.Hs.eg.db)
## Loading required package: AnnotationDbi
## Warning: package 'AnnotationDbi' was built under R version 4.3.2
## Loading required package: stats4
## Loading required package: BiocGenerics
## Warning: package 'BiocGenerics' was built under R version 4.3.1
## 
## Attaching package: 'BiocGenerics'
## 
## The following object is masked from 'package:limma':
## 
##     plotMA
## 
## The following object is masked from 'package:pROC':
## 
##     var
## 
## The following object is masked from 'package:randomForest':
## 
##     combine
## 
## The following objects are masked from 'package:lubridate':
## 
##     intersect, setdiff, union
## 
## The following objects are masked from 'package:dplyr':
## 
##     combine, intersect, setdiff, union
## 
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## 
## The following objects are masked from 'package:base':
## 
##     anyDuplicated, aperm, append, as.data.frame, basename, cbind,
##     colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
##     get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
##     match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
##     Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
##     table, tapply, union, unique, unsplit, which.max, which.min
## 
## Loading required package: Biobase
## Warning: package 'Biobase' was built under R version 4.3.1
## Welcome to Bioconductor
## 
##     Vignettes contain introductory material; view with
##     'browseVignettes()'. To cite Bioconductor, see
##     'citation("Biobase")', and for packages 'citation("pkgname")'.
## 
## Loading required package: IRanges
## Warning: package 'IRanges' was built under R version 4.3.1
## Loading required package: S4Vectors
## Warning: package 'S4Vectors' was built under R version 4.3.2
## 
## Attaching package: 'S4Vectors'
## 
## The following objects are masked from 'package:Matrix':
## 
##     expand, unname
## 
## The following object is masked from 'package:gplots':
## 
##     space
## 
## The following object is masked from 'package:plyr':
## 
##     rename
## 
## The following objects are masked from 'package:lubridate':
## 
##     second, second<-
## 
## The following objects are masked from 'package:dplyr':
## 
##     first, rename
## 
## The following object is masked from 'package:tidyr':
## 
##     expand
## 
## The following object is masked from 'package:utils':
## 
##     findMatches
## 
## The following objects are masked from 'package:base':
## 
##     expand.grid, I, unname
## 
## 
## Attaching package: 'IRanges'
## 
## The following object is masked from 'package:plyr':
## 
##     desc
## 
## The following object is masked from 'package:lubridate':
## 
##     %within%
## 
## The following objects are masked from 'package:dplyr':
## 
##     collapse, desc, slice
## 
## The following object is masked from 'package:purrr':
## 
##     reduce
## 
## 
## Attaching package: 'AnnotationDbi'
## 
## The following object is masked from 'package:dplyr':
## 
##     select
library(clusterProfiler)
## Warning: package 'clusterProfiler' was built under R version 4.3.1
## 
## Registered S3 methods overwritten by 'treeio':
##   method              from    
##   MRCA.phylo          tidytree
##   MRCA.treedata       tidytree
##   Nnode.treedata      tidytree
##   Ntip.treedata       tidytree
##   ancestor.phylo      tidytree
##   ancestor.treedata   tidytree
##   child.phylo         tidytree
##   child.treedata      tidytree
##   full_join.phylo     tidytree
##   full_join.treedata  tidytree
##   groupClade.phylo    tidytree
##   groupClade.treedata tidytree
##   groupOTU.phylo      tidytree
##   groupOTU.treedata   tidytree
##   inner_join.phylo    tidytree
##   inner_join.treedata tidytree
##   is.rooted.treedata  tidytree
##   nodeid.phylo        tidytree
##   nodeid.treedata     tidytree
##   nodelab.phylo       tidytree
##   nodelab.treedata    tidytree
##   offspring.phylo     tidytree
##   offspring.treedata  tidytree
##   parent.phylo        tidytree
##   parent.treedata     tidytree
##   root.treedata       tidytree
##   rootnode.phylo      tidytree
##   sibling.phylo       tidytree
## clusterProfiler v4.8.3  For help: https://yulab-smu.top/biomedical-knowledge-mining-book/
## 
## If you use clusterProfiler in published research, please cite:
## T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, W Tang, L Zhan, X Fu, S Liu, X Bo, and G Yu. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation. 2021, 2(3):100141
## 
## Attaching package: 'clusterProfiler'
## 
## The following object is masked from 'package:AnnotationDbi':
## 
##     select
## 
## The following object is masked from 'package:IRanges':
## 
##     slice
## 
## The following object is masked from 'package:S4Vectors':
## 
##     rename
## 
## The following object is masked from 'package:lattice':
## 
##     dotplot
## 
## The following objects are masked from 'package:plyr':
## 
##     arrange, mutate, rename, summarise
## 
## The following object is masked from 'package:purrr':
## 
##     simplify
## 
## The following object is masked from 'package:stats':
## 
##     filter
library(pheatmap)
library(EnhancedVolcano)
library(tidyverse)
library(dplyr)
#dir.create('BIN1.DEPS.Analysis')
#setwd('/Users/usri/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis/')
#cleanDat.norm.After.normalization <- readRDS("~/Desktop/BV2.Human.Microglia.BIN1/cleanDat.norm.After.normalization.rds")
BIN1_cleanDat_norm_After_normalization_with_GENEs_unique <- read.csv("BIN1_cleanDat_norm_After_normalization_with_GENEs.unique.csv", row.names = 1)
cleanDat.norm.After.normalization <- BIN1_cleanDat_norm_After_normalization_with_GENEs_unique
boxplot(cleanDat.norm.After.normalization)

library(readr)
#load metadata files group wise
case1.KO.Vehicle.vs.Cytokine <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/case1.KO.Vehicle.vs.Cytokine.rds")
head(case1.KO.Vehicle.vs.Cytokine)
##                                   Condition Groups         Genotype Group
## Intensity.112_Kumar_C20_3    KO.NES.vehicle Group1   KO.NES.vehicle    KO
## Intensity.116_Kumar_C20_4  KO.NES.cytokines Group1 KO.NES.cytokines    KO
## Intensity.172_Kumar_C20_11   KO.NES.vehicle Group2   KO.NES.vehicle    KO
## Intensity.050_Kumar_C20_12 KO.NES.cytokines Group2 KO.NES.cytokines    KO
## Intensity.164_Kumar_C20_19   KO.NES.vehicle Group3   KO.NES.vehicle    KO
## Intensity.180_Kumar_C20_20 KO.NES.cytokines Group3 KO.NES.cytokines    KO
case2.WT.Vehicle.vs.Cytokines <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/case2.WT.Vehicle.vs.Cytokines.rds")
head(case2.WT.Vehicle.vs.Cytokines)
##                                   Condition Groups         Genotype
## Intensity.136_Kumar_C20_1    WT.NES.vehicle Group1   WT.NES.vehicle
## Intensity.176_Kumar_C20_2  WT.NES.cytokines Group1 WT.NES.cytokines
## Intensity.204_Kumar_C20_9    WT.NES.vehicle Group2   WT.NES.vehicle
## Intensity.156_Kumar_C20_10 WT.NES.cytokines Group2 WT.NES.cytokines
## Intensity.200_Kumar_C20_17   WT.NES.vehicle Group3   WT.NES.vehicle
## Intensity.168_Kumar_C20_18 WT.NES.cytokines Group3 WT.NES.cytokines
case3.WT.vs.KO.Cytokines <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/case3.WT.vs.KO.Cytokines.rds")
head(case3.WT.vs.KO.Cytokines)
##                                   Condition Groups         Genotype
## Intensity.176_Kumar_C20_2  WT.NES.cytokines Group1 WT.NES.cytokines
## Intensity.116_Kumar_C20_4  KO.NES.cytokines Group1 KO.NES.cytokines
## Intensity.156_Kumar_C20_10 WT.NES.cytokines Group2 WT.NES.cytokines
## Intensity.050_Kumar_C20_12 KO.NES.cytokines Group2 KO.NES.cytokines
## Intensity.168_Kumar_C20_18 WT.NES.cytokines Group3 WT.NES.cytokines
## Intensity.180_Kumar_C20_20 KO.NES.cytokines Group3 KO.NES.cytokines
case4.WT.versus.KO.Vehicles <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/case4.WT.versus.KO.Vehicles.rds")
head(case4.WT.versus.KO.Vehicles)
##                                 Condition Groups       Genotype
## Intensity.136_Kumar_C20_1  WT.NES.vehicle Group1 WT.NES.vehicle
## Intensity.112_Kumar_C20_3  KO.NES.vehicle Group1 KO.NES.vehicle
## Intensity.204_Kumar_C20_9  WT.NES.vehicle Group2 WT.NES.vehicle
## Intensity.172_Kumar_C20_11 KO.NES.vehicle Group2 KO.NES.vehicle
## Intensity.200_Kumar_C20_17 WT.NES.vehicle Group3 WT.NES.vehicle
## Intensity.164_Kumar_C20_19 KO.NES.vehicle Group3 KO.NES.vehicle
case5.WT.versus.KO <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/case5.WT.versus.KO.rds")
head(case5.WT.versus.KO)
##                                   Condition Groups         Genotype Group
## Intensity.136_Kumar_C20_1    WT.NES.vehicle Group1   WT.NES.vehicle    WT
## Intensity.176_Kumar_C20_2  WT.NES.cytokines Group1 WT.NES.cytokines    WT
## Intensity.112_Kumar_C20_3    KO.NES.vehicle Group1   KO.NES.vehicle    KO
## Intensity.116_Kumar_C20_4  KO.NES.cytokines Group1 KO.NES.cytokines    KO
## Intensity.204_Kumar_C20_9    WT.NES.vehicle Group2   WT.NES.vehicle    WT
## Intensity.156_Kumar_C20_10 WT.NES.cytokines Group2 WT.NES.cytokines    WT
#making of cleanDat based on samples in metadta files for comaprisions

##case1.KO.Vehicle.vs.Cytokine 
samples_to_subset <- row.names(case1.KO.Vehicle.vs.Cytokine)
# Subsetting the matrix based on the selected samples
subset_matrix <- cleanDat.norm.After.normalization[, colnames(cleanDat.norm.After.normalization) %in% samples_to_subset]
head(subset_matrix, 2)
##              Intensity.112_Kumar_C20_3 Intensity.116_Kumar_C20_4
## LOC100507462                  24.27651                  25.49742
## UBA6                          26.42183                  26.68525
##              Intensity.172_Kumar_C20_11 Intensity.050_Kumar_C20_12
## LOC100507462                   25.85425                   25.78600
## UBA6                           26.16788                   26.47889
##              Intensity.164_Kumar_C20_19 Intensity.180_Kumar_C20_20
## LOC100507462                   26.21295                   25.80621
## UBA6                           26.28645                   26.69676
##              Intensity.148_Kumar_C20_27 Intensity.196_Kumar_C20_28
## LOC100507462                   25.89553                   25.49484
## UBA6                           26.13427                   26.35224
##              Intensity.074_Kumar_C20_35 Intensity.078_Kumar_C20_36
## LOC100507462                   25.55518                   25.27947
## UBA6                           26.42775                   26.47712
colnames(subset_matrix) == row.names(case1.KO.Vehicle.vs.Cytokine)
##  [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
saveRDS(subset_matrix, file = 'case1.cleanDat.KO.Vehicle.vs.Cytokine.rds')


###case2.WT.Vehicle.vs.Cytokines
samples_to_subset <- row.names(case2.WT.Vehicle.vs.Cytokines)
# Subsetting the matrix based on the selected samples
subset_matrix <- cleanDat.norm.After.normalization[, colnames(cleanDat.norm.After.normalization) %in% samples_to_subset]
head(subset_matrix, 2)
##              Intensity.176_Kumar_C20_2 Intensity.204_Kumar_C20_9
## LOC100507462                   25.3547                  25.50994
## UBA6                           27.2039                  26.90907
##              Intensity.156_Kumar_C20_10 Intensity.200_Kumar_C20_17
## LOC100507462                   25.55066                   25.31509
## UBA6                           26.71910                   26.85774
##              Intensity.168_Kumar_C20_18 Intensity.082_Kumar_C20_25
## LOC100507462                   25.40830                   25.07928
## UBA6                           26.84887                   26.96015
##              Intensity.220_Kumar_C20_26 Intensity.086_Kumar_C20_33
## LOC100507462                   25.60928                   25.34336
## UBA6                           27.13333                   26.90907
##              Intensity.160_Kumar_C20_34
## LOC100507462                   24.94545
## UBA6                           26.84887
colnames(subset_matrix) == row.names(case2.WT.Vehicle.vs.Cytokines)
## Warning in colnames(subset_matrix) == row.names(case2.WT.Vehicle.vs.Cytokines):
## longer object length is not a multiple of shorter object length
##  [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
saveRDS(subset_matrix, file = 'case2.cleanDat.WT.Vehicle.vs.Cytokines.rds')

##case3.WT.vs.KO.Cytokines
samples_to_subset <- row.names(case3.WT.vs.KO.Cytokines)
# Subsetting the matrix based on the selected samples
subset_matrix <- cleanDat.norm.After.normalization[, colnames(cleanDat.norm.After.normalization) %in% samples_to_subset]
head(subset_matrix, 2)
##              Intensity.176_Kumar_C20_2 Intensity.116_Kumar_C20_4
## LOC100507462                   25.3547                  25.49742
## UBA6                           27.2039                  26.68525
##              Intensity.156_Kumar_C20_10 Intensity.050_Kumar_C20_12
## LOC100507462                   25.55066                   25.78600
## UBA6                           26.71910                   26.47889
##              Intensity.168_Kumar_C20_18 Intensity.180_Kumar_C20_20
## LOC100507462                   25.40830                   25.80621
## UBA6                           26.84887                   26.69676
##              Intensity.220_Kumar_C20_26 Intensity.196_Kumar_C20_28
## LOC100507462                   25.60928                   25.49484
## UBA6                           27.13333                   26.35224
##              Intensity.160_Kumar_C20_34 Intensity.078_Kumar_C20_36
## LOC100507462                   24.94545                   25.27947
## UBA6                           26.84887                   26.47712
colnames(subset_matrix) == row.names(case3.WT.vs.KO.Cytokines)
##  [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
saveRDS(subset_matrix, file = 'case3.cleanDat.WT.vs.KO.Cytokines.rds')

##case4.WT.versus.KO.Vehicles
samples_to_subset <- row.names(case4.WT.versus.KO.Vehicles)
# Subsetting the matrix based on the selected samples
subset_matrix <- cleanDat.norm.After.normalization[, colnames(cleanDat.norm.After.normalization) %in% samples_to_subset]
head(subset_matrix, 2)
##              Intensity.112_Kumar_C20_3 Intensity.204_Kumar_C20_9
## LOC100507462                  24.27651                  25.50994
## UBA6                          26.42183                  26.90907
##              Intensity.172_Kumar_C20_11 Intensity.200_Kumar_C20_17
## LOC100507462                   25.85425                   25.31509
## UBA6                           26.16788                   26.85774
##              Intensity.164_Kumar_C20_19 Intensity.082_Kumar_C20_25
## LOC100507462                   26.21295                   25.07928
## UBA6                           26.28645                   26.96015
##              Intensity.148_Kumar_C20_27 Intensity.086_Kumar_C20_33
## LOC100507462                   25.89553                   25.34336
## UBA6                           26.13427                   26.90907
##              Intensity.074_Kumar_C20_35
## LOC100507462                   25.55518
## UBA6                           26.42775
colnames(subset_matrix) == row.names(case4.WT.versus.KO.Vehicles)
## Warning in colnames(subset_matrix) == row.names(case4.WT.versus.KO.Vehicles):
## longer object length is not a multiple of shorter object length
##  [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
saveRDS(subset_matrix, file = 'case4.cleanDat.WT.versus.KO.Vehicles.rds')

##case5.WT.versus.KO
samples_to_subset <- row.names(case5.WT.versus.KO)
# Subsetting the matrix based on the selected samples
subset_matrix <- cleanDat.norm.After.normalization[, colnames(cleanDat.norm.After.normalization) %in% samples_to_subset]
head(subset_matrix, 2)
##              Intensity.176_Kumar_C20_2 Intensity.112_Kumar_C20_3
## LOC100507462                   25.3547                  24.27651
## UBA6                           27.2039                  26.42183
##              Intensity.116_Kumar_C20_4 Intensity.204_Kumar_C20_9
## LOC100507462                  25.49742                  25.50994
## UBA6                          26.68525                  26.90907
##              Intensity.156_Kumar_C20_10 Intensity.172_Kumar_C20_11
## LOC100507462                   25.55066                   25.85425
## UBA6                           26.71910                   26.16788
##              Intensity.050_Kumar_C20_12 Intensity.200_Kumar_C20_17
## LOC100507462                   25.78600                   25.31509
## UBA6                           26.47889                   26.85774
##              Intensity.168_Kumar_C20_18 Intensity.164_Kumar_C20_19
## LOC100507462                   25.40830                   26.21295
## UBA6                           26.84887                   26.28645
##              Intensity.180_Kumar_C20_20 Intensity.082_Kumar_C20_25
## LOC100507462                   25.80621                   25.07928
## UBA6                           26.69676                   26.96015
##              Intensity.220_Kumar_C20_26 Intensity.148_Kumar_C20_27
## LOC100507462                   25.60928                   25.89553
## UBA6                           27.13333                   26.13427
##              Intensity.196_Kumar_C20_28 Intensity.086_Kumar_C20_33
## LOC100507462                   25.49484                   25.34336
## UBA6                           26.35224                   26.90907
##              Intensity.160_Kumar_C20_34 Intensity.074_Kumar_C20_35
## LOC100507462                   24.94545                   25.55518
## UBA6                           26.84887                   26.42775
##              Intensity.078_Kumar_C20_36
## LOC100507462                   25.27947
## UBA6                           26.47712
colnames(subset_matrix) == row.names(case5.WT.versus.KO)
## Warning in colnames(subset_matrix) == row.names(case5.WT.versus.KO): longer
## object length is not a multiple of shorter object length
##  [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
saveRDS(subset_matrix, file = 'case5.cleanDat.WT.versus.KO.rds')
case1.cleanDat.KO.Vehicle.vs.Cytokine <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis/case1.cleanDat.KO.Vehicle.vs.Cytokine.rds")
cleanDat <- case1.cleanDat.KO.Vehicle.vs.Cytokine
numericMeta <- case1.KO.Vehicle.vs.Cytokine
condition <- case1.KO.Vehicle.vs.Cytokine$Genotype
Grouping <- case1.KO.Vehicle.vs.Cytokine$Genotype
source("/Users/usri/Desktop/Screen/parANOVA.dex.R")
ANOVAout <- parANOVA.dex()
## - parallelThreads variable not set. Running with 2 threads only.
## - Network color assignment vector not supplied or not of length in rows of cleanDat; will not be included in output table and data frame.
## - twoGroupCorrMethod variable not set to a correction method for p.adjust when only 2 groups of samples specified in Grouping. Using Benjamini Hochberg 'BH' FDR.
## - fallbackIfSmallTukeyP variable not set. Using recommended Bonferroni t-test FDR for unreliable Tukey p values <10^-8.5
## 
## Attaching package: 'foreach'
## The following objects are masked from 'package:purrr':
## 
##     accumulate, when
## 
## ...Tukey p<10^-8.5 Fallback calculations using Bonferroni corrected T test: 0 [0%]
labelTop <- 10
FCmin= 0
flip = 3
signifP=0.05
plotVolc()
## - No comparison p value columns selected in selectComps. Using ALL comparisons.
##  - selectComps may not reference valid integer p value column indexes of ANOVAout (or CORout).
##    Output will be for all comparisons or correlation(s).
## - useNETcolors not set or not TRUE/FALSE. NETcolors not found in ANOVAout, so 3 color volcano(es) will be drawn.
## - Variable outputfigs not specified. Saving volcano plots to /Users/usri/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis .
## 
## ...Thresholds:
##    [x] Applying a 0% minimum fold change threshold at + and - x=0 .
##    [y] with minimum significance cutoff p < 0.05, equivalent to -log10(p) y=1.3 .
## 
## Processing ANOVA column 3 (KO.NES.cytokines vs KO.NES.vehicle) for volcano ...
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Generating PDF volcano for ANOVAout column 3 (KO.NES.cytokines vs KO.NES.vehicle) ...
## Generating HTML volcano for ANOVAout column 3 (KO.NES.cytokines vs KO.NES.vehicle) ...
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
##   If you'd like to see this geom implemented,
##   Please open an issue with your example code at
##   https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
##   If you'd like to see this geom implemented,
##   Please open an issue with your example code at
##   https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
##   If you'd like to see this geom implemented,
##   Please open an issue with your example code at
##   https://github.com/ropensci/plotly/issues

case2.cleanDat.WT.Vehicle.vs.Cytokines <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis/case2.cleanDat.WT.Vehicle.vs.Cytokines.rds")
cleanDat <- case2.cleanDat.WT.Vehicle.vs.Cytokines
numericMeta <- case2.WT.Vehicle.vs.Cytokines
condition <- case2.WT.Vehicle.vs.Cytokines$Genotype
Grouping <- case2.WT.Vehicle.vs.Cytokines$Genotype
table(case2.WT.Vehicle.vs.Cytokines$Genotype)
## 
## WT.NES.cytokines   WT.NES.vehicle 
##                5                5
source("/Users/usri/Desktop/Screen/parANOVA.dex.R")
ANOVAout <- parANOVA.dex()
## - parallelThreads variable not set. Running with 2 threads only.
## - Network color assignment vector not supplied or not of length in rows of cleanDat; will not be included in output table and data frame.
## - twoGroupCorrMethod variable not set to a correction method for p.adjust when only 2 groups of samples specified in Grouping. Using Benjamini Hochberg 'BH' FDR.
## - fallbackIfSmallTukeyP variable not set. Using recommended Bonferroni t-test FDR for unreliable Tukey p values <10^-8.5
## Warning in cbind(...): number of rows of result is not a multiple of vector
## length (arg 2)
## 
## ...Tukey p<10^-8.5 Fallback calculations using Bonferroni corrected T test: 1 [0.027%]
labelTop <- 10
FCmin= 0
flip = 3
signifP=0.05
plotVolc()
## - No comparison p value columns selected in selectComps. Using ALL comparisons.
##  - selectComps may not reference valid integer p value column indexes of ANOVAout (or CORout).
##    Output will be for all comparisons or correlation(s).
## - useNETcolors not set or not TRUE/FALSE. NETcolors not found in ANOVAout, so 3 color volcano(es) will be drawn.
## - Variable outputfigs not specified. Saving volcano plots to /Users/usri/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis .
## 
## ...Thresholds:
##    [x] Applying a 0% minimum fold change threshold at + and - x=0 .
##    [y] with minimum significance cutoff p < 0.05, equivalent to -log10(p) y=1.3 .
## 
## Processing ANOVA column 3 (WT.NES.cytokines vs WT.NES.vehicle) for volcano ...
## Generating PDF volcano for ANOVAout column 3 (WT.NES.cytokines vs WT.NES.vehicle) ...
## Generating HTML volcano for ANOVAout column 3 (WT.NES.cytokines vs WT.NES.vehicle) ...
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
##   If you'd like to see this geom implemented,
##   Please open an issue with your example code at
##   https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
##   If you'd like to see this geom implemented,
##   Please open an issue with your example code at
##   https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
##   If you'd like to see this geom implemented,
##   Please open an issue with your example code at
##   https://github.com/ropensci/plotly/issues

case3.cleanDat.WT.vs.KO.Cytokines <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis/case3.cleanDat.WT.vs.KO.Cytokines.rds")
cleanDat <- case3.cleanDat.WT.vs.KO.Cytokines
numericMeta <- case3.WT.vs.KO.Cytokines
condition <- case3.WT.vs.KO.Cytokines$Genotype
Grouping <- case3.WT.vs.KO.Cytokines$Genotype
source("/Users/usri/Desktop/Screen/parANOVA.dex.R")
ANOVAout <- parANOVA.dex()
## - parallelThreads variable not set. Running with 2 threads only.
## - Network color assignment vector not supplied or not of length in rows of cleanDat; will not be included in output table and data frame.
## - twoGroupCorrMethod variable not set to a correction method for p.adjust when only 2 groups of samples specified in Grouping. Using Benjamini Hochberg 'BH' FDR.
## - fallbackIfSmallTukeyP variable not set. Using recommended Bonferroni t-test FDR for unreliable Tukey p values <10^-8.5
## 
## ...Tukey p<10^-8.5 Fallback calculations using Bonferroni corrected T test: 4 [0.11%]
labelTop <- 10
FCmin= 0
flip = -3
signifP=0.05
plotVolc()
## - No comparison p value columns selected in selectComps. Using ALL comparisons.
##  - selectComps may not reference valid integer p value column indexes of ANOVAout (or CORout).
##    Output will be for all comparisons or correlation(s).
## - useNETcolors not set or not TRUE/FALSE. NETcolors not found in ANOVAout, so 3 color volcano(es) will be drawn.
## - Variable outputfigs not specified. Saving volcano plots to /Users/usri/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis .
## 
## ...Thresholds:
##    [x] Applying a 0% minimum fold change threshold at + and - x=0 .
##    [y] with minimum significance cutoff p < 0.05, equivalent to -log10(p) y=1.3 .
## 
## Processing ANOVA column 3 (WT.NES.cytokines vs KO.NES.cytokines) for volcano ...
## Generating PDF volcano for ANOVAout column 3 (WT.NES.cytokines vs KO.NES.cytokines) ...
## Generating HTML volcano for ANOVAout column 3 (WT.NES.cytokines vs KO.NES.cytokines) ...
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
##   If you'd like to see this geom implemented,
##   Please open an issue with your example code at
##   https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
##   If you'd like to see this geom implemented,
##   Please open an issue with your example code at
##   https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
##   If you'd like to see this geom implemented,
##   Please open an issue with your example code at
##   https://github.com/ropensci/plotly/issues

case4.cleanDat.WT.versus.KO.Vehicles <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis/case4.cleanDat.WT.versus.KO.Vehicles.rds")
cleanDat <- case4.cleanDat.WT.versus.KO.Vehicles
numericMeta <- case4.WT.versus.KO.Vehicles
condition <- case4.WT.versus.KO.Vehicles$Genotype
Grouping <- case4.WT.versus.KO.Vehicles$Genotype
source("/Users/usri/Desktop/Screen/parANOVA.dex.R")
ANOVAout <- parANOVA.dex()
## - parallelThreads variable not set. Running with 2 threads only.
## - Network color assignment vector not supplied or not of length in rows of cleanDat; will not be included in output table and data frame.
## - twoGroupCorrMethod variable not set to a correction method for p.adjust when only 2 groups of samples specified in Grouping. Using Benjamini Hochberg 'BH' FDR.
## - fallbackIfSmallTukeyP variable not set. Using recommended Bonferroni t-test FDR for unreliable Tukey p values <10^-8.5
## Warning in cbind(...): number of rows of result is not a multiple of vector
## length (arg 2)
## 
## ...Tukey p<10^-8.5 Fallback calculations using Bonferroni corrected T test: 2 [0.054%]
labelTop <- 10
FCmin= 0
flip = -3
signifP=0.05
plotVolc()
## - No comparison p value columns selected in selectComps. Using ALL comparisons.
##  - selectComps may not reference valid integer p value column indexes of ANOVAout (or CORout).
##    Output will be for all comparisons or correlation(s).
## - useNETcolors not set or not TRUE/FALSE. NETcolors not found in ANOVAout, so 3 color volcano(es) will be drawn.
## - Variable outputfigs not specified. Saving volcano plots to /Users/usri/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis .
## 
## ...Thresholds:
##    [x] Applying a 0% minimum fold change threshold at + and - x=0 .
##    [y] with minimum significance cutoff p < 0.05, equivalent to -log10(p) y=1.3 .
## 
## Processing ANOVA column 3 (WT.NES.vehicle vs KO.NES.vehicle) for volcano ...
## Generating PDF volcano for ANOVAout column 3 (WT.NES.vehicle vs KO.NES.vehicle) ...
## Generating HTML volcano for ANOVAout column 3 (WT.NES.vehicle vs KO.NES.vehicle) ...
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
##   If you'd like to see this geom implemented,
##   Please open an issue with your example code at
##   https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
##   If you'd like to see this geom implemented,
##   Please open an issue with your example code at
##   https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
##   If you'd like to see this geom implemented,
##   Please open an issue with your example code at
##   https://github.com/ropensci/plotly/issues

case5.cleanDat.WT.versus.KO <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis/case5.cleanDat.WT.versus.KO.rds")
cleanDat <- case5.cleanDat.WT.versus.KO
numericMeta <- case5.WT.versus.KO$Group
condition <- case5.WT.versus.KO$Group
Grouping <- case5.WT.versus.KO$Group
source("/Users/usri/Desktop/Screen/parANOVA.dex.R")
ANOVAout <- parANOVA.dex()
## - parallelThreads variable not set. Running with 2 threads only.
## - Network color assignment vector not supplied or not of length in rows of cleanDat; will not be included in output table and data frame.
## - twoGroupCorrMethod variable not set to a correction method for p.adjust when only 2 groups of samples specified in Grouping. Using Benjamini Hochberg 'BH' FDR.
## - fallbackIfSmallTukeyP variable not set. Using recommended Bonferroni t-test FDR for unreliable Tukey p values <10^-8.5
## Warning in cbind(...): number of rows of result is not a multiple of vector
## length (arg 2)
## 
## ...Tukey p<10^-8.5 Fallback calculations using Bonferroni corrected T test: 0 [0%]
labelTop <- 10
FCmin= 0
flip = -3
signifP=0.05
plotVolc()
## - No comparison p value columns selected in selectComps. Using ALL comparisons.
##  - selectComps may not reference valid integer p value column indexes of ANOVAout (or CORout).
##    Output will be for all comparisons or correlation(s).
## - useNETcolors not set or not TRUE/FALSE. NETcolors not found in ANOVAout, so 3 color volcano(es) will be drawn.
## - Variable outputfigs not specified. Saving volcano plots to /Users/usri/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis .
## 
## ...Thresholds:
##    [x] Applying a 0% minimum fold change threshold at + and - x=0 .
##    [y] with minimum significance cutoff p < 0.05, equivalent to -log10(p) y=1.3 .
## 
## Processing ANOVA column 3 (WT vs KO) for volcano ...
## Generating PDF volcano for ANOVAout column 3 (WT vs KO) ...
## Generating HTML volcano for ANOVAout column 3 (WT vs KO) ...
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
##   If you'd like to see this geom implemented,
##   Please open an issue with your example code at
##   https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
##   If you'd like to see this geom implemented,
##   Please open an issue with your example code at
##   https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
##   If you'd like to see this geom implemented,
##   Please open an issue with your example code at
##   https://github.com/ropensci/plotly/issues