library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.3.2
## Warning: package 'tidyr' was built under R version 4.3.2
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0.9000 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(plyr)
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
##
## Attaching package: 'plyr'
##
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
##
## The following object is masked from 'package:purrr':
##
## compact
library(dplyr)
library (readxl)
library(writexl)
## Warning: package 'writexl' was built under R version 4.3.2
library(gplots)
## Warning: package 'gplots' was built under R version 4.3.2
##
## Attaching package: 'gplots'
##
## The following object is masked from 'package:stats':
##
## lowess
library(ggrepel)
library(pheatmap)
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
##
## The following object is masked from 'package:dplyr':
##
## combine
##
## The following object is masked from 'package:ggplot2':
##
## margin
library(pROC)
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
##
## The following objects are masked from 'package:stats':
##
## cov, smooth, var
library(caret)
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 4.3.2
##
## Attaching package: 'caret'
##
## The following object is masked from 'package:purrr':
##
## lift
library(rsample)
## Warning: package 'rsample' was built under R version 4.3.2
library(variancePartition)
## Loading required package: limma
## Loading required package: BiocParallel
## Warning: package 'BiocParallel' was built under R version 4.3.1
## Registered S3 method overwritten by 'EnvStats':
## method from
## print.estimate lava
##
## Attaching package: 'variancePartition'
##
## The following object is masked from 'package:limma':
##
## topTable
library(Matrix)
##
## Attaching package: 'Matrix'
##
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
library(limma)
library(BiocParallel)
library(ComplexHeatmap)
## Warning: package 'ComplexHeatmap' was built under R version 4.3.1
## Loading required package: grid
## ========================================
## ComplexHeatmap version 2.18.0
## Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
## Github page: https://github.com/jokergoo/ComplexHeatmap
## Documentation: http://jokergoo.github.io/ComplexHeatmap-reference
##
## If you use it in published research, please cite either one:
## - Gu, Z. Complex Heatmap Visualization. iMeta 2022.
## - Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional
## genomic data. Bioinformatics 2016.
##
##
## The new InteractiveComplexHeatmap package can directly export static
## complex heatmaps into an interactive Shiny app with zero effort. Have a try!
##
## This message can be suppressed by:
## suppressPackageStartupMessages(library(ComplexHeatmap))
## ========================================
## ! pheatmap() has been masked by ComplexHeatmap::pheatmap(). Most of the arguments
## in the original pheatmap() are identically supported in the new function. You
## can still use the original function by explicitly calling pheatmap::pheatmap().
##
##
## Attaching package: 'ComplexHeatmap'
##
## The following object is masked from 'package:pheatmap':
##
## pheatmap
library(org.Hs.eg.db)
## Loading required package: AnnotationDbi
## Warning: package 'AnnotationDbi' was built under R version 4.3.2
## Loading required package: stats4
## Loading required package: BiocGenerics
## Warning: package 'BiocGenerics' was built under R version 4.3.1
##
## Attaching package: 'BiocGenerics'
##
## The following object is masked from 'package:limma':
##
## plotMA
##
## The following object is masked from 'package:pROC':
##
## var
##
## The following object is masked from 'package:randomForest':
##
## combine
##
## The following objects are masked from 'package:lubridate':
##
## intersect, setdiff, union
##
## The following objects are masked from 'package:dplyr':
##
## combine, intersect, setdiff, union
##
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
##
## The following objects are masked from 'package:base':
##
## anyDuplicated, aperm, append, as.data.frame, basename, cbind,
## colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
## get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
## match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
## Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
## table, tapply, union, unique, unsplit, which.max, which.min
##
## Loading required package: Biobase
## Warning: package 'Biobase' was built under R version 4.3.1
## Welcome to Bioconductor
##
## Vignettes contain introductory material; view with
## 'browseVignettes()'. To cite Bioconductor, see
## 'citation("Biobase")', and for packages 'citation("pkgname")'.
##
## Loading required package: IRanges
## Warning: package 'IRanges' was built under R version 4.3.1
## Loading required package: S4Vectors
## Warning: package 'S4Vectors' was built under R version 4.3.2
##
## Attaching package: 'S4Vectors'
##
## The following objects are masked from 'package:Matrix':
##
## expand, unname
##
## The following object is masked from 'package:gplots':
##
## space
##
## The following object is masked from 'package:plyr':
##
## rename
##
## The following objects are masked from 'package:lubridate':
##
## second, second<-
##
## The following objects are masked from 'package:dplyr':
##
## first, rename
##
## The following object is masked from 'package:tidyr':
##
## expand
##
## The following object is masked from 'package:utils':
##
## findMatches
##
## The following objects are masked from 'package:base':
##
## expand.grid, I, unname
##
##
## Attaching package: 'IRanges'
##
## The following object is masked from 'package:plyr':
##
## desc
##
## The following object is masked from 'package:lubridate':
##
## %within%
##
## The following objects are masked from 'package:dplyr':
##
## collapse, desc, slice
##
## The following object is masked from 'package:purrr':
##
## reduce
##
##
## Attaching package: 'AnnotationDbi'
##
## The following object is masked from 'package:dplyr':
##
## select
library(clusterProfiler)
## Warning: package 'clusterProfiler' was built under R version 4.3.1
##
## Registered S3 methods overwritten by 'treeio':
## method from
## MRCA.phylo tidytree
## MRCA.treedata tidytree
## Nnode.treedata tidytree
## Ntip.treedata tidytree
## ancestor.phylo tidytree
## ancestor.treedata tidytree
## child.phylo tidytree
## child.treedata tidytree
## full_join.phylo tidytree
## full_join.treedata tidytree
## groupClade.phylo tidytree
## groupClade.treedata tidytree
## groupOTU.phylo tidytree
## groupOTU.treedata tidytree
## inner_join.phylo tidytree
## inner_join.treedata tidytree
## is.rooted.treedata tidytree
## nodeid.phylo tidytree
## nodeid.treedata tidytree
## nodelab.phylo tidytree
## nodelab.treedata tidytree
## offspring.phylo tidytree
## offspring.treedata tidytree
## parent.phylo tidytree
## parent.treedata tidytree
## root.treedata tidytree
## rootnode.phylo tidytree
## sibling.phylo tidytree
## clusterProfiler v4.8.3 For help: https://yulab-smu.top/biomedical-knowledge-mining-book/
##
## If you use clusterProfiler in published research, please cite:
## T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, W Tang, L Zhan, X Fu, S Liu, X Bo, and G Yu. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation. 2021, 2(3):100141
##
## Attaching package: 'clusterProfiler'
##
## The following object is masked from 'package:AnnotationDbi':
##
## select
##
## The following object is masked from 'package:IRanges':
##
## slice
##
## The following object is masked from 'package:S4Vectors':
##
## rename
##
## The following object is masked from 'package:lattice':
##
## dotplot
##
## The following objects are masked from 'package:plyr':
##
## arrange, mutate, rename, summarise
##
## The following object is masked from 'package:purrr':
##
## simplify
##
## The following object is masked from 'package:stats':
##
## filter
library(pheatmap)
library(EnhancedVolcano)
library(tidyverse)
library(dplyr)
#dir.create('BIN1.DEPS.Analysis')
#setwd('/Users/usri/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis/')
#cleanDat.norm.After.normalization <- readRDS("~/Desktop/BV2.Human.Microglia.BIN1/cleanDat.norm.After.normalization.rds")
BIN1_cleanDat_norm_After_normalization_with_GENEs_unique <- read.csv("BIN1_cleanDat_norm_After_normalization_with_GENEs.unique.csv", row.names = 1)
cleanDat.norm.After.normalization <- BIN1_cleanDat_norm_After_normalization_with_GENEs_unique
boxplot(cleanDat.norm.After.normalization)

library(readr)
#load metadata files group wise
case1.KO.Vehicle.vs.Cytokine <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/case1.KO.Vehicle.vs.Cytokine.rds")
head(case1.KO.Vehicle.vs.Cytokine)
## Condition Groups Genotype Group
## Intensity.112_Kumar_C20_3 KO.NES.vehicle Group1 KO.NES.vehicle KO
## Intensity.116_Kumar_C20_4 KO.NES.cytokines Group1 KO.NES.cytokines KO
## Intensity.172_Kumar_C20_11 KO.NES.vehicle Group2 KO.NES.vehicle KO
## Intensity.050_Kumar_C20_12 KO.NES.cytokines Group2 KO.NES.cytokines KO
## Intensity.164_Kumar_C20_19 KO.NES.vehicle Group3 KO.NES.vehicle KO
## Intensity.180_Kumar_C20_20 KO.NES.cytokines Group3 KO.NES.cytokines KO
case2.WT.Vehicle.vs.Cytokines <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/case2.WT.Vehicle.vs.Cytokines.rds")
head(case2.WT.Vehicle.vs.Cytokines)
## Condition Groups Genotype
## Intensity.136_Kumar_C20_1 WT.NES.vehicle Group1 WT.NES.vehicle
## Intensity.176_Kumar_C20_2 WT.NES.cytokines Group1 WT.NES.cytokines
## Intensity.204_Kumar_C20_9 WT.NES.vehicle Group2 WT.NES.vehicle
## Intensity.156_Kumar_C20_10 WT.NES.cytokines Group2 WT.NES.cytokines
## Intensity.200_Kumar_C20_17 WT.NES.vehicle Group3 WT.NES.vehicle
## Intensity.168_Kumar_C20_18 WT.NES.cytokines Group3 WT.NES.cytokines
case3.WT.vs.KO.Cytokines <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/case3.WT.vs.KO.Cytokines.rds")
head(case3.WT.vs.KO.Cytokines)
## Condition Groups Genotype
## Intensity.176_Kumar_C20_2 WT.NES.cytokines Group1 WT.NES.cytokines
## Intensity.116_Kumar_C20_4 KO.NES.cytokines Group1 KO.NES.cytokines
## Intensity.156_Kumar_C20_10 WT.NES.cytokines Group2 WT.NES.cytokines
## Intensity.050_Kumar_C20_12 KO.NES.cytokines Group2 KO.NES.cytokines
## Intensity.168_Kumar_C20_18 WT.NES.cytokines Group3 WT.NES.cytokines
## Intensity.180_Kumar_C20_20 KO.NES.cytokines Group3 KO.NES.cytokines
case4.WT.versus.KO.Vehicles <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/case4.WT.versus.KO.Vehicles.rds")
head(case4.WT.versus.KO.Vehicles)
## Condition Groups Genotype
## Intensity.136_Kumar_C20_1 WT.NES.vehicle Group1 WT.NES.vehicle
## Intensity.112_Kumar_C20_3 KO.NES.vehicle Group1 KO.NES.vehicle
## Intensity.204_Kumar_C20_9 WT.NES.vehicle Group2 WT.NES.vehicle
## Intensity.172_Kumar_C20_11 KO.NES.vehicle Group2 KO.NES.vehicle
## Intensity.200_Kumar_C20_17 WT.NES.vehicle Group3 WT.NES.vehicle
## Intensity.164_Kumar_C20_19 KO.NES.vehicle Group3 KO.NES.vehicle
case5.WT.versus.KO <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/case5.WT.versus.KO.rds")
head(case5.WT.versus.KO)
## Condition Groups Genotype Group
## Intensity.136_Kumar_C20_1 WT.NES.vehicle Group1 WT.NES.vehicle WT
## Intensity.176_Kumar_C20_2 WT.NES.cytokines Group1 WT.NES.cytokines WT
## Intensity.112_Kumar_C20_3 KO.NES.vehicle Group1 KO.NES.vehicle KO
## Intensity.116_Kumar_C20_4 KO.NES.cytokines Group1 KO.NES.cytokines KO
## Intensity.204_Kumar_C20_9 WT.NES.vehicle Group2 WT.NES.vehicle WT
## Intensity.156_Kumar_C20_10 WT.NES.cytokines Group2 WT.NES.cytokines WT
#making of cleanDat based on samples in metadta files for comaprisions
##case1.KO.Vehicle.vs.Cytokine
samples_to_subset <- row.names(case1.KO.Vehicle.vs.Cytokine)
# Subsetting the matrix based on the selected samples
subset_matrix <- cleanDat.norm.After.normalization[, colnames(cleanDat.norm.After.normalization) %in% samples_to_subset]
head(subset_matrix, 2)
## Intensity.112_Kumar_C20_3 Intensity.116_Kumar_C20_4
## LOC100507462 24.27651 25.49742
## UBA6 26.42183 26.68525
## Intensity.172_Kumar_C20_11 Intensity.050_Kumar_C20_12
## LOC100507462 25.85425 25.78600
## UBA6 26.16788 26.47889
## Intensity.164_Kumar_C20_19 Intensity.180_Kumar_C20_20
## LOC100507462 26.21295 25.80621
## UBA6 26.28645 26.69676
## Intensity.148_Kumar_C20_27 Intensity.196_Kumar_C20_28
## LOC100507462 25.89553 25.49484
## UBA6 26.13427 26.35224
## Intensity.074_Kumar_C20_35 Intensity.078_Kumar_C20_36
## LOC100507462 25.55518 25.27947
## UBA6 26.42775 26.47712
colnames(subset_matrix) == row.names(case1.KO.Vehicle.vs.Cytokine)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
saveRDS(subset_matrix, file = 'case1.cleanDat.KO.Vehicle.vs.Cytokine.rds')
###case2.WT.Vehicle.vs.Cytokines
samples_to_subset <- row.names(case2.WT.Vehicle.vs.Cytokines)
# Subsetting the matrix based on the selected samples
subset_matrix <- cleanDat.norm.After.normalization[, colnames(cleanDat.norm.After.normalization) %in% samples_to_subset]
head(subset_matrix, 2)
## Intensity.176_Kumar_C20_2 Intensity.204_Kumar_C20_9
## LOC100507462 25.3547 25.50994
## UBA6 27.2039 26.90907
## Intensity.156_Kumar_C20_10 Intensity.200_Kumar_C20_17
## LOC100507462 25.55066 25.31509
## UBA6 26.71910 26.85774
## Intensity.168_Kumar_C20_18 Intensity.082_Kumar_C20_25
## LOC100507462 25.40830 25.07928
## UBA6 26.84887 26.96015
## Intensity.220_Kumar_C20_26 Intensity.086_Kumar_C20_33
## LOC100507462 25.60928 25.34336
## UBA6 27.13333 26.90907
## Intensity.160_Kumar_C20_34
## LOC100507462 24.94545
## UBA6 26.84887
colnames(subset_matrix) == row.names(case2.WT.Vehicle.vs.Cytokines)
## Warning in colnames(subset_matrix) == row.names(case2.WT.Vehicle.vs.Cytokines):
## longer object length is not a multiple of shorter object length
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
saveRDS(subset_matrix, file = 'case2.cleanDat.WT.Vehicle.vs.Cytokines.rds')
##case3.WT.vs.KO.Cytokines
samples_to_subset <- row.names(case3.WT.vs.KO.Cytokines)
# Subsetting the matrix based on the selected samples
subset_matrix <- cleanDat.norm.After.normalization[, colnames(cleanDat.norm.After.normalization) %in% samples_to_subset]
head(subset_matrix, 2)
## Intensity.176_Kumar_C20_2 Intensity.116_Kumar_C20_4
## LOC100507462 25.3547 25.49742
## UBA6 27.2039 26.68525
## Intensity.156_Kumar_C20_10 Intensity.050_Kumar_C20_12
## LOC100507462 25.55066 25.78600
## UBA6 26.71910 26.47889
## Intensity.168_Kumar_C20_18 Intensity.180_Kumar_C20_20
## LOC100507462 25.40830 25.80621
## UBA6 26.84887 26.69676
## Intensity.220_Kumar_C20_26 Intensity.196_Kumar_C20_28
## LOC100507462 25.60928 25.49484
## UBA6 27.13333 26.35224
## Intensity.160_Kumar_C20_34 Intensity.078_Kumar_C20_36
## LOC100507462 24.94545 25.27947
## UBA6 26.84887 26.47712
colnames(subset_matrix) == row.names(case3.WT.vs.KO.Cytokines)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
saveRDS(subset_matrix, file = 'case3.cleanDat.WT.vs.KO.Cytokines.rds')
##case4.WT.versus.KO.Vehicles
samples_to_subset <- row.names(case4.WT.versus.KO.Vehicles)
# Subsetting the matrix based on the selected samples
subset_matrix <- cleanDat.norm.After.normalization[, colnames(cleanDat.norm.After.normalization) %in% samples_to_subset]
head(subset_matrix, 2)
## Intensity.112_Kumar_C20_3 Intensity.204_Kumar_C20_9
## LOC100507462 24.27651 25.50994
## UBA6 26.42183 26.90907
## Intensity.172_Kumar_C20_11 Intensity.200_Kumar_C20_17
## LOC100507462 25.85425 25.31509
## UBA6 26.16788 26.85774
## Intensity.164_Kumar_C20_19 Intensity.082_Kumar_C20_25
## LOC100507462 26.21295 25.07928
## UBA6 26.28645 26.96015
## Intensity.148_Kumar_C20_27 Intensity.086_Kumar_C20_33
## LOC100507462 25.89553 25.34336
## UBA6 26.13427 26.90907
## Intensity.074_Kumar_C20_35
## LOC100507462 25.55518
## UBA6 26.42775
colnames(subset_matrix) == row.names(case4.WT.versus.KO.Vehicles)
## Warning in colnames(subset_matrix) == row.names(case4.WT.versus.KO.Vehicles):
## longer object length is not a multiple of shorter object length
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
saveRDS(subset_matrix, file = 'case4.cleanDat.WT.versus.KO.Vehicles.rds')
##case5.WT.versus.KO
samples_to_subset <- row.names(case5.WT.versus.KO)
# Subsetting the matrix based on the selected samples
subset_matrix <- cleanDat.norm.After.normalization[, colnames(cleanDat.norm.After.normalization) %in% samples_to_subset]
head(subset_matrix, 2)
## Intensity.176_Kumar_C20_2 Intensity.112_Kumar_C20_3
## LOC100507462 25.3547 24.27651
## UBA6 27.2039 26.42183
## Intensity.116_Kumar_C20_4 Intensity.204_Kumar_C20_9
## LOC100507462 25.49742 25.50994
## UBA6 26.68525 26.90907
## Intensity.156_Kumar_C20_10 Intensity.172_Kumar_C20_11
## LOC100507462 25.55066 25.85425
## UBA6 26.71910 26.16788
## Intensity.050_Kumar_C20_12 Intensity.200_Kumar_C20_17
## LOC100507462 25.78600 25.31509
## UBA6 26.47889 26.85774
## Intensity.168_Kumar_C20_18 Intensity.164_Kumar_C20_19
## LOC100507462 25.40830 26.21295
## UBA6 26.84887 26.28645
## Intensity.180_Kumar_C20_20 Intensity.082_Kumar_C20_25
## LOC100507462 25.80621 25.07928
## UBA6 26.69676 26.96015
## Intensity.220_Kumar_C20_26 Intensity.148_Kumar_C20_27
## LOC100507462 25.60928 25.89553
## UBA6 27.13333 26.13427
## Intensity.196_Kumar_C20_28 Intensity.086_Kumar_C20_33
## LOC100507462 25.49484 25.34336
## UBA6 26.35224 26.90907
## Intensity.160_Kumar_C20_34 Intensity.074_Kumar_C20_35
## LOC100507462 24.94545 25.55518
## UBA6 26.84887 26.42775
## Intensity.078_Kumar_C20_36
## LOC100507462 25.27947
## UBA6 26.47712
colnames(subset_matrix) == row.names(case5.WT.versus.KO)
## Warning in colnames(subset_matrix) == row.names(case5.WT.versus.KO): longer
## object length is not a multiple of shorter object length
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
saveRDS(subset_matrix, file = 'case5.cleanDat.WT.versus.KO.rds')
case1.cleanDat.KO.Vehicle.vs.Cytokine <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis/case1.cleanDat.KO.Vehicle.vs.Cytokine.rds")
cleanDat <- case1.cleanDat.KO.Vehicle.vs.Cytokine
numericMeta <- case1.KO.Vehicle.vs.Cytokine
condition <- case1.KO.Vehicle.vs.Cytokine$Genotype
Grouping <- case1.KO.Vehicle.vs.Cytokine$Genotype
source("/Users/usri/Desktop/Screen/parANOVA.dex.R")
ANOVAout <- parANOVA.dex()
## - parallelThreads variable not set. Running with 2 threads only.
## - Network color assignment vector not supplied or not of length in rows of cleanDat; will not be included in output table and data frame.
## - twoGroupCorrMethod variable not set to a correction method for p.adjust when only 2 groups of samples specified in Grouping. Using Benjamini Hochberg 'BH' FDR.
## - fallbackIfSmallTukeyP variable not set. Using recommended Bonferroni t-test FDR for unreliable Tukey p values <10^-8.5
##
## Attaching package: 'foreach'
## The following objects are masked from 'package:purrr':
##
## accumulate, when
##
## ...Tukey p<10^-8.5 Fallback calculations using Bonferroni corrected T test: 0 [0%]
labelTop <- 10
FCmin= 0
flip = 3
signifP=0.05
plotVolc()
## - No comparison p value columns selected in selectComps. Using ALL comparisons.
## - selectComps may not reference valid integer p value column indexes of ANOVAout (or CORout).
## Output will be for all comparisons or correlation(s).
## - useNETcolors not set or not TRUE/FALSE. NETcolors not found in ANOVAout, so 3 color volcano(es) will be drawn.
## - Variable outputfigs not specified. Saving volcano plots to /Users/usri/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis .
##
## ...Thresholds:
## [x] Applying a 0% minimum fold change threshold at + and - x=0 .
## [y] with minimum significance cutoff p < 0.05, equivalent to -log10(p) y=1.3 .
##
## Processing ANOVA column 3 (KO.NES.cytokines vs KO.NES.vehicle) for volcano ...
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Generating PDF volcano for ANOVAout column 3 (KO.NES.cytokines vs KO.NES.vehicle) ...
## Generating HTML volcano for ANOVAout column 3 (KO.NES.cytokines vs KO.NES.vehicle) ...
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
## If you'd like to see this geom implemented,
## Please open an issue with your example code at
## https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
## If you'd like to see this geom implemented,
## Please open an issue with your example code at
## https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
## If you'd like to see this geom implemented,
## Please open an issue with your example code at
## https://github.com/ropensci/plotly/issues

case2.cleanDat.WT.Vehicle.vs.Cytokines <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis/case2.cleanDat.WT.Vehicle.vs.Cytokines.rds")
cleanDat <- case2.cleanDat.WT.Vehicle.vs.Cytokines
numericMeta <- case2.WT.Vehicle.vs.Cytokines
condition <- case2.WT.Vehicle.vs.Cytokines$Genotype
Grouping <- case2.WT.Vehicle.vs.Cytokines$Genotype
table(case2.WT.Vehicle.vs.Cytokines$Genotype)
##
## WT.NES.cytokines WT.NES.vehicle
## 5 5
source("/Users/usri/Desktop/Screen/parANOVA.dex.R")
ANOVAout <- parANOVA.dex()
## - parallelThreads variable not set. Running with 2 threads only.
## - Network color assignment vector not supplied or not of length in rows of cleanDat; will not be included in output table and data frame.
## - twoGroupCorrMethod variable not set to a correction method for p.adjust when only 2 groups of samples specified in Grouping. Using Benjamini Hochberg 'BH' FDR.
## - fallbackIfSmallTukeyP variable not set. Using recommended Bonferroni t-test FDR for unreliable Tukey p values <10^-8.5
## Warning in cbind(...): number of rows of result is not a multiple of vector
## length (arg 2)
##
## ...Tukey p<10^-8.5 Fallback calculations using Bonferroni corrected T test: 1 [0.027%]
labelTop <- 10
FCmin= 0
flip = 3
signifP=0.05
plotVolc()
## - No comparison p value columns selected in selectComps. Using ALL comparisons.
## - selectComps may not reference valid integer p value column indexes of ANOVAout (or CORout).
## Output will be for all comparisons or correlation(s).
## - useNETcolors not set or not TRUE/FALSE. NETcolors not found in ANOVAout, so 3 color volcano(es) will be drawn.
## - Variable outputfigs not specified. Saving volcano plots to /Users/usri/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis .
##
## ...Thresholds:
## [x] Applying a 0% minimum fold change threshold at + and - x=0 .
## [y] with minimum significance cutoff p < 0.05, equivalent to -log10(p) y=1.3 .
##
## Processing ANOVA column 3 (WT.NES.cytokines vs WT.NES.vehicle) for volcano ...
## Generating PDF volcano for ANOVAout column 3 (WT.NES.cytokines vs WT.NES.vehicle) ...
## Generating HTML volcano for ANOVAout column 3 (WT.NES.cytokines vs WT.NES.vehicle) ...
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
## If you'd like to see this geom implemented,
## Please open an issue with your example code at
## https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
## If you'd like to see this geom implemented,
## Please open an issue with your example code at
## https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
## If you'd like to see this geom implemented,
## Please open an issue with your example code at
## https://github.com/ropensci/plotly/issues

case3.cleanDat.WT.vs.KO.Cytokines <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis/case3.cleanDat.WT.vs.KO.Cytokines.rds")
cleanDat <- case3.cleanDat.WT.vs.KO.Cytokines
numericMeta <- case3.WT.vs.KO.Cytokines
condition <- case3.WT.vs.KO.Cytokines$Genotype
Grouping <- case3.WT.vs.KO.Cytokines$Genotype
source("/Users/usri/Desktop/Screen/parANOVA.dex.R")
ANOVAout <- parANOVA.dex()
## - parallelThreads variable not set. Running with 2 threads only.
## - Network color assignment vector not supplied or not of length in rows of cleanDat; will not be included in output table and data frame.
## - twoGroupCorrMethod variable not set to a correction method for p.adjust when only 2 groups of samples specified in Grouping. Using Benjamini Hochberg 'BH' FDR.
## - fallbackIfSmallTukeyP variable not set. Using recommended Bonferroni t-test FDR for unreliable Tukey p values <10^-8.5
##
## ...Tukey p<10^-8.5 Fallback calculations using Bonferroni corrected T test: 4 [0.11%]
labelTop <- 10
FCmin= 0
flip = -3
signifP=0.05
plotVolc()
## - No comparison p value columns selected in selectComps. Using ALL comparisons.
## - selectComps may not reference valid integer p value column indexes of ANOVAout (or CORout).
## Output will be for all comparisons or correlation(s).
## - useNETcolors not set or not TRUE/FALSE. NETcolors not found in ANOVAout, so 3 color volcano(es) will be drawn.
## - Variable outputfigs not specified. Saving volcano plots to /Users/usri/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis .
##
## ...Thresholds:
## [x] Applying a 0% minimum fold change threshold at + and - x=0 .
## [y] with minimum significance cutoff p < 0.05, equivalent to -log10(p) y=1.3 .
##
## Processing ANOVA column 3 (WT.NES.cytokines vs KO.NES.cytokines) for volcano ...
## Generating PDF volcano for ANOVAout column 3 (WT.NES.cytokines vs KO.NES.cytokines) ...
## Generating HTML volcano for ANOVAout column 3 (WT.NES.cytokines vs KO.NES.cytokines) ...
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
## If you'd like to see this geom implemented,
## Please open an issue with your example code at
## https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
## If you'd like to see this geom implemented,
## Please open an issue with your example code at
## https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
## If you'd like to see this geom implemented,
## Please open an issue with your example code at
## https://github.com/ropensci/plotly/issues

case4.cleanDat.WT.versus.KO.Vehicles <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis/case4.cleanDat.WT.versus.KO.Vehicles.rds")
cleanDat <- case4.cleanDat.WT.versus.KO.Vehicles
numericMeta <- case4.WT.versus.KO.Vehicles
condition <- case4.WT.versus.KO.Vehicles$Genotype
Grouping <- case4.WT.versus.KO.Vehicles$Genotype
source("/Users/usri/Desktop/Screen/parANOVA.dex.R")
ANOVAout <- parANOVA.dex()
## - parallelThreads variable not set. Running with 2 threads only.
## - Network color assignment vector not supplied or not of length in rows of cleanDat; will not be included in output table and data frame.
## - twoGroupCorrMethod variable not set to a correction method for p.adjust when only 2 groups of samples specified in Grouping. Using Benjamini Hochberg 'BH' FDR.
## - fallbackIfSmallTukeyP variable not set. Using recommended Bonferroni t-test FDR for unreliable Tukey p values <10^-8.5
## Warning in cbind(...): number of rows of result is not a multiple of vector
## length (arg 2)
##
## ...Tukey p<10^-8.5 Fallback calculations using Bonferroni corrected T test: 2 [0.054%]
labelTop <- 10
FCmin= 0
flip = -3
signifP=0.05
plotVolc()
## - No comparison p value columns selected in selectComps. Using ALL comparisons.
## - selectComps may not reference valid integer p value column indexes of ANOVAout (or CORout).
## Output will be for all comparisons or correlation(s).
## - useNETcolors not set or not TRUE/FALSE. NETcolors not found in ANOVAout, so 3 color volcano(es) will be drawn.
## - Variable outputfigs not specified. Saving volcano plots to /Users/usri/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis .
##
## ...Thresholds:
## [x] Applying a 0% minimum fold change threshold at + and - x=0 .
## [y] with minimum significance cutoff p < 0.05, equivalent to -log10(p) y=1.3 .
##
## Processing ANOVA column 3 (WT.NES.vehicle vs KO.NES.vehicle) for volcano ...
## Generating PDF volcano for ANOVAout column 3 (WT.NES.vehicle vs KO.NES.vehicle) ...
## Generating HTML volcano for ANOVAout column 3 (WT.NES.vehicle vs KO.NES.vehicle) ...
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
## If you'd like to see this geom implemented,
## Please open an issue with your example code at
## https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
## If you'd like to see this geom implemented,
## Please open an issue with your example code at
## https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
## If you'd like to see this geom implemented,
## Please open an issue with your example code at
## https://github.com/ropensci/plotly/issues

case5.cleanDat.WT.versus.KO <- readRDS("~/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis/case5.cleanDat.WT.versus.KO.rds")
cleanDat <- case5.cleanDat.WT.versus.KO
numericMeta <- case5.WT.versus.KO$Group
condition <- case5.WT.versus.KO$Group
Grouping <- case5.WT.versus.KO$Group
source("/Users/usri/Desktop/Screen/parANOVA.dex.R")
ANOVAout <- parANOVA.dex()
## - parallelThreads variable not set. Running with 2 threads only.
## - Network color assignment vector not supplied or not of length in rows of cleanDat; will not be included in output table and data frame.
## - twoGroupCorrMethod variable not set to a correction method for p.adjust when only 2 groups of samples specified in Grouping. Using Benjamini Hochberg 'BH' FDR.
## - fallbackIfSmallTukeyP variable not set. Using recommended Bonferroni t-test FDR for unreliable Tukey p values <10^-8.5
## Warning in cbind(...): number of rows of result is not a multiple of vector
## length (arg 2)
##
## ...Tukey p<10^-8.5 Fallback calculations using Bonferroni corrected T test: 0 [0%]
labelTop <- 10
FCmin= 0
flip = -3
signifP=0.05
plotVolc()
## - No comparison p value columns selected in selectComps. Using ALL comparisons.
## - selectComps may not reference valid integer p value column indexes of ANOVAout (or CORout).
## Output will be for all comparisons or correlation(s).
## - useNETcolors not set or not TRUE/FALSE. NETcolors not found in ANOVAout, so 3 color volcano(es) will be drawn.
## - Variable outputfigs not specified. Saving volcano plots to /Users/usri/Desktop/BIN1.DEPs.analysis.Aug20.24/BIN1.DEPS.Analysis .
##
## ...Thresholds:
## [x] Applying a 0% minimum fold change threshold at + and - x=0 .
## [y] with minimum significance cutoff p < 0.05, equivalent to -log10(p) y=1.3 .
##
## Processing ANOVA column 3 (WT vs KO) for volcano ...
## Generating PDF volcano for ANOVAout column 3 (WT vs KO) ...
## Generating HTML volcano for ANOVAout column 3 (WT vs KO) ...
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
## If you'd like to see this geom implemented,
## Please open an issue with your example code at
## https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
## If you'd like to see this geom implemented,
## Please open an issue with your example code at
## https://github.com/ropensci/plotly/issues
## Warning in geom2trace.default(dots[[1L]][[3L]], dots[[2L]][[1L]], dots[[3L]][[1L]]): geom_GeomLabelRepel() has yet to be implemented in plotly.
## If you'd like to see this geom implemented,
## Please open an issue with your example code at
## https://github.com/ropensci/plotly/issues
