This is the course project assignment for the Building Data Products course within the John Hopkins Data specialization Certificate Program.
Use data from accelerometers on the belt, forearm, arm, and dumbbell of 6 participants to predict which exercise they performed referred to as “classe”.
The data was provided from: http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har It came in the form of training and test data csv files. For training purposes, I created a new dataset subsetted to exclude columns of missing or NA values.
Using a random forest method, we achieved a perfect predictive model for the data. This was verified by using a confusion matrix and statistics. A summary of the model also showed ZERO OOB errors.
After testing a testing subset and another data set for testing, we were able to build a perfect predictive model using the Random Forest Method.
In this we will:
Pull in our data and clean it up
Split up the data into training and test sets.
Build a model that can predict the “classe” in which participants did exercise
Predict 20 different test cases using test data.
#Load libraries
library(caret);library(randomForest);library(e1071)
## Loading required package: ggplot2
## Loading required package: lattice
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
## margin
#Load data files already downloaded to local directory
training <- read.csv("pml-training.csv", na.strings = c("NA", ""))
testing <- read.csv("pml-testing.csv", na.strings = c("NA", ""))
#Look at data structure
str(training)
## 'data.frame': 19622 obs. of 160 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ user_name : chr "carlitos" "carlitos" "carlitos" "carlitos" ...
## $ raw_timestamp_part_1 : int 1323084231 1323084231 1323084231 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 ...
## $ raw_timestamp_part_2 : int 788290 808298 820366 120339 196328 304277 368296 440390 484323 484434 ...
## $ cvtd_timestamp : chr "05/12/2011 11:23" "05/12/2011 11:23" "05/12/2011 11:23" "05/12/2011 11:23" ...
## $ new_window : chr "no" "no" "no" "no" ...
## $ num_window : int 11 11 11 12 12 12 12 12 12 12 ...
## $ roll_belt : num 1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.43 1.45 ...
## $ pitch_belt : num 8.07 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.16 8.17 ...
## $ yaw_belt : num -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 ...
## $ total_accel_belt : int 3 3 3 3 3 3 3 3 3 3 ...
## $ kurtosis_roll_belt : chr NA NA NA NA ...
## $ kurtosis_picth_belt : chr NA NA NA NA ...
## $ kurtosis_yaw_belt : chr NA NA NA NA ...
## $ skewness_roll_belt : chr NA NA NA NA ...
## $ skewness_roll_belt.1 : chr NA NA NA NA ...
## $ skewness_yaw_belt : chr NA NA NA NA ...
## $ max_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_picth_belt : int NA NA NA NA NA NA NA NA NA NA ...
## $ max_yaw_belt : chr NA NA NA NA ...
## $ min_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_pitch_belt : int NA NA NA NA NA NA NA NA NA NA ...
## $ min_yaw_belt : chr NA NA NA NA ...
## $ amplitude_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_pitch_belt : int NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_yaw_belt : chr NA NA NA NA ...
## $ var_total_accel_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_pitch_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_pitch_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_pitch_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_yaw_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_yaw_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_yaw_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ gyros_belt_x : num 0 0.02 0 0.02 0.02 0.02 0.02 0.02 0.02 0.03 ...
## $ gyros_belt_y : num 0 0 0 0 0.02 0 0 0 0 0 ...
## $ gyros_belt_z : num -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 0 ...
## $ accel_belt_x : int -21 -22 -20 -22 -21 -21 -22 -22 -20 -21 ...
## $ accel_belt_y : int 4 4 5 3 2 4 3 4 2 4 ...
## $ accel_belt_z : int 22 22 23 21 24 21 21 21 24 22 ...
## $ magnet_belt_x : int -3 -7 -2 -6 -6 0 -4 -2 1 -3 ...
## $ magnet_belt_y : int 599 608 600 604 600 603 599 603 602 609 ...
## $ magnet_belt_z : int -313 -311 -305 -310 -302 -312 -311 -313 -312 -308 ...
## $ roll_arm : num -128 -128 -128 -128 -128 -128 -128 -128 -128 -128 ...
## $ pitch_arm : num 22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.6 ...
## $ yaw_arm : num -161 -161 -161 -161 -161 -161 -161 -161 -161 -161 ...
## $ total_accel_arm : int 34 34 34 34 34 34 34 34 34 34 ...
## $ var_accel_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_yaw_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_yaw_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_yaw_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ gyros_arm_x : num 0 0.02 0.02 0.02 0 0.02 0 0.02 0.02 0.02 ...
## $ gyros_arm_y : num 0 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 ...
## $ gyros_arm_z : num -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.02 ...
## $ accel_arm_x : int -288 -290 -289 -289 -289 -289 -289 -289 -288 -288 ...
## $ accel_arm_y : int 109 110 110 111 111 111 111 111 109 110 ...
## $ accel_arm_z : int -123 -125 -126 -123 -123 -122 -125 -124 -122 -124 ...
## $ magnet_arm_x : int -368 -369 -368 -372 -374 -369 -373 -372 -369 -376 ...
## $ magnet_arm_y : int 337 337 344 344 337 342 336 338 341 334 ...
## $ magnet_arm_z : int 516 513 513 512 506 513 509 510 518 516 ...
## $ kurtosis_roll_arm : chr NA NA NA NA ...
## $ kurtosis_picth_arm : chr NA NA NA NA ...
## $ kurtosis_yaw_arm : chr NA NA NA NA ...
## $ skewness_roll_arm : chr NA NA NA NA ...
## $ skewness_pitch_arm : chr NA NA NA NA ...
## $ skewness_yaw_arm : chr NA NA NA NA ...
## $ max_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_picth_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_yaw_arm : int NA NA NA NA NA NA NA NA NA NA ...
## $ min_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_yaw_arm : int NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_yaw_arm : int NA NA NA NA NA NA NA NA NA NA ...
## $ roll_dumbbell : num 13.1 13.1 12.9 13.4 13.4 ...
## $ pitch_dumbbell : num -70.5 -70.6 -70.3 -70.4 -70.4 ...
## $ yaw_dumbbell : num -84.9 -84.7 -85.1 -84.9 -84.9 ...
## $ kurtosis_roll_dumbbell : chr NA NA NA NA ...
## $ kurtosis_picth_dumbbell : chr NA NA NA NA ...
## $ kurtosis_yaw_dumbbell : chr NA NA NA NA ...
## $ skewness_roll_dumbbell : chr NA NA NA NA ...
## $ skewness_pitch_dumbbell : chr NA NA NA NA ...
## $ skewness_yaw_dumbbell : chr NA NA NA NA ...
## $ max_roll_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_picth_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_yaw_dumbbell : chr NA NA NA NA ...
## $ min_roll_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_pitch_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_yaw_dumbbell : chr NA NA NA NA ...
## $ amplitude_roll_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## [list output truncated]
#We want to predict classe, which is a type, but not a factor, so fixing
training$classe <- as.factor(training$classe)
#There are a lot of NA variables, do a count
table(colSums(is.na(training)))
##
## 0 19216
## 60 100
#Subset data where there are no NAs
training <- training[, colSums(is.na(training))==0]
testing <- testing[, colSums(is.na(testing))==0]
#Split training again for a model
set.seed(08172024)
inTrain <- createDataPartition(training$classe, p=0.75, list = F)
trainSet <- training[inTrain,]
testSet <- training[-inTrain,]
Now the data looks good and we can start using it.
We normally would start by looking at cor() and pairs() to see what made sense for a linear or non-linear model.
However, using a random forest, we can quickly let the algorithm figure it out.
#Train model
#To quickly identify possible covariates, I'm using a random forest.
set.seed(321)
#modFit_rf <- train(classe ~ ., data=trainSet, method = "rf") - Was having performance issues
modFit_rf <- randomForest(classe ~ ., data = trainSet)
#Test on test set
predictions <- predict(modFit_rf, testSet)
confusionMatrix(predictions, testSet$classe)
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 1395 0 0 0 0
## B 0 949 0 0 0
## C 0 0 855 0 0
## D 0 0 0 804 0
## E 0 0 0 0 901
##
## Overall Statistics
##
## Accuracy : 1
## 95% CI : (0.9992, 1)
## No Information Rate : 0.2845
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 1
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000
## Specificity 1.0000 1.0000 1.0000 1.0000 1.0000
## Pos Pred Value 1.0000 1.0000 1.0000 1.0000 1.0000
## Neg Pred Value 1.0000 1.0000 1.0000 1.0000 1.0000
## Prevalence 0.2845 0.1935 0.1743 0.1639 0.1837
## Detection Rate 0.2845 0.1935 0.1743 0.1639 0.1837
## Detection Prevalence 0.2845 0.1935 0.1743 0.1639 0.1837
## Balanced Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000
#Final test
final_pred <- predict(modFit_rf, testing)
summary(final_pred)
## A B C D E
## 20 0 0 0 0
The output says accuracy is at a 1 which means the predictions were 100% accurate.
There is a super high confidence level of .999, a p-value of < 2.2e-16 which is much smaller than the common alpha level of 0.05 indicating this is statistically significant, and kappa is at a 1 indicating a perfect model.
There were no errors.