KHAI BÁO PACKAGES

library(rugarch)
library(rmgarch)
library("openxlsx")
library("writexl")
library(readxl)
library(tidyverse)
library(ggExtra)
library(ggplot2)
library("EnvStats")
library(zoo)
library(ConnectednessApproach)
library(VineCopula)
library(knitr)
library(dgof)
library(goftest)
library(nortest)

A. CẢ GIAI ĐOẠN

1. NHẬP DỮ LIỆU

DATA <- read_xlsx("C://Users//84896//Desktop//DATA//CN3-COPULA.xlsx", sheet="DATA")
SP500 <- DATA$y
VNI <- DATA$x1
MERVAL <- DATA$x2
CROBEX <- DATA$x3
MASI <- DATA$x4
MSM30 <- DATA$x5

2. MA TRẬN TƯƠNG QUAN

cor(cbind(SP500, VNI, MERVAL, CROBEX, MASI, MSM30), method="pearson")
##            SP500       VNI    MERVAL    CROBEX      MASI     MSM30
## SP500  1.0000000 0.2383986 0.3847411 0.3401699 0.1761739 0.1782534
## VNI    0.2383986 1.0000000 0.1299821 0.2093248 0.1066150 0.2090848
## MERVAL 0.3847411 0.1299821 1.0000000 0.2246492 0.1516347 0.1155129
## CROBEX 0.3401699 0.2093248 0.2246492 1.0000000 0.2382602 0.2149749
## MASI   0.1761739 0.1066150 0.1516347 0.2382602 1.0000000 0.1713024
## MSM30  0.1782534 0.2090848 0.1155129 0.2149749 0.1713024 1.0000000

3. MÔ HÌNH ARMA-GJR-GARCH

3.1. ARMA

print("Mỹ")
## [1] "Mỹ"
autoarfima(SP500,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##          mu         ar1         ar2       sigma 
##  0.06240079 -0.07504879 -0.05225278  1.29792151
print("Việt Nam")
## [1] "Việt Nam"
autoarfima(VNI,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##         mu      sigma 
## 0.05539759 1.48893168
print("Argentina")
## [1] "Argentina"
autoarfima(MERVAL,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##         mu        ma1      sigma 
## 0.32222944 0.05246606 3.33261251
print("Croatia")
## [1] "Croatia"
autoarfima(CROBEX,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##         ar1         ma1         ma2       sigma 
##  0.75399736 -0.71736643  0.06903937  0.86816552
print("Morocco")
## [1] "Morocco"
autoarfima(MASI,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##        ar1        ma1        ma2      sigma 
## -0.9900989  1.1840929  0.1977743  0.8721873
print("Oman")
## [1] "Oman"
autoarfima(MSM30,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##        ar1        ar2        ma1      sigma 
## -0.6428461  0.2488296  0.8440933  0.7926635

3.2. GJR-GARCH

print("Mỹ")
## [1] "Mỹ"
sp500.g11n <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
sp500.g11s <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
sp500.g11ss <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
sp500.g11g <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
sp500.g11sg <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
sp500.g12n <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
sp500.g12s <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
sp500.g12ss <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
sp500.g12g <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
sp500.g12sg <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
sp500.g21n <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
sp500.g21s <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
sp500.g21ss <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
sp500.g21g <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
sp500.g21sg <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
sp500.g22n <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
sp500.g22s <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
sp500.g22ss <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
sp500.g22g <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
sp500.g22sg <- ugarchspec(mean.model = list(armaOrder = c(2,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
sp500.garch11n <-ugarchfit(data=SP500, spec= sp500.g11n ) #1
sp500.garch11s <-ugarchfit(data=SP500, spec= sp500.g11s ) 
sp500.garch11ss <-ugarchfit(data=SP500, spec= sp500.g11ss ) 
sp500.garch11g <-ugarchfit(data=SP500, spec= sp500.g11g )
sp500.garch11sg <-ugarchfit(data=SP500, spec= sp500.g11sg ) #5
sp500.garch12n <-ugarchfit(data=SP500, spec= sp500.g12n )
sp500.garch12s <-ugarchfit(data=SP500, spec= sp500.g12s )
sp500.garch12ss <-ugarchfit(data=SP500, spec= sp500.g12ss )
sp500.garch12g<-ugarchfit(data=SP500, spec= sp500.g12g )
sp500.garch12sg <-ugarchfit(data=SP500, spec= sp500.g12sg ) #10
sp500.garch21n <-ugarchfit(data=SP500, spec= sp500.g21n )
sp500.garch21s <-ugarchfit(data=SP500, spec= sp500.g21s )
sp500.garch21ss <-ugarchfit(data=SP500, spec= sp500.g21ss)
sp500.garch21g <-ugarchfit(data=SP500, spec= sp500.g21g )
sp500.garch21sg <-ugarchfit(data=SP500, spec= sp500.g21sg ) #15
sp500.garch22n <-ugarchfit(data=SP500, spec= sp500.g22n )
sp500.garch22s <-ugarchfit(data=SP500, spec= sp500.g22s )
sp500.garch22ss <-ugarchfit(data=SP500, spec= sp500.g22ss )
sp500.garch22g<-ugarchfit(data=SP500, spec= sp500.g22g )
sp500.garch22sg <-ugarchfit(data=SP500, spec= sp500.g22sg )
model.aic.list <- list(sp500.garch11n,sp500.garch11s,sp500.garch11ss,sp500.garch11g,sp500.garch11sg,sp500.garch12n,sp500.garch12s,sp500.garch12ss,sp500.garch12g,sp500.garch12sg,sp500.garch21n,sp500.garch21s,sp500.garch21ss,sp500.garch21g,sp500.garch21sg,sp500.garch22n,sp500.garch22s,sp500.garch22ss,sp500.garch22g,sp500.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 13
sp500.garch21ss@fit$matcoef
##             Estimate  Std. Error       t value     Pr(>|t|)
## mu      6.787993e-02  0.01891923  3.587879e+00 3.333784e-04
## ar1    -8.941378e-02  0.02432172 -3.676293e+00 2.366474e-04
## ar2    -2.971677e-02  0.02519714 -1.179371e+00 2.382507e-01
## omega   4.301244e-02  0.01205471  3.568103e+00 3.595748e-04
## alpha1  1.428029e-07  0.13646673  1.046430e-06 9.999992e-01
## alpha2  4.220786e-02  0.11031127  3.826251e-01 7.019978e-01
## beta1   8.218984e-01  0.03118423  2.635622e+01 0.000000e+00
## gamma1  1.691936e-01  0.12889388  1.312658e+00 1.892982e-01
## gamma2  6.951413e-02  0.11653925  5.964868e-01 5.508500e-01
## skew    8.134953e-01  0.03113631  2.612690e+01 0.000000e+00
## shape   4.651639e+00  0.61000968  7.625516e+00 2.420286e-14
print("Việt Nam")
## [1] "Việt Nam"
vni.g11n <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
vni.g11s <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
vni.g11ss <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
vni.g11g <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
vni.g11sg <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
vni.g12n <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
vni.g12s <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
vni.g12ss <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
vni.g12g <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
vni.g12sg <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
vni.g21n <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
vni.g21s <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
vni.g21ss <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
vni.g21g <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
vni.g21sg <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
vni.g22n <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
vni.g22s <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
vni.g22ss <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
vni.g22g <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
vni.g22sg <- ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
vni.garch11n <-ugarchfit(data=VNI, spec= vni.g11n ) #1
vni.garch11s <-ugarchfit(data=VNI, spec= vni.g11s ) 
vni.garch11ss <-ugarchfit(data=VNI, spec= vni.g11ss ) 
vni.garch11g <-ugarchfit(data=VNI, spec= vni.g11g )
vni.garch11sg <-ugarchfit(data=VNI, spec= vni.g11sg ) #5
vni.garch12n <-ugarchfit(data=VNI, spec= vni.g12n )
vni.garch12s <-ugarchfit(data=VNI, spec= vni.g12s )
vni.garch12ss <-ugarchfit(data=VNI, spec= vni.g12ss )
vni.garch12g<-ugarchfit(data=VNI, spec= vni.g12g )
vni.garch12sg <-ugarchfit(data=VNI, spec= vni.g12sg ) #10
vni.garch21n <-ugarchfit(data=VNI, spec= vni.g21n )
vni.garch21s <-ugarchfit(data=VNI, spec= vni.g21s )
vni.garch21ss <-ugarchfit(data=VNI, spec= vni.g21ss)
vni.garch21g <-ugarchfit(data=VNI, spec= vni.g21g )
vni.garch21sg <-ugarchfit(data=VNI, spec= vni.g21sg ) #15
vni.garch22n <-ugarchfit(data=VNI, spec= vni.g22n )
vni.garch22s <-ugarchfit(data=VNI, spec= vni.g22s )
vni.garch22ss <-ugarchfit(data=VNI, spec= vni.g22ss )
vni.garch22g<-ugarchfit(data=VNI, spec= vni.g22g )
vni.garch22sg <-ugarchfit(data=VNI, spec= vni.g22sg )
model.aic.list <- list(vni.garch11n,vni.garch11s,vni.garch11ss,vni.garch11g,vni.garch11sg,vni.garch12n,vni.garch12s,vni.garch12ss,vni.garch12g,vni.garch12sg,vni.garch21n,vni.garch21s,vni.garch21ss,vni.garch21g,vni.garch21sg,vni.garch22n,vni.garch22s,vni.garch22ss,vni.garch22g,vni.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 15
vni.garch21sg@fit$matcoef
##            Estimate  Std. Error      t value     Pr(>|t|)
## mu     7.073382e-02  0.01379763 5.126519e+00 2.951482e-07
## omega  1.625484e-01  0.05490831 2.960361e+00 3.072787e-03
## alpha1 7.055338e-08  0.02240546 3.148937e-06 9.999975e-01
## alpha2 7.018290e-02  0.01723121 4.073012e+00 4.640912e-05
## beta1  7.884684e-01  0.03867262 2.038829e+01 0.000000e+00
## gamma1 7.484212e-02  0.03121787 2.397413e+00 1.651132e-02
## gamma2 3.800238e-02  0.02742957 1.385453e+00 1.659139e-01
## skew   9.151130e-01  0.01464915 6.246869e+01 0.000000e+00
## shape  1.002875e+00  0.04568344 2.195270e+01 0.000000e+00
print("Argentina")
## [1] "Argentina"
merval.g11n <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
merval.g11s <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
merval.g11ss <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
merval.g11g <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
merval.g11sg <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
merval.g12n <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
merval.g12s <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
merval.g12ss <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
merval.g12g <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
merval.g12sg <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
merval.g21n <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
merval.g21s <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
merval.g21ss <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
merval.g21g <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
merval.g21sg <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
merval.g22n <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
merval.g22s <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
merval.g22ss <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
merval.g22g <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
merval.g22sg <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
merval.garch11n <-ugarchfit(data= MERVAL, spec= merval.g11n ) #1
merval.garch11s <-ugarchfit(data= MERVAL, spec= merval.g11s ) 
merval.garch11ss <-ugarchfit(data= MERVAL, spec= merval.g11ss ) 
merval.garch11g <-ugarchfit(data= MERVAL, spec= merval.g11g )
merval.garch11sg <-ugarchfit(data= MERVAL, spec= merval.g11sg ) #5
merval.garch12n <-ugarchfit(data= MERVAL, spec= merval.g12n )
merval.garch12s <-ugarchfit(data= MERVAL, spec= merval.g12s )
merval.garch12ss <-ugarchfit(data= MERVAL, spec= merval.g12ss )
merval.garch12g<-ugarchfit(data= MERVAL, spec= merval.g12g )
merval.garch12sg <-ugarchfit(data= MERVAL, spec= merval.g12sg ) #10
merval.garch21n <-ugarchfit(data= MERVAL, spec= merval.g21n )
merval.garch21s <-ugarchfit(data= MERVAL, spec= merval.g21s )
merval.garch21ss <-ugarchfit(data= MERVAL, spec= merval.g21ss)
merval.garch21g <-ugarchfit(data= MERVAL, spec= merval.g21g )
merval.garch21sg <-ugarchfit(data= MERVAL, spec= merval.g21sg ) #15
merval.garch22n <-ugarchfit(data= MERVAL, spec= merval.g22n )
merval.garch22s <-ugarchfit(data= MERVAL, spec= merval.g22s )
merval.garch22ss <-ugarchfit(data= MERVAL, spec= merval.g22ss )
merval.garch22g<-ugarchfit(data= MERVAL, spec= merval.g22g )
merval.garch22sg <-ugarchfit(data= MERVAL, spec= merval.g22sg )
model.aic.list <- list(merval.garch11n,merval.garch11s,merval.garch11ss,merval.garch11g,merval.garch11sg,merval.garch12n,merval.garch12s,merval.garch12ss,merval.garch12g,merval.garch12sg,merval.garch21n,merval.garch21s,merval.garch21ss,merval.garch21g,merval.garch21sg,merval.garch22n,merval.garch22s,merval.garch22ss,merval.garch22g,merval.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 12
merval.garch21s@fit$matcoef
##             Estimate  Std. Error       t value     Pr(>|t|)
## mu      3.201942e-01 0.057704212  5.548889e+00 2.874914e-08
## ma1     9.463703e-03 0.024641521  3.840552e-01 7.009376e-01
## omega   6.349843e-02 0.028190607  2.252468e+00 2.429274e-02
## alpha1  3.052161e-02 0.027295074  1.118209e+00 2.634776e-01
## alpha2  4.909700e-08 0.027745108  1.769573e-06 9.999986e-01
## beta1   9.600270e-01 0.004150225  2.313193e+02 0.000000e+00
## gamma1  3.294535e-01 0.054830013  6.008635e+00 1.870918e-09
## gamma2 -3.135793e-01 0.053197259 -5.894651e+00 3.754749e-09
## shape   3.774734e+00 0.351023838  1.075350e+01 0.000000e+00
print("Crotia")
## [1] "Crotia"
crobex.g11n <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
crobex.g11s <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
crobex.g11ss <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
crobex.g11g <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
crobex.g11sg <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
crobex.g12n <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
crobex.g12s <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
crobex.g12ss <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
crobex.g12g <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
crobex.g12sg <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
crobex.g21n <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
crobex.g21s <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
crobex.g21ss <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
crobex.g21g <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
crobex.g21sg <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
crobex.g22n <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
crobex.g22s <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
crobex.g22ss <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
crobex.g22g <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
crobex.g22sg <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
crobex.garch11n <-ugarchfit(data= CROBEX, spec= crobex.g11n ) #1
crobex.garch11s <-ugarchfit(data= CROBEX, spec= crobex.g11s ) 
crobex.garch11ss <-ugarchfit(data= CROBEX, spec= crobex.g11ss ) 
crobex.garch11g <-ugarchfit(data= CROBEX, spec= crobex.g11g )
crobex.garch11sg <-ugarchfit(data= CROBEX, spec= crobex.g11sg ) #5
crobex.garch12n <-ugarchfit(data= CROBEX, spec= crobex.g12n )
crobex.garch12s <-ugarchfit(data= CROBEX, spec= crobex.g12s )
crobex.garch12ss <-ugarchfit(data= CROBEX, spec= crobex.g12ss )
crobex.garch12g<-ugarchfit(data= CROBEX, spec= crobex.g12g )
crobex.garch12sg <-ugarchfit(data= CROBEX, spec= crobex.g12sg ) #10
crobex.garch21n <-ugarchfit(data= CROBEX, spec= crobex.g21n )
crobex.garch21s <-ugarchfit(data= CROBEX, spec= crobex.g21s )
crobex.garch21ss <-ugarchfit(data= CROBEX, spec= crobex.g21ss)
crobex.garch21g <-ugarchfit(data= CROBEX, spec= crobex.g21g )
crobex.garch21sg <-ugarchfit(data= CROBEX, spec= crobex.g21sg ) #15
crobex.garch22n <-ugarchfit(data= CROBEX, spec= crobex.g22n )
crobex.garch22s <-ugarchfit(data= CROBEX, spec= crobex.g22s )
crobex.garch22ss <-ugarchfit(data= CROBEX, spec= crobex.g22ss )
crobex.garch22g<-ugarchfit(data= CROBEX, spec= crobex.g22g )
crobex.garch22sg <-ugarchfit(data= CROBEX, spec= crobex.g22sg )
model.aic.list <- list(crobex.garch11n,crobex.garch11s,crobex.garch11ss,crobex.garch11g,crobex.garch11sg,crobex.garch12n,crobex.garch12s,crobex.garch12ss,crobex.garch12g,crobex.garch12sg,crobex.garch21n,crobex.garch21s,crobex.garch21ss,crobex.garch21g,crobex.garch21sg,crobex.garch22n,crobex.garch22s,crobex.garch22ss,crobex.garch22g,crobex.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 2
crobex.garch11s@fit$matcoef
##            Estimate   Std. Error       t value     Pr(>|t|)
## mu      0.051856197 1.740956e-02  2.978604e+00 2.895646e-03
## ar1     0.974169851 4.467384e-03  2.180627e+02 0.000000e+00
## ma1    -0.957271026 9.226903e-05 -1.037478e+04 0.000000e+00
## ma2    -0.007876803 1.035817e-03 -7.604434e+00 2.864375e-14
## omega   0.067321414 2.264945e-02  2.972320e+00 2.955585e-03
## alpha1  0.094403635 3.703972e-02  2.548713e+00 1.081211e-02
## beta1   0.817955925 4.465450e-02  1.831743e+01 0.000000e+00
## gamma1  0.035690885 4.317244e-02  8.267053e-01 4.084041e-01
## shape   2.864361319 2.336575e-01  1.225880e+01 0.000000e+00
print("Morocco")
## [1] "Morocco"
masi.g11n <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
masi.g11s <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
masi.g11ss <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
masi.g11g <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
masi.g11sg <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
masi.g12n <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
masi.g12s <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
masi.g12ss <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
masi.g12g <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
masi.g12sg <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
masi.g21n <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
masi.g21s <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
masi.g21ss <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
masi.g21g <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
masi.g21sg <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
masi.g22n <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
masi.g22s <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
masi.g22ss <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
masi.g22g <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
masi.g22sg <- ugarchspec(mean.model = list(armaOrder = c(1,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
masi.garch11n <-ugarchfit(data= MASI, spec= masi.g11n ) #1
masi.garch11s <-ugarchfit(data= MASI, spec= masi.g11s ) 
masi.garch11ss <-ugarchfit(data= MASI, spec= masi.g11ss ) 
masi.garch11g <-ugarchfit(data= MASI, spec= masi.g11g )
masi.garch11sg <-ugarchfit(data= MASI, spec= masi.g11sg ) #5
masi.garch12n <-ugarchfit(data= MASI, spec= masi.g12n )
masi.garch12s <-ugarchfit(data= MASI, spec= masi.g12s )
masi.garch12ss <-ugarchfit(data= MASI, spec= masi.g12ss )
masi.garch12g<-ugarchfit(data= MASI, spec= masi.g12g )
masi.garch12sg <-ugarchfit(data= MASI, spec= masi.g12sg ) #10
masi.garch21n <-ugarchfit(data= MASI, spec= masi.g21n )
masi.garch21s <-ugarchfit(data= MASI, spec= masi.g21s )
masi.garch21ss <-ugarchfit(data= MASI, spec= masi.g21ss)
masi.garch21g <-ugarchfit(data= MASI, spec= masi.g21g )
masi.garch21sg <-ugarchfit(data= MASI, spec= masi.g21sg ) #15
masi.garch22n <-ugarchfit(data= MASI, spec= masi.g22n )
masi.garch22s <-ugarchfit(data= MASI, spec= masi.g22s )
masi.garch22ss <-ugarchfit(data= MASI, spec= masi.g22ss )
masi.garch22g<-ugarchfit(data= MASI, spec= masi.g22g )
masi.garch22sg <-ugarchfit(data= MASI, spec= masi.g22sg )
model.aic.list <- list(masi.garch11n,masi.garch11s,masi.garch11ss,masi.garch11g,masi.garch11sg,masi.garch12n,masi.garch12s,masi.garch12ss,masi.garch12g,masi.garch12sg,masi.garch21n,masi.garch21s,masi.garch21ss,masi.garch21g,masi.garch21sg,masi.garch22n,masi.garch22s,masi.garch22ss,masi.garch22g,masi.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 7
masi.garch12s@fit$matcoef
##           Estimate   Std. Error       t value     Pr(>|t|)
## mu      0.03099072 1.468184e-02      2.110820 3.478776e-02
## ar1    -0.99489198 1.557667e-03   -638.706649 0.000000e+00
## ma1     1.10934723 1.535497e-06 722468.026694 0.000000e+00
## ma2     0.11678129 8.177005e-05   1428.167092 0.000000e+00
## omega   0.10543807 2.862063e-02      3.683988 2.296127e-04
## alpha1  0.14491197 5.072703e-02      2.856701 4.280687e-03
## beta1   0.18720996 1.257640e-01      1.488581 1.365978e-01
## beta2   0.47509380 1.216568e-01      3.905197 9.414851e-05
## gamma1  0.12555173 6.763410e-02      1.856338 6.340543e-02
## shape   3.15861450 2.589281e-01     12.198809 0.000000e+00
print("Oman")
## [1] "Oman"
msm30.g11n <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
msm30.g11s <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
msm30.g11ss <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
msm30.g11g <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
msm30.g11sg <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
msm30.g12n <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
msm30.g12s <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
msm30.g12ss <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
msm30.g12g <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
msm30.g12sg <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
msm30.g21n <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
msm30.g21s <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
msm30.g21ss <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
msm30.g21g <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
msm30.g21sg <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
msm30.g22n <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
msm30.g22s <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
msm30.g22ss <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
msm30.g22g <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
msm30.g22sg <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
msm30.garch11n <-ugarchfit(data= MSM30, spec= msm30.g11n ) #1
msm30.garch11s <-ugarchfit(data= MSM30, spec= msm30.g11s ) 
msm30.garch11ss <-ugarchfit(data= MSM30, spec= msm30.g11ss ) 
msm30.garch11g <-ugarchfit(data= MSM30, spec= msm30.g11g )
msm30.garch11sg <-ugarchfit(data= MSM30, spec= msm30.g11sg ) #5
msm30.garch12n <-ugarchfit(data= MSM30, spec= msm30.g12n )
msm30.garch12s <-ugarchfit(data= MSM30, spec= msm30.g12s )
msm30.garch12ss <-ugarchfit(data= MSM30, spec= msm30.g12ss )
msm30.garch12g<-ugarchfit(data= MSM30, spec= msm30.g12g )
msm30.garch12sg <-ugarchfit(data= MSM30, spec= msm30.g12sg ) #10
msm30.garch21n <-ugarchfit(data= MSM30, spec= msm30.g21n )
msm30.garch21s <-ugarchfit(data= MSM30, spec= msm30.g21s )
msm30.garch21ss <-ugarchfit(data= MSM30, spec= msm30.g21ss)
msm30.garch21g <-ugarchfit(data= MSM30, spec= msm30.g21g )
msm30.garch21sg <-ugarchfit(data= MSM30, spec= msm30.g21sg ) #15
msm30.garch22n <-ugarchfit(data= MSM30, spec= msm30.g22n )
msm30.garch22s <-ugarchfit(data= MSM30, spec= msm30.g22s )
msm30.garch22ss <-ugarchfit(data= MSM30, spec= msm30.g22ss )
msm30.garch22g<-ugarchfit(data= MSM30, spec= msm30.g22g )
msm30.garch22sg <-ugarchfit(data= MSM30, spec= msm30.g22sg )
model.aic.list <- list(msm30.garch11n,msm30.garch11s,msm30.garch11ss,msm30.garch11g,msm30.garch11sg,msm30.garch12n,msm30.garch12s,msm30.garch12ss,msm30.garch12g,msm30.garch12sg,msm30.garch21n,msm30.garch21s,msm30.garch21ss,msm30.garch21g,msm30.garch21sg,msm30.garch22n,msm30.garch22s,msm30.garch22ss,msm30.garch22g,msm30.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 12
msm30.garch21s@fit$matcoef
##             Estimate  Std. Error       t value     Pr(>|t|)
## mu     -2.004075e-02  0.01574812 -1.272581e+00 2.031668e-01
## ar1     4.021751e-01  0.41030917  9.801757e-01 3.269994e-01
## ar2     2.506756e-02  0.08096771  3.095995e-01 7.568656e-01
## ma1    -2.422462e-01  0.41032344 -5.903787e-01 5.549368e-01
## omega   1.024715e-01  0.03030495  3.381344e+00 7.213206e-04
## alpha1  2.318084e-01  0.08353994  2.774821e+00 5.523204e-03
## alpha2  4.719300e-17  0.08371013  5.637670e-16 1.000000e+00
## beta1   6.066778e-01  0.08502737  7.135088e+00 9.672263e-13
## gamma1 -1.249729e-01  0.09325340 -1.340143e+00 1.801988e-01
## gamma2  1.696487e-01  0.09668055  1.754735e+00 7.930464e-02
## shape   3.144667e+00  0.28615571  1.098936e+01 0.000000e+00

4. CHUẨN HÓA PHẦN DƯ

SP500_model <- sp500.garch21ss
VNI_model <- vni.garch21sg
MERVAL_model <- merval.garch21s
CROBEX_model <- crobex.garch11s
MASI_model <- masi.garch12s
MSM30_model <- msm30.garch21s

SP500.res <- residuals(SP500_model)/sigma(SP500_model)
VNI.res <- residuals(VNI_model)/sigma(VNI_model)
MERVAL.res <- residuals(MERVAL_model)/sigma(MERVAL_model)
CROBEX.res <- residuals(CROBEX_model)/sigma(CROBEX_model)
MASI.res <- residuals(MASI_model)/sigma(MASI_model)
MSM30.res <- residuals(MSM30_model)/sigma(MSM30_model)

fitdist(distribution = "sstd", SP500.res, control = list())$pars
##           mu        sigma         skew        shape 
## 0.0007246434 0.9977771753 0.8138744250 4.6751099026
fitdist(distribution = "sged", VNI.res, control = list())$pars
##           mu        sigma         skew        shape 
## -0.008710607  1.003753061  0.909964089  1.002117618
fitdist(distribution = "std", MERVAL.res, control = list())$pars
##          mu       sigma       shape 
## 0.004008781 0.992147872 3.833880809
fitdist(distribution = "std", CROBEX.res, control = list())$pars
##          mu       sigma       shape 
## 0.002638961 0.986709272 2.903725585
fitdist(distribution = "std", MASI.res, control = list())$pars
##           mu        sigma        shape 
## 0.0000233141 1.0121271170 3.1097976463
fitdist(distribution = "std", MSM30.res, control = list())$pars
##          mu       sigma       shape 
## 0.007082759 1.014195295 3.087571193
u <- pdist(distribution = "sstd", q = SP500.res, mu =0.0007246434 , sigma = 0.9977771753, skew= 0.8138744250,shape = 4.6751099026)
v1 <- pdist(distribution = "sged", q = VNI.res, mu =-0.008710607, sigma = 1.003753061, skew= 0.909964089,shape = 1.002117618)
v2 <- pdist(distribution = "std", q = MERVAL.res, mu = 1.002117618, sigma = 0.992147872, shape = 3.833880809)
v3 <- pdist(distribution = "std", q = CROBEX.res, mu = 0.002638961  , sigma = 0.986709272, shape = 2.903725585)
v4 <- pdist(distribution = "std", q = MASI.res, mu = 0.0000233141, sigma = 1.0121271170, shape = 3.1097976463)
v5 <- pdist(distribution = "std", q = MSM30.res, mu = 0.007082759, sigma = 1.014195295, shape = 3.087571193)

goftest::cvm.test(u, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  u
## omega2 = 0.14925, p-value = 0.3919
goftest::cvm.test(v1, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v1
## omega2 = 0.17692, p-value = 0.317
goftest::cvm.test(v2, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v2
## omega2 = 192.22, p-value < 2.2e-16
goftest::cvm.test(v3, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v3
## omega2 = 0.049666, p-value = 0.8784
goftest::cvm.test(v4, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v4
## omega2 = 0.034962, p-value = 0.9572
goftest::cvm.test(v5, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v5
## omega2 = 0.041659, p-value = 0.9245
goftest::ad.test(u, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  u
## An = 0.80375, p-value = 0.4783
goftest::ad.test(v1, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v1
## An = 1.2228, p-value = 0.259
goftest::ad.test(v2, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v2
## An = 1106.2, p-value = 3.561e-07
goftest::ad.test(v3, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v3
## An = 0.29079, p-value = 0.9449
goftest::ad.test(v4, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v4
## An = 0.21061, p-value = 0.9872
goftest::ad.test(v5, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v5
## An = 0.29656, p-value = 0.9407
ks.test(u, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  u
## D = 0.025757, p-value = 0.2136
## alternative hypothesis: two-sided
ks.test(v1, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v1
## D = 0.027688, p-value = 0.151
## alternative hypothesis: two-sided
ks.test(v2, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v2
## D = 0.48805, p-value < 2.2e-16
## alternative hypothesis: two-sided
ks.test(v3, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v3
## D = 0.016146, p-value = 0.772
## alternative hypothesis: two-sided
ks.test(v4, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v4
## D = 0.01217, p-value = 0.9642
## alternative hypothesis: two-sided
ks.test(v5, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v5
## D = 0.012811, p-value = 0.945
## alternative hypothesis: two-sided

5. COPULA

print("Việt Nam")
## [1] "Việt Nam"
aa1 <- BiCopEst(u, v1, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.16
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  23.21 
## AIC:    -44.41 
## BIC:    -38.98
aa2 <- BiCopEst(u, v1, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.13
## par2: 5.57
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.06 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  45.69 
## AIC:    -87.38 
## BIC:    -76.52
aa3 <- BiCopEst(u, v1, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.18
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.02 
## 
## Fit statistics
## --------------
## logLik:  28.45 
## AIC:    -54.89 
## BIC:    -49.46
aa4 <- BiCopEst(u, v1, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.19
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.02 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  19.92 
## AIC:    -37.84 
## BIC:    -32.41
aa5 <- BiCopEst(u, v1, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.11
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.14 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  27.81 
## AIC:    -53.62 
## BIC:    -48.19
aa6 <- BiCopEst(u, v1, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.12 
## 
## Fit statistics
## --------------
## logLik:  33.98 
## AIC:    -65.97 
## BIC:    -60.54
aa7 <- BiCopEst(u, v1, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.77
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  12.94 
## AIC:    -23.88 
## BIC:    -18.45
aa8 <- BiCopEst(u, v1, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.14
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.17 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  22.5 
## AIC:    -43 
## BIC:    -37.57
aa9 <- BiCopEst(u, v1, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.12
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.15 
## 
## Fit statistics
## --------------
## logLik:  30.51 
## AIC:    -59.02 
## BIC:    -53.59
aa10 <- BiCopEst(u, v1, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.11
## par2: 1.07
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.09 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  37.03 
## AIC:    -70.07 
## BIC:    -59.21
aa11 <- BiCopEst(u, v1, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.09
## par2: 1.07
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.09 
## 
## Fit statistics
## --------------
## logLik:  38.13 
## AIC:    -72.26 
## BIC:    -61.4
aa12 <- BiCopEst(u, v1, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.11
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.14 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  27.79 
## AIC:    -51.58 
## BIC:    -40.72
aa13 <- BiCopEst(u, v1, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.1
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.12 
## 
## Fit statistics
## --------------
## logLik:  33.97 
## AIC:    -63.94 
## BIC:    -53.08
aa14 <- BiCopEst(u, v1, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.1
## par2: 0.14
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.13 
## Lower TD:         0.01 
## 
## Fit statistics
## --------------
## logLik:  39.58 
## AIC:    -75.15 
## BIC:    -64.29
aa15 <- BiCopEst(u, v1, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.1
## par2: 0.13
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.01 
## Lower TD:         0.12 
## 
## Fit statistics
## --------------
## logLik:  40.23 
## AIC:    -76.45 
## BIC:    -65.59
aa16 <- BiCopEst(u, v1, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  1.14
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.17 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  22.5 
## AIC:    -41 
## BIC:    -30.14
aa17 <- BiCopEst(u, v1, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.12
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.15 
## 
## Fit statistics
## --------------
## logLik:  30.51 
## AIC:    -57.02 
## BIC:    -46.16
print("Argentina")
## [1] "Argentina"
ab1 <- BiCopEst(u, v2, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.17
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.25, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  45.96 
## AIC:    -89.93 
## BIC:    -84.5
ab2 <- BiCopEst(u, v2, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.16
## par2: 17.04
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.25, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  51.46 
## AIC:    -98.93 
## BIC:    -88.07
ab3 <- BiCopEst(u, v2, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.16
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.25, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.01 
## 
## Fit statistics
## --------------
## logLik:  55 
## AIC:    -108 
## BIC:    -102.57
ab4 <- BiCopEst(u, v2, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.2
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.25, p value < 0.01)
## Upper TD:         0.03 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  22.95 
## AIC:    -43.9 
## BIC:    -38.47
ab5 <- BiCopEst(u, v2, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.13
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.25, p value < 0.01)
## Upper TD:         0.15 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  35.19 
## AIC:    -68.38 
## BIC:    -62.96
ab6 <- BiCopEst(u, v2, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.08
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.25, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.1 
## 
## Fit statistics
## --------------
## logLik:  53.61 
## AIC:    -105.22 
## BIC:    -99.79
ab7 <- BiCopEst(u, v2, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.9
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.25, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  31.38 
## AIC:    -60.77 
## BIC:    -55.34
ab8 <- BiCopEst(u, v2, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.16
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.25, p value < 0.01)
## Upper TD:         0.18 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  18.06 
## AIC:    -34.12 
## BIC:    -28.69
ab9 <- BiCopEst(u, v2, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.25, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.12 
## 
## Fit statistics
## --------------
## logLik:  50.62 
## AIC:    -99.25 
## BIC:    -93.82
ab10 <- BiCopEst(u, v2, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.15
## par2: 1.02
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.25, p value < 0.01)
## Upper TD:         0.02 
## Lower TD:         0.01 
## 
## Fit statistics
## --------------
## logLik:  55.41 
## AIC:    -106.81 
## BIC:    -95.95
ab11 <- BiCopEst(u, v2, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.06
## par2: 1.07
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.25, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.09 
## 
## Fit statistics
## --------------
## logLik:  55.18 
## AIC:    -106.36 
## BIC:    -95.5
ab12 <- BiCopEst(u, v2, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.13
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.25, p value < 0.01)
## Upper TD:         0.15 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  35.12 
## AIC:    -66.25 
## BIC:    -55.39
ab13 <- BiCopEst(u, v2, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.08
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.25, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.1 
## 
## Fit statistics
## --------------
## logLik:  53.6 
## AIC:    -103.19 
## BIC:    -92.33
ab14 <- BiCopEst(u, v2, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.03
## par2: 0.15
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.25, p value < 0.01)
## Upper TD:         0.05 
## Lower TD:         0.01 
## 
## Fit statistics
## --------------
## logLik:  55.8 
## AIC:    -107.59 
## BIC:    -96.73
ab15 <- BiCopEst(u, v2, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.08
## par2: 0.1
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.25, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.1 
## 
## Fit statistics
## --------------
## logLik:  55.82 
## AIC:    -107.65 
## BIC:    -96.79
ab16 <- BiCopEst(u, v2, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.16
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.25, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  30.68 
## AIC:    -57.37 
## BIC:    -46.51
ab17 <- BiCopEst(u, v2, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.1
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.25, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.12 
## 
## Fit statistics
## --------------
## logLik:  50.62 
## AIC:    -97.25 
## BIC:    -86.39
print("Croatia")
## [1] "Croatia"
ac1 <- BiCopEst(u, v3, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.18
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  27.32 
## AIC:    -52.64 
## BIC:    -47.21
ac2 <- BiCopEst(u, v3, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.16
## par2: 5.24
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.08 
## Lower TD:         0.08 
## 
## Fit statistics
## --------------
## logLik:  53.86 
## AIC:    -103.73 
## BIC:    -92.87
ac3 <- BiCopEst(u, v3, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.22
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.04 
## 
## Fit statistics
## --------------
## logLik:  35.53 
## AIC:    -69.06 
## BIC:    -63.63
ac4 <- BiCopEst(u, v3, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.19
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.03 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  20.58 
## AIC:    -39.16 
## BIC:    -33.73
ac5 <- BiCopEst(u, v3, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.12
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.14 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  29.85 
## AIC:    -57.69 
## BIC:    -52.26
ac6 <- BiCopEst(u, v3, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.12
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.15 
## 
## Fit statistics
## --------------
## logLik:  43.77 
## AIC:    -85.53 
## BIC:    -80.1
ac7 <- BiCopEst(u, v3, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.95
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  19.94 
## AIC:    -37.88 
## BIC:    -32.45
ac8 <- BiCopEst(u, v3, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.14
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.17 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  21.68 
## AIC:    -41.37 
## BIC:    -35.94
ac9 <- BiCopEst(u, v3, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.16
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.18 
## 
## Fit statistics
## --------------
## logLik:  40.17 
## AIC:    -78.34 
## BIC:    -72.91
ac10 <- BiCopEst(u, v3, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.15
## par2: 1.06
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.08 
## Lower TD:         0.01 
## 
## Fit statistics
## --------------
## logLik:  42.61 
## AIC:    -81.22 
## BIC:    -70.36
ac11 <- BiCopEst(u, v3, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.07
## par2: 1.1
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.12 
## 
## Fit statistics
## --------------
## logLik:  45.89 
## AIC:    -87.79 
## BIC:    -76.93
ac12 <- BiCopEst(u, v3, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.12
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.15 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  29.81 
## AIC:    -55.62 
## BIC:    -44.76
ac13 <- BiCopEst(u, v3, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.12
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.15 
## 
## Fit statistics
## --------------
## logLik:  43.76 
## AIC:    -83.52 
## BIC:    -72.66
ac14 <- BiCopEst(u, v3, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.09
## par2: 0.18
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.11 
## Lower TD:         0.02 
## 
## Fit statistics
## --------------
## logLik:  44.1 
## AIC:    -84.21 
## BIC:    -73.35
ac15 <- BiCopEst(u, v3, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.13
## par2: 0.12
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.15 
## 
## Fit statistics
## --------------
## logLik:  47.92 
## AIC:    -91.84 
## BIC:    -80.98
ac16 <- BiCopEst(u, v3, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  1.14
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.17 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  21.68 
## AIC:    -39.37 
## BIC:    -28.51
ac17 <- BiCopEst(u, v3, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.16
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.18 
## 
## Fit statistics
## --------------
## logLik:  40.17 
## AIC:    -76.34 
## BIC:    -65.48
print("Morocco")
## [1] "Morocco"
ad1 <- BiCopEst(u, v4, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  8.89 
## AIC:    -15.77 
## BIC:    -10.34
ad2 <- BiCopEst(u, v4, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.1
## par2: 18.13
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  11.44 
## AIC:    -18.87 
## BIC:    -8.01
ad3 <- BiCopEst(u, v4, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.11
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  8.87 
## AIC:    -15.74 
## BIC:    -10.31
ad4 <- BiCopEst(u, v4, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  6.61 
## AIC:    -11.21 
## BIC:    -5.78
ad5 <- BiCopEst(u, v4, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.06
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.07 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  7.85 
## AIC:    -13.69 
## BIC:    -8.26
ad6 <- BiCopEst(u, v4, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.06
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.08 
## 
## Fit statistics
## --------------
## logLik:  10.09 
## AIC:    -18.18 
## BIC:    -12.75
ad7 <- BiCopEst(u, v4, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.55
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  6.84 
## AIC:    -11.68 
## BIC:    -6.25
ad8 <- BiCopEst(u, v4, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.07
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.08 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.44 
## AIC:    -8.89 
## BIC:    -3.46
ad9 <- BiCopEst(u, v4, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.07
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.09 
## 
## Fit statistics
## --------------
## logLik:  8.22 
## AIC:    -14.44 
## BIC:    -9.01
ad10 <- BiCopEst(u, v4, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.07
## par2: 1.03
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.04 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  10.81 
## AIC:    -17.62 
## BIC:    -6.76
ad11 <- BiCopEst(u, v4, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.05
## par2: 1.04
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  11.28 
## AIC:    -18.56 
## BIC:    -7.7
ad12 <- BiCopEst(u, v4, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.06
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.08 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  7.82 
## AIC:    -11.64 
## BIC:    -0.78
ad13 <- BiCopEst(u, v4, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.06
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.08 
## 
## Fit statistics
## --------------
## logLik:  10.07 
## AIC:    -16.14 
## BIC:    -5.28
ad14 <- BiCopEst(u, v4, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.04
## par2: 0.09
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.05 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  10.91 
## AIC:    -17.82 
## BIC:    -6.96
ad15 <- BiCopEst(u, v4, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.05
## par2: 0.07
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.07 
## 
## Fit statistics
## --------------
## logLik:  11.41 
## AIC:    -18.82 
## BIC:    -7.96
ad16 <- BiCopEst(u, v4, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  1.18
## par2: 0.89
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  7.25 
## AIC:    -10.5 
## BIC:    0.36
ad17 <- BiCopEst(u, v4, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.08
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  8.94 
## AIC:    -13.87 
## BIC:    -3.02
print("Oman")
## [1] "Oman"
ae1 <- BiCopEst(u, v5, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.07
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.97 
## AIC:    -5.95 
## BIC:    -0.52
ae2 <- BiCopEst(u, v5, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.06
## par2: 6.85
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.01)
## Upper TD:         0.03 
## Lower TD:         0.03 
## 
## Fit statistics
## --------------
## logLik:  20.07 
## AIC:    -36.14 
## BIC:    -25.28
ae3 <- BiCopEst(u, v5, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.09
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  7.73 
## AIC:    -13.47 
## BIC:    -8.04
ae4 <- BiCopEst(u, v5, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.08
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.07 
## AIC:    -6.14 
## BIC:    -0.71
ae5 <- BiCopEst(u, v5, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.05
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.04, p value = 0.01)
## Upper TD:         0.07 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  6 
## AIC:    -10 
## BIC:    -4.57
ae6 <- BiCopEst(u, v5, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.05
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.01)
## Upper TD:         0 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  10.26 
## AIC:    -18.51 
## BIC:    -13.09
ae7 <- BiCopEst(u, v5, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.37
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.98 
## AIC:    -3.97 
## BIC:    1.46
ae8 <- BiCopEst(u, v5, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.06
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.01)
## Upper TD:         0.08 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.78 
## AIC:    -7.56 
## BIC:    -2.13
ae9 <- BiCopEst(u, v5, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.06
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.03 (empirical = 0.04, p value = 0.01)
## Upper TD:         0 
## Lower TD:         0.07 
## 
## Fit statistics
## --------------
## logLik:  9.6 
## AIC:    -17.2 
## BIC:    -11.77
ae10 <- BiCopEst(u, v5, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.06
## par2: 1.03
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.04, p value = 0.01)
## Upper TD:         0.04 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  9.16 
## AIC:    -14.32 
## BIC:    -3.46
ae11 <- BiCopEst(u, v5, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.04
## par2: 1.04
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.04, p value = 0.01)
## Upper TD:         0 
## Lower TD:         0.05 
## 
## Fit statistics
## --------------
## logLik:  10.91 
## AIC:    -17.82 
## BIC:    -6.97
ae12 <- BiCopEst(u, v5, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.05
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.04, p value = 0.01)
## Upper TD:         0.07 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.99 
## AIC:    -7.98 
## BIC:    2.88
ae13 <- BiCopEst(u, v5, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.05
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.01)
## Upper TD:         0 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  10.25 
## AIC:    -16.51 
## BIC:    -5.65
ae14 <- BiCopEst(u, v5, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.04
## par2: 0.07
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.04, p value = 0.01)
## Upper TD:         0.06 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  9.77 
## AIC:    -15.54 
## BIC:    -4.68
ae15 <- BiCopEst(u, v5, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.05
## par2: 0.05
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.04, p value = 0.01)
## Upper TD:         0 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  11.45 
## AIC:    -18.89 
## BIC:    -8.03
ae16 <- BiCopEst(u, v5, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  1.09
## par2: 0.97
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.23 
## AIC:    -6.45 
## BIC:    4.41
ae17 <- BiCopEst(u, v5, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.06
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.03 (empirical = 0.04, p value = 0.01)
## Upper TD:         0 
## Lower TD:         0.07 
## 
## Fit statistics
## --------------
## logLik:  9.6 
## AIC:    -15.2 
## BIC:    -4.34

B. TRƯỚC COVID

1. NHẬP DỮ LIỆU

rm(list=ls())
DATA <- read_xlsx("C://Users//84896//Desktop//DATA//CN3-COPULA.xlsx", sheet="Pre")
SP500 <- DATA$y
VNI <- DATA$x1
MERVAL <- DATA$x2
CROBEX <- DATA$x3
MASI <- DATA$x4
MSM30 <- DATA$x5

2. MA TRẬN TƯƠNG QUAN

cor(cbind(SP500, VNI, MERVAL, CROBEX, MASI, MSM30), method="pearson")
##            SP500        VNI     MERVAL     CROBEX       MASI      MSM30
## SP500  1.0000000 0.24921578 0.40675947 0.16042169 0.07534730 0.18158525
## VNI    0.2492158 1.00000000 0.11182635 0.06947806 0.10092491 0.25354097
## MERVAL 0.4067595 0.11182635 1.00000000 0.17113414 0.01255043 0.09547259
## CROBEX 0.1604217 0.06947806 0.17113414 1.00000000 0.04200376 0.14848855
## MASI   0.0753473 0.10092491 0.01255043 0.04200376 1.00000000 0.10079280
## MSM30  0.1815852 0.25354097 0.09547259 0.14848855 0.10079280 1.00000000

3. MÔ HÌNH ARMA-GJR-GARCH

3.1. ARMA

print("Mỹ")
## [1] "Mỹ"
autoarfima(SP500,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##          mu         ar1         ar2         ma1         ma2       sigma 
##  0.05523651 -0.02468771  0.89433808  0.00000000 -0.94677710  1.01725671
print("Việt Nam")
## [1] "Việt Nam"
autoarfima(VNI,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##         mu        ma1        ma2      sigma 
## 0.06650518 0.05544425 0.05748963 1.27379362
print("Argentina")
## [1] "Argentina"
autoarfima(MERVAL,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##        mu       ar1     sigma 
## 0.2106993 0.0906727 2.9979639
print("Croatia")
## [1] "Croatia"
autoarfima(CROBEX,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##         mu      sigma 
## 0.01139053 0.69464192
print("Morocco")
## [1] "Morocco"
autoarfima(MASI,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##       ar1     sigma 
## 0.1705336 0.6887281
print("Oman")
## [1] "Oman"
autoarfima(MSM30,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##          mu         ar1         ar2         ma1       sigma 
## -0.05436165 -0.62044103  0.28407930  0.83714231  0.82768367

3.2. GJR-GARCH

print("Mỹ")
## [1] "Mỹ"
sp500.g11n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
sp500.g11s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
sp500.g11ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
sp500.g11g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
sp500.g11sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
sp500.g12n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
sp500.g12s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
sp500.g12ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
sp500.g12g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
sp500.g12sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
sp500.g21n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
sp500.g21s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
sp500.g21ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
sp500.g21g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
sp500.g21sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
sp500.g22n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
sp500.g22s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
sp500.g22ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
sp500.g22g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
sp500.g22sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
sp500.garch11n <-ugarchfit(data=SP500, spec= sp500.g11n ) #1
sp500.garch11s <-ugarchfit(data=SP500, spec= sp500.g11s ) 
sp500.garch11ss <-ugarchfit(data=SP500, spec= sp500.g11ss ) 
sp500.garch11g <-ugarchfit(data=SP500, spec= sp500.g11g )
sp500.garch11sg <-ugarchfit(data=SP500, spec= sp500.g11sg ) #5
sp500.garch12n <-ugarchfit(data=SP500, spec= sp500.g12n )
sp500.garch12s <-ugarchfit(data=SP500, spec= sp500.g12s )
sp500.garch12ss <-ugarchfit(data=SP500, spec= sp500.g12ss )
sp500.garch12g<-ugarchfit(data=SP500, spec= sp500.g12g )
sp500.garch12sg <-ugarchfit(data=SP500, spec= sp500.g12sg ) #10
sp500.garch21n <-ugarchfit(data=SP500, spec= sp500.g21n )
sp500.garch21s <-ugarchfit(data=SP500, spec= sp500.g21s )
sp500.garch21ss <-ugarchfit(data=SP500, spec= sp500.g21ss)
sp500.garch21g <-ugarchfit(data=SP500, spec= sp500.g21g )
sp500.garch21sg <-ugarchfit(data=SP500, spec= sp500.g21sg ) #15
sp500.garch22n <-ugarchfit(data=SP500, spec= sp500.g22n )
sp500.garch22s <-ugarchfit(data=SP500, spec= sp500.g22s )
sp500.garch22ss <-ugarchfit(data=SP500, spec= sp500.g22ss )
sp500.garch22g<-ugarchfit(data=SP500, spec= sp500.g22g )
sp500.garch22sg <-ugarchfit(data=SP500, spec= sp500.g22sg )
model.aic.list <- list(sp500.garch11n,sp500.garch11s,sp500.garch11ss,sp500.garch11g,sp500.garch11sg,sp500.garch12n,sp500.garch12s,sp500.garch12ss,sp500.garch12g,sp500.garch12sg,sp500.garch21n,sp500.garch21s,sp500.garch21ss,sp500.garch21g,sp500.garch21sg,sp500.garch22n,sp500.garch22s,sp500.garch22ss,sp500.garch22g,sp500.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 13
sp500.garch21ss@fit$matcoef
##             Estimate   Std. Error       t value     Pr(>|t|)
## mu      5.450125e-02 2.185075e-02  2.494251e+00 1.262233e-02
## ar1    -1.084826e+00 2.920163e-02 -3.714951e+01 0.000000e+00
## ar2    -1.242021e-01 2.924620e-02 -4.246775e+00 2.168695e-05
## ma1     9.935403e-01 3.472634e-05  2.861056e+04 0.000000e+00
## ma2     1.773927e-02 5.536002e-04  3.204347e+01 0.000000e+00
## omega   9.024410e-02 2.505663e-02  3.601605e+00 3.162584e-04
## alpha1  7.440995e-11 1.476025e-01  5.041239e-10 1.000000e+00
## alpha2  2.495333e-08 9.495720e-02  2.627850e-07 9.999998e-01
## beta1   7.217150e-01 5.678117e-02  1.271046e+01 0.000000e+00
## gamma1  1.721859e-01 1.466764e-01  1.173917e+00 2.404281e-01
## gamma2  2.499680e-01 1.673322e-01  1.493843e+00 1.352167e-01
## skew    8.263522e-01 3.702602e-02  2.231815e+01 0.000000e+00
## shape   3.756452e+00 5.782007e-01  6.496797e+00 8.204837e-11
print("Việt Nam")
## [1] "Việt Nam"
vni.g11n <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
vni.g11s <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
vni.g11ss <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
vni.g11g <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
vni.g11sg <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
vni.g12n <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
vni.g12s <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
vni.g12ss <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
vni.g12g <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
vni.g12sg <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
vni.g21n <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
vni.g21s <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
vni.g21ss <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
vni.g21g <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
vni.g21sg <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
vni.g22n <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
vni.g22s <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
vni.g22ss <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
vni.g22g <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
vni.g22sg <- ugarchspec(mean.model = list(armaOrder = c(0,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
vni.garch11n <-ugarchfit(data=VNI, spec= vni.g11n ) #1
vni.garch11s <-ugarchfit(data=VNI, spec= vni.g11s ) 
vni.garch11ss <-ugarchfit(data=VNI, spec= vni.g11ss ) 
vni.garch11g <-ugarchfit(data=VNI, spec= vni.g11g )
vni.garch11sg <-ugarchfit(data=VNI, spec= vni.g11sg ) #5
vni.garch12n <-ugarchfit(data=VNI, spec= vni.g12n )
vni.garch12s <-ugarchfit(data=VNI, spec= vni.g12s )
vni.garch12ss <-ugarchfit(data=VNI, spec= vni.g12ss )
vni.garch12g<-ugarchfit(data=VNI, spec= vni.g12g )
vni.garch12sg <-ugarchfit(data=VNI, spec= vni.g12sg ) #10
vni.garch21n <-ugarchfit(data=VNI, spec= vni.g21n )
vni.garch21s <-ugarchfit(data=VNI, spec= vni.g21s )
vni.garch21ss <-ugarchfit(data=VNI, spec= vni.g21ss)
vni.garch21g <-ugarchfit(data=VNI, spec= vni.g21g )
vni.garch21sg <-ugarchfit(data=VNI, spec= vni.g21sg ) #15
vni.garch22n <-ugarchfit(data=VNI, spec= vni.g22n )
vni.garch22s <-ugarchfit(data=VNI, spec= vni.g22s )
vni.garch22ss <-ugarchfit(data=VNI, spec= vni.g22ss )
vni.garch22g<-ugarchfit(data=VNI, spec= vni.g22g )
vni.garch22sg <-ugarchfit(data=VNI, spec= vni.g22sg )
model.aic.list <- list(vni.garch11n,vni.garch11s,vni.garch11ss,vni.garch11g,vni.garch11sg,vni.garch12n,vni.garch12s,vni.garch12ss,vni.garch12g,vni.garch12sg,vni.garch21n,vni.garch21s,vni.garch21ss,vni.garch21g,vni.garch21sg,vni.garch22n,vni.garch22s,vni.garch22ss,vni.garch22g,vni.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 13
vni.garch21ss@fit$matcoef
##            Estimate  Std. Error      t value     Pr(>|t|)
## mu     7.562479e-02  0.03729637 2.027672e+00 4.259378e-02
## ma1    4.359318e-02  0.02896152 1.505211e+00 1.322700e-01
## ma2    3.802679e-02  0.03205796 1.186189e+00 2.355478e-01
## omega  1.168913e-01  0.05242204 2.229812e+00 2.575995e-02
## alpha1 1.416327e-08  0.04732323 2.992879e-07 9.999998e-01
## alpha2 7.257158e-02  0.05873903 1.235492e+00 2.166476e-01
## beta1  7.961581e-01  0.05175503 1.538320e+01 0.000000e+00
## gamma1 1.158869e-01  0.08437191 1.373525e+00 1.695892e-01
## gamma2 3.388434e-02  0.10144402 3.340200e-01 7.383644e-01
## skew   9.350630e-01  0.03982151 2.348135e+01 0.000000e+00
## shape  3.875781e+00  0.51858269 7.473795e+00 7.793766e-14
print("Argentina")
## [1] "Argentina"
merval.g11n <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
merval.g11s <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
merval.g11ss <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
merval.g11g <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
merval.g11sg <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
merval.g12n <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
merval.g12s <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
merval.g12ss <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
merval.g12g <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
merval.g12sg <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
merval.g21n <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
merval.g21s <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
merval.g21ss <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
merval.g21g <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
merval.g21sg <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
merval.g22n <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
merval.g22s <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
merval.g22ss <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
merval.g22g <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
merval.g22sg <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
merval.garch11n <-ugarchfit(data= MERVAL, spec= merval.g11n ) #1
merval.garch11s <-ugarchfit(data= MERVAL, spec= merval.g11s ) 
merval.garch11ss <-ugarchfit(data= MERVAL, spec= merval.g11ss ) 
merval.garch11g <-ugarchfit(data= MERVAL, spec= merval.g11g )
merval.garch11sg <-ugarchfit(data= MERVAL, spec= merval.g11sg ) #5
merval.garch12n <-ugarchfit(data= MERVAL, spec= merval.g12n )
merval.garch12s <-ugarchfit(data= MERVAL, spec= merval.g12s )
merval.garch12ss <-ugarchfit(data= MERVAL, spec= merval.g12ss )
merval.garch12g<-ugarchfit(data= MERVAL, spec= merval.g12g )
merval.garch12sg <-ugarchfit(data= MERVAL, spec= merval.g12sg ) #10
merval.garch21n <-ugarchfit(data= MERVAL, spec= merval.g21n )
merval.garch21s <-ugarchfit(data= MERVAL, spec= merval.g21s )
merval.garch21ss <-ugarchfit(data= MERVAL, spec= merval.g21ss)
merval.garch21g <-ugarchfit(data= MERVAL, spec= merval.g21g )
merval.garch21sg <-ugarchfit(data= MERVAL, spec= merval.g21sg ) #15
merval.garch22n <-ugarchfit(data= MERVAL, spec= merval.g22n )
merval.garch22s <-ugarchfit(data= MERVAL, spec= merval.g22s )
merval.garch22ss <-ugarchfit(data= MERVAL, spec= merval.g22ss )
merval.garch22g<-ugarchfit(data= MERVAL, spec= merval.g22g )
merval.garch22sg <-ugarchfit(data= MERVAL, spec= merval.g22sg )
model.aic.list <- list(merval.garch11n,merval.garch11s,merval.garch11ss,merval.garch11g,merval.garch11sg,merval.garch12n,merval.garch12s,merval.garch12ss,merval.garch12g,merval.garch12sg,merval.garch21n,merval.garch21s,merval.garch21ss,merval.garch21g,merval.garch21sg,merval.garch22n,merval.garch22s,merval.garch22ss,merval.garch22g,merval.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 12
merval.garch21s@fit$matcoef
##             Estimate  Std. Error       t value     Pr(>|t|)
## mu      2.687279e-01 0.069025375  3.893176e+00 9.894036e-05
## ar1     1.381752e-02 0.033022059  4.184329e-01 6.756306e-01
## omega   4.115233e-02 0.034434716  1.195082e+00 2.320548e-01
## alpha1  1.363396e-02 0.056076380  2.431320e-01 8.079031e-01
## alpha2  4.054015e-07 0.057126284  7.096584e-06 9.999943e-01
## beta1   9.676682e-01 0.009708130  9.967607e+01 0.000000e+00
## gamma1  4.492547e-01 0.003754312  1.196637e+02 0.000000e+00
## gamma2 -4.164986e-01 0.004796747 -8.682939e+01 0.000000e+00
## shape   3.931523e+00 0.480813134  8.176822e+00 2.220446e-16
print("Crotia")
## [1] "Crotia"
crobex.g11n <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
crobex.g11s <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
crobex.g11ss <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
crobex.g11g <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
crobex.g11sg <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
crobex.g12n <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
crobex.g12s <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
crobex.g12ss <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
crobex.g12g <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
crobex.g12sg <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
crobex.g21n <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
crobex.g21s <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
crobex.g21ss <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
crobex.g21g <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
crobex.g21sg <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
crobex.g22n <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
crobex.g22s <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
crobex.g22ss <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
crobex.g22g <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
crobex.g22sg <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
crobex.garch11n <-ugarchfit(data= CROBEX, spec= crobex.g11n ) #1
crobex.garch11s <-ugarchfit(data= CROBEX, spec= crobex.g11s ) 
crobex.garch11ss <-ugarchfit(data= CROBEX, spec= crobex.g11ss ) 
crobex.garch11g <-ugarchfit(data= CROBEX, spec= crobex.g11g )
crobex.garch11sg <-ugarchfit(data= CROBEX, spec= crobex.g11sg ) #5
crobex.garch12n <-ugarchfit(data= CROBEX, spec= crobex.g12n )
crobex.garch12s <-ugarchfit(data= CROBEX, spec= crobex.g12s )
crobex.garch12ss <-ugarchfit(data= CROBEX, spec= crobex.g12ss )
crobex.garch12g<-ugarchfit(data= CROBEX, spec= crobex.g12g )
crobex.garch12sg <-ugarchfit(data= CROBEX, spec= crobex.g12sg ) #10
crobex.garch21n <-ugarchfit(data= CROBEX, spec= crobex.g21n )
crobex.garch21s <-ugarchfit(data= CROBEX, spec= crobex.g21s )
crobex.garch21ss <-ugarchfit(data= CROBEX, spec= crobex.g21ss)
crobex.garch21g <-ugarchfit(data= CROBEX, spec= crobex.g21g )
crobex.garch21sg <-ugarchfit(data= CROBEX, spec= crobex.g21sg ) #15
crobex.garch22n <-ugarchfit(data= CROBEX, spec= crobex.g22n )
crobex.garch22s <-ugarchfit(data= CROBEX, spec= crobex.g22s )
crobex.garch22ss <-ugarchfit(data= CROBEX, spec= crobex.g22ss )
crobex.garch22g<-ugarchfit(data= CROBEX, spec= crobex.g22g )
crobex.garch22sg <-ugarchfit(data= CROBEX, spec= crobex.g22sg )
model.aic.list <- list(crobex.garch11n,crobex.garch11s,crobex.garch11ss,crobex.garch11g,crobex.garch11sg,crobex.garch12n,crobex.garch12s,crobex.garch12ss,crobex.garch12g,crobex.garch12sg,crobex.garch21n,crobex.garch21s,crobex.garch21ss,crobex.garch21g,crobex.garch21sg,crobex.garch22n,crobex.garch22s,crobex.garch22ss,crobex.garch22g,crobex.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 2
crobex.garch11s@fit$matcoef
##          Estimate  Std. Error   t value     Pr(>|t|)
## mu     0.02060669  0.01631679 1.2629135 2.066203e-01
## omega  0.10382719  0.05341341 1.9438411 5.191461e-02
## alpha1 0.11446165  0.06789041 1.6859767 9.180029e-02
## beta1  0.71062757  0.11790363 6.0271899 1.668350e-09
## gamma1 0.04397669  0.07268089 0.6050654 5.451355e-01
## shape  3.02131079  0.34713157 8.7036475 0.000000e+00
print("Morocco")
## [1] "Morocco"
masi.g11n <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
masi.g11s <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
masi.g11ss <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
masi.g11g <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
masi.g11sg <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
masi.g12n <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
masi.g12s <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
masi.g12ss <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
masi.g12g <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
masi.g12sg <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
masi.g21n <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
masi.g21s <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
masi.g21ss <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
masi.g21g <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
masi.g21sg <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
masi.g22n <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
masi.g22s <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
masi.g22ss <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
masi.g22g <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
masi.g22sg <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
masi.garch11n <-ugarchfit(data= MASI, spec= masi.g11n ) #1
masi.garch11s <-ugarchfit(data= MASI, spec= masi.g11s ) 
masi.garch11ss <-ugarchfit(data= MASI, spec= masi.g11ss ) 
masi.garch11g <-ugarchfit(data= MASI, spec= masi.g11g )
masi.garch11sg <-ugarchfit(data= MASI, spec= masi.g11sg ) #5
masi.garch12n <-ugarchfit(data= MASI, spec= masi.g12n )
masi.garch12s <-ugarchfit(data= MASI, spec= masi.g12s )
masi.garch12ss <-ugarchfit(data= MASI, spec= masi.g12ss )
masi.garch12g<-ugarchfit(data= MASI, spec= masi.g12g )
masi.garch12sg <-ugarchfit(data= MASI, spec= masi.g12sg ) #10
masi.garch21n <-ugarchfit(data= MASI, spec= masi.g21n )
masi.garch21s <-ugarchfit(data= MASI, spec= masi.g21s )
masi.garch21ss <-ugarchfit(data= MASI, spec= masi.g21ss)
masi.garch21g <-ugarchfit(data= MASI, spec= masi.g21g )
masi.garch21sg <-ugarchfit(data= MASI, spec= masi.g21sg ) #15
masi.garch22n <-ugarchfit(data= MASI, spec= masi.g22n )
masi.garch22s <-ugarchfit(data= MASI, spec= masi.g22s )
masi.garch22ss <-ugarchfit(data= MASI, spec= masi.g22ss )
masi.garch22g<-ugarchfit(data= MASI, spec= masi.g22g )
masi.garch22sg <-ugarchfit(data= MASI, spec= masi.g22sg )
model.aic.list <- list(masi.garch11n,masi.garch11s,masi.garch11ss,masi.garch11g,masi.garch11sg,masi.garch12n,masi.garch12s,masi.garch12ss,masi.garch12g,masi.garch12sg,masi.garch21n,masi.garch21s,masi.garch21ss,masi.garch21g,masi.garch21sg,masi.garch22n,masi.garch22s,masi.garch22ss,masi.garch22g,masi.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 7
masi.garch12s@fit$matcoef
##           Estimate  Std. Error    t value     Pr(>|t|)
## mu      0.01558995  0.01811724  0.8605037 0.3895114538
## ar1     0.07952356  0.03093955  2.5702883 0.0101613899
## omega   0.09258907  0.04544159  2.0375404 0.0415959194
## alpha1  0.12336222  0.05488902  2.2474843 0.0246090910
## beta1   0.03968683  0.11773667  0.3370813 0.7360555835
## beta2   0.65978488  0.17289608  3.8160777 0.0001355898
## gamma1 -0.02947728  0.05974620 -0.4933750 0.6217476145
## shape   3.54207096  0.41530528  8.5288367 0.0000000000
print("Oman")
## [1] "Oman"
msm30.g11n <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
msm30.g11s <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
msm30.g11ss <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
msm30.g11g <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
msm30.g11sg <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
msm30.g12n <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
msm30.g12s <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
msm30.g12ss <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
msm30.g12g <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
msm30.g12sg <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
msm30.g21n <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
msm30.g21s <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
msm30.g21ss <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
msm30.g21g <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
msm30.g21sg <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
msm30.g22n <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
msm30.g22s <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
msm30.g22ss <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
msm30.g22g <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
msm30.g22sg <- ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
msm30.garch11n <-ugarchfit(data= MSM30, spec= msm30.g11n ) #1
msm30.garch11s <-ugarchfit(data= MSM30, spec= msm30.g11s ) 
msm30.garch11ss <-ugarchfit(data= MSM30, spec= msm30.g11ss ) 
msm30.garch11g <-ugarchfit(data= MSM30, spec= msm30.g11g )
msm30.garch11sg <-ugarchfit(data= MSM30, spec= msm30.g11sg ) #5
msm30.garch12n <-ugarchfit(data= MSM30, spec= msm30.g12n )
msm30.garch12s <-ugarchfit(data= MSM30, spec= msm30.g12s )
msm30.garch12ss <-ugarchfit(data= MSM30, spec= msm30.g12ss )
msm30.garch12g<-ugarchfit(data= MSM30, spec= msm30.g12g )
msm30.garch12sg <-ugarchfit(data= MSM30, spec= msm30.g12sg ) #10
msm30.garch21n <-ugarchfit(data= MSM30, spec= msm30.g21n )
msm30.garch21s <-ugarchfit(data= MSM30, spec= msm30.g21s )
msm30.garch21ss <-ugarchfit(data= MSM30, spec= msm30.g21ss)
msm30.garch21g <-ugarchfit(data= MSM30, spec= msm30.g21g )
msm30.garch21sg <-ugarchfit(data= MSM30, spec= msm30.g21sg ) #15
msm30.garch22n <-ugarchfit(data= MSM30, spec= msm30.g22n )
msm30.garch22s <-ugarchfit(data= MSM30, spec= msm30.g22s )
msm30.garch22ss <-ugarchfit(data= MSM30, spec= msm30.g22ss )
msm30.garch22g<-ugarchfit(data= MSM30, spec= msm30.g22g )
msm30.garch22sg <-ugarchfit(data= MSM30, spec= msm30.g22sg )
model.aic.list <- list(msm30.garch11n,msm30.garch11s,msm30.garch11ss,msm30.garch11g,msm30.garch11sg,msm30.garch12n,msm30.garch12s,msm30.garch12ss,msm30.garch12g,msm30.garch12sg,msm30.garch21n,msm30.garch21s,msm30.garch21ss,msm30.garch21g,msm30.garch21sg,msm30.garch22n,msm30.garch22s,msm30.garch22ss,msm30.garch22g,msm30.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 2
msm30.garch11s@fit$matcoef
##           Estimate  Std. Error   t value     Pr(>|t|)
## mu     -0.04377966  0.01883115 -2.324853 2.007982e-02
## ar1    -0.70590199  0.10952184 -6.445308 1.153657e-10
## ar2     0.16820104  0.03143664  5.350477 8.772250e-08
## ma1     0.90253157  0.09829594  9.181779 0.000000e+00
## omega   0.07562644  0.02400486  3.150463 1.630118e-03
## alpha1  0.14071110  0.07206587  1.952534 5.087479e-02
## beta1   0.68584769  0.07068398  9.703015 0.000000e+00
## gamma1  0.12649653  0.08050912  1.571207 1.161345e-01
## shape   3.15773600  0.34661925  9.110100 0.000000e+00

4. CHUẨN HÓA PHẦN DƯ

SP500_model <- sp500.garch21ss
VNI_model <- vni.garch21ss
MERVAL_model <- merval.garch21s
CROBEX_model <- crobex.garch11s
MASI_model <- masi.garch12s
MSM30_model <- msm30.garch11s

SP500.res <- residuals(SP500_model)/sigma(SP500_model)
VNI.res <- residuals(VNI_model)/sigma(VNI_model)
MERVAL.res <- residuals(MERVAL_model)/sigma(MERVAL_model)
CROBEX.res <- residuals(CROBEX_model)/sigma(CROBEX_model)
MASI.res <- residuals(MASI_model)/sigma(MASI_model)
MSM30.res <- residuals(MSM30_model)/sigma(MSM30_model)

fitdist(distribution = "sstd", SP500.res, control = list())$pars
##          mu       sigma        skew       shape 
## 0.006156548 0.994348111 0.829886828 3.781440152
fitdist(distribution = "sstd", VNI.res, control = list())$pars
##           mu        sigma         skew        shape 
## -0.002286712  1.009614892  0.933761104  3.803141934
fitdist(distribution = "std", MERVAL.res, control = list())$pars
##            mu         sigma         shape 
## -0.0003312207  0.9925514382  3.9927352656
fitdist(distribution = "std", CROBEX.res, control = list())$pars
##           mu        sigma        shape 
## 1.735272e-05 9.919804e-01 3.051209e+00
fitdist(distribution = "std", MASI.res, control = list())$pars
##            mu         sigma         shape 
## -0.0001714908  1.0176530742  3.4412295356
fitdist(distribution = "std", MSM30.res, control = list())$pars
##          mu       sigma       shape 
## 0.008536164 1.020942508 3.073196942
u <- pdist(distribution = "sstd", q = SP500.res, mu = 0.006156548, sigma = 0.994348111, skew= 0.829886828,shape = 3.781440152)
v1 <- pdist(distribution = "sstd", q = VNI.res, mu =-0.002286712, sigma = 1.009614892, skew= 0.933761104,shape = 3.803141934)
v2 <- pdist(distribution = "std", q = MERVAL.res, mu = -0.0003312207, sigma = 0.9925514382, shape = 3.9927352656)
v3 <- pdist(distribution = "std", q = CROBEX.res, mu = 1.735272e-05, sigma = 9.919804e-01, shape = 3.051209e+00)
v4 <- pdist(distribution = "std", q = MASI.res, mu = -0.0001714908, sigma = 1.0176530742, shape = 3.4412295356)
v5 <- pdist(distribution = "std", q = MSM30.res, mu = 0.008536164, sigma = 1.020942508, shape = 3.073196942)

goftest::cvm.test(u, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  u
## omega2 = 0.077638, p-value = 0.7057
goftest::cvm.test(v1, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v1
## omega2 = 0.016792, p-value = 0.9991
goftest::cvm.test(v2, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v2
## omega2 = 0.028429, p-value = 0.9811
goftest::cvm.test(v3, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v3
## omega2 = 0.044337, p-value = 0.9097
goftest::cvm.test(v4, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v4
## omega2 = 0.033814, p-value = 0.9621
goftest::cvm.test(v5, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v5
## omega2 = 0.044501, p-value = 0.9088
goftest::ad.test(u, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  u
## An = 0.53617, p-value = 0.7102
goftest::ad.test(v1, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v1
## An = 0.15169, p-value = 0.9985
goftest::ad.test(v2, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v2
## An = 0.24843, p-value = 0.9712
goftest::ad.test(v3, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v3
## An = 0.28118, p-value = 0.9516
goftest::ad.test(v4, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v4
## An = 0.27138, p-value = 0.958
goftest::ad.test(v5, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v5
## An = 0.32708, p-value = 0.9165
ks.test(u, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  u
## D = 0.020581, p-value = 0.8013
## alternative hypothesis: two-sided
ks.test(v1, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v1
## D = 0.01326, p-value = 0.9953
## alternative hypothesis: two-sided
ks.test(v2, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v2
## D = 0.015702, p-value = 0.9692
## alternative hypothesis: two-sided
ks.test(v3, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v3
## D = 0.024761, p-value = 0.5857
## alternative hypothesis: two-sided
ks.test(v4, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v4
## D = 0.017247, p-value = 0.9328
## alternative hypothesis: two-sided
ks.test(v5, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v5
## D = 0.02149, p-value = 0.7566
## alternative hypothesis: two-sided

5. COPULA

print("Việt Nam")
## [1] "Việt Nam"
aa1 <- BiCopEst(u, v1, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.14
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  9.19 
## AIC:    -16.37 
## BIC:    -11.49
aa2 <- BiCopEst(u, v1, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.1
## par2: 5.59
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.06 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  20.79 
## AIC:    -37.58 
## BIC:    -27.81
aa3 <- BiCopEst(u, v1, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.15
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.01 
## 
## Fit statistics
## --------------
## logLik:  11.22 
## AIC:    -20.44 
## BIC:    -15.56
aa4 <- BiCopEst(u, v1, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.16
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.01 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  9.37 
## AIC:    -16.73 
## BIC:    -11.85
aa5 <- BiCopEst(u, v1, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.09
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.11 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  11.83 
## AIC:    -21.66 
## BIC:    -16.77
aa6 <- BiCopEst(u, v1, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.08
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.1 
## 
## Fit statistics
## --------------
## logLik:  14.21 
## AIC:    -26.41 
## BIC:    -21.53
aa7 <- BiCopEst(u, v1, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.59
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.38 
## AIC:    -6.75 
## BIC:    -1.87
aa8 <- BiCopEst(u, v1, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.12
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.14 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  10.34 
## AIC:    -18.67 
## BIC:    -13.79
aa9 <- BiCopEst(u, v1, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.12 
## 
## Fit statistics
## --------------
## logLik:  12.76 
## AIC:    -23.51 
## BIC:    -18.63
aa10 <- BiCopEst(u, v1, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.09
## par2: 1.06
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.08 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  15.32 
## AIC:    -26.64 
## BIC:    -16.87
aa11 <- BiCopEst(u, v1, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.09
## par2: 1.06
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.07 
## 
## Fit statistics
## --------------
## logLik:  16.72 
## AIC:    -29.44 
## BIC:    -19.67
aa12 <- BiCopEst(u, v1, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.09
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.11 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  11.83 
## AIC:    -19.65 
## BIC:    -9.88
aa13 <- BiCopEst(u, v1, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.08
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.1 
## 
## Fit statistics
## --------------
## logLik:  14.2 
## AIC:    -24.4 
## BIC:    -14.62
aa14 <- BiCopEst(u, v1, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.09
## par2: 0.11
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.11 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  16.8 
## AIC:    -29.61 
## BIC:    -19.84
aa15 <- BiCopEst(u, v1, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.08
## par2: 0.12
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.09 
## 
## Fit statistics
## --------------
## logLik:  17.86 
## AIC:    -31.72 
## BIC:    -21.94
aa16 <- BiCopEst(u, v1, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  1.12
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.14 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  10.34 
## AIC:    -16.67 
## BIC:    -6.9
aa17 <- BiCopEst(u, v1, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.1
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.12 
## 
## Fit statistics
## --------------
## logLik:  12.76 
## AIC:    -21.51 
## BIC:    -11.74
aacopulalist <- list(summary(aa1)$AIC,summary(aa2)$AIC, summary(aa3)$AIC, summary(aa4)$AIC, summary(aa5)$AIC, summary(aa6)$AIC, summary(aa7)$AIC, summary(aa8)$AIC, summary(aa9)$AIC, summary(aa10)$AIC, summary(aa11)$AIC, summary(aa12)$AIC, summary(aa13)$AIC, summary(aa14)$AIC, summary(aa15)$AIC, summary(aa16)$AIC, summary(aa17)$AIC)
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.14
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  9.19 
## AIC:    -16.37 
## BIC:    -11.49 
## 
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.1
## par2: 5.59
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.06 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  20.79 
## AIC:    -37.58 
## BIC:    -27.81 
## 
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.15
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.01 
## 
## Fit statistics
## --------------
## logLik:  11.22 
## AIC:    -20.44 
## BIC:    -15.56 
## 
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.16
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.01 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  9.37 
## AIC:    -16.73 
## BIC:    -11.85 
## 
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.09
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.11 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  11.83 
## AIC:    -21.66 
## BIC:    -16.77 
## 
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.08
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.1 
## 
## Fit statistics
## --------------
## logLik:  14.21 
## AIC:    -26.41 
## BIC:    -21.53 
## 
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.59
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.38 
## AIC:    -6.75 
## BIC:    -1.87 
## 
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.12
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.14 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  10.34 
## AIC:    -18.67 
## BIC:    -13.79 
## 
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.12 
## 
## Fit statistics
## --------------
## logLik:  12.76 
## AIC:    -23.51 
## BIC:    -18.63 
## 
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.09
## par2: 1.06
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.08 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  15.32 
## AIC:    -26.64 
## BIC:    -16.87 
## 
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.09
## par2: 1.06
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.07 
## 
## Fit statistics
## --------------
## logLik:  16.72 
## AIC:    -29.44 
## BIC:    -19.67 
## 
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.09
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.11 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  11.83 
## AIC:    -19.65 
## BIC:    -9.88 
## 
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.08
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.1 
## 
## Fit statistics
## --------------
## logLik:  14.2 
## AIC:    -24.4 
## BIC:    -14.62 
## 
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.09
## par2: 0.11
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.11 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  16.8 
## AIC:    -29.61 
## BIC:    -19.84 
## 
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.08
## par2: 0.12
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.09 
## 
## Fit statistics
## --------------
## logLik:  17.86 
## AIC:    -31.72 
## BIC:    -21.94 
## 
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  1.12
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.06, p value < 0.01)
## Upper TD:         0.14 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  10.34 
## AIC:    -16.67 
## BIC:    -6.9 
## 
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.1
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.06, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.12 
## 
## Fit statistics
## --------------
## logLik:  12.76 
## AIC:    -21.51 
## BIC:    -11.74
aacopulalist
## [[1]]
## [1] -16.37366
## 
## [[2]]
## [1] -37.58398
## 
## [[3]]
## [1] -20.44157
## 
## [[4]]
## [1] -16.73263
## 
## [[5]]
## [1] -21.6611
## 
## [[6]]
## [1] -26.41161
## 
## [[7]]
## [1] -6.754245
## 
## [[8]]
## [1] -18.67434
## 
## [[9]]
## [1] -23.51377
## 
## [[10]]
## [1] -26.6439
## 
## [[11]]
## [1] -29.4412
## 
## [[12]]
## [1] -19.65089
## 
## [[13]]
## [1] -24.39754
## 
## [[14]]
## [1] -29.60951
## 
## [[15]]
## [1] -31.71538
## 
## [[16]]
## [1] -16.67434
## 
## [[17]]
## [1] -21.51377
print("Argentina")
## [1] "Argentina"
ab1 <- BiCopEst(u, v2, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.39
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.26 (empirical = 0.27, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  82.14 
## AIC:    -162.28 
## BIC:    -157.39
ab2 <- BiCopEst(u, v2, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.4
## par2: 7.19
## Dependence measures
## -------------------
## Kendall's tau:    0.26 (empirical = 0.27, p value < 0.01)
## Upper TD:         0.1 
## Lower TD:         0.1 
## 
## Fit statistics
## --------------
## logLik:  92.2 
## AIC:    -180.4 
## BIC:    -170.63
ab3 <- BiCopEst(u, v2, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.49
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.2 (empirical = 0.27, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.24 
## 
## Fit statistics
## --------------
## logLik:  69.88 
## AIC:    -137.76 
## BIC:    -132.87
ab4 <- BiCopEst(u, v2, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.52
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.21 (empirical = 0.27, p value < 0.01)
## Upper TD:         0.27 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  61.85 
## AIC:    -121.71 
## BIC:    -116.82
ab5 <- BiCopEst(u, v2, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.33
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.25 (empirical = 0.27, p value < 0.01)
## Upper TD:         0.32 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  79.38 
## AIC:    -156.76 
## BIC:    -151.88
ab6 <- BiCopEst(u, v2, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.31
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.24 (empirical = 0.27, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.3 
## 
## Fit statistics
## --------------
## logLik:  80.55 
## AIC:    -159.09 
## BIC:    -154.21
ab7 <- BiCopEst(u, v2, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  2.63
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.27 (empirical = 0.27, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  81.8 
## AIC:    -161.6 
## BIC:    -156.72
ab8 <- BiCopEst(u, v2, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.41
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.19 (empirical = 0.27, p value < 0.01)
## Upper TD:         0.37 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  56.56 
## AIC:    -111.13 
## BIC:    -106.24
ab9 <- BiCopEst(u, v2, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.39
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.18 (empirical = 0.27, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.35 
## 
## Fit statistics
## --------------
## logLik:  62.09 
## AIC:    -122.18 
## BIC:    -117.29
ab10 <- BiCopEst(u, v2, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.22
## par2: 1.21
## Dependence measures
## -------------------
## Kendall's tau:    0.26 (empirical = 0.27, p value < 0.01)
## Upper TD:         0.23 
## Lower TD:         0.08 
## 
## Fit statistics
## --------------
## logLik:  89.42 
## AIC:    -174.84 
## BIC:    -165.07
ab11 <- BiCopEst(u, v2, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.22
## par2: 1.21
## Dependence measures
## -------------------
## Kendall's tau:    0.26 (empirical = 0.27, p value < 0.01)
## Upper TD:         0.07 
## Lower TD:         0.23 
## 
## Fit statistics
## --------------
## logLik:  87.03 
## AIC:    -170.07 
## BIC:    -160.29
ab12 <- BiCopEst(u, v2, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.33
## Dependence measures
## -------------------
## Kendall's tau:    0.25 (empirical = 0.27, p value < 0.01)
## Upper TD:         0.32 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  79.34 
## AIC:    -154.68 
## BIC:    -144.91
ab13 <- BiCopEst(u, v2, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.31
## Dependence measures
## -------------------
## Kendall's tau:    0.24 (empirical = 0.27, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.3 
## 
## Fit statistics
## --------------
## logLik:  80.51 
## AIC:    -157.02 
## BIC:    -147.25
ab14 <- BiCopEst(u, v2, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.26
## par2: 0.36
## Dependence measures
## -------------------
## Kendall's tau:    0.25 (empirical = 0.27, p value < 0.01)
## Upper TD:         0.27 
## Lower TD:         0.15 
## 
## Fit statistics
## --------------
## logLik:  87.11 
## AIC:    -170.22 
## BIC:    -160.45
ab15 <- BiCopEst(u, v2, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.25
## par2: 0.37
## Dependence measures
## -------------------
## Kendall's tau:    0.24 (empirical = 0.27, p value < 0.01)
## Upper TD:         0.16 
## Lower TD:         0.26 
## 
## Fit statistics
## --------------
## logLik:  84.22 
## AIC:    -164.44 
## BIC:    -154.67
ab16 <- BiCopEst(u, v2, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.38
## Dependence measures
## -------------------
## Kendall's tau:    0.27 (empirical = 0.27, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  79.92 
## AIC:    -155.84 
## BIC:    -146.07
ab17 <- BiCopEst(u, v2, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  3.15
## par2: 0.66
## Dependence measures
## -------------------
## Kendall's tau:    0.27 (empirical = 0.27, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  84.21 
## AIC:    -164.42 
## BIC:    -154.65
abcopulalist <- list(summary(ab1)$AIC,summary(ab2)$AIC, summary(ab3)$AIC, summary(ab4)$AIC, summary(ab5)$AIC, summary(ab6)$AIC, summary(ab7)$AIC, summary(ab8)$AIC, summary(ab9)$AIC, summary(ab10)$AIC, summary(ab11)$AIC, summary(ab12)$AIC, summary(ab13)$AIC, summary(ab14)$AIC, summary(ab15)$AIC, summary(ab16)$AIC, summary(ab17)$AIC)
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.39
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.26 (empirical = 0.27, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  82.14 
## AIC:    -162.28 
## BIC:    -157.39 
## 
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.4
## par2: 7.19
## Dependence measures
## -------------------
## Kendall's tau:    0.26 (empirical = 0.27, p value < 0.01)
## Upper TD:         0.1 
## Lower TD:         0.1 
## 
## Fit statistics
## --------------
## logLik:  92.2 
## AIC:    -180.4 
## BIC:    -170.63 
## 
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.49
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.2 (empirical = 0.27, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.24 
## 
## Fit statistics
## --------------
## logLik:  69.88 
## AIC:    -137.76 
## BIC:    -132.87 
## 
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.52
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.21 (empirical = 0.27, p value < 0.01)
## Upper TD:         0.27 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  61.85 
## AIC:    -121.71 
## BIC:    -116.82 
## 
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.33
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.25 (empirical = 0.27, p value < 0.01)
## Upper TD:         0.32 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  79.38 
## AIC:    -156.76 
## BIC:    -151.88 
## 
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.31
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.24 (empirical = 0.27, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.3 
## 
## Fit statistics
## --------------
## logLik:  80.55 
## AIC:    -159.09 
## BIC:    -154.21 
## 
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  2.63
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.27 (empirical = 0.27, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  81.8 
## AIC:    -161.6 
## BIC:    -156.72 
## 
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.41
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.19 (empirical = 0.27, p value < 0.01)
## Upper TD:         0.37 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  56.56 
## AIC:    -111.13 
## BIC:    -106.24 
## 
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.39
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.18 (empirical = 0.27, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.35 
## 
## Fit statistics
## --------------
## logLik:  62.09 
## AIC:    -122.18 
## BIC:    -117.29 
## 
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.22
## par2: 1.21
## Dependence measures
## -------------------
## Kendall's tau:    0.26 (empirical = 0.27, p value < 0.01)
## Upper TD:         0.23 
## Lower TD:         0.08 
## 
## Fit statistics
## --------------
## logLik:  89.42 
## AIC:    -174.84 
## BIC:    -165.07 
## 
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.22
## par2: 1.21
## Dependence measures
## -------------------
## Kendall's tau:    0.26 (empirical = 0.27, p value < 0.01)
## Upper TD:         0.07 
## Lower TD:         0.23 
## 
## Fit statistics
## --------------
## logLik:  87.03 
## AIC:    -170.07 
## BIC:    -160.29 
## 
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.33
## Dependence measures
## -------------------
## Kendall's tau:    0.25 (empirical = 0.27, p value < 0.01)
## Upper TD:         0.32 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  79.34 
## AIC:    -154.68 
## BIC:    -144.91 
## 
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.31
## Dependence measures
## -------------------
## Kendall's tau:    0.24 (empirical = 0.27, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.3 
## 
## Fit statistics
## --------------
## logLik:  80.51 
## AIC:    -157.02 
## BIC:    -147.25 
## 
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.26
## par2: 0.36
## Dependence measures
## -------------------
## Kendall's tau:    0.25 (empirical = 0.27, p value < 0.01)
## Upper TD:         0.27 
## Lower TD:         0.15 
## 
## Fit statistics
## --------------
## logLik:  87.11 
## AIC:    -170.22 
## BIC:    -160.45 
## 
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.25
## par2: 0.37
## Dependence measures
## -------------------
## Kendall's tau:    0.24 (empirical = 0.27, p value < 0.01)
## Upper TD:         0.16 
## Lower TD:         0.26 
## 
## Fit statistics
## --------------
## logLik:  84.22 
## AIC:    -164.44 
## BIC:    -154.67 
## 
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.38
## Dependence measures
## -------------------
## Kendall's tau:    0.27 (empirical = 0.27, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  79.92 
## AIC:    -155.84 
## BIC:    -146.07 
## 
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  3.15
## par2: 0.66
## Dependence measures
## -------------------
## Kendall's tau:    0.27 (empirical = 0.27, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  84.21 
## AIC:    -164.42 
## BIC:    -154.65
abcopulalist
## [[1]]
## [1] -162.2768
## 
## [[2]]
## [1] -180.4039
## 
## [[3]]
## [1] -137.7597
## 
## [[4]]
## [1] -121.7091
## 
## [[5]]
## [1] -156.7629
## 
## [[6]]
## [1] -159.0946
## 
## [[7]]
## [1] -161.6045
## 
## [[8]]
## [1] -111.1257
## 
## [[9]]
## [1] -122.1808
## 
## [[10]]
## [1] -174.8399
## 
## [[11]]
## [1] -170.0665
## 
## [[12]]
## [1] -154.6836
## 
## [[13]]
## [1] -157.0228
## 
## [[14]]
## [1] -170.2191
## 
## [[15]]
## [1] -164.4409
## 
## [[16]]
## [1] -155.8395
## 
## [[17]]
## [1] -164.42
print("Croatia")
## [1] "Croatia"
ac1 <- BiCopEst(u, v3, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.13
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  8.66 
## AIC:    -15.32 
## BIC:    -10.43
ac2 <- BiCopEst(u, v3, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.13
## par2: 5.46
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.06 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  23.69 
## AIC:    -43.39 
## BIC:    -33.61
ac3 <- BiCopEst(u, v3, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.16
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.01 
## 
## Fit statistics
## --------------
## logLik:  11.87 
## AIC:    -21.74 
## BIC:    -16.86
ac4 <- BiCopEst(u, v3, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.15
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.01 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  7.83 
## AIC:    -13.66 
## BIC:    -8.77
ac5 <- BiCopEst(u, v3, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.12 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  12.31 
## AIC:    -22.63 
## BIC:    -17.74
ac6 <- BiCopEst(u, v3, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.09
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.11 
## 
## Fit statistics
## --------------
## logLik:  16.28 
## AIC:    -30.56 
## BIC:    -25.68
ac7 <- BiCopEst(u, v3, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.74
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  7.08 
## AIC:    -12.16 
## BIC:    -7.28
ac8 <- BiCopEst(u, v3, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.12
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.14 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  9.85 
## AIC:    -17.69 
## BIC:    -12.8
ac9 <- BiCopEst(u, v3, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.12
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.14 
## 
## Fit statistics
## --------------
## logLik:  14.94 
## AIC:    -27.89 
## BIC:    -23
ac10 <- BiCopEst(u, v3, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.1
## par2: 1.06
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.07 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  16.03 
## AIC:    -28.05 
## BIC:    -18.28
ac11 <- BiCopEst(u, v3, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.06
## par2: 1.07
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.09 
## 
## Fit statistics
## --------------
## logLik:  17.35 
## AIC:    -30.69 
## BIC:    -20.92
ac12 <- BiCopEst(u, v3, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.09
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.12 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  12.3 
## AIC:    -20.6 
## BIC:    -10.83
ac13 <- BiCopEst(u, v3, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.09
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.12 
## 
## Fit statistics
## --------------
## logLik:  16.28 
## AIC:    -28.56 
## BIC:    -18.78
ac14 <- BiCopEst(u, v3, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.08
## par2: 0.13
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.1 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  16.85 
## AIC:    -29.7 
## BIC:    -19.92
ac15 <- BiCopEst(u, v3, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.09
## par2: 0.1
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.12 
## 
## Fit statistics
## --------------
## logLik:  18.16 
## AIC:    -32.33 
## BIC:    -22.55
ac16 <- BiCopEst(u, v3, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  1.12
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.14 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  9.85 
## AIC:    -15.69 
## BIC:    -5.92
ac17 <- BiCopEst(u, v3, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.12
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.14 
## 
## Fit statistics
## --------------
## logLik:  14.94 
## AIC:    -25.89 
## BIC:    -16.11
accopulalist <- list(summary(ac1)$AIC,summary(ac2)$AIC, summary(ac3)$AIC, summary(ac4)$AIC, summary(ac5)$AIC, summary(ac6)$AIC, summary(ac7)$AIC, summary(ac8)$AIC, summary(ac9)$AIC, summary(ac10)$AIC, summary(ac11)$AIC, summary(ac12)$AIC, summary(ac13)$AIC, summary(ac14)$AIC, summary(ac15)$AIC, summary(ac16)$AIC, summary(ac17)$AIC)
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.13
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  8.66 
## AIC:    -15.32 
## BIC:    -10.43 
## 
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.13
## par2: 5.46
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.06 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  23.69 
## AIC:    -43.39 
## BIC:    -33.61 
## 
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.16
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.01 
## 
## Fit statistics
## --------------
## logLik:  11.87 
## AIC:    -21.74 
## BIC:    -16.86 
## 
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.15
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.01 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  7.83 
## AIC:    -13.66 
## BIC:    -8.77 
## 
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.12 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  12.31 
## AIC:    -22.63 
## BIC:    -17.74 
## 
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.09
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.11 
## 
## Fit statistics
## --------------
## logLik:  16.28 
## AIC:    -30.56 
## BIC:    -25.68 
## 
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.74
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  7.08 
## AIC:    -12.16 
## BIC:    -7.28 
## 
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.12
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.14 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  9.85 
## AIC:    -17.69 
## BIC:    -12.8 
## 
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.12
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.14 
## 
## Fit statistics
## --------------
## logLik:  14.94 
## AIC:    -27.89 
## BIC:    -23 
## 
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.1
## par2: 1.06
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.07 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  16.03 
## AIC:    -28.05 
## BIC:    -18.28 
## 
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.06
## par2: 1.07
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.09 
## 
## Fit statistics
## --------------
## logLik:  17.35 
## AIC:    -30.69 
## BIC:    -20.92 
## 
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.09
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.12 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  12.3 
## AIC:    -20.6 
## BIC:    -10.83 
## 
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.09
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.12 
## 
## Fit statistics
## --------------
## logLik:  16.28 
## AIC:    -28.56 
## BIC:    -18.78 
## 
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.08
## par2: 0.13
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.1 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  16.85 
## AIC:    -29.7 
## BIC:    -19.92 
## 
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.09
## par2: 0.1
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.12 
## 
## Fit statistics
## --------------
## logLik:  18.16 
## AIC:    -32.33 
## BIC:    -22.55 
## 
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  1.12
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.08, p value < 0.01)
## Upper TD:         0.14 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  9.85 
## AIC:    -15.69 
## BIC:    -5.92 
## 
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.12
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.08, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.14 
## 
## Fit statistics
## --------------
## logLik:  14.94 
## AIC:    -25.89 
## BIC:    -16.11
accopulalist
## [[1]]
## [1] -15.32109
## 
## [[2]]
## [1] -43.38548
## 
## [[3]]
## [1] -21.74464
## 
## [[4]]
## [1] -13.65832
## 
## [[5]]
## [1] -22.62571
## 
## [[6]]
## [1] -30.56317
## 
## [[7]]
## [1] -12.16447
## 
## [[8]]
## [1] -17.69052
## 
## [[9]]
## [1] -27.88701
## 
## [[10]]
## [1] -28.05213
## 
## [[11]]
## [1] -30.6909
## 
## [[12]]
## [1] -20.60009
## 
## [[13]]
## [1] -28.55538
## 
## [[14]]
## [1] -29.69746
## 
## [[15]]
## [1] -32.32755
## 
## [[16]]
## [1] -15.69052
## 
## [[17]]
## [1] -25.88701
print("Morocco")
## [1] "Morocco"
ad1 <- BiCopEst(u, v4, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.11
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.63 
## AIC:    -9.26 
## BIC:    -4.38
ad2 <- BiCopEst(u, v4, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.1
## par2: 22.01
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  6.55 
## AIC:    -9.09 
## BIC:    0.68
ad3 <- BiCopEst(u, v4, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.11
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.64 
## AIC:    -9.28 
## BIC:    -4.39
ad4 <- BiCopEst(u, v4, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.75 
## AIC:    -5.5 
## BIC:    -0.62
ad5 <- BiCopEst(u, v4, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.06
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.07, p value < 0.01)
## Upper TD:         0.07 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.1 
## AIC:    -6.19 
## BIC:    -1.31
ad6 <- BiCopEst(u, v4, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.06
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.08 
## 
## Fit statistics
## --------------
## logLik:  5.22 
## AIC:    -8.44 
## BIC:    -3.55
ad7 <- BiCopEst(u, v4, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.6
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.83 
## AIC:    -7.66 
## BIC:    -2.77
ad8 <- BiCopEst(u, v4, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.06
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.03 (empirical = 0.07, p value < 0.01)
## Upper TD:         0.08 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.43 
## AIC:    -2.86 
## BIC:    2.03
ad9 <- BiCopEst(u, v4, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.07
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.09 
## 
## Fit statistics
## --------------
## logLik:  3.94 
## AIC:    -5.89 
## BIC:    -1
ad10 <- BiCopEst(u, v4, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.08
## par2: 1.03
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value < 0.01)
## Upper TD:         0.03 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  6.32 
## AIC:    -8.65 
## BIC:    1.13
ad11 <- BiCopEst(u, v4, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.05
## par2: 1.04
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  5.92 
## AIC:    -7.83 
## BIC:    1.94
ad12 <- BiCopEst(u, v4, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.06
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.07, p value < 0.01)
## Upper TD:         0.07 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.08 
## AIC:    -4.15 
## BIC:    5.62
ad13 <- BiCopEst(u, v4, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.06
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.08 
## 
## Fit statistics
## --------------
## logLik:  5.21 
## AIC:    -6.41 
## BIC:    3.36
ad14 <- BiCopEst(u, v4, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.03
## par2: 0.1
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value < 0.01)
## Upper TD:         0.04 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  6.28 
## AIC:    -8.55 
## BIC:    1.22
ad15 <- BiCopEst(u, v4, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.05
## par2: 0.07
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  5.8 
## AIC:    -7.6 
## BIC:    2.17
ad16 <- BiCopEst(u, v4, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.11
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.83 
## AIC:    -5.66 
## BIC:    4.11
ad17 <- BiCopEst(u, v4, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.4
## par2: 0.71
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5 
## AIC:    -6 
## BIC:    3.78
adcopulalist <- list(summary(ad1)$AIC,summary(ad2)$AIC, summary(ad3)$AIC, summary(ad4)$AIC, summary(ad5)$AIC, summary(ad6)$AIC, summary(ad7)$AIC, summary(ad8)$AIC, summary(ad9)$AIC, summary(ad10)$AIC, summary(ad11)$AIC, summary(ad12)$AIC, summary(ad13)$AIC, summary(ad14)$AIC, summary(ad15)$AIC, summary(ad16)$AIC, summary(ad17)$AIC)
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.11
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.63 
## AIC:    -9.26 
## BIC:    -4.38 
## 
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.1
## par2: 22.01
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  6.55 
## AIC:    -9.09 
## BIC:    0.68 
## 
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.11
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.64 
## AIC:    -9.28 
## BIC:    -4.39 
## 
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.75 
## AIC:    -5.5 
## BIC:    -0.62 
## 
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.06
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.07, p value < 0.01)
## Upper TD:         0.07 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.1 
## AIC:    -6.19 
## BIC:    -1.31 
## 
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.06
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.08 
## 
## Fit statistics
## --------------
## logLik:  5.22 
## AIC:    -8.44 
## BIC:    -3.55 
## 
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.6
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.83 
## AIC:    -7.66 
## BIC:    -2.77 
## 
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.06
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.03 (empirical = 0.07, p value < 0.01)
## Upper TD:         0.08 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.43 
## AIC:    -2.86 
## BIC:    2.03 
## 
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.07
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.09 
## 
## Fit statistics
## --------------
## logLik:  3.94 
## AIC:    -5.89 
## BIC:    -1 
## 
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.08
## par2: 1.03
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value < 0.01)
## Upper TD:         0.03 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  6.32 
## AIC:    -8.65 
## BIC:    1.13 
## 
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.05
## par2: 1.04
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  5.92 
## AIC:    -7.83 
## BIC:    1.94 
## 
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.06
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.07, p value < 0.01)
## Upper TD:         0.07 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.08 
## AIC:    -4.15 
## BIC:    5.62 
## 
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.06
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.08 
## 
## Fit statistics
## --------------
## logLik:  5.21 
## AIC:    -6.41 
## BIC:    3.36 
## 
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.03
## par2: 0.1
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value < 0.01)
## Upper TD:         0.04 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  6.28 
## AIC:    -8.55 
## BIC:    1.22 
## 
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.05
## par2: 0.07
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  5.8 
## AIC:    -7.6 
## BIC:    2.17 
## 
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.11
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.83 
## AIC:    -5.66 
## BIC:    4.11 
## 
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.4
## par2: 0.71
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5 
## AIC:    -6 
## BIC:    3.78
adcopulalist
## [[1]]
## [1] -9.263285
## 
## [[2]]
## [1] -9.09209
## 
## [[3]]
## [1] -9.276542
## 
## [[4]]
## [1] -5.502468
## 
## [[5]]
## [1] -6.192606
## 
## [[6]]
## [1] -8.440108
## 
## [[7]]
## [1] -7.659406
## 
## [[8]]
## [1] -2.860587
## 
## [[9]]
## [1] -5.886816
## 
## [[10]]
## [1] -8.646212
## 
## [[11]]
## [1] -7.830763
## 
## [[12]]
## [1] -4.152056
## 
## [[13]]
## [1] -6.414459
## 
## [[14]]
## [1] -8.55463
## 
## [[15]]
## [1] -7.603758
## 
## [[16]]
## [1] -5.659713
## 
## [[17]]
## [1] -5.995473
print("Oman")
## [1] "Oman"
ae1 <- BiCopEst(u, v5, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.07
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.69 
## AIC:    -3.38 
## BIC:    1.51
ae2 <- BiCopEst(u, v5, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.06
## par2: 6.19
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.05)
## Upper TD:         0.04 
## Lower TD:         0.04 
## 
## Fit statistics
## --------------
## logLik:  13.96 
## AIC:    -23.93 
## BIC:    -14.16
ae3 <- BiCopEst(u, v5, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.09
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.89 
## AIC:    -7.78 
## BIC:    -2.89
ae4 <- BiCopEst(u, v5, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.09
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.16 
## AIC:    -4.32 
## BIC:    0.57
ae5 <- BiCopEst(u, v5, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.06
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.04, p value = 0.05)
## Upper TD:         0.08 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.17 
## AIC:    -8.34 
## BIC:    -3.45
ae6 <- BiCopEst(u, v5, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.05
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  6.39 
## AIC:    -10.78 
## BIC:    -5.9
ae7 <- BiCopEst(u, v5, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.38
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.82 
## AIC:    -1.65 
## BIC:    3.24
ae8 <- BiCopEst(u, v5, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.08
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.05)
## Upper TD:         0.1 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.65 
## AIC:    -7.31 
## BIC:    -2.42
ae9 <- BiCopEst(u, v5, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.05
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.03 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.07 
## 
## Fit statistics
## --------------
## logLik:  5.84 
## AIC:    -9.68 
## BIC:    -4.79
ae10 <- BiCopEst(u, v5, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.06
## par2: 1.04
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.04, p value = 0.05)
## Upper TD:         0.05 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  6.73 
## AIC:    -9.45 
## BIC:    0.32
ae11 <- BiCopEst(u, v5, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.05
## par2: 1.03
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.04 
## 
## Fit statistics
## --------------
## logLik:  7.22 
## AIC:    -10.43 
## BIC:    -0.66
ae12 <- BiCopEst(u, v5, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.06
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.04, p value = 0.05)
## Upper TD:         0.08 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.17 
## AIC:    -6.34 
## BIC:    3.44
ae13 <- BiCopEst(u, v5, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.05
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  6.39 
## AIC:    -8.77 
## BIC:    1
ae14 <- BiCopEst(u, v5, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.06
## par2: 0.07
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.04, p value = 0.05)
## Upper TD:         0.08 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  7.48 
## AIC:    -10.97 
## BIC:    -1.19
ae15 <- BiCopEst(u, v5, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.04
## par2: 0.07
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  7.53 
## AIC:    -11.05 
## BIC:    -1.28
ae16 <- BiCopEst(u, v5, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  1.08
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.05)
## Upper TD:         0.1 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.65 
## AIC:    -5.31 
## BIC:    4.46
ae17 <- BiCopEst(u, v5, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.05
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.03 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.07 
## 
## Fit statistics
## --------------
## logLik:  5.84 
## AIC:    -7.68 
## BIC:    2.09
aecopulalist <- list(summary(ae1)$AIC,summary(ae2)$AIC, summary(ae3)$AIC, summary(ae4)$AIC, summary(ae5)$AIC, summary(ae6)$AIC, summary(ae7)$AIC, summary(ae8)$AIC, summary(ae9)$AIC, summary(ae10)$AIC, summary(ae11)$AIC, summary(ae12)$AIC, summary(ae13)$AIC, summary(ae14)$AIC, summary(ae15)$AIC, summary(ae16)$AIC, summary(ae17)$AIC)
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.07
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.69 
## AIC:    -3.38 
## BIC:    1.51 
## 
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.06
## par2: 6.19
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.05)
## Upper TD:         0.04 
## Lower TD:         0.04 
## 
## Fit statistics
## --------------
## logLik:  13.96 
## AIC:    -23.93 
## BIC:    -14.16 
## 
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.09
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.89 
## AIC:    -7.78 
## BIC:    -2.89 
## 
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.09
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.16 
## AIC:    -4.32 
## BIC:    0.57 
## 
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.06
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.04, p value = 0.05)
## Upper TD:         0.08 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.17 
## AIC:    -8.34 
## BIC:    -3.45 
## 
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.05
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  6.39 
## AIC:    -10.78 
## BIC:    -5.9 
## 
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.38
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.82 
## AIC:    -1.65 
## BIC:    3.24 
## 
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.08
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.05)
## Upper TD:         0.1 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.65 
## AIC:    -7.31 
## BIC:    -2.42 
## 
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.05
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.03 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.07 
## 
## Fit statistics
## --------------
## logLik:  5.84 
## AIC:    -9.68 
## BIC:    -4.79 
## 
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.06
## par2: 1.04
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.04, p value = 0.05)
## Upper TD:         0.05 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  6.73 
## AIC:    -9.45 
## BIC:    0.32 
## 
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.05
## par2: 1.03
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.04 
## 
## Fit statistics
## --------------
## logLik:  7.22 
## AIC:    -10.43 
## BIC:    -0.66 
## 
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.06
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.04, p value = 0.05)
## Upper TD:         0.08 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.17 
## AIC:    -6.34 
## BIC:    3.44 
## 
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.05
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  6.39 
## AIC:    -8.77 
## BIC:    1 
## 
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.06
## par2: 0.07
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.04, p value = 0.05)
## Upper TD:         0.08 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  7.48 
## AIC:    -10.97 
## BIC:    -1.19 
## 
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.04
## par2: 0.07
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  7.53 
## AIC:    -11.05 
## BIC:    -1.28 
## 
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  1.08
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.05)
## Upper TD:         0.1 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.65 
## AIC:    -5.31 
## BIC:    4.46 
## 
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.05
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.03 (empirical = 0.04, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.07 
## 
## Fit statistics
## --------------
## logLik:  5.84 
## AIC:    -7.68 
## BIC:    2.09
aecopulalist
## [[1]]
## [1] -3.376281
## 
## [[2]]
## [1] -23.92905
## 
## [[3]]
## [1] -7.780564
## 
## [[4]]
## [1] -4.320973
## 
## [[5]]
## [1] -8.339344
## 
## [[6]]
## [1] -10.78295
## 
## [[7]]
## [1] -1.646143
## 
## [[8]]
## [1] -7.308318
## 
## [[9]]
## [1] -9.678173
## 
## [[10]]
## [1] -9.451174
## 
## [[11]]
## [1] -10.43163
## 
## [[12]]
## [1] -6.336344
## 
## [[13]]
## [1] -8.771937
## 
## [[14]]
## [1] -10.96731
## 
## [[15]]
## [1] -11.05218
## 
## [[16]]
## [1] -5.308318
## 
## [[17]]
## [1] -7.678174

C. TRONG COVID

1. NHẬP DỮ LIỆU

rm(list=ls())
DATA <- read_xlsx("C://Users//84896//Desktop//DATA//CN3-COPULA.xlsx", sheet="Dur")
SP500 <- DATA$y
VNI <- DATA$x1
MERVAL <- DATA$x2
CROBEX <- DATA$x3
MASI <- DATA$x4
MSM30 <- DATA$x5

2. MA TRẬN TƯƠNG QUAN

cor(cbind(SP500, VNI, MERVAL, CROBEX, MASI, MSM30), method="pearson")
##            SP500       VNI    MERVAL    CROBEX      MASI     MSM30
## SP500  1.0000000 0.2912909 0.4932638 0.5871144 0.3564173 0.3678267
## VNI    0.2912909 1.0000000 0.2130450 0.3929132 0.1283902 0.2407316
## MERVAL 0.4932638 0.2130450 1.0000000 0.4133827 0.4040066 0.3307059
## CROBEX 0.5871144 0.3929132 0.4133827 1.0000000 0.3919515 0.4520334
## MASI   0.3564173 0.1283902 0.4040066 0.3919515 1.0000000 0.3897878
## MSM30  0.3678267 0.2407316 0.3307059 0.4520334 0.3897878 1.0000000

3. MÔ HÌNH ARMA-GJR-GARCH

3.1. ARMA

print("Mỹ")
## [1] "Mỹ"
autoarfima(SP500,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##        ar1        ar2        ma1        ma2      sigma 
##  0.1813688 -0.8197414 -0.2956438  0.8285811  1.7283524
print("Việt Nam")
## [1] "Việt Nam"
autoarfima(VNI,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##        ar1        ar2        ma1        ma2      sigma 
##  0.0000000 -0.5953088  0.0000000  0.7038250  1.7726662
print("Argentina")
## [1] "Argentina"
autoarfima(MERVAL,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##        ar1        ar2        ma1        ma2      sigma 
## -0.3581623 -0.9201646  0.2858461  0.9039866  3.5196747
print("Croatia")
## [1] "Croatia"
autoarfima(CROBEX,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##        ar1        ma1        ma2      sigma 
##  0.7471203 -0.6828856  0.1269224  1.2513865
print("Morocco")
## [1] "Morocco"
autoarfima(MASI,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##      ma1    sigma 
## 0.200622 1.244185
print("Oman")
## [1] "Oman"
autoarfima(MSM30,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##       ar1     sigma 
## 0.1533201 0.8080980

3.2. GJR-GARCH

print("Mỹ")
## [1] "Mỹ"
sp500.g11n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
sp500.g11s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
sp500.g11ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
sp500.g11g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
sp500.g11sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
sp500.g12n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
sp500.g12s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
sp500.g12ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
sp500.g12g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
sp500.g12sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
sp500.g21n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
sp500.g21s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
sp500.g21ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
sp500.g21g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
sp500.g21sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
sp500.g22n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
sp500.g22s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
sp500.g22ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
sp500.g22g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
sp500.g22sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
sp500.garch11n <-ugarchfit(data=SP500, spec= sp500.g11n ) #1
sp500.garch11s <-ugarchfit(data=SP500, spec= sp500.g11s ) 
sp500.garch11ss <-ugarchfit(data=SP500, spec= sp500.g11ss ) 
sp500.garch11g <-ugarchfit(data=SP500, spec= sp500.g11g )
sp500.garch11sg <-ugarchfit(data=SP500, spec= sp500.g11sg ) #5
sp500.garch12n <-ugarchfit(data=SP500, spec= sp500.g12n )
sp500.garch12s <-ugarchfit(data=SP500, spec= sp500.g12s )
sp500.garch12ss <-ugarchfit(data=SP500, spec= sp500.g12ss )
sp500.garch12g<-ugarchfit(data=SP500, spec= sp500.g12g )
sp500.garch12sg <-ugarchfit(data=SP500, spec= sp500.g12sg ) #10
sp500.garch21n <-ugarchfit(data=SP500, spec= sp500.g21n )
sp500.garch21s <-ugarchfit(data=SP500, spec= sp500.g21s )
sp500.garch21ss <-ugarchfit(data=SP500, spec= sp500.g21ss)
sp500.garch21g <-ugarchfit(data=SP500, spec= sp500.g21g )
sp500.garch21sg <-ugarchfit(data=SP500, spec= sp500.g21sg ) #15
sp500.garch22n <-ugarchfit(data=SP500, spec= sp500.g22n )
sp500.garch22s <-ugarchfit(data=SP500, spec= sp500.g22s )
sp500.garch22ss <-ugarchfit(data=SP500, spec= sp500.g22ss )
sp500.garch22g<-ugarchfit(data=SP500, spec= sp500.g22g )
sp500.garch22sg <-ugarchfit(data=SP500, spec= sp500.g22sg )
model.aic.list <- list(sp500.garch11n,sp500.garch11s,sp500.garch11ss,sp500.garch11g,sp500.garch11sg,sp500.garch12n,sp500.garch12s,sp500.garch12ss,sp500.garch12g,sp500.garch12sg,sp500.garch21n,sp500.garch21s,sp500.garch21ss,sp500.garch21g,sp500.garch21sg,sp500.garch22n,sp500.garch22s,sp500.garch22ss,sp500.garch22g,sp500.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 13
sp500.garch21ss@fit$matcoef
##             Estimate   Std. Error       t value     Pr(>|t|)
## mu      9.860247e-02 5.761156e-03  1.711505e+01 0.000000e+00
## ar1    -9.842324e-01 2.722600e-04 -3.615046e+03 0.000000e+00
## ar2    -2.073474e-02 5.235782e-04 -3.960198e+01 0.000000e+00
## ma1     9.410352e-01 3.147266e-04  2.990009e+03 0.000000e+00
## ma2    -8.456789e-02 3.076081e-05 -2.749209e+03 0.000000e+00
## omega   5.676658e-02 3.433981e-02  1.653083e+00 9.831387e-02
## alpha1  1.862977e-08 1.277554e-01  1.458237e-07 9.999999e-01
## alpha2  9.289748e-03 9.323425e-02  9.963879e-02 9.206311e-01
## beta1   8.449075e-01 7.040908e-02  1.199998e+01 0.000000e+00
## gamma1  3.203533e-01 1.556843e-01  2.057711e+00 3.961792e-02
## gamma2 -2.550503e-02 1.726830e-01 -1.476986e-01 8.825807e-01
## skew    7.902836e-01 6.112467e-02  1.292904e+01 0.000000e+00
## shape   3.837577e+00 6.448322e-01  5.951280e+00 2.660528e-09
print("Việt Nam")
## [1] "Việt Nam"
vni.g11n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
vni.g11s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
vni.g11ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
vni.g11g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
vni.g11sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
vni.g12n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
vni.g12s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
vni.g12ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
vni.g12g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
vni.g12sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
vni.g21n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
vni.g21s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
vni.g21ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
vni.g21g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
vni.g21sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
vni.g22n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
vni.g22s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
vni.g22ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
vni.g22g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
vni.g22sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
vni.garch11n <-ugarchfit(data=VNI, spec= vni.g11n ) #1
vni.garch11s <-ugarchfit(data=VNI, spec= vni.g11s ) 
vni.garch11ss <-ugarchfit(data=VNI, spec= vni.g11ss ) 
vni.garch11g <-ugarchfit(data=VNI, spec= vni.g11g )
vni.garch11sg <-ugarchfit(data=VNI, spec= vni.g11sg ) #5
vni.garch12n <-ugarchfit(data=VNI, spec= vni.g12n )
vni.garch12s <-ugarchfit(data=VNI, spec= vni.g12s )
vni.garch12ss <-ugarchfit(data=VNI, spec= vni.g12ss )
vni.garch12g<-ugarchfit(data=VNI, spec= vni.g12g )
vni.garch12sg <-ugarchfit(data=VNI, spec= vni.g12sg ) #10
vni.garch21n <-ugarchfit(data=VNI, spec= vni.g21n )
vni.garch21s <-ugarchfit(data=VNI, spec= vni.g21s )
vni.garch21ss <-ugarchfit(data=VNI, spec= vni.g21ss)
vni.garch21g <-ugarchfit(data=VNI, spec= vni.g21g )
vni.garch21sg <-ugarchfit(data=VNI, spec= vni.g21sg ) #15
vni.garch22n <-ugarchfit(data=VNI, spec= vni.g22n )
vni.garch22s <-ugarchfit(data=VNI, spec= vni.g22s )
vni.garch22ss <-ugarchfit(data=VNI, spec= vni.g22ss )
#vni.garch22g<-ugarchfit(data=VNI, spec= vni.g22g )
vni.garch22sg <-ugarchfit(data=VNI, spec= vni.g22sg ) #19
model.aic.list <- list(vni.garch11n,vni.garch11s,vni.garch11ss,vni.garch11g,vni.garch11sg,vni.garch12n,vni.garch12s,vni.garch12ss,vni.garch12g,vni.garch12sg,vni.garch21n,vni.garch21s,vni.garch21ss,vni.garch21g,vni.garch21sg,vni.garch22n,vni.garch22s,vni.garch22ss,vni.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 2
vni.garch11s@fit$matcoef
##             Estimate  Std. Error       t value     Pr(>|t|)
## mu      2.786925e-01 0.053523709  5.206898e+00 1.920234e-07
## ar1    -1.416231e+00 0.009817769 -1.442518e+02 0.000000e+00
## ar2    -9.865528e-01 0.002909220 -3.391125e+02 0.000000e+00
## ma1     1.404897e+00 0.004205975  3.340241e+02 0.000000e+00
## ma2     9.938315e-01 0.001064361  9.337350e+02 0.000000e+00
## omega   1.849020e+00 1.855547148  9.964822e-01 3.190159e-01
## alpha1  5.945553e-09 0.317046294  1.875295e-08 1.000000e+00
## beta1   6.809370e-01 0.160645372  4.238759e+00 2.247587e-05
## gamma1  6.361185e-01 0.607815974  1.046564e+00 2.953006e-01
## shape   2.169652e+00 0.143058700  1.516617e+01 0.000000e+00
print("Argentina")
## [1] "Argentina"
merval.g11n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
merval.g11s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
merval.g11ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
merval.g11g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
merval.g11sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
merval.g12n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
merval.g12s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
merval.g12ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
merval.g12g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
merval.g12sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
merval.g21n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
merval.g21s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
merval.g21ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
merval.g21g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
merval.g21sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
merval.g22n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
merval.g22s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
merval.g22ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
merval.g22g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
merval.g22sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
merval.garch11n <-ugarchfit(data= MERVAL, spec= merval.g11n ) #1
merval.garch11s <-ugarchfit(data= MERVAL, spec= merval.g11s ) 
merval.garch11ss <-ugarchfit(data= MERVAL, spec= merval.g11ss ) 
merval.garch11g <-ugarchfit(data= MERVAL, spec= merval.g11g )
merval.garch11sg <-ugarchfit(data= MERVAL, spec= merval.g11sg ) #5
merval.garch12n <-ugarchfit(data= MERVAL, spec= merval.g12n )
merval.garch12s <-ugarchfit(data= MERVAL, spec= merval.g12s )
merval.garch12ss <-ugarchfit(data= MERVAL, spec= merval.g12ss )
merval.garch12g<-ugarchfit(data= MERVAL, spec= merval.g12g )
merval.garch12sg <-ugarchfit(data= MERVAL, spec= merval.g12sg ) #10
merval.garch21n <-ugarchfit(data= MERVAL, spec= merval.g21n )
merval.garch21s <-ugarchfit(data= MERVAL, spec= merval.g21s )
merval.garch21ss <-ugarchfit(data= MERVAL, spec= merval.g21ss)
merval.garch21g <-ugarchfit(data= MERVAL, spec= merval.g21g )
merval.garch21sg <-ugarchfit(data= MERVAL, spec= merval.g21sg ) #15
merval.garch22n <-ugarchfit(data= MERVAL, spec= merval.g22n )
merval.garch22s <-ugarchfit(data= MERVAL, spec= merval.g22s )
merval.garch22ss <-ugarchfit(data= MERVAL, spec= merval.g22ss )
merval.garch22g<-ugarchfit(data= MERVAL, spec= merval.g22g )
merval.garch22sg <-ugarchfit(data= MERVAL, spec= merval.g22sg )
model.aic.list <- list(merval.garch11n,merval.garch11s,merval.garch11ss,merval.garch11g,merval.garch11sg,merval.garch12n,merval.garch12s,merval.garch12ss,merval.garch12g,merval.garch12sg,merval.garch21n,merval.garch21s,merval.garch21ss,merval.garch21g,merval.garch21sg,merval.garch22n,merval.garch22s,merval.garch22ss,merval.garch22g,merval.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 12
merval.garch21s@fit$matcoef
##             Estimate  Std. Error       t value     Pr(>|t|)
## mu      1.205281e-01 0.140473219  8.580145e-01 3.908845e-01
## ar1    -1.081190e+00 0.003412230 -3.168572e+02 0.000000e+00
## ar2    -9.994243e-01 0.011434770 -8.740222e+01 0.000000e+00
## ma1     1.099934e+00 0.002540584  4.329454e+02 0.000000e+00
## ma2     1.012195e+00 0.001259036  8.039441e+02 0.000000e+00
## omega   1.680896e-01 0.108415892  1.550414e+00 1.210421e-01
## alpha1  2.378083e-10 0.100686711  2.361864e-09 1.000000e+00
## alpha2  1.502850e-03 0.119299215  1.259732e-02 9.899491e-01
## beta1   9.540921e-01 0.024369436  3.915118e+01 0.000000e+00
## gamma1  5.451381e-01 0.061078657  8.925181e+00 0.000000e+00
## gamma2 -4.723075e-01 0.057668616 -8.190026e+00 2.220446e-16
## shape   3.970306e+00 0.958549062  4.141995e+00 3.442975e-05
print("Crotia")
## [1] "Crotia"
crobex.g11n <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
crobex.g11s <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
crobex.g11ss <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
crobex.g11g <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
crobex.g11sg <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
crobex.g12n <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
crobex.g12s <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
crobex.g12ss <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
crobex.g12g <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
crobex.g12sg <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
crobex.g21n <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
crobex.g21s <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
crobex.g21ss <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
crobex.g21g <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
crobex.g21sg <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
crobex.g22n <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
crobex.g22s <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
crobex.g22ss <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
crobex.g22g <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
crobex.g22sg <- ugarchspec(mean.model = list(armaOrder =  c(1,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
crobex.garch11n <-ugarchfit(data= CROBEX, spec= crobex.g11n ) #1
crobex.garch11s <-ugarchfit(data= CROBEX, spec= crobex.g11s ) 
crobex.garch11ss <-ugarchfit(data= CROBEX, spec= crobex.g11ss ) 
crobex.garch11g <-ugarchfit(data= CROBEX, spec= crobex.g11g )
crobex.garch11sg <-ugarchfit(data= CROBEX, spec= crobex.g11sg ) #5
crobex.garch12n <-ugarchfit(data= CROBEX, spec= crobex.g12n )
crobex.garch12s <-ugarchfit(data= CROBEX, spec= crobex.g12s )
crobex.garch12ss <-ugarchfit(data= CROBEX, spec= crobex.g12ss )
crobex.garch12g<-ugarchfit(data= CROBEX, spec= crobex.g12g )
crobex.garch12sg <-ugarchfit(data= CROBEX, spec= crobex.g12sg ) #10
crobex.garch21n <-ugarchfit(data= CROBEX, spec= crobex.g21n )
crobex.garch21s <-ugarchfit(data= CROBEX, spec= crobex.g21s )
crobex.garch21ss <-ugarchfit(data= CROBEX, spec= crobex.g21ss)
crobex.garch21g <-ugarchfit(data= CROBEX, spec= crobex.g21g )
crobex.garch21sg <-ugarchfit(data= CROBEX, spec= crobex.g21sg ) #15
crobex.garch22n <-ugarchfit(data= CROBEX, spec= crobex.g22n )
crobex.garch22s <-ugarchfit(data= CROBEX, spec= crobex.g22s )
crobex.garch22ss <-ugarchfit(data= CROBEX, spec= crobex.g22ss )
crobex.garch22g<-ugarchfit(data= CROBEX, spec= crobex.g22g )
crobex.garch22sg <-ugarchfit(data= CROBEX, spec= crobex.g22sg )
model.aic.list <- list(crobex.garch11n,crobex.garch11s,crobex.garch11ss,crobex.garch11g,crobex.garch11sg,crobex.garch12n,crobex.garch12s,crobex.garch12ss,crobex.garch12g,crobex.garch12sg,crobex.garch21n,crobex.garch21s,crobex.garch21ss,crobex.garch21g,crobex.garch21sg,crobex.garch22n,crobex.garch22s,crobex.garch22ss,crobex.garch22g,crobex.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 2
crobex.garch11s@fit$matcoef
##           Estimate  Std. Error    t value    Pr(>|t|)
## mu      0.07053809  0.02414297  2.9216825 0.003481462
## ar1     0.91959985  0.05173879 17.7738960 0.000000000
## ma1    -0.89007369  0.09686834 -9.1884891 0.000000000
## ma2    -0.04627771  0.07004109 -0.6607222 0.508790470
## omega   0.10135650  0.07569409  1.3390279 0.180561575
## alpha1  0.09797342  0.09956111  0.9840531 0.325089408
## beta1   0.85643004  0.06805267 12.5848126 0.000000000
## gamma1  0.08919305  0.14684975  0.6073762 0.543601257
## shape   2.34387546  0.27184081  8.6222355 0.000000000
print("Morocco")
## [1] "Morocco"
masi.g11n <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
masi.g11s <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
masi.g11ss <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
masi.g11g <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
masi.g11sg <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
masi.g12n <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
masi.g12s <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
masi.g12ss <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
masi.g12g <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
masi.g12sg <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
masi.g21n <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
masi.g21s <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
masi.g21ss <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
masi.g21g <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
masi.g21sg <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
masi.g22n <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
masi.g22s <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
masi.g22ss <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
masi.g22g <- ugarchspec(mean.model = list(armaOrder =  c(0,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
masi.g22sg <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
masi.garch11n <-ugarchfit(data= MASI, spec= masi.g11n ) #1
masi.garch11s <-ugarchfit(data= MASI, spec= masi.g11s ) 
masi.garch11ss <-ugarchfit(data= MASI, spec= masi.g11ss ) 
masi.garch11g <-ugarchfit(data= MASI, spec= masi.g11g )
masi.garch11sg <-ugarchfit(data= MASI, spec= masi.g11sg ) #5
masi.garch12n <-ugarchfit(data= MASI, spec= masi.g12n )
masi.garch12s <-ugarchfit(data= MASI, spec= masi.g12s )
masi.garch12ss <-ugarchfit(data= MASI, spec= masi.g12ss )
masi.garch12g<-ugarchfit(data= MASI, spec= masi.g12g )
masi.garch12sg <-ugarchfit(data= MASI, spec= masi.g12sg ) #10
masi.garch21n <-ugarchfit(data= MASI, spec= masi.g21n )
masi.garch21s <-ugarchfit(data= MASI, spec= masi.g21s )
masi.garch21ss <-ugarchfit(data= MASI, spec= masi.g21ss)
masi.garch21g <-ugarchfit(data= MASI, spec= masi.g21g )
masi.garch21sg <-ugarchfit(data= MASI, spec= masi.g21sg ) #15
#masi.garch22n <-ugarchfit(data= MASI, spec= masi.g22n )
masi.garch22s <-ugarchfit(data= MASI, spec= masi.g22s ) #16
masi.garch22ss <-ugarchfit(data= MASI, spec= masi.g22ss )
masi.garch22g<-ugarchfit(data= MASI, spec= masi.g22g )
masi.garch22sg <-ugarchfit(data= MASI, spec= masi.g22sg )
model.aic.list <- list(masi.garch11n,masi.garch11s,masi.garch11ss,masi.garch11g,masi.garch11sg,masi.garch12n,masi.garch12s,masi.garch12ss,masi.garch12g,masi.garch12sg,masi.garch21n,masi.garch21s,masi.garch21ss,masi.garch21g,masi.garch21sg,masi.garch22s,masi.garch22ss,masi.garch22g,masi.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 7
masi.garch12s@fit$matcoef
##          Estimate  Std. Error   t value     Pr(>|t|)
## mu     0.07463277  0.03032963 2.4607212 1.386581e-02
## ma1    0.03267513  0.05082075 0.6429485 5.202575e-01
## omega  0.05855406  0.02915010 2.0087085 4.456805e-02
## alpha1 0.06903788  0.08838293 0.7811224 4.347305e-01
## beta1  0.12649672  0.16610113 0.7615645 4.463200e-01
## beta2  0.67130262  0.16467517 4.0765260 4.571354e-05
## gamma1 0.16364317  0.12686566 1.2898933 1.970877e-01
## shape  2.80451839  0.38379366 7.3073599 2.724487e-13
print("Oman")
## [1] "Oman"
msm30.g11n <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
msm30.g11s <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
msm30.g11ss <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
msm30.g11g <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
msm30.g11sg <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
msm30.g12n <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
msm30.g12s <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
msm30.g12ss <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
msm30.g12g <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
msm30.g12sg <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
msm30.g21n <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
msm30.g21s <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
msm30.g21ss <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
msm30.g21g <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
msm30.g21sg <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
msm30.g22n <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
msm30.g22s <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
msm30.g22ss <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
msm30.g22g <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
msm30.g22sg <- ugarchspec(mean.model = list(armaOrder = c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
msm30.garch11n <-ugarchfit(data= MSM30, spec= msm30.g11n ) #1
msm30.garch11s <-ugarchfit(data= MSM30, spec= msm30.g11s ) 
msm30.garch11ss <-ugarchfit(data= MSM30, spec= msm30.g11ss ) 
msm30.garch11g <-ugarchfit(data= MSM30, spec= msm30.g11g )
msm30.garch11sg <-ugarchfit(data= MSM30, spec= msm30.g11sg ) #5
msm30.garch12n <-ugarchfit(data= MSM30, spec= msm30.g12n )
msm30.garch12s <-ugarchfit(data= MSM30, spec= msm30.g12s )
msm30.garch12ss <-ugarchfit(data= MSM30, spec= msm30.g12ss )
msm30.garch12g<-ugarchfit(data= MSM30, spec= msm30.g12g )
msm30.garch12sg <-ugarchfit(data= MSM30, spec= msm30.g12sg ) #10
msm30.garch21n <-ugarchfit(data= MSM30, spec= msm30.g21n )
msm30.garch21s <-ugarchfit(data= MSM30, spec= msm30.g21s )
msm30.garch21ss <-ugarchfit(data= MSM30, spec= msm30.g21ss)
msm30.garch21g <-ugarchfit(data= MSM30, spec= msm30.g21g )
msm30.garch21sg <-ugarchfit(data= MSM30, spec= msm30.g21sg ) #15
msm30.garch22n <-ugarchfit(data= MSM30, spec= msm30.g22n )
msm30.garch22s <-ugarchfit(data= MSM30, spec= msm30.g22s )
msm30.garch22ss <-ugarchfit(data= MSM30, spec= msm30.g22ss )
msm30.garch22g<-ugarchfit(data= MSM30, spec= msm30.g22g )
msm30.garch22sg <-ugarchfit(data= MSM30, spec= msm30.g22sg )
model.aic.list <- list(msm30.garch11n,msm30.garch11s,msm30.garch11ss,msm30.garch11g,msm30.garch11sg,msm30.garch12n,msm30.garch12s,msm30.garch12ss,msm30.garch12g,msm30.garch12sg,msm30.garch21n,msm30.garch21s,msm30.garch21ss,msm30.garch21g,msm30.garch21sg,msm30.garch22n,msm30.garch22s,msm30.garch22ss,msm30.garch22g,msm30.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 2
msm30.garch11s@fit$matcoef
##           Estimate  Std. Error    t value     Pr(>|t|)
## mu      0.05042051  0.03201975  1.5746690 1.153329e-01
## ar1     0.19668882  0.05165551  3.8077027 1.402638e-04
## omega   0.04830432  0.03391793  1.4241529 1.544022e-01
## alpha1  0.27176477  0.22663275  1.1991417 2.304729e-01
## beta1   0.75889640  0.12944128  5.8628621 4.549560e-09
## gamma1 -0.18108863  0.19732545 -0.9177155 3.587678e-01
## shape   3.04139432  0.50615983  6.0087628 1.869444e-09

4. CHUẨN HÓA PHẦN DƯ

SP500_model <- sp500.garch21ss
VNI_model <- vni.garch11s
MERVAL_model <- merval.garch21s
CROBEX_model <- crobex.garch11s
MASI_model <- masi.garch12s
MSM30_model <- msm30.garch11s

SP500.res <- residuals(SP500_model)/sigma(SP500_model)
VNI.res <- residuals(VNI_model)/sigma(VNI_model)
MERVAL.res <- residuals(MERVAL_model)/sigma(MERVAL_model)
CROBEX.res <- residuals(CROBEX_model)/sigma(CROBEX_model)
MASI.res <- residuals(MASI_model)/sigma(MASI_model)
MSM30.res <- residuals(MSM30_model)/sigma(MSM30_model)

fitdist(distribution = "sstd", SP500.res, control = list())$pars
##         mu      sigma       skew      shape 
## 0.02337271 0.96009808 0.79435776 4.20827267
fitdist(distribution = "std", VNI.res, control = list())$pars
##          mu       sigma       shape 
## 0.001670273 3.866657691 2.010000153
fitdist(distribution = "std", MERVAL.res, control = list())$pars
##         mu      sigma      shape 
## 0.01148837 0.98591184 4.10177017
fitdist(distribution = "std", CROBEX.res, control = list())$pars
##           mu        sigma        shape 
## -0.003792578  0.854192799  2.525174567
fitdist(distribution = "std", MASI.res, control = list())$pars
##           mu        sigma        shape 
## -0.005268347  1.139949045  2.544101339
fitdist(distribution = "std", MSM30.res, control = list())$pars
##          mu       sigma       shape 
## 0.003218684 1.064035384 2.847148419
u <- pdist(distribution = "sstd", q = SP500.res, mu = 0.02337271, sigma = 0.96009808, skew= 0.79435776,shape = 4.20827267)
v1 <- pdist(distribution = "std", q = VNI.res, mu =0.001670273, sigma = 3.866657691, shape= 2.010000153)
v2 <- pdist(distribution = "std", q = MERVAL.res, mu = 0.01148837, sigma = 0.98591184, shape = 4.10177017)
v3 <- pdist(distribution = "std", q = CROBEX.res, mu = -0.003792578, sigma = 0.854192799, shape = 2.525174567)
v4 <- pdist(distribution = "std", q = MASI.res, mu = -0.005268347, sigma = 1.139949045, shape = 2.544101339)
v5 <- pdist(distribution = "std", q = MSM30.res, mu = 0.003218684, sigma = 1.064035384, shape = 2.847148419)

goftest::cvm.test(u, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  u
## omega2 = 0.045759, p-value = 0.9018
goftest::cvm.test(v1, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v1
## omega2 = 0.10912, p-value = 0.5423
goftest::cvm.test(v2, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v2
## omega2 = 0.036352, p-value = 0.9512
goftest::cvm.test(v3, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v3
## omega2 = 0.039155, p-value = 0.9377
goftest::cvm.test(v4, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v4
## omega2 = 0.090574, p-value = 0.6334
goftest::cvm.test(v5, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v5
## omega2 = 0.028598, p-value = 0.9807
goftest::ad.test(u, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  u
## An = 0.31427, p-value = 0.927
goftest::ad.test(v1, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v1
## An = 0.89706, p-value = 0.416
goftest::ad.test(v2, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v2
## An = 0.25099, p-value = 0.9699
goftest::ad.test(v3, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v3
## An = 0.24115, p-value = 0.9749
goftest::ad.test(v4, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v4
## An = 0.5447, p-value = 0.7016
goftest::ad.test(v5, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v5
## An = 0.20914, p-value = 0.9877
ks.test(u, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  u
## D = 0.029789, p-value = 0.9299
## alternative hypothesis: two-sided
ks.test(v1, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v1
## D = 0.050378, p-value = 0.3685
## alternative hypothesis: two-sided
ks.test(v2, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v2
## D = 0.03056, p-value = 0.9158
## alternative hypothesis: two-sided
ks.test(v3, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v3
## D = 0.032452, p-value = 0.8756
## alternative hypothesis: two-sided
ks.test(v4, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v4
## D = 0.041429, p-value = 0.619
## alternative hypothesis: two-sided
ks.test(v5, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v5
## D = 0.028879, p-value = 0.9447
## alternative hypothesis: two-sided

5. COPULA

print("Việt Nam")
## [1] "Việt Nam"
aa1 <- BiCopEst(u, v1, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.18
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.08, p value = 0.03)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.33 
## AIC:    -8.66 
## BIC:    -4.86
aa2 <- BiCopEst(u, v1, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.14
## par2: 5.08
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value = 0.03)
## Upper TD:         0.07 
## Lower TD:         0.07 
## 
## Fit statistics
## --------------
## logLik:  10.12 
## AIC:    -16.25 
## BIC:    -8.64
aa3 <- BiCopEst(u, v1, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.21
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value = 0.03)
## Upper TD:         0 
## Lower TD:         0.03 
## 
## Fit statistics
## --------------
## logLik:  7.27 
## AIC:    -12.55 
## BIC:    -8.74
aa4 <- BiCopEst(u, v1, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.19
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value = 0.03)
## Upper TD:         0.03 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.74 
## AIC:    -5.48 
## BIC:    -1.67
aa5 <- BiCopEst(u, v1, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.12
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.08, p value = 0.03)
## Upper TD:         0.15 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.94 
## AIC:    -9.87 
## BIC:    -6.07
aa6 <- BiCopEst(u, v1, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.11
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.08, p value = 0.03)
## Upper TD:         0 
## Lower TD:         0.13 
## 
## Fit statistics
## --------------
## logLik:  7.73 
## AIC:    -13.47 
## BIC:    -9.66
aa7 <- BiCopEst(u, v1, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.8
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value = 0.03)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.74 
## AIC:    -3.48 
## BIC:    0.32
aa8 <- BiCopEst(u, v1, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.15
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value = 0.03)
## Upper TD:         0.17 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.47 
## AIC:    -6.94 
## BIC:    -3.14
aa9 <- BiCopEst(u, v1, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.14
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value = 0.03)
## Upper TD:         0 
## Lower TD:         0.17 
## 
## Fit statistics
## --------------
## logLik:  7.41 
## AIC:    -12.82 
## BIC:    -9.01
aa10 <- BiCopEst(u, v1, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.14
## par2: 1.06
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.08, p value = 0.03)
## Upper TD:         0.08 
## Lower TD:         0.01 
## 
## Fit statistics
## --------------
## logLik:  8.6 
## AIC:    -13.2 
## BIC:    -5.59
aa11 <- BiCopEst(u, v1, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.07
## par2: 1.09
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.08, p value = 0.03)
## Upper TD:         0 
## Lower TD:         0.11 
## 
## Fit statistics
## --------------
## logLik:  8.19 
## AIC:    -12.38 
## BIC:    -4.77
aa12 <- BiCopEst(u, v1, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.12
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.08, p value = 0.03)
## Upper TD:         0.15 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.93 
## AIC:    -7.86 
## BIC:    -0.25
aa13 <- BiCopEst(u, v1, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1.01
## par2: 1.1
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.08, p value = 0.03)
## Upper TD:         0 
## Lower TD:         0.14 
## 
## Fit statistics
## --------------
## logLik:  7.74 
## AIC:    -11.48 
## BIC:    -3.87
aa14 <- BiCopEst(u, v1, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.1
## par2: 0.17
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.08, p value = 0.03)
## Upper TD:         0.12 
## Lower TD:         0.02 
## 
## Fit statistics
## --------------
## logLik:  9.2 
## AIC:    -14.4 
## BIC:    -6.79
aa15 <- BiCopEst(u, v1, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.12
## par2: 0.12
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.08, p value = 0.03)
## Upper TD:         0 
## Lower TD:         0.14 
## 
## Fit statistics
## --------------
## logLik:  8.81 
## AIC:    -13.62 
## BIC:    -6.01
aa16 <- BiCopEst(u, v1, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  1.15
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value = 0.03)
## Upper TD:         0.17 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.47 
## AIC:    -4.94 
## BIC:    2.67
aa17 <- BiCopEst(u, v1, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.16
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value = 0.03)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  7.64 
## AIC:    -11.29 
## BIC:    -3.68
aacopulalist <- list(summary(aa1)$AIC,summary(aa2)$AIC, summary(aa3)$AIC, summary(aa4)$AIC, summary(aa5)$AIC, summary(aa6)$AIC, summary(aa7)$AIC, summary(aa8)$AIC, summary(aa9)$AIC, summary(aa10)$AIC, summary(aa11)$AIC, summary(aa12)$AIC, summary(aa13)$AIC, summary(aa14)$AIC, summary(aa15)$AIC, summary(aa16)$AIC, summary(aa17)$AIC)
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.18
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.08, p value = 0.03)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.33 
## AIC:    -8.66 
## BIC:    -4.86 
## 
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.14
## par2: 5.08
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value = 0.03)
## Upper TD:         0.07 
## Lower TD:         0.07 
## 
## Fit statistics
## --------------
## logLik:  10.12 
## AIC:    -16.25 
## BIC:    -8.64 
## 
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.21
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value = 0.03)
## Upper TD:         0 
## Lower TD:         0.03 
## 
## Fit statistics
## --------------
## logLik:  7.27 
## AIC:    -12.55 
## BIC:    -8.74 
## 
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.19
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value = 0.03)
## Upper TD:         0.03 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.74 
## AIC:    -5.48 
## BIC:    -1.67 
## 
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.12
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.08, p value = 0.03)
## Upper TD:         0.15 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.94 
## AIC:    -9.87 
## BIC:    -6.07 
## 
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.11
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.08, p value = 0.03)
## Upper TD:         0 
## Lower TD:         0.13 
## 
## Fit statistics
## --------------
## logLik:  7.73 
## AIC:    -13.47 
## BIC:    -9.66 
## 
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.8
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.08, p value = 0.03)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.74 
## AIC:    -3.48 
## BIC:    0.32 
## 
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.15
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value = 0.03)
## Upper TD:         0.17 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.47 
## AIC:    -6.94 
## BIC:    -3.14 
## 
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.14
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value = 0.03)
## Upper TD:         0 
## Lower TD:         0.17 
## 
## Fit statistics
## --------------
## logLik:  7.41 
## AIC:    -12.82 
## BIC:    -9.01 
## 
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.14
## par2: 1.06
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.08, p value = 0.03)
## Upper TD:         0.08 
## Lower TD:         0.01 
## 
## Fit statistics
## --------------
## logLik:  8.6 
## AIC:    -13.2 
## BIC:    -5.59 
## 
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.07
## par2: 1.09
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.08, p value = 0.03)
## Upper TD:         0 
## Lower TD:         0.11 
## 
## Fit statistics
## --------------
## logLik:  8.19 
## AIC:    -12.38 
## BIC:    -4.77 
## 
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.12
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.08, p value = 0.03)
## Upper TD:         0.15 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.93 
## AIC:    -7.86 
## BIC:    -0.25 
## 
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1.01
## par2: 1.1
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.08, p value = 0.03)
## Upper TD:         0 
## Lower TD:         0.14 
## 
## Fit statistics
## --------------
## logLik:  7.74 
## AIC:    -11.48 
## BIC:    -3.87 
## 
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.1
## par2: 0.17
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.08, p value = 0.03)
## Upper TD:         0.12 
## Lower TD:         0.02 
## 
## Fit statistics
## --------------
## logLik:  9.2 
## AIC:    -14.4 
## BIC:    -6.79 
## 
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.12
## par2: 0.12
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.08, p value = 0.03)
## Upper TD:         0 
## Lower TD:         0.14 
## 
## Fit statistics
## --------------
## logLik:  8.81 
## AIC:    -13.62 
## BIC:    -6.01 
## 
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  1.15
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value = 0.03)
## Upper TD:         0.17 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.47 
## AIC:    -4.94 
## BIC:    2.67 
## 
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.16
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.08, p value = 0.03)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  7.64 
## AIC:    -11.29 
## BIC:    -3.68
aacopulalist
## [[1]]
## [1] -8.66413
## 
## [[2]]
## [1] -16.24632
## 
## [[3]]
## [1] -12.54736
## 
## [[4]]
## [1] -5.47845
## 
## [[5]]
## [1] -9.872412
## 
## [[6]]
## [1] -13.46845
## 
## [[7]]
## [1] -3.48361
## 
## [[8]]
## [1] -6.941889
## 
## [[9]]
## [1] -12.81946
## 
## [[10]]
## [1] -13.20416
## 
## [[11]]
## [1] -12.37688
## 
## [[12]]
## [1] -7.860596
## 
## [[13]]
## [1] -11.47567
## 
## [[14]]
## [1] -14.40136
## 
## [[15]]
## [1] -13.62406
## 
## [[16]]
## [1] -4.941889
## 
## [[17]]
## [1] -11.28786
print("Argentina")
## [1] "Argentina"
ab1 <- BiCopEst(u, v2, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.37
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.24 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  24.08 
## AIC:    -46.17 
## BIC:    -42.36
ab2 <- BiCopEst(u, v2, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.35
## par2: 10.57
## Dependence measures
## -------------------
## Kendall's tau:    0.23 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.04 
## Lower TD:         0.04 
## 
## Fit statistics
## --------------
## logLik:  25.15 
## AIC:    -46.31 
## BIC:    -38.7
ab3 <- BiCopEst(u, v2, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.47
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.19 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.23 
## 
## Fit statistics
## --------------
## logLik:  22.29 
## AIC:    -42.58 
## BIC:    -38.77
ab4 <- BiCopEst(u, v2, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.41
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.17 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.18 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  16.01 
## AIC:    -30.02 
## BIC:    -26.21
ab5 <- BiCopEst(u, v2, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.26
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.21 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.27 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  20.38 
## AIC:    -38.76 
## BIC:    -34.95
ab6 <- BiCopEst(u, v2, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.28
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.22 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.28 
## 
## Fit statistics
## --------------
## logLik:  24.3 
## AIC:    -46.6 
## BIC:    -42.8
ab7 <- BiCopEst(u, v2, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  2.07
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.22 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  18.2 
## AIC:    -34.4 
## BIC:    -30.6
ab8 <- BiCopEst(u, v2, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.3
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.15 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.3 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  14.03 
## AIC:    -26.06 
## BIC:    -22.26
ab9 <- BiCopEst(u, v2, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.36
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.17 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.34 
## 
## Fit statistics
## --------------
## logLik:  20.28 
## AIC:    -38.57 
## BIC:    -34.76
ab10 <- BiCopEst(u, v2, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.29
## par2: 1.13
## Dependence measures
## -------------------
## Kendall's tau:    0.23 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.15 
## Lower TD:         0.12 
## 
## Fit statistics
## --------------
## logLik:  26.46 
## AIC:    -48.92 
## BIC:    -41.31
ab11 <- BiCopEst(u, v2, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.15
## par2: 1.21
## Dependence measures
## -------------------
## Kendall's tau:    0.23 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.02 
## Lower TD:         0.22 
## 
## Fit statistics
## --------------
## logLik:  25.74 
## AIC:    -47.49 
## BIC:    -39.88
ab12 <- BiCopEst(u, v2, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.26
## Dependence measures
## -------------------
## Kendall's tau:    0.21 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.27 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  20.36 
## AIC:    -36.73 
## BIC:    -29.12
ab13 <- BiCopEst(u, v2, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.28
## Dependence measures
## -------------------
## Kendall's tau:    0.22 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.28 
## 
## Fit statistics
## --------------
## logLik:  24.3 
## AIC:    -44.59 
## BIC:    -36.98
ab14 <- BiCopEst(u, v2, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.17
## par2: 0.38
## Dependence measures
## -------------------
## Kendall's tau:    0.22 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.19 
## Lower TD:         0.16 
## 
## Fit statistics
## --------------
## logLik:  26.54 
## AIC:    -49.08 
## BIC:    -41.47
ab15 <- BiCopEst(u, v2, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.26
## par2: 0.27
## Dependence measures
## -------------------
## Kendall's tau:    0.22 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.08 
## Lower TD:         0.27 
## 
## Fit statistics
## --------------
## logLik:  26.06 
## AIC:    -48.11 
## BIC:    -40.5
ab16 <- BiCopEst(u, v2, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.32
## Dependence measures
## -------------------
## Kendall's tau:    0.22 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  17.99 
## AIC:    -31.97 
## BIC:    -24.36
ab17 <- BiCopEst(u, v2, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.45
## par2: 0.99
## Dependence measures
## -------------------
## Kendall's tau:    0.19 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  21.91 
## AIC:    -39.81 
## BIC:    -32.2
abcopulalist <- list(summary(ab1)$AIC,summary(ab2)$AIC, summary(ab3)$AIC, summary(ab4)$AIC, summary(ab5)$AIC, summary(ab6)$AIC, summary(ab7)$AIC, summary(ab8)$AIC, summary(ab9)$AIC, summary(ab10)$AIC, summary(ab11)$AIC, summary(ab12)$AIC, summary(ab13)$AIC, summary(ab14)$AIC, summary(ab15)$AIC, summary(ab16)$AIC, summary(ab17)$AIC)
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.37
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.24 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  24.08 
## AIC:    -46.17 
## BIC:    -42.36 
## 
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.35
## par2: 10.57
## Dependence measures
## -------------------
## Kendall's tau:    0.23 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.04 
## Lower TD:         0.04 
## 
## Fit statistics
## --------------
## logLik:  25.15 
## AIC:    -46.31 
## BIC:    -38.7 
## 
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.47
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.19 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.23 
## 
## Fit statistics
## --------------
## logLik:  22.29 
## AIC:    -42.58 
## BIC:    -38.77 
## 
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.41
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.17 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.18 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  16.01 
## AIC:    -30.02 
## BIC:    -26.21 
## 
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.26
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.21 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.27 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  20.38 
## AIC:    -38.76 
## BIC:    -34.95 
## 
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.28
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.22 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.28 
## 
## Fit statistics
## --------------
## logLik:  24.3 
## AIC:    -46.6 
## BIC:    -42.8 
## 
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  2.07
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.22 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  18.2 
## AIC:    -34.4 
## BIC:    -30.6 
## 
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.3
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.15 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.3 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  14.03 
## AIC:    -26.06 
## BIC:    -22.26 
## 
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.36
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.17 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.34 
## 
## Fit statistics
## --------------
## logLik:  20.28 
## AIC:    -38.57 
## BIC:    -34.76 
## 
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.29
## par2: 1.13
## Dependence measures
## -------------------
## Kendall's tau:    0.23 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.15 
## Lower TD:         0.12 
## 
## Fit statistics
## --------------
## logLik:  26.46 
## AIC:    -48.92 
## BIC:    -41.31 
## 
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.15
## par2: 1.21
## Dependence measures
## -------------------
## Kendall's tau:    0.23 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.02 
## Lower TD:         0.22 
## 
## Fit statistics
## --------------
## logLik:  25.74 
## AIC:    -47.49 
## BIC:    -39.88 
## 
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.26
## Dependence measures
## -------------------
## Kendall's tau:    0.21 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.27 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  20.36 
## AIC:    -36.73 
## BIC:    -29.12 
## 
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.28
## Dependence measures
## -------------------
## Kendall's tau:    0.22 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.28 
## 
## Fit statistics
## --------------
## logLik:  24.3 
## AIC:    -44.59 
## BIC:    -36.98 
## 
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.17
## par2: 0.38
## Dependence measures
## -------------------
## Kendall's tau:    0.22 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.19 
## Lower TD:         0.16 
## 
## Fit statistics
## --------------
## logLik:  26.54 
## AIC:    -49.08 
## BIC:    -41.47 
## 
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.26
## par2: 0.27
## Dependence measures
## -------------------
## Kendall's tau:    0.22 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.08 
## Lower TD:         0.27 
## 
## Fit statistics
## --------------
## logLik:  26.06 
## AIC:    -48.11 
## BIC:    -40.5 
## 
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.32
## Dependence measures
## -------------------
## Kendall's tau:    0.22 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  17.99 
## AIC:    -31.97 
## BIC:    -24.36 
## 
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.45
## par2: 0.99
## Dependence measures
## -------------------
## Kendall's tau:    0.19 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  21.91 
## AIC:    -39.81 
## BIC:    -32.2
abcopulalist
## [[1]]
## [1] -46.16557
## 
## [[2]]
## [1] -46.3072
## 
## [[3]]
## [1] -42.57501
## 
## [[4]]
## [1] -30.01894
## 
## [[5]]
## [1] -38.75674
## 
## [[6]]
## [1] -46.60388
## 
## [[7]]
## [1] -34.40065
## 
## [[8]]
## [1] -26.06305
## 
## [[9]]
## [1] -38.56506
## 
## [[10]]
## [1] -48.91629
## 
## [[11]]
## [1] -47.486
## 
## [[12]]
## [1] -36.72633
## 
## [[13]]
## [1] -44.59102
## 
## [[14]]
## [1] -49.07606
## 
## [[15]]
## [1] -48.11319
## 
## [[16]]
## [1] -31.97269
## 
## [[17]]
## [1] -39.81287
print("Croatia")
## [1] "Croatia"
ac1 <- BiCopEst(u, v3, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.26
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.17 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  11.47 
## AIC:    -20.94 
## BIC:    -17.14
ac2 <- BiCopEst(u, v3, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.22
## par2: 3.95
## Dependence measures
## -------------------
## Kendall's tau:    0.14 (empirical = 0.14, p value < 0.01)
## Upper TD:         0.14 
## Lower TD:         0.14 
## 
## Fit statistics
## --------------
## logLik:  18.76 
## AIC:    -33.51 
## BIC:    -25.9
ac3 <- BiCopEst(u, v3, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.37
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.16 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.16 
## 
## Fit statistics
## --------------
## logLik:  17.27 
## AIC:    -32.54 
## BIC:    -28.73
ac4 <- BiCopEst(u, v3, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.23
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.14, p value < 0.01)
## Upper TD:         0.05 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.5 
## AIC:    -8.99 
## BIC:    -5.19
ac5 <- BiCopEst(u, v3, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.17
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.15 (empirical = 0.14, p value < 0.01)
## Upper TD:         0.19 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  9.31 
## AIC:    -16.63 
## BIC:    -12.82
ac6 <- BiCopEst(u, v3, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.2
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.16 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.21 
## 
## Fit statistics
## --------------
## logLik:  18.75 
## AIC:    -35.5 
## BIC:    -31.7
ac7 <- BiCopEst(u, v3, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  1.32
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.14 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  7.31 
## AIC:    -12.62 
## BIC:    -8.82
ac8 <- BiCopEst(u, v3, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.18
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.14, p value < 0.01)
## Upper TD:         0.2 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.23 
## AIC:    -8.46 
## BIC:    -4.65
ac9 <- BiCopEst(u, v3, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.28
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.14 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.28 
## 
## Fit statistics
## --------------
## logLik:  18.71 
## AIC:    -35.43 
## BIC:    -31.62
ac10 <- BiCopEst(u, v3, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.32
## par2: 1.04
## Dependence measures
## -------------------
## Kendall's tau:    0.17 (empirical = 0.14, p value < 0.01)
## Upper TD:         0.06 
## Lower TD:         0.12 
## 
## Fit statistics
## --------------
## logLik:  17.74 
## AIC:    -31.47 
## BIC:    -23.86
ac11 <- BiCopEst(u, v3, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.01
## par2: 1.19
## Dependence measures
## -------------------
## Kendall's tau:    0.16 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.21 
## 
## Fit statistics
## --------------
## logLik:  18.75 
## AIC:    -33.51 
## BIC:    -25.9
ac12 <- BiCopEst(u, v3, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.17
## Dependence measures
## -------------------
## Kendall's tau:    0.15 (empirical = 0.14, p value < 0.01)
## Upper TD:         0.19 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  9.3 
## AIC:    -14.59 
## BIC:    -6.98
ac13 <- BiCopEst(u, v3, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1.13
## par2: 1.1
## Dependence measures
## -------------------
## Kendall's tau:    0.15 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.25 
## 
## Fit statistics
## --------------
## logLik:  19.02 
## AIC:    -34.04 
## BIC:    -26.43
ac14 <- BiCopEst(u, v3, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.07
## par2: 0.34
## Dependence measures
## -------------------
## Kendall's tau:    0.17 (empirical = 0.14, p value < 0.01)
## Upper TD:         0.09 
## Lower TD:         0.13 
## 
## Fit statistics
## --------------
## logLik:  17.99 
## AIC:    -31.99 
## BIC:    -24.38
ac15 <- BiCopEst(u, v3, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.25
## par2: 0.1
## Dependence measures
## -------------------
## Kendall's tau:    0.16 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.26 
## 
## Fit statistics
## --------------
## logLik:  19.68 
## AIC:    -35.36 
## BIC:    -27.75
ac16 <- BiCopEst(u, v3, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.22
## Dependence measures
## -------------------
## Kendall's tau:    0.14 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  7.18 
## AIC:    -10.36 
## BIC:    -2.75
ac17 <- BiCopEst(u, v3, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.28
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.14 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.28 
## 
## Fit statistics
## --------------
## logLik:  18.71 
## AIC:    -33.43 
## BIC:    -25.82
accopulalist <- list(summary(ac1)$AIC,summary(ac2)$AIC, summary(ac3)$AIC, summary(ac4)$AIC, summary(ac5)$AIC, summary(ac6)$AIC, summary(ac7)$AIC, summary(ac8)$AIC, summary(ac9)$AIC, summary(ac10)$AIC, summary(ac11)$AIC, summary(ac12)$AIC, summary(ac13)$AIC, summary(ac14)$AIC, summary(ac15)$AIC, summary(ac16)$AIC, summary(ac17)$AIC)
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.26
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.17 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  11.47 
## AIC:    -20.94 
## BIC:    -17.14 
## 
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.22
## par2: 3.95
## Dependence measures
## -------------------
## Kendall's tau:    0.14 (empirical = 0.14, p value < 0.01)
## Upper TD:         0.14 
## Lower TD:         0.14 
## 
## Fit statistics
## --------------
## logLik:  18.76 
## AIC:    -33.51 
## BIC:    -25.9 
## 
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.37
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.16 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.16 
## 
## Fit statistics
## --------------
## logLik:  17.27 
## AIC:    -32.54 
## BIC:    -28.73 
## 
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.23
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.14, p value < 0.01)
## Upper TD:         0.05 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.5 
## AIC:    -8.99 
## BIC:    -5.19 
## 
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.17
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.15 (empirical = 0.14, p value < 0.01)
## Upper TD:         0.19 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  9.31 
## AIC:    -16.63 
## BIC:    -12.82 
## 
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.2
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.16 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.21 
## 
## Fit statistics
## --------------
## logLik:  18.75 
## AIC:    -35.5 
## BIC:    -31.7 
## 
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  1.32
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.14 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  7.31 
## AIC:    -12.62 
## BIC:    -8.82 
## 
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.18
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.14, p value < 0.01)
## Upper TD:         0.2 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.23 
## AIC:    -8.46 
## BIC:    -4.65 
## 
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.28
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.14 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.28 
## 
## Fit statistics
## --------------
## logLik:  18.71 
## AIC:    -35.43 
## BIC:    -31.62 
## 
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.32
## par2: 1.04
## Dependence measures
## -------------------
## Kendall's tau:    0.17 (empirical = 0.14, p value < 0.01)
## Upper TD:         0.06 
## Lower TD:         0.12 
## 
## Fit statistics
## --------------
## logLik:  17.74 
## AIC:    -31.47 
## BIC:    -23.86 
## 
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.01
## par2: 1.19
## Dependence measures
## -------------------
## Kendall's tau:    0.16 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.21 
## 
## Fit statistics
## --------------
## logLik:  18.75 
## AIC:    -33.51 
## BIC:    -25.9 
## 
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.17
## Dependence measures
## -------------------
## Kendall's tau:    0.15 (empirical = 0.14, p value < 0.01)
## Upper TD:         0.19 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  9.3 
## AIC:    -14.59 
## BIC:    -6.98 
## 
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1.13
## par2: 1.1
## Dependence measures
## -------------------
## Kendall's tau:    0.15 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.25 
## 
## Fit statistics
## --------------
## logLik:  19.02 
## AIC:    -34.04 
## BIC:    -26.43 
## 
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.07
## par2: 0.34
## Dependence measures
## -------------------
## Kendall's tau:    0.17 (empirical = 0.14, p value < 0.01)
## Upper TD:         0.09 
## Lower TD:         0.13 
## 
## Fit statistics
## --------------
## logLik:  17.99 
## AIC:    -31.99 
## BIC:    -24.38 
## 
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.25
## par2: 0.1
## Dependence measures
## -------------------
## Kendall's tau:    0.16 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.26 
## 
## Fit statistics
## --------------
## logLik:  19.68 
## AIC:    -35.36 
## BIC:    -27.75 
## 
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.22
## Dependence measures
## -------------------
## Kendall's tau:    0.14 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  7.18 
## AIC:    -10.36 
## BIC:    -2.75 
## 
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.28
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.14 (empirical = 0.14, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.28 
## 
## Fit statistics
## --------------
## logLik:  18.71 
## AIC:    -33.43 
## BIC:    -25.82
accopulalist
## [[1]]
## [1] -20.94196
## 
## [[2]]
## [1] -33.51118
## 
## [[3]]
## [1] -32.53708
## 
## [[4]]
## [1] -8.993295
## 
## [[5]]
## [1] -16.62503
## 
## [[6]]
## [1] -35.50067
## 
## [[7]]
## [1] -12.6242
## 
## [[8]]
## [1] -8.459225
## 
## [[9]]
## [1] -35.42668
## 
## [[10]]
## [1] -31.47466
## 
## [[11]]
## [1] -33.50722
## 
## [[12]]
## [1] -14.59334
## 
## [[13]]
## [1] -34.03967
## 
## [[14]]
## [1] -31.98533
## 
## [[15]]
## [1] -35.36422
## 
## [[16]]
## [1] -10.3615
## 
## [[17]]
## [1] -33.42668
print("Morocco")
## [1] "Morocco"
ad1 <- BiCopEst(u, v4, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.13
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.69 
## AIC:    -3.38 
## BIC:    0.43
ad2 <- BiCopEst(u, v4, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.12
## par2: 19.1
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.23 
## AIC:    -2.45 
## BIC:    5.16
ad3 <- BiCopEst(u, v4, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.18
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.02 
## 
## Fit statistics
## --------------
## logLik:  4.49 
## AIC:    -6.98 
## BIC:    -3.17
ad4 <- BiCopEst(u, v4, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.08
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.72 
## AIC:    0.57 
## BIC:    4.37
ad5 <- BiCopEst(u, v4, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.05
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.06 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.94 
## AIC:    0.13 
## BIC:    3.93
ad6 <- BiCopEst(u, v4, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.09
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.11 
## 
## Fit statistics
## --------------
## logLik:  4.98 
## AIC:    -7.96 
## BIC:    -4.15
ad7 <- BiCopEst(u, v4, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.61
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.7 
## AIC:    -1.4 
## BIC:    2.4
ad8 <- BiCopEst(u, v4, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.03
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.02 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.04 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.17 
## AIC:    1.65 
## BIC:    5.46
ad9 <- BiCopEst(u, v4, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.13
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.16 
## 
## Fit statistics
## --------------
## logLik:  5.25 
## AIC:    -8.5 
## BIC:    -4.7
ad10 <- BiCopEst(u, v4, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.18
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.02 
## 
## Fit statistics
## --------------
## logLik:  4.47 
## AIC:    -4.95 
## BIC:    2.66
ad11 <- BiCopEst(u, v4, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0
## par2: 1.09
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.11 
## 
## Fit statistics
## --------------
## logLik:  4.97 
## AIC:    -5.94 
## BIC:    1.67
ad12 <- BiCopEst(u, v4, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.05
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.06 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.92 
## AIC:    2.15 
## BIC:    9.76
ad13 <- BiCopEst(u, v4, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1.13
## par2: 1.01
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.16 
## 
## Fit statistics
## --------------
## logLik:  5.25 
## AIC:    -6.51 
## BIC:    1.1
ad14 <- BiCopEst(u, v4, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1
## par2: 0.18
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.02 
## 
## Fit statistics
## --------------
## logLik:  4.48 
## AIC:    -4.95 
## BIC:    2.66
ad15 <- BiCopEst(u, v4, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.13
## par2: 0.01
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.16 
## 
## Fit statistics
## --------------
## logLik:  5.26 
## AIC:    -6.51 
## BIC:    1.1
ad16 <- BiCopEst(u, v4, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.11
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.63 
## AIC:    0.74 
## BIC:    8.35
ad17 <- BiCopEst(u, v4, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.16
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.59 
## AIC:    -7.19 
## BIC:    0.42
adcopulalist <- list(summary(ad1)$AIC,summary(ad2)$AIC, summary(ad3)$AIC, summary(ad4)$AIC, summary(ad5)$AIC, summary(ad6)$AIC, summary(ad7)$AIC, summary(ad8)$AIC, summary(ad9)$AIC, summary(ad10)$AIC, summary(ad11)$AIC, summary(ad12)$AIC, summary(ad13)$AIC, summary(ad14)$AIC, summary(ad15)$AIC, summary(ad16)$AIC, summary(ad17)$AIC)
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.13
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.69 
## AIC:    -3.38 
## BIC:    0.43 
## 
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.12
## par2: 19.1
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.23 
## AIC:    -2.45 
## BIC:    5.16 
## 
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.18
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.02 
## 
## Fit statistics
## --------------
## logLik:  4.49 
## AIC:    -6.98 
## BIC:    -3.17 
## 
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.08
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.72 
## AIC:    0.57 
## BIC:    4.37 
## 
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.05
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.06 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.94 
## AIC:    0.13 
## BIC:    3.93 
## 
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.09
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.11 
## 
## Fit statistics
## --------------
## logLik:  4.98 
## AIC:    -7.96 
## BIC:    -4.15 
## 
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.61
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.7 
## AIC:    -1.4 
## BIC:    2.4 
## 
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.03
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.02 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.04 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.17 
## AIC:    1.65 
## BIC:    5.46 
## 
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.13
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.16 
## 
## Fit statistics
## --------------
## logLik:  5.25 
## AIC:    -8.5 
## BIC:    -4.7 
## 
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.18
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.02 
## 
## Fit statistics
## --------------
## logLik:  4.47 
## AIC:    -4.95 
## BIC:    2.66 
## 
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0
## par2: 1.09
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.11 
## 
## Fit statistics
## --------------
## logLik:  4.97 
## AIC:    -5.94 
## BIC:    1.67 
## 
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.05
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.06 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.92 
## AIC:    2.15 
## BIC:    9.76 
## 
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1.13
## par2: 1.01
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.16 
## 
## Fit statistics
## --------------
## logLik:  5.25 
## AIC:    -6.51 
## BIC:    1.1 
## 
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1
## par2: 0.18
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.02 
## 
## Fit statistics
## --------------
## logLik:  4.48 
## AIC:    -4.95 
## BIC:    2.66 
## 
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.13
## par2: 0.01
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.16 
## 
## Fit statistics
## --------------
## logLik:  5.26 
## AIC:    -6.51 
## BIC:    1.1 
## 
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.11
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.63 
## AIC:    0.74 
## BIC:    8.35 
## 
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.16
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.59 
## AIC:    -7.19 
## BIC:    0.42
adcopulalist
## [[1]]
## [1] -3.376105
## 
## [[2]]
## [1] -2.450115
## 
## [[3]]
## [1] -6.975688
## 
## [[4]]
## [1] 0.5657957
## 
## [[5]]
## [1] 0.1250453
## 
## [[6]]
## [1] -7.958819
## 
## [[7]]
## [1] -1.404553
## 
## [[8]]
## [1] 1.654985
## 
## [[9]]
## [1] -8.504154
## 
## [[10]]
## [1] -4.949565
## 
## [[11]]
## [1] -5.942356
## 
## [[12]]
## [1] 2.152979
## 
## [[13]]
## [1] -6.50652
## 
## [[14]]
## [1] -4.95463
## 
## [[15]]
## [1] -6.514762
## 
## [[16]]
## [1] 0.7426967
## 
## [[17]]
## [1] -7.188432
print("Oman")
## [1] "Oman"
ae1 <- BiCopEst(u, v5, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.14
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.23 
## AIC:    -4.45 
## BIC:    -0.65
ae2 <- BiCopEst(u, v5, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.12
## par2: 7.68
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.03 
## Lower TD:         0.03 
## 
## Fit statistics
## --------------
## logLik:  5.96 
## AIC:    -7.91 
## BIC:    -0.3
ae3 <- BiCopEst(u, v5, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.16
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.01 
## 
## Fit statistics
## --------------
## logLik:  4.68 
## AIC:    -7.36 
## BIC:    -3.55
ae4 <- BiCopEst(u, v5, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.13
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.01 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.02 
## AIC:    -2.05 
## BIC:    1.76
ae5 <- BiCopEst(u, v5, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.08
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.11 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.73 
## AIC:    -3.46 
## BIC:    0.34
ae6 <- BiCopEst(u, v5, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.09
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.11 
## 
## Fit statistics
## --------------
## logLik:  5.22 
## AIC:    -8.43 
## BIC:    -4.63
ae7 <- BiCopEst(u, v5, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.7
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.13 
## AIC:    -2.26 
## BIC:    1.54
ae8 <- BiCopEst(u, v5, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.09
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.12 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.66 
## AIC:    -1.31 
## BIC:    2.49
ae9 <- BiCopEst(u, v5, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.11
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.13 
## 
## Fit statistics
## --------------
## logLik:  4.87 
## AIC:    -7.74 
## BIC:    -3.94
ae10 <- BiCopEst(u, v5, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.13
## par2: 1.03
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.04 
## Lower TD:         0.01 
## 
## Fit statistics
## --------------
## logLik:  5.02 
## AIC:    -6.05 
## BIC:    1.56
ae11 <- BiCopEst(u, v5, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.04
## par2: 1.07
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.09 
## 
## Fit statistics
## --------------
## logLik:  5.38 
## AIC:    -6.75 
## BIC:    0.86
ae12 <- BiCopEst(u, v5, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.08
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.11 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.72 
## AIC:    -1.45 
## BIC:    6.16
ae13 <- BiCopEst(u, v5, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.08
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.11 
## 
## Fit statistics
## --------------
## logLik:  5.22 
## AIC:    -6.43 
## BIC:    1.18
ae14 <- BiCopEst(u, v5, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.05
## par2: 0.14
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.06 
## Lower TD:         0.01 
## 
## Fit statistics
## --------------
## logLik:  5.11 
## AIC:    -6.21 
## BIC:    1.4
ae15 <- BiCopEst(u, v5, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.09
## par2: 0.08
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.11 
## 
## Fit statistics
## --------------
## logLik:  5.61 
## AIC:    -7.22 
## BIC:    0.39
ae16 <- BiCopEst(u, v5, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  1.46
## par2: 0.72
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.41 
## AIC:    -0.82 
## BIC:    6.79
ae17 <- BiCopEst(u, v5, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.12
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.13 
## AIC:    -6.26 
## BIC:    1.35
aecopulalist <- list(summary(ae1)$AIC,summary(ae2)$AIC, summary(ae3)$AIC, summary(ae4)$AIC, summary(ae5)$AIC, summary(ae6)$AIC, summary(ae7)$AIC, summary(ae8)$AIC, summary(ae9)$AIC, summary(ae10)$AIC, summary(ae11)$AIC, summary(ae12)$AIC, summary(ae13)$AIC, summary(ae14)$AIC, summary(ae15)$AIC, summary(ae16)$AIC, summary(ae17)$AIC)
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.14
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.23 
## AIC:    -4.45 
## BIC:    -0.65 
## 
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.12
## par2: 7.68
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.03 
## Lower TD:         0.03 
## 
## Fit statistics
## --------------
## logLik:  5.96 
## AIC:    -7.91 
## BIC:    -0.3 
## 
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.16
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.01 
## 
## Fit statistics
## --------------
## logLik:  4.68 
## AIC:    -7.36 
## BIC:    -3.55 
## 
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.13
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.01 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.02 
## AIC:    -2.05 
## BIC:    1.76 
## 
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.08
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.11 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.73 
## AIC:    -3.46 
## BIC:    0.34 
## 
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.09
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.11 
## 
## Fit statistics
## --------------
## logLik:  5.22 
## AIC:    -8.43 
## BIC:    -4.63 
## 
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.7
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.13 
## AIC:    -2.26 
## BIC:    1.54 
## 
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.09
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.12 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.66 
## AIC:    -1.31 
## BIC:    2.49 
## 
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.11
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.13 
## 
## Fit statistics
## --------------
## logLik:  4.87 
## AIC:    -7.74 
## BIC:    -3.94 
## 
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.13
## par2: 1.03
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.04 
## Lower TD:         0.01 
## 
## Fit statistics
## --------------
## logLik:  5.02 
## AIC:    -6.05 
## BIC:    1.56 
## 
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.04
## par2: 1.07
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.09 
## 
## Fit statistics
## --------------
## logLik:  5.38 
## AIC:    -6.75 
## BIC:    0.86 
## 
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.08
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.11 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.72 
## AIC:    -1.45 
## BIC:    6.16 
## 
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.08
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.11 
## 
## Fit statistics
## --------------
## logLik:  5.22 
## AIC:    -6.43 
## BIC:    1.18 
## 
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.05
## par2: 0.14
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.07, p value = 0.05)
## Upper TD:         0.06 
## Lower TD:         0.01 
## 
## Fit statistics
## --------------
## logLik:  5.11 
## AIC:    -6.21 
## BIC:    1.4 
## 
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.09
## par2: 0.08
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0.11 
## 
## Fit statistics
## --------------
## logLik:  5.61 
## AIC:    -7.22 
## BIC:    0.39 
## 
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  1.46
## par2: 0.72
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  2.41 
## AIC:    -0.82 
## BIC:    6.79 
## 
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.12
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.07, p value = 0.05)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.13 
## AIC:    -6.26 
## BIC:    1.35
aecopulalist
## [[1]]
## [1] -4.454624
## 
## [[2]]
## [1] -7.912229
## 
## [[3]]
## [1] -7.357102
## 
## [[4]]
## [1] -2.046475
## 
## [[5]]
## [1] -3.464867
## 
## [[6]]
## [1] -8.432478
## 
## [[7]]
## [1] -2.260566
## 
## [[8]]
## [1] -1.312784
## 
## [[9]]
## [1] -7.743965
## 
## [[10]]
## [1] -6.047013
## 
## [[11]]
## [1] -6.752645
## 
## [[12]]
## [1] -1.448704
## 
## [[13]]
## [1] -6.431314
## 
## [[14]]
## [1] -6.211898
## 
## [[15]]
## [1] -7.224862
## 
## [[16]]
## [1] -0.8238002
## 
## [[17]]
## [1] -6.259093

C. SAU COVID

1. NHẬP DỮ LIỆU

rm(list=ls())
DATA <- read_xlsx("C://Users//84896//Desktop//DATA//CN3-COPULA.xlsx", sheet="After")
SP500 <- DATA$y
VNI <- DATA$x1
MERVAL <- DATA$x2
CROBEX <- DATA$x3
MASI <- DATA$x4
MSM30 <- DATA$x5

2. MA TRẬN TƯƠNG QUAN

cor(cbind(SP500, VNI, MERVAL, CROBEX, MASI, MSM30), method="pearson")
##              SP500        VNI      MERVAL     CROBEX       MASI       MSM30
## SP500   1.00000000 0.16545790  0.26840964 0.21922323 0.05287079 -0.03441537
## VNI     0.16545790 1.00000000  0.09561572 0.19035928 0.08844928  0.09313346
## MERVAL  0.26840964 0.09561572  1.00000000 0.09317479 0.09742475 -0.04449680
## CROBEX  0.21922323 0.19035928  0.09317479 1.00000000 0.27555800  0.05990226
## MASI    0.05287079 0.08844928  0.09742475 0.27555800 1.00000000  0.07294105
## MSM30  -0.03441537 0.09313346 -0.04449680 0.05990226 0.07294105  1.00000000

3. MÔ HÌNH ARMA-GJR-GARCH

3.1. ARMA

print("Mỹ")
## [1] "Mỹ"
autoarfima(SP500,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##        ar1        ar2        ma1        ma2      sigma 
##  0.5854079 -0.9802957 -0.5853677  0.9531066  1.4531486
print("Việt Nam")
## [1] "Việt Nam"
autoarfima(VNI,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##        ar1        ar2        ma1        ma2      sigma 
##  0.0000000 -0.6078440  0.0000000  0.5104772  1.6839870
print("Argentina")
## [1] "Argentina"
autoarfima(MERVAL,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##         mu        ar1        ar2        ma1        ma2      sigma 
##  0.7137153 -1.2170917 -0.9802956  1.2289849  0.9598844  3.7995838
print("Croatia")
## [1] "Croatia"
autoarfima(CROBEX,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##         mu      sigma 
## 0.08358039 0.85100899
print("Morocco")
## [1] "Morocco"
autoarfima(MASI,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##       ar1     sigma 
## 0.2062769 0.9052712
print("Oman")
## [1] "Oman"
autoarfima(MSM30,ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
##        ar1        ma1      sigma 
##  0.6832304 -0.5083889  0.6597366

3.2. GJR-GARCH

print("Mỹ")
## [1] "Mỹ"
sp500.g11n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
sp500.g11s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
sp500.g11ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
sp500.g11g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
sp500.g11sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
sp500.g12n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
sp500.g12s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
sp500.g12ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
sp500.g12g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
sp500.g12sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
sp500.g21n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
sp500.g21s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
sp500.g21ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
sp500.g21g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
sp500.g21sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
sp500.g22n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
sp500.g22s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
sp500.g22ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
sp500.g22g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
sp500.g22sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
sp500.garch11n <-ugarchfit(data=SP500, spec= sp500.g11n ) #1
sp500.garch11s <-ugarchfit(data=SP500, spec= sp500.g11s ) 
sp500.garch11ss <-ugarchfit(data=SP500, spec= sp500.g11ss ) 
sp500.garch11g <-ugarchfit(data=SP500, spec= sp500.g11g )
sp500.garch11sg <-ugarchfit(data=SP500, spec= sp500.g11sg ) #5
sp500.garch12n <-ugarchfit(data=SP500, spec= sp500.g12n )
sp500.garch12s <-ugarchfit(data=SP500, spec= sp500.g12s )
sp500.garch12ss <-ugarchfit(data=SP500, spec= sp500.g12ss )
sp500.garch12g<-ugarchfit(data=SP500, spec= sp500.g12g )
sp500.garch12sg <-ugarchfit(data=SP500, spec= sp500.g12sg ) #10
sp500.garch21n <-ugarchfit(data=SP500, spec= sp500.g21n )
sp500.garch21s <-ugarchfit(data=SP500, spec= sp500.g21s )
#sp500.garch21ss <-ugarchfit(data=SP500, spec= sp500.g21ss)
sp500.garch21g <-ugarchfit(data=SP500, spec= sp500.g21g ) #13
sp500.garch21sg <-ugarchfit(data=SP500, spec= sp500.g21sg )
#sp500.garch22n <-ugarchfit(data=SP500, spec= sp500.g22n )
sp500.garch22s <-ugarchfit(data=SP500, spec= sp500.g22s )
sp500.garch22ss <-ugarchfit(data=SP500, spec= sp500.g22ss )
sp500.garch22g<-ugarchfit(data=SP500, spec= sp500.g22g )
sp500.garch22sg <-ugarchfit(data=SP500, spec= sp500.g22sg )
model.aic.list <- list(sp500.garch11n,sp500.garch11s,sp500.garch11ss,sp500.garch11g,sp500.garch11sg,sp500.garch12n,sp500.garch12s,sp500.garch12ss,sp500.garch12g,sp500.garch12sg,sp500.garch21n,sp500.garch21s,sp500.garch21g,sp500.garch21sg,sp500.garch22s,sp500.garch22ss,sp500.garch22g,sp500.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 14
sp500.garch21sg@fit$matcoef
##             Estimate   Std. Error     t value    Pr(>|t|)
## mu      6.544845e-02 2.719793e-04  240.637567 0.000000000
## ar1     6.202403e-01 1.753016e-03  353.813230 0.000000000
## ar2    -7.999321e-01 2.523666e-03 -316.972315 0.000000000
## ma1    -6.907720e-01 1.940306e-03 -356.011917 0.000000000
## ma2     7.946323e-01 2.544028e-03  312.352043 0.000000000
## omega   1.201965e-02 4.579063e-05  262.491586 0.000000000
## alpha1  1.267776e-05 4.315103e-06    2.937998 0.003303394
## alpha2  1.451193e-05 4.762291e-06    3.047258 0.002309393
## beta1   9.486685e-01 1.982632e-03  478.489514 0.000000000
## gamma1 -6.553624e-02 1.852118e-04 -353.844750 0.000000000
## gamma2  1.434942e-01 4.044316e-04  354.804704 0.000000000
## skew    8.297736e-01 6.911571e-02   12.005572 0.000000000
## shape   2.027612e+00 2.070136e-01    9.794586 0.000000000
print("Việt Nam")
## [1] "Việt Nam"
vni.g11n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
vni.g11s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
vni.g11ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
vni.g11g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
vni.g11sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
vni.g12n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
vni.g12s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
vni.g12ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
vni.g12g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
vni.g12sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
vni.g21n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
vni.g21s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
vni.g21ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
vni.g21g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
vni.g21sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
vni.g22n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
vni.g22s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
vni.g22ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
vni.g22g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
vni.g22sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
vni.garch11n <-ugarchfit(data=VNI, spec= vni.g11n ) #1
vni.garch11s <-ugarchfit(data=VNI, spec= vni.g11s ) 
vni.garch11ss <-ugarchfit(data=VNI, spec= vni.g11ss ) 
vni.garch11g <-ugarchfit(data=VNI, spec= vni.g11g )
vni.garch11sg <-ugarchfit(data=VNI, spec= vni.g11sg ) #5
vni.garch12n <-ugarchfit(data=VNI, spec= vni.g12n )
vni.garch12s <-ugarchfit(data=VNI, spec= vni.g12s )
vni.garch12ss <-ugarchfit(data=VNI, spec= vni.g12ss )
vni.garch12g<-ugarchfit(data=VNI, spec= vni.g12g )
vni.garch12sg <-ugarchfit(data=VNI, spec= vni.g12sg ) #10
vni.garch21n <-ugarchfit(data=VNI, spec= vni.g21n )
vni.garch21s <-ugarchfit(data=VNI, spec= vni.g21s )
vni.garch21ss <-ugarchfit(data=VNI, spec= vni.g21ss)
vni.garch21g <-ugarchfit(data=VNI, spec= vni.g21g )
vni.garch21sg <-ugarchfit(data=VNI, spec= vni.g21sg ) #15
vni.garch22n <-ugarchfit(data=VNI, spec= vni.g22n )
vni.garch22s <-ugarchfit(data=VNI, spec= vni.g22s )
vni.garch22ss <-ugarchfit(data=VNI, spec= vni.g22ss )
vni.garch22g<-ugarchfit(data=VNI, spec= vni.g22g )
vni.garch22sg <-ugarchfit(data=VNI, spec= vni.g22sg )
model.aic.list <- list(vni.garch11n,vni.garch11s,vni.garch11ss,vni.garch11g,vni.garch11sg,vni.garch12n,vni.garch12s,vni.garch12ss,vni.garch12g,vni.garch12sg,vni.garch21n,vni.garch21s,vni.garch21ss,vni.garch21g,vni.garch21sg,vni.garch22n,vni.garch22s,vni.garch22ss,vni.garch22g,vni.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 5
vni.garch11sg@fit$matcoef
##           Estimate  Std. Error     t value     Pr(>|t|)
## mu      0.02557194 0.007029523    3.637791 2.749866e-04
## ar1     0.39313316 0.004355433   90.262696 0.000000e+00
## ar2    -0.93192669 0.014611011  -63.782493 0.000000e+00
## ma1    -0.43253231 0.004118520 -105.021307 0.000000e+00
## ma2     0.90108336 0.024681736   36.508104 0.000000e+00
## omega   0.12136337 0.014179887    8.558839 0.000000e+00
## alpha1  0.02178571 0.005748416    3.789862 1.507307e-04
## beta1   0.85866417 0.012170349   70.553783 0.000000e+00
## gamma1  0.11388973 0.018234806    6.245733 4.218166e-10
## skew    0.77849135 0.021807563   35.698227 0.000000e+00
## shape   1.09701511 0.084706245   12.950817 0.000000e+00
print("Argentina")
## [1] "Argentina"
merval.g11n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
merval.g11s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
merval.g11ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
merval.g11g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
merval.g11sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
merval.g12n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
merval.g12s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
merval.g12ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
merval.g12g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
merval.g12sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
merval.g21n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
merval.g21s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
merval.g21ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
merval.g21g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
merval.g21sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
merval.g22n <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
merval.g22s <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
merval.g22ss <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
merval.g22g <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
merval.g22sg <- ugarchspec(mean.model = list(armaOrder = c(2,2)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
merval.garch11n <-ugarchfit(data= MERVAL, spec= merval.g11n ) #1
merval.garch11s <-ugarchfit(data= MERVAL, spec= merval.g11s ) 
merval.garch11ss <-ugarchfit(data= MERVAL, spec= merval.g11ss ) 
merval.garch11g <-ugarchfit(data= MERVAL, spec= merval.g11g )
merval.garch11sg <-ugarchfit(data= MERVAL, spec= merval.g11sg ) #5
merval.garch12n <-ugarchfit(data= MERVAL, spec= merval.g12n )
merval.garch12s <-ugarchfit(data= MERVAL, spec= merval.g12s )
merval.garch12ss <-ugarchfit(data= MERVAL, spec= merval.g12ss )
merval.garch12g<-ugarchfit(data= MERVAL, spec= merval.g12g )
merval.garch12sg <-ugarchfit(data= MERVAL, spec= merval.g12sg ) #10
merval.garch21n <-ugarchfit(data= MERVAL, spec= merval.g21n )
merval.garch21s <-ugarchfit(data= MERVAL, spec= merval.g21s )
merval.garch21ss <-ugarchfit(data= MERVAL, spec= merval.g21ss)
merval.garch21g <-ugarchfit(data= MERVAL, spec= merval.g21g )
merval.garch21sg <-ugarchfit(data= MERVAL, spec= merval.g21sg ) #15
merval.garch22n <-ugarchfit(data= MERVAL, spec= merval.g22n )
merval.garch22s <-ugarchfit(data= MERVAL, spec= merval.g22s )
merval.garch22ss <-ugarchfit(data= MERVAL, spec= merval.g22ss )
merval.garch22g<-ugarchfit(data= MERVAL, spec= merval.g22g )
merval.garch22sg <-ugarchfit(data= MERVAL, spec= merval.g22sg )
model.aic.list <- list(merval.garch11n,merval.garch11s,merval.garch11ss,merval.garch11g,merval.garch11sg,merval.garch12n,merval.garch12s,merval.garch12ss,merval.garch12g,merval.garch12sg,merval.garch21n,merval.garch21s,merval.garch21ss,merval.garch21g,merval.garch21sg,merval.garch22n,merval.garch22s,merval.garch22ss,merval.garch22g,merval.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 7
merval.garch12s@fit$matcoef
##             Estimate   Std. Error       t value Pr(>|t|)
## mu      6.250402e-01 2.987537e-04  2.092159e+03        0
## ar1    -1.223271e+00 1.001409e-03 -1.221549e+03        0
## ar2    -9.261366e-01 2.377172e-03 -3.895959e+02        0
## ma1     1.246778e+00 3.216875e-03  3.875742e+02        0
## ma2     9.048829e-01 1.632291e-03  5.543636e+02        0
## omega   1.173672e-01 2.198831e-04  5.337710e+02        0
## alpha1  5.135416e-15 1.548756e-05  3.315832e-10        1
## beta1   1.483451e-01 1.525930e-04  9.721620e+02        0
## beta2   8.889866e-01 4.907192e-04  1.811599e+03        0
## gamma1 -1.630424e-01 2.717208e-04 -6.000366e+02        0
## shape   2.403179e+00 8.460224e-02  2.840561e+01        0
print("Crotia")
## [1] "Crotia"
crobex.g11n <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
crobex.g11s <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
crobex.g11ss <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
crobex.g11g <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
crobex.g11sg <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
crobex.g12n <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
crobex.g12s <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
crobex.g12ss <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
crobex.g12g <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
crobex.g12sg <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
crobex.g21n <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
crobex.g21s <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
crobex.g21ss <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
crobex.g21g <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
crobex.g21sg <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
crobex.g22n <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
crobex.g22s <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
crobex.g22ss <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
crobex.g22g <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
crobex.g22sg <- ugarchspec(mean.model = list(armaOrder =  c(0,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
crobex.garch11n <-ugarchfit(data= CROBEX, spec= crobex.g11n ) #1
#crobex.garch11s <-ugarchfit(data= CROBEX, spec= crobex.g11s) 
#crobex.garch11ss <-ugarchfit(data= CROBEX, spec= crobex.g11ss) 
crobex.garch11g <-ugarchfit(data= CROBEX, spec= crobex.g11g )
crobex.garch11sg <-ugarchfit(data= CROBEX, spec= crobex.g11sg ) 
crobex.garch12n <-ugarchfit(data= CROBEX, spec= crobex.g12n )
crobex.garch12s <-ugarchfit(data= CROBEX, spec= crobex.g12s ) #5
crobex.garch12ss <-ugarchfit(data= CROBEX, spec= crobex.g12ss )
crobex.garch12g<-ugarchfit(data= CROBEX, spec= crobex.g12g )
crobex.garch12sg <-ugarchfit(data= CROBEX, spec= crobex.g12sg ) 
crobex.garch21n <-ugarchfit(data= CROBEX, spec= crobex.g21n )
crobex.garch21s <-ugarchfit(data= CROBEX, spec= crobex.g21s ) #10
crobex.garch21ss <-ugarchfit(data= CROBEX, spec= crobex.g21ss)
crobex.garch21g <-ugarchfit(data= CROBEX, spec= crobex.g21g )
crobex.garch21sg <-ugarchfit(data= CROBEX, spec= crobex.g21sg ) 
crobex.garch22n <-ugarchfit(data= CROBEX, spec= crobex.g22n )
crobex.garch22s <-ugarchfit(data= CROBEX, spec= crobex.g22s )
crobex.garch22ss <-ugarchfit(data= CROBEX, spec= crobex.g22ss )#15
crobex.garch22g<-ugarchfit(data= CROBEX, spec= crobex.g22g )
crobex.garch22sg <-ugarchfit(data= CROBEX, spec= crobex.g22sg )
model.aic.list <- list(crobex.garch11n,crobex.garch11g,crobex.garch11sg,crobex.garch12n,crobex.garch12s,crobex.garch12ss,crobex.garch12g,crobex.garch12sg,crobex.garch21n,crobex.garch21s,crobex.garch21ss,crobex.garch21g,crobex.garch21sg,crobex.garch22n,crobex.garch22s,crobex.garch22ss,crobex.garch22g,crobex.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 10
crobex.garch21s@fit$matcoef
##           Estimate  Std. Error    t value     Pr(>|t|)
## mu      0.11611545  0.03018555  3.8467226 1.197084e-04
## omega   0.15917317  0.13876393  1.1470789 2.513490e-01
## alpha1  0.08675628  0.10419214  0.8326567 4.050384e-01
## alpha2  0.14861470  0.18833852  0.7890829 4.300636e-01
## beta1   0.59702034  0.28139306  2.1216598 3.386632e-02
## gamma1 -0.07810279  0.11413626 -0.6842943 4.937894e-01
## gamma2  0.03558747  0.15268471  0.2330781 8.157007e-01
## shape   3.16776862  0.55984309  5.6583152 1.528662e-08
print("Morocco")
## [1] "Morocco"
masi.g11n <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
masi.g11s <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
masi.g11ss <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
masi.g11g <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
masi.g11sg <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
masi.g12n <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
masi.g12s <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
masi.g12ss <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
masi.g12g <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
masi.g12sg <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
masi.g21n <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
masi.g21s <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
masi.g21ss <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
masi.g21g <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
masi.g21sg <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
masi.g22n <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
masi.g22s <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
masi.g22ss <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
masi.g22g <- ugarchspec(mean.model = list(armaOrder =  c(1,0)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
masi.g22sg <- ugarchspec(mean.model = list(armaOrder = c(0,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
masi.garch11n <-ugarchfit(data= MASI, spec= masi.g11n ) #1
masi.garch11s <-ugarchfit(data= MASI, spec= masi.g11s ) 
masi.garch11ss <-ugarchfit(data= MASI, spec= masi.g11ss ) 
masi.garch11g <-ugarchfit(data= MASI, spec= masi.g11g )
masi.garch11sg <-ugarchfit(data= MASI, spec= masi.g11sg ) #5
masi.garch12n <-ugarchfit(data= MASI, spec= masi.g12n )
masi.garch12s <-ugarchfit(data= MASI, spec= masi.g12s )
masi.garch12ss <-ugarchfit(data= MASI, spec= masi.g12ss )
masi.garch12g<-ugarchfit(data= MASI, spec= masi.g12g )
masi.garch12sg <-ugarchfit(data= MASI, spec= masi.g12sg ) #10
masi.garch21n <-ugarchfit(data= MASI, spec= masi.g21n )
masi.garch21s <-ugarchfit(data= MASI, spec= masi.g21s )
masi.garch21ss <-ugarchfit(data= MASI, spec= masi.g21ss)
masi.garch21g <-ugarchfit(data= MASI, spec= masi.g21g )
masi.garch21sg <-ugarchfit(data= MASI, spec= masi.g21sg ) #15
masi.garch22n <-ugarchfit(data= MASI, spec= masi.g22n )
masi.garch22s <-ugarchfit(data= MASI, spec= masi.g22s )
masi.garch22ss <-ugarchfit(data= MASI, spec= masi.g22ss )
masi.garch22g<-ugarchfit(data= MASI, spec= masi.g22g )
masi.garch22sg <-ugarchfit(data= MASI, spec= masi.g22sg )
model.aic.list <- list(masi.garch11n,masi.garch11s,masi.garch11ss,masi.garch11g,masi.garch11sg,masi.garch12n,masi.garch12s,masi.garch12ss,masi.garch12g,masi.garch12sg,masi.garch21n,masi.garch21s,masi.garch21ss,masi.garch21g,masi.garch21sg,masi.garch22n,masi.garch22s,masi.garch22ss,masi.garch22g,masi.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 2
masi.garch11s@fit$matcoef
##          Estimate  Std. Error   t value     Pr(>|t|)
## mu     0.02569142  0.04138066 0.6208558 5.346945e-01
## ar1    0.26137996  0.05038774 5.1873718 2.132826e-07
## omega  0.09042151  0.03820412 2.3668002 1.794262e-02
## alpha1 0.04502314  0.05445348 0.8268183 4.083400e-01
## beta1  0.70082106  0.07565258 9.2636771 0.000000e+00
## gamma1 0.33684312  0.14553418 2.3145292 2.063871e-02
## shape  3.44896604  0.65789479 5.2424280 1.584773e-07
print("Oman")
## [1] "Oman"
msm30.g11n <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "norm")
msm30.g11s <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
msm30.g11ss <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sstd")
msm30.g11g <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "ged")
msm30.g11sg <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "sged")
msm30.g12n <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "norm")
msm30.g12s <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "std")
msm30.g12ss <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sstd")
msm30.g12g <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "ged")
msm30.g12sg <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(1,2), model="gjrGARCH"), distribution.model = "sged")
msm30.g21n <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "norm")
msm30.g21s <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "std")
msm30.g21ss <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sstd")
msm30.g21g <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "ged")
msm30.g21sg <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(2,1), model="gjrGARCH"), distribution.model = "sged")
msm30.g22n <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "norm")
msm30.g22s <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "std")
msm30.g22ss <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sstd")
msm30.g22g <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "ged")
msm30.g22sg <- ugarchspec(mean.model = list(armaOrder = c(1,1)),variance.model= list(garchOrder=c(2,2), model="gjrGARCH"), distribution.model = "sged")
msm30.garch11n <-ugarchfit(data= MSM30, spec= msm30.g11n ) #1
msm30.garch11s <-ugarchfit(data= MSM30, spec= msm30.g11s ) 
msm30.garch11ss <-ugarchfit(data= MSM30, spec= msm30.g11ss ) 
msm30.garch11g <-ugarchfit(data= MSM30, spec= msm30.g11g )
msm30.garch11sg <-ugarchfit(data= MSM30, spec= msm30.g11sg ) #5
msm30.garch12n <-ugarchfit(data= MSM30, spec= msm30.g12n )
msm30.garch12s <-ugarchfit(data= MSM30, spec= msm30.g12s )
msm30.garch12ss <-ugarchfit(data= MSM30, spec= msm30.g12ss )
msm30.garch12g<-ugarchfit(data= MSM30, spec= msm30.g12g )
msm30.garch12sg <-ugarchfit(data= MSM30, spec= msm30.g12sg ) #10
msm30.garch21n <-ugarchfit(data= MSM30, spec= msm30.g21n )
msm30.garch21s <-ugarchfit(data= MSM30, spec= msm30.g21s )
msm30.garch21ss <-ugarchfit(data= MSM30, spec= msm30.g21ss)
msm30.garch21g <-ugarchfit(data= MSM30, spec= msm30.g21g )
msm30.garch21sg <-ugarchfit(data= MSM30, spec= msm30.g21sg ) #15
#msm30.garch22n <-ugarchfit(data= MSM30, spec= msm30.g22n )
msm30.garch22s <-ugarchfit(data= MSM30, spec= msm30.g22s )
msm30.garch22ss <-ugarchfit(data= MSM30, spec= msm30.g22ss )
msm30.garch22g<-ugarchfit(data= MSM30, spec= msm30.g22g )
msm30.garch22sg <-ugarchfit(data= MSM30, spec= msm30.g22sg )
model.aic.list <- list(msm30.garch11n,msm30.garch11s,msm30.garch11ss,msm30.garch11g,msm30.garch11sg,msm30.garch12n,msm30.garch12s,msm30.garch12ss,msm30.garch12g,msm30.garch12sg,msm30.garch21n,msm30.garch21s,msm30.garch21ss,msm30.garch21g,msm30.garch21sg,msm30.garch22s,msm30.garch22ss,msm30.garch22g,msm30.garch22sg)
model.aic <- sapply(model.aic.list, infocriteria)[-4,][-3,][-2,]
min_pos <- which(model.aic == min(model.aic), arr.ind = TRUE)
min_pos
## [1] 10
msm30.garch12sg@fit$matcoef
##             Estimate   Std. Error     t value Pr(>|t|)
## mu      0.0148831283 1.218650e-05  1221.27998        0
## ar1     0.5925473356 9.607185e-04   616.77518        0
## ma1    -0.4510025103 4.185493e-04 -1077.53747        0
## omega   0.0009688363 1.567579e-07  6180.46117        0
## alpha1  0.0085355475 8.424453e-06  1013.18712        0
## beta1   0.5687619116 2.830409e-04  2009.46905        0
## beta2   0.4655024523 2.397888e-04  1941.30155        0
## gamma1 -0.1002469516 5.454863e-05 -1837.75363        0
## skew    1.1588288129 9.520839e-02    12.17150        0
## shape   1.1088737233 5.670656e-02    19.55459        0

4. CHUẨN HÓA PHẦN DƯ

SP500_model <- sp500.garch21sg
VNI_model <- vni.garch11sg
MERVAL_model <- merval.garch12s
CROBEX_model <- crobex.garch21s
MASI_model <- masi.garch11s
MSM30_model <- msm30.garch12sg

SP500.res <- residuals(SP500_model)/sigma(SP500_model)
VNI.res <- residuals(VNI_model)/sigma(VNI_model)
MERVAL.res <- residuals(MERVAL_model)/sigma(MERVAL_model)
CROBEX.res <- residuals(CROBEX_model)/sigma(CROBEX_model)
MASI.res <- residuals(MASI_model)/sigma(MASI_model)
MSM30.res <- residuals(MSM30_model)/sigma(MSM30_model)

fitdist(distribution = "sged", SP500.res, control = list())$pars
##          mu       sigma        skew       shape 
## -0.01771415  0.99894277  0.82263208  2.01037172
fitdist(distribution = "sged", VNI.res, control = list())$pars
##          mu       sigma        skew       shape 
## -0.02628145  1.01366810  0.76521380  1.09584922
fitdist(distribution = "std", MERVAL.res, control = list())$pars
##         mu      sigma      shape 
## 0.00241711 0.67024617 3.55925856
fitdist(distribution = "std", CROBEX.res, control = list())$pars
##           mu        sigma        shape 
## -0.002198296  1.024532825  3.071780820
fitdist(distribution = "std", MASI.res, control = list())$pars
##           mu        sigma        shape 
## 0.0002867923 1.0144706997 3.3698767024
fitdist(distribution = "sged", MSM30.res, control = list())$pars
##         mu      sigma       skew      shape 
## 0.04475697 1.01334721 1.17624276 1.14041909
u <- pdist(distribution = "sged", q = SP500.res, mu = -0.01771415, sigma = 0.99894277, skew= 0.82263208,shape = 2.01037172)
v1 <- pdist(distribution = "sged", q = VNI.res, mu =-0.02628145, sigma = 1.01366810, skew= 0.76521380,shape= 1.09584922)
v2 <- pdist(distribution = "std", q = MERVAL.res, mu = 0.00241711, sigma = 0.67024617, shape = 3.55925856)
v3 <- pdist(distribution = "std", q = CROBEX.res, mu =-0.002198296 , sigma = 1.024532825,shape= 3.071780820)
v4 <- pdist(distribution = "std", q = MASI.res, mu = 0.0002867923, sigma = 1.0144706997, shape = 3.3698767024)
v5 <- pdist(distribution = "sged", q = MSM30.res, mu = -0.01618695, sigma = 0.99615106, skew = 1.14173763, shape= 1.11874195)

goftest::cvm.test(u, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  u
## omega2 = 0.040118, p-value = 0.9328
goftest::cvm.test(v1, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v1
## omega2 = 0.02302, p-value = 0.9933
goftest::cvm.test(v2, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v2
## omega2 = 0.031287, p-value = 0.9719
goftest::cvm.test(v3, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v3
## omega2 = 0.031761, p-value = 0.9702
goftest::cvm.test(v4, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v4
## omega2 = 0.060335, p-value = 0.8122
goftest::cvm.test(v5, "punif")
## 
##  Cramer-von Mises test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v5
## omega2 = 0.0961, p-value = 0.6046
goftest::ad.test(u, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  u
## An = 0.2904, p-value = 0.9452
goftest::ad.test(v1, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v1
## An = 0.16143, p-value = 0.9976
goftest::ad.test(v2, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v2
## An = 0.21681, p-value = 0.9851
goftest::ad.test(v3, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v3
## An = 0.20256, p-value = 0.9897
goftest::ad.test(v4, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v4
## An = 0.38452, p-value = 0.8639
goftest::ad.test(v5, "punif")
## 
##  Anderson-Darling test of goodness-of-fit
##  Null hypothesis: uniform distribution
##  Parameters assumed to be fixed
## 
## data:  v5
## An = 0.56359, p-value = 0.683
ks.test(u, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  u
## D = 0.033684, p-value = 0.7898
## alternative hypothesis: two-sided
ks.test(v1, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v1
## D = 0.025985, p-value = 0.9623
## alternative hypothesis: two-sided
ks.test(v2, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v2
## D = 0.026465, p-value = 0.9559
## alternative hypothesis: two-sided
ks.test(v3, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v3
## D = 0.02515, p-value = 0.972
## alternative hypothesis: two-sided
ks.test(v4, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v4
## D = 0.029209, p-value = 0.9071
## alternative hypothesis: two-sided
ks.test(v5, "punif")
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  v5
## D = 0.041653, p-value = 0.5352
## alternative hypothesis: two-sided

5. COPULA

print("Việt Nam")
## [1] "Việt Nam"
aa1 <- BiCopEst(u, v1, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.18
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.82 
## AIC:    -9.64 
## BIC:    -5.72
aa2 <- BiCopEst(u, v1, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.17
## par2: 7.08
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.04 
## Lower TD:         0.04 
## 
## Fit statistics
## --------------
## logLik:  9.35 
## AIC:    -14.71 
## BIC:    -6.86
aa3 <- BiCopEst(u, v1, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.24
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.05 
## 
## Fit statistics
## --------------
## logLik:  8.26 
## AIC:    -14.51 
## BIC:    -10.59
aa4 <- BiCopEst(u, v1, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.15
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.01 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.15 
## AIC:    -4.3 
## BIC:    -0.38
aa5 <- BiCopEst(u, v1, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.13 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.17 
## AIC:    -8.33 
## BIC:    -4.41
aa6 <- BiCopEst(u, v1, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.13
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.15 
## 
## Fit statistics
## --------------
## logLik:  9.16 
## AIC:    -16.31 
## BIC:    -12.39
aa7 <- BiCopEst(u, v1, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.94
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.31 
## AIC:    -6.61 
## BIC:    -2.69
aa8 <- BiCopEst(u, v1, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.11
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.13 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.18 
## AIC:    -4.36 
## BIC:    -0.43
aa9 <- BiCopEst(u, v1, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.18
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.2 
## 
## Fit statistics
## --------------
## logLik:  8.79 
## AIC:    -15.59 
## BIC:    -11.66
aa10 <- BiCopEst(u, v1, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.19
## par2: 1.04
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.05 
## Lower TD:         0.03 
## 
## Fit statistics
## --------------
## logLik:  9.05 
## AIC:    -14.09 
## BIC:    -6.25
aa11 <- BiCopEst(u, v1, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.02
## par2: 1.12
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.14 
## 
## Fit statistics
## --------------
## logLik:  9.2 
## AIC:    -14.4 
## BIC:    -6.55
aa12 <- BiCopEst(u, v1, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.1
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.13 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.15 
## AIC:    -6.31 
## BIC:    1.54
aa13 <- BiCopEst(u, v1, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1.03
## par2: 1.1
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.16 
## 
## Fit statistics
## --------------
## logLik:  9.18 
## AIC:    -14.36 
## BIC:    -6.51
aa14 <- BiCopEst(u, v1, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.05
## par2: 0.21
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.07 
## Lower TD:         0.04 
## 
## Fit statistics
## --------------
## logLik:  9.18 
## AIC:    -14.35 
## BIC:    -6.5
aa15 <- BiCopEst(u, v1, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.15
## par2: 0.07
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.18 
## 
## Fit statistics
## --------------
## logLik:  9.55 
## AIC:    -15.09 
## BIC:    -7.24
aa16 <- BiCopEst(u, v1, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.16
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.27 
## AIC:    -4.55 
## BIC:    3.3
aa17 <- BiCopEst(u, v1, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.19
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  8.92 
## AIC:    -13.85 
## BIC:    -6
aacopulalist <- list(summary(aa1)$AIC,summary(aa2)$AIC, summary(aa3)$AIC, summary(aa4)$AIC, summary(aa5)$AIC, summary(aa6)$AIC, summary(aa7)$AIC, summary(aa8)$AIC, summary(aa9)$AIC, summary(aa10)$AIC, summary(aa11)$AIC, summary(aa12)$AIC, summary(aa13)$AIC, summary(aa14)$AIC, summary(aa15)$AIC, summary(aa16)$AIC, summary(aa17)$AIC)
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.18
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.82 
## AIC:    -9.64 
## BIC:    -5.72 
## 
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.17
## par2: 7.08
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.04 
## Lower TD:         0.04 
## 
## Fit statistics
## --------------
## logLik:  9.35 
## AIC:    -14.71 
## BIC:    -6.86 
## 
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.24
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.05 
## 
## Fit statistics
## --------------
## logLik:  8.26 
## AIC:    -14.51 
## BIC:    -10.59 
## 
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.15
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.07 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.01 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.15 
## AIC:    -4.3 
## BIC:    -0.38 
## 
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.13 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.17 
## AIC:    -8.33 
## BIC:    -4.41 
## 
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.13
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.15 
## 
## Fit statistics
## --------------
## logLik:  9.16 
## AIC:    -16.31 
## BIC:    -12.39 
## 
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.94
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.31 
## AIC:    -6.61 
## BIC:    -2.69 
## 
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.11
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.13 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.18 
## AIC:    -4.36 
## BIC:    -0.43 
## 
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.18
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.2 
## 
## Fit statistics
## --------------
## logLik:  8.79 
## AIC:    -15.59 
## BIC:    -11.66 
## 
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.19
## par2: 1.04
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.05 
## Lower TD:         0.03 
## 
## Fit statistics
## --------------
## logLik:  9.05 
## AIC:    -14.09 
## BIC:    -6.25 
## 
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.02
## par2: 1.12
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.14 
## 
## Fit statistics
## --------------
## logLik:  9.2 
## AIC:    -14.4 
## BIC:    -6.55 
## 
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.1
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.13 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.15 
## AIC:    -6.31 
## BIC:    1.54 
## 
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1.03
## par2: 1.1
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.16 
## 
## Fit statistics
## --------------
## logLik:  9.18 
## AIC:    -14.36 
## BIC:    -6.51 
## 
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.05
## par2: 0.21
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.1, p value < 0.01)
## Upper TD:         0.07 
## Lower TD:         0.04 
## 
## Fit statistics
## --------------
## logLik:  9.18 
## AIC:    -14.35 
## BIC:    -6.5 
## 
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.15
## par2: 0.07
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.18 
## 
## Fit statistics
## --------------
## logLik:  9.55 
## AIC:    -15.09 
## BIC:    -7.24 
## 
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.16
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.27 
## AIC:    -4.55 
## BIC:    3.3 
## 
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.19
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.1, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  8.92 
## AIC:    -13.85 
## BIC:    -6
aacopulalist
## [[1]]
## [1] -9.644319
## 
## [[2]]
## [1] -14.70661
## 
## [[3]]
## [1] -14.51034
## 
## [[4]]
## [1] -4.30086
## 
## [[5]]
## [1] -8.334533
## 
## [[6]]
## [1] -16.31217
## 
## [[7]]
## [1] -6.611814
## 
## [[8]]
## [1] -4.358673
## 
## [[9]]
## [1] -15.58884
## 
## [[10]]
## [1] -14.09445
## 
## [[11]]
## [1] -14.40088
## 
## [[12]]
## [1] -6.308431
## 
## [[13]]
## [1] -14.35779
## 
## [[14]]
## [1] -14.35213
## 
## [[15]]
## [1] -15.09058
## 
## [[16]]
## [1] -4.549135
## 
## [[17]]
## [1] -13.8462
print("Argentina")
## [1] "Argentina"
ab1 <- BiCopEst(u, v2, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.31
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.2 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  19.15 
## AIC:    -36.31 
## BIC:    -32.39
ab2 <- BiCopEst(u, v2, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.32
## par2: 8.97
## Dependence measures
## -------------------
## Kendall's tau:    0.21 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.05 
## Lower TD:         0.05 
## 
## Fit statistics
## --------------
## logLik:  21.58 
## AIC:    -39.16 
## BIC:    -31.31
ab3 <- BiCopEst(u, v2, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.4
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.17 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.17 
## 
## Fit statistics
## --------------
## logLik:  16.93 
## AIC:    -31.86 
## BIC:    -27.94
ab4 <- BiCopEst(u, v2, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.34
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.14 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.13 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  13.28 
## AIC:    -24.55 
## BIC:    -20.63
ab5 <- BiCopEst(u, v2, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.23
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.18 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.24 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  16.78 
## AIC:    -31.56 
## BIC:    -27.63
ab6 <- BiCopEst(u, v2, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.24
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.19 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.25 
## 
## Fit statistics
## --------------
## logLik:  19.42 
## AIC:    -36.84 
## BIC:    -32.92
ab7 <- BiCopEst(u, v2, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  2.02
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.22 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  19.31 
## AIC:    -36.62 
## BIC:    -32.7
ab8 <- BiCopEst(u, v2, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.26
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.13 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.27 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  11.23 
## AIC:    -20.47 
## BIC:    -16.54
ab9 <- BiCopEst(u, v2, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.3
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.14 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.29 
## 
## Fit statistics
## --------------
## logLik:  14.72 
## AIC:    -27.44 
## BIC:    -23.51
ab10 <- BiCopEst(u, v2, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.23
## par2: 1.12
## Dependence measures
## -------------------
## Kendall's tau:    0.2 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.15 
## Lower TD:         0.07 
## 
## Fit statistics
## --------------
## logLik:  20.37 
## AIC:    -36.73 
## BIC:    -28.89
ab11 <- BiCopEst(u, v2, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.12
## par2: 1.18
## Dependence measures
## -------------------
## Kendall's tau:    0.2 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.01 
## Lower TD:         0.2 
## 
## Fit statistics
## --------------
## logLik:  20.56 
## AIC:    -37.12 
## BIC:    -29.27
ab12 <- BiCopEst(u, v2, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.22
## Dependence measures
## -------------------
## Kendall's tau:    0.18 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.24 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  16.76 
## AIC:    -29.53 
## BIC:    -21.68
ab13 <- BiCopEst(u, v2, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.24
## Dependence measures
## -------------------
## Kendall's tau:    0.19 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.25 
## 
## Fit statistics
## --------------
## logLik:  19.41 
## AIC:    -34.82 
## BIC:    -26.97
ab14 <- BiCopEst(u, v2, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.14
## par2: 0.31
## Dependence measures
## -------------------
## Kendall's tau:    0.19 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.16 
## Lower TD:         0.11 
## 
## Fit statistics
## --------------
## logLik:  19.7 
## AIC:    -35.41 
## BIC:    -27.56
ab15 <- BiCopEst(u, v2, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.2
## par2: 0.23
## Dependence measures
## -------------------
## Kendall's tau:    0.19 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.05 
## Lower TD:         0.22 
## 
## Fit statistics
## --------------
## logLik:  19.66 
## AIC:    -35.32 
## BIC:    -27.47
ab16 <- BiCopEst(u, v2, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  5.96
## par2: 0.32
## Dependence measures
## -------------------
## Kendall's tau:    0.21 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  19.4 
## AIC:    -34.8 
## BIC:    -26.95
ab17 <- BiCopEst(u, v2, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.32
## Dependence measures
## -------------------
## Kendall's tau:    0.21 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  19.25 
## AIC:    -34.5 
## BIC:    -26.65
abcopulalist <- list(summary(ab1)$AIC,summary(ab2)$AIC, summary(ab3)$AIC, summary(ab4)$AIC, summary(ab5)$AIC, summary(ab6)$AIC, summary(ab7)$AIC, summary(ab8)$AIC, summary(ab9)$AIC, summary(ab10)$AIC, summary(ab11)$AIC, summary(ab12)$AIC, summary(ab13)$AIC, summary(ab14)$AIC, summary(ab15)$AIC, summary(ab16)$AIC, summary(ab17)$AIC)
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.31
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.2 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  19.15 
## AIC:    -36.31 
## BIC:    -32.39 
## 
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.32
## par2: 8.97
## Dependence measures
## -------------------
## Kendall's tau:    0.21 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.05 
## Lower TD:         0.05 
## 
## Fit statistics
## --------------
## logLik:  21.58 
## AIC:    -39.16 
## BIC:    -31.31 
## 
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.4
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.17 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.17 
## 
## Fit statistics
## --------------
## logLik:  16.93 
## AIC:    -31.86 
## BIC:    -27.94 
## 
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.34
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.14 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.13 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  13.28 
## AIC:    -24.55 
## BIC:    -20.63 
## 
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.23
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.18 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.24 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  16.78 
## AIC:    -31.56 
## BIC:    -27.63 
## 
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.24
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.19 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.25 
## 
## Fit statistics
## --------------
## logLik:  19.42 
## AIC:    -36.84 
## BIC:    -32.92 
## 
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  2.02
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.22 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  19.31 
## AIC:    -36.62 
## BIC:    -32.7 
## 
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.26
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.13 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.27 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  11.23 
## AIC:    -20.47 
## BIC:    -16.54 
## 
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.3
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.14 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.29 
## 
## Fit statistics
## --------------
## logLik:  14.72 
## AIC:    -27.44 
## BIC:    -23.51 
## 
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.23
## par2: 1.12
## Dependence measures
## -------------------
## Kendall's tau:    0.2 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.15 
## Lower TD:         0.07 
## 
## Fit statistics
## --------------
## logLik:  20.37 
## AIC:    -36.73 
## BIC:    -28.89 
## 
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.12
## par2: 1.18
## Dependence measures
## -------------------
## Kendall's tau:    0.2 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.01 
## Lower TD:         0.2 
## 
## Fit statistics
## --------------
## logLik:  20.56 
## AIC:    -37.12 
## BIC:    -29.27 
## 
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.22
## Dependence measures
## -------------------
## Kendall's tau:    0.18 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.24 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  16.76 
## AIC:    -29.53 
## BIC:    -21.68 
## 
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.24
## Dependence measures
## -------------------
## Kendall's tau:    0.19 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.25 
## 
## Fit statistics
## --------------
## logLik:  19.41 
## AIC:    -34.82 
## BIC:    -26.97 
## 
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.14
## par2: 0.31
## Dependence measures
## -------------------
## Kendall's tau:    0.19 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.16 
## Lower TD:         0.11 
## 
## Fit statistics
## --------------
## logLik:  19.7 
## AIC:    -35.41 
## BIC:    -27.56 
## 
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.2
## par2: 0.23
## Dependence measures
## -------------------
## Kendall's tau:    0.19 (empirical = 0.22, p value < 0.01)
## Upper TD:         0.05 
## Lower TD:         0.22 
## 
## Fit statistics
## --------------
## logLik:  19.66 
## AIC:    -35.32 
## BIC:    -27.47 
## 
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  5.96
## par2: 0.32
## Dependence measures
## -------------------
## Kendall's tau:    0.21 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  19.4 
## AIC:    -34.8 
## BIC:    -26.95 
## 
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.32
## Dependence measures
## -------------------
## Kendall's tau:    0.21 (empirical = 0.22, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  19.25 
## AIC:    -34.5 
## BIC:    -26.65
abcopulalist
## [[1]]
## [1] -36.30977
## 
## [[2]]
## [1] -39.16162
## 
## [[3]]
## [1] -31.86368
## 
## [[4]]
## [1] -24.55113
## 
## [[5]]
## [1] -31.55797
## 
## [[6]]
## [1] -36.84236
## 
## [[7]]
## [1] -36.62467
## 
## [[8]]
## [1] -20.46786
## 
## [[9]]
## [1] -27.43611
## 
## [[10]]
## [1] -36.73426
## 
## [[11]]
## [1] -37.11788
## 
## [[12]]
## [1] -29.52619
## 
## [[13]]
## [1] -34.8207
## 
## [[14]]
## [1] -35.40658
## 
## [[15]]
## [1] -35.32096
## 
## [[16]]
## [1] -34.80051
## 
## [[17]]
## [1] -34.49915
print("Croatia")
## [1] "Croatia"
ac1 <- BiCopEst(u, v3, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.19
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  6.98 
## AIC:    -11.95 
## BIC:    -8.03
ac2 <- BiCopEst(u, v3, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.18
## par2: 9.35
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.11, p value < 0.01)
## Upper TD:         0.02 
## Lower TD:         0.02 
## 
## Fit statistics
## --------------
## logLik:  8.98 
## AIC:    -13.97 
## BIC:    -6.12
ac3 <- BiCopEst(u, v3, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.24
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  8.61 
## AIC:    -15.22 
## BIC:    -11.29
ac4 <- BiCopEst(u, v3, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.17
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.11, p value < 0.01)
## Upper TD:         0.02 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.81 
## AIC:    -5.61 
## BIC:    -1.69
ac5 <- BiCopEst(u, v3, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.11
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.11, p value < 0.01)
## Upper TD:         0.13 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.43 
## AIC:    -8.86 
## BIC:    -4.94
ac6 <- BiCopEst(u, v3, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.13
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.15 
## 
## Fit statistics
## --------------
## logLik:  9.01 
## AIC:    -16.02 
## BIC:    -12.1
ac7 <- BiCopEst(u, v3, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.98 
## AIC:    -7.97 
## BIC:    -4.04
ac8 <- BiCopEst(u, v3, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.11
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.11, p value < 0.01)
## Upper TD:         0.14 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.21 
## AIC:    -4.42 
## BIC:    -0.5
ac9 <- BiCopEst(u, v3, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.17
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.19 
## 
## Fit statistics
## --------------
## logLik:  8.29 
## AIC:    -14.58 
## BIC:    -10.65
ac10 <- BiCopEst(u, v3, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.19
## par2: 1.04
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.11, p value < 0.01)
## Upper TD:         0.05 
## Lower TD:         0.03 
## 
## Fit statistics
## --------------
## logLik:  9.32 
## AIC:    -14.64 
## BIC:    -6.79
ac11 <- BiCopEst(u, v3, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.04
## par2: 1.11
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.14 
## 
## Fit statistics
## --------------
## logLik:  9.16 
## AIC:    -14.32 
## BIC:    -6.47
ac12 <- BiCopEst(u, v3, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.11
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.11, p value < 0.01)
## Upper TD:         0.13 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.42 
## AIC:    -6.83 
## BIC:    1.02
ac13 <- BiCopEst(u, v3, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.13
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.15 
## 
## Fit statistics
## --------------
## logLik:  9.01 
## AIC:    -14.02 
## BIC:    -6.17
ac14 <- BiCopEst(u, v3, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.05
## par2: 0.21
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.11, p value < 0.01)
## Upper TD:         0.07 
## Lower TD:         0.04 
## 
## Fit statistics
## --------------
## logLik:  9.43 
## AIC:    -14.87 
## BIC:    -7.02
ac15 <- BiCopEst(u, v3, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.15
## par2: 0.09
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.17 
## 
## Fit statistics
## --------------
## logLik:  9.37 
## AIC:    -14.74 
## BIC:    -6.89
ac16 <- BiCopEst(u, v3, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.17
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.88 
## AIC:    -5.75 
## BIC:    2.09
ac17 <- BiCopEst(u, v3, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.2
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  8.64 
## AIC:    -13.29 
## BIC:    -5.44
accopulalist <- list(summary(ac1)$AIC,summary(ac2)$AIC, summary(ac3)$AIC, summary(ac4)$AIC, summary(ac5)$AIC, summary(ac6)$AIC, summary(ac7)$AIC, summary(ac8)$AIC, summary(ac9)$AIC, summary(ac10)$AIC, summary(ac11)$AIC, summary(ac12)$AIC, summary(ac13)$AIC, summary(ac14)$AIC, summary(ac15)$AIC, summary(ac16)$AIC, summary(ac17)$AIC)
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.19
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  6.98 
## AIC:    -11.95 
## BIC:    -8.03 
## 
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.18
## par2: 9.35
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.11, p value < 0.01)
## Upper TD:         0.02 
## Lower TD:         0.02 
## 
## Fit statistics
## --------------
## logLik:  8.98 
## AIC:    -13.97 
## BIC:    -6.12 
## 
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.24
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  8.61 
## AIC:    -15.22 
## BIC:    -11.29 
## 
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.17
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.08 (empirical = 0.11, p value < 0.01)
## Upper TD:         0.02 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.81 
## AIC:    -5.61 
## BIC:    -1.69 
## 
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.11
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.11, p value < 0.01)
## Upper TD:         0.13 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.43 
## AIC:    -8.86 
## BIC:    -4.94 
## 
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.13
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.15 
## 
## Fit statistics
## --------------
## logLik:  9.01 
## AIC:    -16.02 
## BIC:    -12.1 
## 
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.98 
## AIC:    -7.97 
## BIC:    -4.04 
## 
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.11
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.06 (empirical = 0.11, p value < 0.01)
## Upper TD:         0.14 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  3.21 
## AIC:    -4.42 
## BIC:    -0.5 
## 
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.17
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.09 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.19 
## 
## Fit statistics
## --------------
## logLik:  8.29 
## AIC:    -14.58 
## BIC:    -10.65 
## 
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.19
## par2: 1.04
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.11, p value < 0.01)
## Upper TD:         0.05 
## Lower TD:         0.03 
## 
## Fit statistics
## --------------
## logLik:  9.32 
## AIC:    -14.64 
## BIC:    -6.79 
## 
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.04
## par2: 1.11
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.14 
## 
## Fit statistics
## --------------
## logLik:  9.16 
## AIC:    -14.32 
## BIC:    -6.47 
## 
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.11
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.11, p value < 0.01)
## Upper TD:         0.13 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  5.42 
## AIC:    -6.83 
## BIC:    1.02 
## 
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.13
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.15 
## 
## Fit statistics
## --------------
## logLik:  9.01 
## AIC:    -14.02 
## BIC:    -6.17 
## 
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.05
## par2: 0.21
## Dependence measures
## -------------------
## Kendall's tau:    0.12 (empirical = 0.11, p value < 0.01)
## Upper TD:         0.07 
## Lower TD:         0.04 
## 
## Fit statistics
## --------------
## logLik:  9.43 
## AIC:    -14.87 
## BIC:    -7.02 
## 
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.15
## par2: 0.09
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0.17 
## 
## Fit statistics
## --------------
## logLik:  9.37 
## AIC:    -14.74 
## BIC:    -6.89 
## 
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.17
## Dependence measures
## -------------------
## Kendall's tau:    0.11 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  4.88 
## AIC:    -5.75 
## BIC:    2.09 
## 
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1.2
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0.1 (empirical = 0.11, p value < 0.01)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  8.64 
## AIC:    -13.29 
## BIC:    -5.44
accopulalist
## [[1]]
## [1] -11.95057
## 
## [[2]]
## [1] -13.96529
## 
## [[3]]
## [1] -15.21718
## 
## [[4]]
## [1] -5.613569
## 
## [[5]]
## [1] -8.859466
## 
## [[6]]
## [1] -16.02217
## 
## [[7]]
## [1] -7.966777
## 
## [[8]]
## [1] -4.42437
## 
## [[9]]
## [1] -14.57822
## 
## [[10]]
## [1] -14.64226
## 
## [[11]]
## [1] -14.32234
## 
## [[12]]
## [1] -6.832088
## 
## [[13]]
## [1] -14.02028
## 
## [[14]]
## [1] -14.86626
## 
## [[15]]
## [1] -14.74036
## 
## [[16]]
## [1] -5.754781
## 
## [[17]]
## [1] -13.28985
print("Morocco")
## [1] "Morocco"
ad1 <- BiCopEst(u, v4, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.07
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1 
## AIC:    -0.01 
## BIC:    3.92
ad2 <- BiCopEst(u, v4, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.07
## par2: 19.88
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.63 
## AIC:    0.74 
## BIC:    8.59
ad3 <- BiCopEst(u, v4, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.08
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.32 
## AIC:    -0.63 
## BIC:    3.29
ad4 <- BiCopEst(u, v4, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.07
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.03 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.66 
## AIC:    0.67 
## BIC:    4.6
ad5 <- BiCopEst(u, v4, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.04
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.25)
## Upper TD:         0.06 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.2 
## AIC:    -0.4 
## BIC:    3.52
ad6 <- BiCopEst(u, v4, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.04
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0.05 
## 
## Fit statistics
## --------------
## logLik:  1.18 
## AIC:    -0.35 
## BIC:    3.57
ad7 <- BiCopEst(u, v4, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.31
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.03 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.5 
## AIC:    0.99 
## BIC:    4.92
ad8 <- BiCopEst(u, v4, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.05
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.03 (empirical = 0.04, p value = 0.25)
## Upper TD:         0.07 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.96 
## AIC:    0.08 
## BIC:    4
ad9 <- BiCopEst(u, v4, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.05
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.03 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  1.06 
## AIC:    -0.12 
## BIC:    3.8
ad10 <- BiCopEst(u, v4, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.06
## par2: 1.03
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.04, p value = 0.25)
## Upper TD:         0.03 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.7 
## AIC:    0.6 
## BIC:    8.45
ad11 <- BiCopEst(u, v4, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.03
## par2: 1.03
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0.04 
## 
## Fit statistics
## --------------
## logLik:  1.28 
## AIC:    1.44 
## BIC:    9.29
ad12 <- BiCopEst(u, v4, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.04
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.25)
## Upper TD:         0.06 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.2 
## AIC:    1.6 
## BIC:    9.45
ad13 <- BiCopEst(u, v4, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.04
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0.05 
## 
## Fit statistics
## --------------
## logLik:  1.18 
## AIC:    1.65 
## BIC:    9.5
ad14 <- BiCopEst(u, v4, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.04
## par2: 0.07
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.04, p value = 0.25)
## Upper TD:         0.05 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.8 
## AIC:    0.4 
## BIC:    8.25
ad15 <- BiCopEst(u, v4, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.04
## par2: 0.04
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0.05 
## 
## Fit statistics
## --------------
## logLik:  1.35 
## AIC:    1.31 
## BIC:    9.15
ad16 <- BiCopEst(u, v4, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  1.07
## par2: 0.99
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.18 
## AIC:    1.64 
## BIC:    9.49
ad17 <- BiCopEst(u, v4, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.06
## Dependence measures
## -------------------
## Kendall's tau:    0.03 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.5 
## AIC:    3.01 
## BIC:    10.86
adcopulalist <- list(summary(ad1)$AIC,summary(ad2)$AIC, summary(ad3)$AIC, summary(ad4)$AIC, summary(ad5)$AIC, summary(ad6)$AIC, summary(ad7)$AIC, summary(ad8)$AIC, summary(ad9)$AIC, summary(ad10)$AIC, summary(ad11)$AIC, summary(ad12)$AIC, summary(ad13)$AIC, summary(ad14)$AIC, summary(ad15)$AIC, summary(ad16)$AIC, summary(ad17)$AIC)
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  0.07
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1 
## AIC:    -0.01 
## BIC:    3.92 
## 
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  0.07
## par2: 19.88
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.63 
## AIC:    0.74 
## BIC:    8.59 
## 
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0.08
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.32 
## AIC:    -0.63 
## BIC:    3.29 
## 
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0.07
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.03 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.66 
## AIC:    0.67 
## BIC:    4.6 
## 
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1.04
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.25)
## Upper TD:         0.06 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.2 
## AIC:    -0.4 
## BIC:    3.52 
## 
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1.04
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0.05 
## 
## Fit statistics
## --------------
## logLik:  1.18 
## AIC:    -0.35 
## BIC:    3.57 
## 
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.31
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.03 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.5 
## AIC:    0.99 
## BIC:    4.92 
## 
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1.05
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.03 (empirical = 0.04, p value = 0.25)
## Upper TD:         0.07 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.96 
## AIC:    0.08 
## BIC:    4 
## 
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1.05
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.03 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0.06 
## 
## Fit statistics
## --------------
## logLik:  1.06 
## AIC:    -0.12 
## BIC:    3.8 
## 
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0.06
## par2: 1.03
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.04, p value = 0.25)
## Upper TD:         0.03 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.7 
## AIC:    0.6 
## BIC:    8.45 
## 
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0.03
## par2: 1.03
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0.04 
## 
## Fit statistics
## --------------
## logLik:  1.28 
## AIC:    1.44 
## BIC:    9.29 
## 
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.04
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.25)
## Upper TD:         0.06 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.2 
## AIC:    1.6 
## BIC:    9.45 
## 
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1.04
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0.05 
## 
## Fit statistics
## --------------
## logLik:  1.18 
## AIC:    1.65 
## BIC:    9.5 
## 
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1.04
## par2: 0.07
## Dependence measures
## -------------------
## Kendall's tau:    0.05 (empirical = 0.04, p value = 0.25)
## Upper TD:         0.05 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.8 
## AIC:    0.4 
## BIC:    8.25 
## 
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1.04
## par2: 0.04
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0.05 
## 
## Fit statistics
## --------------
## logLik:  1.35 
## AIC:    1.31 
## BIC:    9.15 
## 
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  1.07
## par2: 0.99
## Dependence measures
## -------------------
## Kendall's tau:    0.04 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  1.18 
## AIC:    1.64 
## BIC:    9.49 
## 
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  6
## par2: 0.06
## Dependence measures
## -------------------
## Kendall's tau:    0.03 (empirical = 0.04, p value = 0.25)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.5 
## AIC:    3.01 
## BIC:    10.86
adcopulalist
## [[1]]
## [1] -0.005363005
## 
## [[2]]
## [1] 0.7428605
## 
## [[3]]
## [1] -0.6332963
## 
## [[4]]
## [1] 0.6729874
## 
## [[5]]
## [1] -0.4031813
## 
## [[6]]
## [1] -0.3547936
## 
## [[7]]
## [1] 0.9942586
## 
## [[8]]
## [1] 0.07693469
## 
## [[9]]
## [1] -0.1220743
## 
## [[10]]
## [1] 0.6037045
## 
## [[11]]
## [1] 1.442982
## 
## [[12]]
## [1] 1.602509
## 
## [[13]]
## [1] 1.647167
## 
## [[14]]
## [1] 0.3978546
## 
## [[15]]
## [1] 1.306292
## 
## [[16]]
## [1] 1.640302
## 
## [[17]]
## [1] 3.008253
print("Oman")
## [1] "Oman"
ae1 <- BiCopEst(u, v5, family = 1, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  -0.02
## 
## Dependence measures
## -------------------
## Kendall's tau:    -0.01 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.04 
## AIC:    1.91 
## BIC:    5.84
ae2 <- BiCopEst(u, v5, family = 2, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  -0.01
## par2: 30
## Dependence measures
## -------------------
## Kendall's tau:    -0.01 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.11 
## AIC:    3.77 
## BIC:    11.62
ae3 <- BiCopEst(u, v5, family = 3, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0
## 
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0 
## AIC:    2 
## BIC:    5.93
ae4 <- BiCopEst(u, v5, family = 13, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0
## 
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0 
## AIC:    2 
## BIC:    5.93
ae5 <- BiCopEst(u, v5, family = 4, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0 
## AIC:    2.01 
## BIC:    5.93
ae6 <- BiCopEst(u, v5, family = 14, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0 
## AIC:    2 
## BIC:    5.93
ae7 <- BiCopEst(u, v5, family = 5, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.05
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.01 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.01 
## AIC:    1.97 
## BIC:    5.9
ae8 <- BiCopEst(u, v5, family = 6, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0 
## AIC:    2.01 
## BIC:    5.93
ae9 <- BiCopEst(u, v5, family = 16, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0 
## AIC:    2 
## BIC:    5.93
ae10 <- BiCopEst(u, v5, family = 7, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  -0.03 
## AIC:    4.06 
## BIC:    11.91
ae11 <- BiCopEst(u, v5, family = 17, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  -0.02 
## AIC:    4.03 
## BIC:    11.88
ae12 <- BiCopEst(u, v5, family = 8, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  -0.06 
## AIC:    4.11 
## BIC:    11.96
ae13 <- BiCopEst(u, v5, family = 18, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  -0.01 
## AIC:    4.03 
## BIC:    11.88
ae14 <- BiCopEst(u, v5, family = 9, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1
## par2: 0
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  -0.03 
## AIC:    4.06 
## BIC:    11.91
ae15 <- BiCopEst(u, v5, family = 19, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1
## par2: 0
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  -0.02 
## AIC:    4.03 
## BIC:    11.88
ae16 <- BiCopEst(u, v5, family = 10, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  1
## par2: 0
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0 
## AIC:    4 
## BIC:    11.85
ae17 <- BiCopEst(u, v5, family = 20, method = "mle", se = F) %>% summary()
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1
## par2: 0
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0 
## AIC:    4 
## BIC:    11.85
aecopulalist <- list(summary(ae1)$AIC,summary(ae2)$AIC, summary(ae3)$AIC, summary(ae4)$AIC, summary(ae5)$AIC, summary(ae6)$AIC, summary(ae7)$AIC, summary(ae8)$AIC, summary(ae9)$AIC, summary(ae10)$AIC, summary(ae11)$AIC, summary(ae12)$AIC, summary(ae13)$AIC, summary(ae14)$AIC, summary(ae15)$AIC, summary(ae16)$AIC, summary(ae17)$AIC)
## Family
## ------ 
## No:    1
## Name:  Gaussian
## 
## Parameter(s)
## ------------
## par:  -0.02
## 
## Dependence measures
## -------------------
## Kendall's tau:    -0.01 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.04 
## AIC:    1.91 
## BIC:    5.84 
## 
## Family
## ------ 
## No:    2
## Name:  t
## 
## Parameter(s)
## ------------
## par:  -0.01
## par2: 30
## Dependence measures
## -------------------
## Kendall's tau:    -0.01 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.11 
## AIC:    3.77 
## BIC:    11.62 
## 
## Family
## ------ 
## No:    3
## Name:  Clayton
## 
## Parameter(s)
## ------------
## par:  0
## 
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0 
## AIC:    2 
## BIC:    5.93 
## 
## Family
## ------ 
## No:    13
## Name:  Survival Clayton
## 
## Parameter(s)
## ------------
## par:  0
## 
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0 
## AIC:    2 
## BIC:    5.93 
## 
## Family
## ------ 
## No:    4
## Name:  Gumbel
## 
## Parameter(s)
## ------------
## par:  1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0 
## AIC:    2.01 
## BIC:    5.93 
## 
## Family
## ------ 
## No:    14
## Name:  Survival Gumbel
## 
## Parameter(s)
## ------------
## par:  1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0 
## AIC:    2 
## BIC:    5.93 
## 
## Family
## ------ 
## No:    5
## Name:  Frank
## 
## Parameter(s)
## ------------
## par:  0.05
## 
## Dependence measures
## -------------------
## Kendall's tau:    0.01 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0.01 
## AIC:    1.97 
## BIC:    5.9 
## 
## Family
## ------ 
## No:    6
## Name:  Joe
## 
## Parameter(s)
## ------------
## par:  1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0 
## AIC:    2.01 
## BIC:    5.93 
## 
## Family
## ------ 
## No:    16
## Name:  Survival Joe
## 
## Parameter(s)
## ------------
## par:  1
## 
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0 
## AIC:    2 
## BIC:    5.93 
## 
## Family
## ------ 
## No:    7
## Name:  BB1
## 
## Parameter(s)
## ------------
## par:  0
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  -0.03 
## AIC:    4.06 
## BIC:    11.91 
## 
## Family
## ------ 
## No:    17
## Name:  Survival BB1
## 
## Parameter(s)
## ------------
## par:  0
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  -0.02 
## AIC:    4.03 
## BIC:    11.88 
## 
## Family
## ------ 
## No:    8
## Name:  BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  -0.06 
## AIC:    4.11 
## BIC:    11.96 
## 
## Family
## ------ 
## No:    18
## Name:  Survival BB6
## 
## Parameter(s)
## ------------
## par:  1
## par2: 1
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  -0.01 
## AIC:    4.03 
## BIC:    11.88 
## 
## Family
## ------ 
## No:    9
## Name:  BB7
## 
## Parameter(s)
## ------------
## par:  1
## par2: 0
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  -0.03 
## AIC:    4.06 
## BIC:    11.91 
## 
## Family
## ------ 
## No:    19
## Name:  Survival BB7
## 
## Parameter(s)
## ------------
## par:  1
## par2: 0
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  -0.02 
## AIC:    4.03 
## BIC:    11.88 
## 
## Family
## ------ 
## No:    10
## Name:  BB8
## 
## Parameter(s)
## ------------
## par:  1
## par2: 0
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0 
## AIC:    4 
## BIC:    11.85 
## 
## Family
## ------ 
## No:    20
## Name:  Survival BB8
## 
## Parameter(s)
## ------------
## par:  1
## par2: 0
## Dependence measures
## -------------------
## Kendall's tau:    0 (empirical = 0.01, p value = 0.86)
## Upper TD:         0 
## Lower TD:         0 
## 
## Fit statistics
## --------------
## logLik:  0 
## AIC:    4 
## BIC:    11.85
aecopulalist
## [[1]]
## [1] 1.91187
## 
## [[2]]
## [1] 3.773945
## 
## [[3]]
## [1] 2.000916
## 
## [[4]]
## [1] 2.003167
## 
## [[5]]
## [1] 2.008688
## 
## [[6]]
## [1] 2.002018
## 
## [[7]]
## [1] 1.971975
## 
## [[8]]
## [1] 2.009212
## 
## [[9]]
## [1] 2.002001
## 
## [[10]]
## [1] 4.063418
## 
## [[11]]
## [1] 4.034323
## 
## [[12]]
## [1] 4.113751
## 
## [[13]]
## [1] 4.027288
## 
## [[14]]
## [1] 4.061948
## 
## [[15]]
## [1] 4.032469
## 
## [[16]]
## [1] 3.999946
## 
## [[17]]
## [1] 3.999953
LS0tDQp0aXRsZTogIkNPUFVMQS1OQ0tIIg0KYXV0aG9yOiAiS2jDoW5oIEFuIg0KZGF0ZTogIjIwMjQtMDgtMTYiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KICAgIHRvY19kZXB0aDogNQ0KICAgIHRvYzogdHJ1ZQ0KICAgIHRvY19mbG9hdDoNCiAgICAgIGNvbGxhcHNlZDogdHJ1ZQ0KICAgICAgc21vb3RoX3Njcm9sbDogdHJ1ZQ0KICAgIHRoZW1lOiB1bml0ZWQNCiAgd29yZF9kb2N1bWVudDoNCiAgICB0b2M6IHRydWUNCiAgcGRmX2RvY3VtZW50Og0KICAgIHRvYzogdHJ1ZQ0KICAgIHRvY19kZXB0aDogJzUnDQphbHdheXNfYWxsb3dfaHRtbDogdHJ1ZSAgDQotLS0NCg0KIyBLSEFJIELDgU8gUEFDS0FHRVMNCg0KYGBge3IsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2U9RkFMU0V9DQpsaWJyYXJ5KHJ1Z2FyY2gpDQpsaWJyYXJ5KHJtZ2FyY2gpDQpsaWJyYXJ5KCJvcGVueGxzeCIpDQpsaWJyYXJ5KCJ3cml0ZXhsIikNCmxpYnJhcnkocmVhZHhsKQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KGdnRXh0cmEpDQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KCJFbnZTdGF0cyIpDQpsaWJyYXJ5KHpvbykNCmxpYnJhcnkoQ29ubmVjdGVkbmVzc0FwcHJvYWNoKQ0KbGlicmFyeShWaW5lQ29wdWxhKQ0KbGlicmFyeShrbml0cikNCmxpYnJhcnkoZGdvZikNCmxpYnJhcnkoZ29mdGVzdCkNCmxpYnJhcnkobm9ydGVzdCkNCmBgYA0KDQojIEEuIEPhuqIgR0lBSSDEkE/huqBODQoNCiMjIDEuIE5I4bqsUCBE4buuIExJ4buGVQ0KDQpgYGB7cn0NCkRBVEEgPC0gcmVhZF94bHN4KCJDOi8vVXNlcnMvLzg0ODk2Ly9EZXNrdG9wLy9EQVRBLy9DTjMtQ09QVUxBLnhsc3giLCBzaGVldD0iREFUQSIpDQpTUDUwMCA8LSBEQVRBJHkNClZOSSA8LSBEQVRBJHgxDQpNRVJWQUwgPC0gREFUQSR4Mg0KQ1JPQkVYIDwtIERBVEEkeDMNCk1BU0kgPC0gREFUQSR4NA0KTVNNMzAgPC0gREFUQSR4NQ0KYGBgDQoNCiMjIDIuIE1BIFRS4bqsTiBUxq/GoE5HIFFVQU4NCg0KYGBge3J9DQpjb3IoY2JpbmQoU1A1MDAsIFZOSSwgTUVSVkFMLCBDUk9CRVgsIE1BU0ksIE1TTTMwKSwgbWV0aG9kPSJwZWFyc29uIikNCmBgYA0KDQojIyAzLiBNw5QgSMOMTkggQVJNQS1HSlItR0FSQ0gNCg0KIyMjIDMuMS4gQVJNQQ0KDQpgYGB7cn0NCnByaW50KCJN4bu5IikNCmF1dG9hcmZpbWEoU1A1MDAsYXIubWF4ID0gMiwgbWEubWF4ID0gMiwgY3JpdGVyaW9uID0gIkFJQyIsIG1ldGhvZCA9ICJmdWxsIikkZml0QGZpdCRjb2VmDQpwcmludCgiVmnhu4d0IE5hbSIpDQphdXRvYXJmaW1hKFZOSSxhci5tYXggPSAyLCBtYS5tYXggPSAyLCBjcml0ZXJpb24gPSAiQUlDIiwgbWV0aG9kID0gImZ1bGwiKSRmaXRAZml0JGNvZWYNCnByaW50KCJBcmdlbnRpbmEiKQ0KYXV0b2FyZmltYShNRVJWQUwsYXIubWF4ID0gMiwgbWEubWF4ID0gMiwgY3JpdGVyaW9uID0gIkFJQyIsIG1ldGhvZCA9ICJmdWxsIikkZml0QGZpdCRjb2VmDQpwcmludCgiQ3JvYXRpYSIpDQphdXRvYXJmaW1hKENST0JFWCxhci5tYXggPSAyLCBtYS5tYXggPSAyLCBjcml0ZXJpb24gPSAiQUlDIiwgbWV0aG9kID0gImZ1bGwiKSRmaXRAZml0JGNvZWYNCnByaW50KCJNb3JvY2NvIikNCmF1dG9hcmZpbWEoTUFTSSxhci5tYXggPSAyLCBtYS5tYXggPSAyLCBjcml0ZXJpb24gPSAiQUlDIiwgbWV0aG9kID0gImZ1bGwiKSRmaXRAZml0JGNvZWYNCnByaW50KCJPbWFuIikNCmF1dG9hcmZpbWEoTVNNMzAsYXIubWF4ID0gMiwgbWEubWF4ID0gMiwgY3JpdGVyaW9uID0gIkFJQyIsIG1ldGhvZCA9ICJmdWxsIikkZml0QGZpdCRjb2VmDQpgYGANCg0KIyMjIDMuMi4gR0pSLUdBUkNIDQoNCmBgYHtyfQ0KcHJpbnQoIk3hu7kiKQ0Kc3A1MDAuZzExbiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQpzcDUwMC5nMTFzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0Kc3A1MDAuZzExc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0Kc3A1MDAuZzExZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCnNwNTAwLmcxMXNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCnNwNTAwLmcxMm4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0Kc3A1MDAuZzEycyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCnNwNTAwLmcxMnNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCnNwNTAwLmcxMmcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQpzcDUwMC5nMTJzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQpzcDUwMC5nMjFuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCnNwNTAwLmcyMXMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQpzcDUwMC5nMjFzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQpzcDUwMC5nMjFnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0Kc3A1MDAuZzIxc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0Kc3A1MDAuZzIybiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQpzcDUwMC5nMjJzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0Kc3A1MDAuZzIyc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0Kc3A1MDAuZzIyZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCnNwNTAwLmcyMnNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCnNwNTAwLmdhcmNoMTFuIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcxMW4gKSAjMQ0Kc3A1MDAuZ2FyY2gxMXMgPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzExcyApIA0Kc3A1MDAuZ2FyY2gxMXNzIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcxMXNzICkgDQpzcDUwMC5nYXJjaDExZyA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMTFnICkNCnNwNTAwLmdhcmNoMTFzZyA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMTFzZyApICM1DQpzcDUwMC5nYXJjaDEybiA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMTJuICkNCnNwNTAwLmdhcmNoMTJzIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcxMnMgKQ0Kc3A1MDAuZ2FyY2gxMnNzIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcxMnNzICkNCnNwNTAwLmdhcmNoMTJnPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzEyZyApDQpzcDUwMC5nYXJjaDEyc2cgPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzEyc2cgKSAjMTANCnNwNTAwLmdhcmNoMjFuIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcyMW4gKQ0Kc3A1MDAuZ2FyY2gyMXMgPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzIxcyApDQpzcDUwMC5nYXJjaDIxc3MgPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzIxc3MpDQpzcDUwMC5nYXJjaDIxZyA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMjFnICkNCnNwNTAwLmdhcmNoMjFzZyA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMjFzZyApICMxNQ0Kc3A1MDAuZ2FyY2gyMm4gPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzIybiApDQpzcDUwMC5nYXJjaDIycyA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMjJzICkNCnNwNTAwLmdhcmNoMjJzcyA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMjJzcyApDQpzcDUwMC5nYXJjaDIyZzwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcyMmcgKQ0Kc3A1MDAuZ2FyY2gyMnNnIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcyMnNnICkNCm1vZGVsLmFpYy5saXN0IDwtIGxpc3Qoc3A1MDAuZ2FyY2gxMW4sc3A1MDAuZ2FyY2gxMXMsc3A1MDAuZ2FyY2gxMXNzLHNwNTAwLmdhcmNoMTFnLHNwNTAwLmdhcmNoMTFzZyxzcDUwMC5nYXJjaDEybixzcDUwMC5nYXJjaDEycyxzcDUwMC5nYXJjaDEyc3Msc3A1MDAuZ2FyY2gxMmcsc3A1MDAuZ2FyY2gxMnNnLHNwNTAwLmdhcmNoMjFuLHNwNTAwLmdhcmNoMjFzLHNwNTAwLmdhcmNoMjFzcyxzcDUwMC5nYXJjaDIxZyxzcDUwMC5nYXJjaDIxc2csc3A1MDAuZ2FyY2gyMm4sc3A1MDAuZ2FyY2gyMnMsc3A1MDAuZ2FyY2gyMnNzLHNwNTAwLmdhcmNoMjJnLHNwNTAwLmdhcmNoMjJzZykNCm1vZGVsLmFpYyA8LSBzYXBwbHkobW9kZWwuYWljLmxpc3QsIGluZm9jcml0ZXJpYSlbLTQsXVstMyxdWy0yLF0NCm1pbl9wb3MgPC0gd2hpY2gobW9kZWwuYWljID09IG1pbihtb2RlbC5haWMpLCBhcnIuaW5kID0gVFJVRSkNCm1pbl9wb3MNCnNwNTAwLmdhcmNoMjFzc0BmaXQkbWF0Y29lZg0KcHJpbnQoIlZp4buHdCBOYW0iKQ0Kdm5pLmcxMW4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0Kdm5pLmcxMXMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQp2bmkuZzExc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0Kdm5pLmcxMWcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQp2bmkuZzExc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0Kdm5pLmcxMm4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0Kdm5pLmcxMnMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQp2bmkuZzEyc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0Kdm5pLmcxMmcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQp2bmkuZzEyc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0Kdm5pLmcyMW4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0Kdm5pLmcyMXMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQp2bmkuZzIxc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0Kdm5pLmcyMWcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQp2bmkuZzIxc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0Kdm5pLmcyMm4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0Kdm5pLmcyMnMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQp2bmkuZzIyc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0Kdm5pLmcyMmcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQp2bmkuZzIyc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0Kdm5pLmdhcmNoMTFuIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzExbiApICMxDQp2bmkuZ2FyY2gxMXMgPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMTFzICkgDQp2bmkuZ2FyY2gxMXNzIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzExc3MgKSANCnZuaS5nYXJjaDExZyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcxMWcgKQ0Kdm5pLmdhcmNoMTFzZyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcxMXNnICkgIzUNCnZuaS5nYXJjaDEybiA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcxMm4gKQ0Kdm5pLmdhcmNoMTJzIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzEycyApDQp2bmkuZ2FyY2gxMnNzIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzEyc3MgKQ0Kdm5pLmdhcmNoMTJnPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMTJnICkNCnZuaS5nYXJjaDEyc2cgPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMTJzZyApICMxMA0Kdm5pLmdhcmNoMjFuIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzIxbiApDQp2bmkuZ2FyY2gyMXMgPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMjFzICkNCnZuaS5nYXJjaDIxc3MgPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMjFzcykNCnZuaS5nYXJjaDIxZyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcyMWcgKQ0Kdm5pLmdhcmNoMjFzZyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcyMXNnICkgIzE1DQp2bmkuZ2FyY2gyMm4gPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMjJuICkNCnZuaS5nYXJjaDIycyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcyMnMgKQ0Kdm5pLmdhcmNoMjJzcyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcyMnNzICkNCnZuaS5nYXJjaDIyZzwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzIyZyApDQp2bmkuZ2FyY2gyMnNnIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzIyc2cgKQ0KbW9kZWwuYWljLmxpc3QgPC0gbGlzdCh2bmkuZ2FyY2gxMW4sdm5pLmdhcmNoMTFzLHZuaS5nYXJjaDExc3Msdm5pLmdhcmNoMTFnLHZuaS5nYXJjaDExc2csdm5pLmdhcmNoMTJuLHZuaS5nYXJjaDEycyx2bmkuZ2FyY2gxMnNzLHZuaS5nYXJjaDEyZyx2bmkuZ2FyY2gxMnNnLHZuaS5nYXJjaDIxbix2bmkuZ2FyY2gyMXMsdm5pLmdhcmNoMjFzcyx2bmkuZ2FyY2gyMWcsdm5pLmdhcmNoMjFzZyx2bmkuZ2FyY2gyMm4sdm5pLmdhcmNoMjJzLHZuaS5nYXJjaDIyc3Msdm5pLmdhcmNoMjJnLHZuaS5nYXJjaDIyc2cpDQptb2RlbC5haWMgPC0gc2FwcGx5KG1vZGVsLmFpYy5saXN0LCBpbmZvY3JpdGVyaWEpWy00LF1bLTMsXVstMixdDQptaW5fcG9zIDwtIHdoaWNoKG1vZGVsLmFpYyA9PSBtaW4obW9kZWwuYWljKSwgYXJyLmluZCA9IFRSVUUpDQptaW5fcG9zDQp2bmkuZ2FyY2gyMXNnQGZpdCRtYXRjb2VmDQpwcmludCgiQXJnZW50aW5hIikNCm1lcnZhbC5nMTFuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1lcnZhbC5nMTFzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KbWVydmFsLmcxMXNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1lcnZhbC5nMTFnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbWVydmFsLmcxMXNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCm1lcnZhbC5nMTJuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1lcnZhbC5nMTJzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KbWVydmFsLmcxMnNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1lcnZhbC5nMTJnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbWVydmFsLmcxMnNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCm1lcnZhbC5nMjFuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1lcnZhbC5nMjFzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KbWVydmFsLmcyMXNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1lcnZhbC5nMjFnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbWVydmFsLmcyMXNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCm1lcnZhbC5nMjJuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1lcnZhbC5nMjJzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KbWVydmFsLmcyMnNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1lcnZhbC5nMjJnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbWVydmFsLmcyMnNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCm1lcnZhbC5nYXJjaDExbiA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMTFuICkgIzENCm1lcnZhbC5nYXJjaDExcyA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMTFzICkgDQptZXJ2YWwuZ2FyY2gxMXNzIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcxMXNzICkgDQptZXJ2YWwuZ2FyY2gxMWcgPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzExZyApDQptZXJ2YWwuZ2FyY2gxMXNnIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcxMXNnICkgIzUNCm1lcnZhbC5nYXJjaDEybiA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMTJuICkNCm1lcnZhbC5nYXJjaDEycyA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMTJzICkNCm1lcnZhbC5nYXJjaDEyc3MgPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzEyc3MgKQ0KbWVydmFsLmdhcmNoMTJnPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzEyZyApDQptZXJ2YWwuZ2FyY2gxMnNnIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcxMnNnICkgIzEwDQptZXJ2YWwuZ2FyY2gyMW4gPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzIxbiApDQptZXJ2YWwuZ2FyY2gyMXMgPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzIxcyApDQptZXJ2YWwuZ2FyY2gyMXNzIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcyMXNzKQ0KbWVydmFsLmdhcmNoMjFnIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcyMWcgKQ0KbWVydmFsLmdhcmNoMjFzZyA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMjFzZyApICMxNQ0KbWVydmFsLmdhcmNoMjJuIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcyMm4gKQ0KbWVydmFsLmdhcmNoMjJzIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcyMnMgKQ0KbWVydmFsLmdhcmNoMjJzcyA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMjJzcyApDQptZXJ2YWwuZ2FyY2gyMmc8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMjJnICkNCm1lcnZhbC5nYXJjaDIyc2cgPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzIyc2cgKQ0KbW9kZWwuYWljLmxpc3QgPC0gbGlzdChtZXJ2YWwuZ2FyY2gxMW4sbWVydmFsLmdhcmNoMTFzLG1lcnZhbC5nYXJjaDExc3MsbWVydmFsLmdhcmNoMTFnLG1lcnZhbC5nYXJjaDExc2csbWVydmFsLmdhcmNoMTJuLG1lcnZhbC5nYXJjaDEycyxtZXJ2YWwuZ2FyY2gxMnNzLG1lcnZhbC5nYXJjaDEyZyxtZXJ2YWwuZ2FyY2gxMnNnLG1lcnZhbC5nYXJjaDIxbixtZXJ2YWwuZ2FyY2gyMXMsbWVydmFsLmdhcmNoMjFzcyxtZXJ2YWwuZ2FyY2gyMWcsbWVydmFsLmdhcmNoMjFzZyxtZXJ2YWwuZ2FyY2gyMm4sbWVydmFsLmdhcmNoMjJzLG1lcnZhbC5nYXJjaDIyc3MsbWVydmFsLmdhcmNoMjJnLG1lcnZhbC5nYXJjaDIyc2cpDQptb2RlbC5haWMgPC0gc2FwcGx5KG1vZGVsLmFpYy5saXN0LCBpbmZvY3JpdGVyaWEpWy00LF1bLTMsXVstMixdDQptaW5fcG9zIDwtIHdoaWNoKG1vZGVsLmFpYyA9PSBtaW4obW9kZWwuYWljKSwgYXJyLmluZCA9IFRSVUUpDQptaW5fcG9zDQptZXJ2YWwuZ2FyY2gyMXNAZml0JG1hdGNvZWYNCnByaW50KCJDcm90aWEiKQ0KY3JvYmV4LmcxMW4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCmNyb2JleC5nMTFzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCmNyb2JleC5nMTFzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0KY3JvYmV4LmcxMWcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KY3JvYmV4LmcxMXNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQpjcm9iZXguZzEybiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KY3JvYmV4LmcxMnMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KY3JvYmV4LmcxMnNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQpjcm9iZXguZzEyZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQpjcm9iZXguZzEyc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCmNyb2JleC5nMjFuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQpjcm9iZXguZzIxcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQpjcm9iZXguZzIxc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCmNyb2JleC5nMjFnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCmNyb2JleC5nMjFzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KY3JvYmV4LmcyMm4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCmNyb2JleC5nMjJzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCmNyb2JleC5nMjJzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0KY3JvYmV4LmcyMmcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KY3JvYmV4LmcyMnNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQpjcm9iZXguZ2FyY2gxMW4gPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzExbiApICMxDQpjcm9iZXguZ2FyY2gxMXMgPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzExcyApIA0KY3JvYmV4LmdhcmNoMTFzcyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMTFzcyApIA0KY3JvYmV4LmdhcmNoMTFnIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcxMWcgKQ0KY3JvYmV4LmdhcmNoMTFzZyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMTFzZyApICM1DQpjcm9iZXguZ2FyY2gxMm4gPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzEybiApDQpjcm9iZXguZ2FyY2gxMnMgPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzEycyApDQpjcm9iZXguZ2FyY2gxMnNzIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcxMnNzICkNCmNyb2JleC5nYXJjaDEyZzwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcxMmcgKQ0KY3JvYmV4LmdhcmNoMTJzZyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMTJzZyApICMxMA0KY3JvYmV4LmdhcmNoMjFuIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcyMW4gKQ0KY3JvYmV4LmdhcmNoMjFzIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcyMXMgKQ0KY3JvYmV4LmdhcmNoMjFzcyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMjFzcykNCmNyb2JleC5nYXJjaDIxZyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMjFnICkNCmNyb2JleC5nYXJjaDIxc2cgPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzIxc2cgKSAjMTUNCmNyb2JleC5nYXJjaDIybiA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMjJuICkNCmNyb2JleC5nYXJjaDIycyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMjJzICkNCmNyb2JleC5nYXJjaDIyc3MgPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzIyc3MgKQ0KY3JvYmV4LmdhcmNoMjJnPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzIyZyApDQpjcm9iZXguZ2FyY2gyMnNnIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcyMnNnICkNCm1vZGVsLmFpYy5saXN0IDwtIGxpc3QoY3JvYmV4LmdhcmNoMTFuLGNyb2JleC5nYXJjaDExcyxjcm9iZXguZ2FyY2gxMXNzLGNyb2JleC5nYXJjaDExZyxjcm9iZXguZ2FyY2gxMXNnLGNyb2JleC5nYXJjaDEybixjcm9iZXguZ2FyY2gxMnMsY3JvYmV4LmdhcmNoMTJzcyxjcm9iZXguZ2FyY2gxMmcsY3JvYmV4LmdhcmNoMTJzZyxjcm9iZXguZ2FyY2gyMW4sY3JvYmV4LmdhcmNoMjFzLGNyb2JleC5nYXJjaDIxc3MsY3JvYmV4LmdhcmNoMjFnLGNyb2JleC5nYXJjaDIxc2csY3JvYmV4LmdhcmNoMjJuLGNyb2JleC5nYXJjaDIycyxjcm9iZXguZ2FyY2gyMnNzLGNyb2JleC5nYXJjaDIyZyxjcm9iZXguZ2FyY2gyMnNnKQ0KbW9kZWwuYWljIDwtIHNhcHBseShtb2RlbC5haWMubGlzdCwgaW5mb2NyaXRlcmlhKVstNCxdWy0zLF1bLTIsXQ0KbWluX3BvcyA8LSB3aGljaChtb2RlbC5haWMgPT0gbWluKG1vZGVsLmFpYyksIGFyci5pbmQgPSBUUlVFKQ0KbWluX3Bvcw0KY3JvYmV4LmdhcmNoMTFzQGZpdCRtYXRjb2VmDQpwcmludCgiTW9yb2NjbyIpDQptYXNpLmcxMW4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KbWFzaS5nMTFzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KbWFzaS5nMTFzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQptYXNpLmcxMWcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQptYXNpLmcxMXNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCm1hc2kuZzEybiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQptYXNpLmcxMnMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQptYXNpLmcxMnNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1hc2kuZzEyZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCm1hc2kuZzEyc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KbWFzaS5nMjFuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1hc2kuZzIxcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCm1hc2kuZzIxc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0KbWFzaS5nMjFnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbWFzaS5nMjFzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQptYXNpLmcyMm4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KbWFzaS5nMjJzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KbWFzaS5nMjJzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQptYXNpLmcyMmcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQptYXNpLmcyMnNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCm1hc2kuZ2FyY2gxMW4gPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMTFuICkgIzENCm1hc2kuZ2FyY2gxMXMgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMTFzICkgDQptYXNpLmdhcmNoMTFzcyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcxMXNzICkgDQptYXNpLmdhcmNoMTFnIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzExZyApDQptYXNpLmdhcmNoMTFzZyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcxMXNnICkgIzUNCm1hc2kuZ2FyY2gxMm4gPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMTJuICkNCm1hc2kuZ2FyY2gxMnMgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMTJzICkNCm1hc2kuZ2FyY2gxMnNzIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzEyc3MgKQ0KbWFzaS5nYXJjaDEyZzwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzEyZyApDQptYXNpLmdhcmNoMTJzZyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcxMnNnICkgIzEwDQptYXNpLmdhcmNoMjFuIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzIxbiApDQptYXNpLmdhcmNoMjFzIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzIxcyApDQptYXNpLmdhcmNoMjFzcyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcyMXNzKQ0KbWFzaS5nYXJjaDIxZyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcyMWcgKQ0KbWFzaS5nYXJjaDIxc2cgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMjFzZyApICMxNQ0KbWFzaS5nYXJjaDIybiA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcyMm4gKQ0KbWFzaS5nYXJjaDIycyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcyMnMgKQ0KbWFzaS5nYXJjaDIyc3MgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMjJzcyApDQptYXNpLmdhcmNoMjJnPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMjJnICkNCm1hc2kuZ2FyY2gyMnNnIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzIyc2cgKQ0KbW9kZWwuYWljLmxpc3QgPC0gbGlzdChtYXNpLmdhcmNoMTFuLG1hc2kuZ2FyY2gxMXMsbWFzaS5nYXJjaDExc3MsbWFzaS5nYXJjaDExZyxtYXNpLmdhcmNoMTFzZyxtYXNpLmdhcmNoMTJuLG1hc2kuZ2FyY2gxMnMsbWFzaS5nYXJjaDEyc3MsbWFzaS5nYXJjaDEyZyxtYXNpLmdhcmNoMTJzZyxtYXNpLmdhcmNoMjFuLG1hc2kuZ2FyY2gyMXMsbWFzaS5nYXJjaDIxc3MsbWFzaS5nYXJjaDIxZyxtYXNpLmdhcmNoMjFzZyxtYXNpLmdhcmNoMjJuLG1hc2kuZ2FyY2gyMnMsbWFzaS5nYXJjaDIyc3MsbWFzaS5nYXJjaDIyZyxtYXNpLmdhcmNoMjJzZykNCm1vZGVsLmFpYyA8LSBzYXBwbHkobW9kZWwuYWljLmxpc3QsIGluZm9jcml0ZXJpYSlbLTQsXVstMyxdWy0yLF0NCm1pbl9wb3MgPC0gd2hpY2gobW9kZWwuYWljID09IG1pbihtb2RlbC5haWMpLCBhcnIuaW5kID0gVFJVRSkNCm1pbl9wb3MNCm1hc2kuZ2FyY2gxMnNAZml0JG1hdGNvZWYNCnByaW50KCJPbWFuIikNCm1zbTMwLmcxMW4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KbXNtMzAuZzExcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCm1zbTMwLmcxMXNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1zbTMwLmcxMWcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQptc20zMC5nMTFzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQptc20zMC5nMTJuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1zbTMwLmcxMnMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQptc20zMC5nMTJzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQptc20zMC5nMTJnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbXNtMzAuZzEyc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KbXNtMzAuZzIxbiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQptc20zMC5nMjFzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KbXNtMzAuZzIxc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0KbXNtMzAuZzIxZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCm1zbTMwLmcyMXNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCm1zbTMwLmcyMm4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KbXNtMzAuZzIycyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCm1zbTMwLmcyMnNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1zbTMwLmcyMmcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQptc20zMC5nMjJzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQptc20zMC5nYXJjaDExbiA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzExbiApICMxDQptc20zMC5nYXJjaDExcyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzExcyApIA0KbXNtMzAuZ2FyY2gxMXNzIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMTFzcyApIA0KbXNtMzAuZ2FyY2gxMWcgPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcxMWcgKQ0KbXNtMzAuZ2FyY2gxMXNnIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMTFzZyApICM1DQptc20zMC5nYXJjaDEybiA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzEybiApDQptc20zMC5nYXJjaDEycyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzEycyApDQptc20zMC5nYXJjaDEyc3MgPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcxMnNzICkNCm1zbTMwLmdhcmNoMTJnPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcxMmcgKQ0KbXNtMzAuZ2FyY2gxMnNnIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMTJzZyApICMxMA0KbXNtMzAuZ2FyY2gyMW4gPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcyMW4gKQ0KbXNtMzAuZ2FyY2gyMXMgPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcyMXMgKQ0KbXNtMzAuZ2FyY2gyMXNzIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMjFzcykNCm1zbTMwLmdhcmNoMjFnIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMjFnICkNCm1zbTMwLmdhcmNoMjFzZyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzIxc2cgKSAjMTUNCm1zbTMwLmdhcmNoMjJuIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMjJuICkNCm1zbTMwLmdhcmNoMjJzIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMjJzICkNCm1zbTMwLmdhcmNoMjJzcyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzIyc3MgKQ0KbXNtMzAuZ2FyY2gyMmc8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzIyZyApDQptc20zMC5nYXJjaDIyc2cgPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcyMnNnICkNCm1vZGVsLmFpYy5saXN0IDwtIGxpc3QobXNtMzAuZ2FyY2gxMW4sbXNtMzAuZ2FyY2gxMXMsbXNtMzAuZ2FyY2gxMXNzLG1zbTMwLmdhcmNoMTFnLG1zbTMwLmdhcmNoMTFzZyxtc20zMC5nYXJjaDEybixtc20zMC5nYXJjaDEycyxtc20zMC5nYXJjaDEyc3MsbXNtMzAuZ2FyY2gxMmcsbXNtMzAuZ2FyY2gxMnNnLG1zbTMwLmdhcmNoMjFuLG1zbTMwLmdhcmNoMjFzLG1zbTMwLmdhcmNoMjFzcyxtc20zMC5nYXJjaDIxZyxtc20zMC5nYXJjaDIxc2csbXNtMzAuZ2FyY2gyMm4sbXNtMzAuZ2FyY2gyMnMsbXNtMzAuZ2FyY2gyMnNzLG1zbTMwLmdhcmNoMjJnLG1zbTMwLmdhcmNoMjJzZykNCm1vZGVsLmFpYyA8LSBzYXBwbHkobW9kZWwuYWljLmxpc3QsIGluZm9jcml0ZXJpYSlbLTQsXVstMyxdWy0yLF0NCm1pbl9wb3MgPC0gd2hpY2gobW9kZWwuYWljID09IG1pbihtb2RlbC5haWMpLCBhcnIuaW5kID0gVFJVRSkNCm1pbl9wb3MNCm1zbTMwLmdhcmNoMjFzQGZpdCRtYXRjb2VmDQpgYGANCg0KIyMgNC4gQ0hV4bqoTiBIw5NBIFBI4bqmTiBExq8NCg0KYGBge3IsIHdhcm5pbmc9RkFMU0V9DQpTUDUwMF9tb2RlbCA8LSBzcDUwMC5nYXJjaDIxc3MNClZOSV9tb2RlbCA8LSB2bmkuZ2FyY2gyMXNnDQpNRVJWQUxfbW9kZWwgPC0gbWVydmFsLmdhcmNoMjFzDQpDUk9CRVhfbW9kZWwgPC0gY3JvYmV4LmdhcmNoMTFzDQpNQVNJX21vZGVsIDwtIG1hc2kuZ2FyY2gxMnMNCk1TTTMwX21vZGVsIDwtIG1zbTMwLmdhcmNoMjFzDQoNClNQNTAwLnJlcyA8LSByZXNpZHVhbHMoU1A1MDBfbW9kZWwpL3NpZ21hKFNQNTAwX21vZGVsKQ0KVk5JLnJlcyA8LSByZXNpZHVhbHMoVk5JX21vZGVsKS9zaWdtYShWTklfbW9kZWwpDQpNRVJWQUwucmVzIDwtIHJlc2lkdWFscyhNRVJWQUxfbW9kZWwpL3NpZ21hKE1FUlZBTF9tb2RlbCkNCkNST0JFWC5yZXMgPC0gcmVzaWR1YWxzKENST0JFWF9tb2RlbCkvc2lnbWEoQ1JPQkVYX21vZGVsKQ0KTUFTSS5yZXMgPC0gcmVzaWR1YWxzKE1BU0lfbW9kZWwpL3NpZ21hKE1BU0lfbW9kZWwpDQpNU00zMC5yZXMgPC0gcmVzaWR1YWxzKE1TTTMwX21vZGVsKS9zaWdtYShNU00zMF9tb2RlbCkNCg0KZml0ZGlzdChkaXN0cmlidXRpb24gPSAic3N0ZCIsIFNQNTAwLnJlcywgY29udHJvbCA9IGxpc3QoKSkkcGFycw0KZml0ZGlzdChkaXN0cmlidXRpb24gPSAic2dlZCIsIFZOSS5yZXMsIGNvbnRyb2wgPSBsaXN0KCkpJHBhcnMNCmZpdGRpc3QoZGlzdHJpYnV0aW9uID0gInN0ZCIsIE1FUlZBTC5yZXMsIGNvbnRyb2wgPSBsaXN0KCkpJHBhcnMNCmZpdGRpc3QoZGlzdHJpYnV0aW9uID0gInN0ZCIsIENST0JFWC5yZXMsIGNvbnRyb2wgPSBsaXN0KCkpJHBhcnMNCmZpdGRpc3QoZGlzdHJpYnV0aW9uID0gInN0ZCIsIE1BU0kucmVzLCBjb250cm9sID0gbGlzdCgpKSRwYXJzDQpmaXRkaXN0KGRpc3RyaWJ1dGlvbiA9ICJzdGQiLCBNU00zMC5yZXMsIGNvbnRyb2wgPSBsaXN0KCkpJHBhcnMNCg0KdSA8LSBwZGlzdChkaXN0cmlidXRpb24gPSAic3N0ZCIsIHEgPSBTUDUwMC5yZXMsIG11ID0wLjAwMDcyNDY0MzQgLCBzaWdtYSA9IDAuOTk3Nzc3MTc1Mywgc2tldz0gMC44MTM4NzQ0MjUwLHNoYXBlID0gNC42NzUxMDk5MDI2KQ0KdjEgPC0gcGRpc3QoZGlzdHJpYnV0aW9uID0gInNnZWQiLCBxID0gVk5JLnJlcywgbXUgPS0wLjAwODcxMDYwNywgc2lnbWEgPSAxLjAwMzc1MzA2MSwgc2tldz0gMC45MDk5NjQwODksc2hhcGUgPSAxLjAwMjExNzYxOCkNCnYyIDwtIHBkaXN0KGRpc3RyaWJ1dGlvbiA9ICJzdGQiLCBxID0gTUVSVkFMLnJlcywgbXUgPSAxLjAwMjExNzYxOCwgc2lnbWEgPSAwLjk5MjE0Nzg3Miwgc2hhcGUgPSAzLjgzMzg4MDgwOSkNCnYzIDwtIHBkaXN0KGRpc3RyaWJ1dGlvbiA9ICJzdGQiLCBxID0gQ1JPQkVYLnJlcywgbXUgPSAwLjAwMjYzODk2MSAgLCBzaWdtYSA9IDAuOTg2NzA5MjcyLCBzaGFwZSA9IDIuOTAzNzI1NTg1KQ0KdjQgPC0gcGRpc3QoZGlzdHJpYnV0aW9uID0gInN0ZCIsIHEgPSBNQVNJLnJlcywgbXUgPSAwLjAwMDAyMzMxNDEsIHNpZ21hID0gMS4wMTIxMjcxMTcwLCBzaGFwZSA9IDMuMTA5Nzk3NjQ2MykNCnY1IDwtIHBkaXN0KGRpc3RyaWJ1dGlvbiA9ICJzdGQiLCBxID0gTVNNMzAucmVzLCBtdSA9IDAuMDA3MDgyNzU5LCBzaWdtYSA9IDEuMDE0MTk1Mjk1LCBzaGFwZSA9IDMuMDg3NTcxMTkzKQ0KDQpnb2Z0ZXN0Ojpjdm0udGVzdCh1LCAicHVuaWYiKQ0KZ29mdGVzdDo6Y3ZtLnRlc3QodjEsICJwdW5pZiIpDQpnb2Z0ZXN0Ojpjdm0udGVzdCh2MiwgInB1bmlmIikNCmdvZnRlc3Q6OmN2bS50ZXN0KHYzLCAicHVuaWYiKQ0KZ29mdGVzdDo6Y3ZtLnRlc3QodjQsICJwdW5pZiIpDQpnb2Z0ZXN0Ojpjdm0udGVzdCh2NSwgInB1bmlmIikNCg0KZ29mdGVzdDo6YWQudGVzdCh1LCAicHVuaWYiKQ0KZ29mdGVzdDo6YWQudGVzdCh2MSwgInB1bmlmIikNCmdvZnRlc3Q6OmFkLnRlc3QodjIsICJwdW5pZiIpDQpnb2Z0ZXN0OjphZC50ZXN0KHYzLCAicHVuaWYiKQ0KZ29mdGVzdDo6YWQudGVzdCh2NCwgInB1bmlmIikNCmdvZnRlc3Q6OmFkLnRlc3QodjUsICJwdW5pZiIpDQoNCmtzLnRlc3QodSwgInB1bmlmIikNCmtzLnRlc3QodjEsICJwdW5pZiIpDQprcy50ZXN0KHYyLCAicHVuaWYiKQ0Ka3MudGVzdCh2MywgInB1bmlmIikNCmtzLnRlc3QodjQsICJwdW5pZiIpDQprcy50ZXN0KHY1LCAicHVuaWYiKQ0KYGBgDQoNCiMjIDUuIENPUFVMQQ0KDQpgYGB7cn0NCnByaW50KCJWaeG7h3QgTmFtIikNCmFhMSA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gMSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWEyIDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSAyLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTMgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDMsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhNCA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gMTMsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhNSA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gNCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWE2IDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSAxNCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWE3IDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSA1LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTggPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDYsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhOSA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gMTYsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhMTAgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDcsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhMTEgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDE3LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTEyIDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSA4LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTEzIDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSAxOCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWExNCA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gOSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWExNSA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gMTksIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhMTYgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDEwLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTE3IDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSAyMCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KcHJpbnQoIkFyZ2VudGluYSIpDQphYjEgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDEsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiMiA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gMiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWIzIDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSAzLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjQgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDEzLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjUgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDQsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiNiA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gMTQsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiNyA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gNSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWI4IDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSA2LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjkgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDE2LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjEwIDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSA3LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjExIDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSAxNywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWIxMiA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gOCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWIxMyA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gMTgsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiMTQgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDksIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiMTUgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDE5LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjE2IDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSAxMCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWIxNyA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gMjAsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCnByaW50KCJDcm9hdGlhIikNCmFjMSA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gMSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWMyIDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSAyLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzMgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDMsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjNCA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gMTMsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjNSA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gNCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWM2IDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSAxNCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWM3IDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSA1LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzggPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDYsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjOSA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gMTYsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjMTAgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDcsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjMTEgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDE3LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzEyIDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSA4LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzEzIDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSAxOCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWMxNCA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gOSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWMxNSA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gMTksIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjMTYgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDEwLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzE3IDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSAyMCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KcHJpbnQoIk1vcm9jY28iKQ0KYWQxIDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSAxLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDIgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDIsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkMyA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gMywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQ0IDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSAxMywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQ1IDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSA0LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDYgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDE0LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDcgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDUsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkOCA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gNiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQ5IDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSAxNiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQxMCA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gNywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQxMSA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gMTcsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkMTIgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDgsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkMTMgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDE4LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDE0IDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSA5LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDE1IDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSAxOSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQxNiA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gMTAsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkMTcgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDIwLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQpwcmludCgiT21hbiIpDQphZTEgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDEsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlMiA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gMiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWUzIDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSAzLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTQgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDEzLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTUgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDQsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlNiA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gMTQsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlNyA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gNSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWU4IDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSA2LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTkgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDE2LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTEwIDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSA3LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTExIDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSAxNywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWUxMiA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gOCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWUxMyA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gMTgsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlMTQgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDksIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlMTUgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDE5LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTE2IDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSAxMCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWUxNyA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gMjAsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmBgYA0KDQojIEIuIFRSxq/hu5pDIENPVklEDQoNCiMjIDEuIE5I4bqsUCBE4buuIExJ4buGVQ0KDQpgYGB7cn0NCnJtKGxpc3Q9bHMoKSkNCkRBVEEgPC0gcmVhZF94bHN4KCJDOi8vVXNlcnMvLzg0ODk2Ly9EZXNrdG9wLy9EQVRBLy9DTjMtQ09QVUxBLnhsc3giLCBzaGVldD0iUHJlIikNClNQNTAwIDwtIERBVEEkeQ0KVk5JIDwtIERBVEEkeDENCk1FUlZBTCA8LSBEQVRBJHgyDQpDUk9CRVggPC0gREFUQSR4Mw0KTUFTSSA8LSBEQVRBJHg0DQpNU00zMCA8LSBEQVRBJHg1DQpgYGANCg0KIyMgMi4gTUEgVFLhuqxOIFTGr8agTkcgUVVBTg0KDQpgYGB7cn0NCmNvcihjYmluZChTUDUwMCwgVk5JLCBNRVJWQUwsIENST0JFWCwgTUFTSSwgTVNNMzApLCBtZXRob2Q9InBlYXJzb24iKQ0KYGBgDQoNCiMjIDMuIE3DlCBIw4xOSCBBUk1BLUdKUi1HQVJDSA0KDQojIyMgMy4xLiBBUk1BDQoNCmBgYHtyfQ0KcHJpbnQoIk3hu7kiKQ0KYXV0b2FyZmltYShTUDUwMCxhci5tYXggPSAyLCBtYS5tYXggPSAyLCBjcml0ZXJpb24gPSAiQUlDIiwgbWV0aG9kID0gImZ1bGwiKSRmaXRAZml0JGNvZWYNCnByaW50KCJWaeG7h3QgTmFtIikNCmF1dG9hcmZpbWEoVk5JLGFyLm1heCA9IDIsIG1hLm1heCA9IDIsIGNyaXRlcmlvbiA9ICJBSUMiLCBtZXRob2QgPSAiZnVsbCIpJGZpdEBmaXQkY29lZg0KcHJpbnQoIkFyZ2VudGluYSIpDQphdXRvYXJmaW1hKE1FUlZBTCxhci5tYXggPSAyLCBtYS5tYXggPSAyLCBjcml0ZXJpb24gPSAiQUlDIiwgbWV0aG9kID0gImZ1bGwiKSRmaXRAZml0JGNvZWYNCnByaW50KCJDcm9hdGlhIikNCmF1dG9hcmZpbWEoQ1JPQkVYLGFyLm1heCA9IDIsIG1hLm1heCA9IDIsIGNyaXRlcmlvbiA9ICJBSUMiLCBtZXRob2QgPSAiZnVsbCIpJGZpdEBmaXQkY29lZg0KcHJpbnQoIk1vcm9jY28iKQ0KYXV0b2FyZmltYShNQVNJLGFyLm1heCA9IDIsIG1hLm1heCA9IDIsIGNyaXRlcmlvbiA9ICJBSUMiLCBtZXRob2QgPSAiZnVsbCIpJGZpdEBmaXQkY29lZg0KcHJpbnQoIk9tYW4iKQ0KYXV0b2FyZmltYShNU00zMCxhci5tYXggPSAyLCBtYS5tYXggPSAyLCBjcml0ZXJpb24gPSAiQUlDIiwgbWV0aG9kID0gImZ1bGwiKSRmaXRAZml0JGNvZWYNCmBgYA0KDQojIyMgMy4yLiBHSlItR0FSQ0gNCg0KYGBge3J9DQpwcmludCgiTeG7uSIpDQpzcDUwMC5nMTFuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCnNwNTAwLmcxMXMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQpzcDUwMC5nMTFzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQpzcDUwMC5nMTFnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0Kc3A1MDAuZzExc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0Kc3A1MDAuZzEybiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQpzcDUwMC5nMTJzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0Kc3A1MDAuZzEyc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0Kc3A1MDAuZzEyZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCnNwNTAwLmcxMnNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCnNwNTAwLmcyMW4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0Kc3A1MDAuZzIxcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCnNwNTAwLmcyMXNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCnNwNTAwLmcyMWcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQpzcDUwMC5nMjFzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQpzcDUwMC5nMjJuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCnNwNTAwLmcyMnMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQpzcDUwMC5nMjJzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQpzcDUwMC5nMjJnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0Kc3A1MDAuZzIyc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0Kc3A1MDAuZ2FyY2gxMW4gPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzExbiApICMxDQpzcDUwMC5nYXJjaDExcyA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMTFzICkgDQpzcDUwMC5nYXJjaDExc3MgPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzExc3MgKSANCnNwNTAwLmdhcmNoMTFnIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcxMWcgKQ0Kc3A1MDAuZ2FyY2gxMXNnIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcxMXNnICkgIzUNCnNwNTAwLmdhcmNoMTJuIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcxMm4gKQ0Kc3A1MDAuZ2FyY2gxMnMgPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzEycyApDQpzcDUwMC5nYXJjaDEyc3MgPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzEyc3MgKQ0Kc3A1MDAuZ2FyY2gxMmc8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMTJnICkNCnNwNTAwLmdhcmNoMTJzZyA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMTJzZyApICMxMA0Kc3A1MDAuZ2FyY2gyMW4gPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzIxbiApDQpzcDUwMC5nYXJjaDIxcyA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMjFzICkNCnNwNTAwLmdhcmNoMjFzcyA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMjFzcykNCnNwNTAwLmdhcmNoMjFnIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcyMWcgKQ0Kc3A1MDAuZ2FyY2gyMXNnIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcyMXNnICkgIzE1DQpzcDUwMC5nYXJjaDIybiA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMjJuICkNCnNwNTAwLmdhcmNoMjJzIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcyMnMgKQ0Kc3A1MDAuZ2FyY2gyMnNzIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcyMnNzICkNCnNwNTAwLmdhcmNoMjJnPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzIyZyApDQpzcDUwMC5nYXJjaDIyc2cgPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzIyc2cgKQ0KbW9kZWwuYWljLmxpc3QgPC0gbGlzdChzcDUwMC5nYXJjaDExbixzcDUwMC5nYXJjaDExcyxzcDUwMC5nYXJjaDExc3Msc3A1MDAuZ2FyY2gxMWcsc3A1MDAuZ2FyY2gxMXNnLHNwNTAwLmdhcmNoMTJuLHNwNTAwLmdhcmNoMTJzLHNwNTAwLmdhcmNoMTJzcyxzcDUwMC5nYXJjaDEyZyxzcDUwMC5nYXJjaDEyc2csc3A1MDAuZ2FyY2gyMW4sc3A1MDAuZ2FyY2gyMXMsc3A1MDAuZ2FyY2gyMXNzLHNwNTAwLmdhcmNoMjFnLHNwNTAwLmdhcmNoMjFzZyxzcDUwMC5nYXJjaDIybixzcDUwMC5nYXJjaDIycyxzcDUwMC5nYXJjaDIyc3Msc3A1MDAuZ2FyY2gyMmcsc3A1MDAuZ2FyY2gyMnNnKQ0KbW9kZWwuYWljIDwtIHNhcHBseShtb2RlbC5haWMubGlzdCwgaW5mb2NyaXRlcmlhKVstNCxdWy0zLF1bLTIsXQ0KbWluX3BvcyA8LSB3aGljaChtb2RlbC5haWMgPT0gbWluKG1vZGVsLmFpYyksIGFyci5pbmQgPSBUUlVFKQ0KbWluX3Bvcw0Kc3A1MDAuZ2FyY2gyMXNzQGZpdCRtYXRjb2VmDQpwcmludCgiVmnhu4d0IE5hbSIpDQp2bmkuZzExbiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQp2bmkuZzExcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCnZuaS5nMTFzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQp2bmkuZzExZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCnZuaS5nMTFzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQp2bmkuZzEybiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQp2bmkuZzEycyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCnZuaS5nMTJzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQp2bmkuZzEyZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCnZuaS5nMTJzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQp2bmkuZzIxbiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQp2bmkuZzIxcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCnZuaS5nMjFzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQp2bmkuZzIxZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCnZuaS5nMjFzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQp2bmkuZzIybiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQp2bmkuZzIycyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCnZuaS5nMjJzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQp2bmkuZzIyZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCnZuaS5nMjJzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQp2bmkuZ2FyY2gxMW4gPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMTFuICkgIzENCnZuaS5nYXJjaDExcyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcxMXMgKSANCnZuaS5nYXJjaDExc3MgPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMTFzcyApIA0Kdm5pLmdhcmNoMTFnIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzExZyApDQp2bmkuZ2FyY2gxMXNnIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzExc2cgKSAjNQ0Kdm5pLmdhcmNoMTJuIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzEybiApDQp2bmkuZ2FyY2gxMnMgPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMTJzICkNCnZuaS5nYXJjaDEyc3MgPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMTJzcyApDQp2bmkuZ2FyY2gxMmc8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcxMmcgKQ0Kdm5pLmdhcmNoMTJzZyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcxMnNnICkgIzEwDQp2bmkuZ2FyY2gyMW4gPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMjFuICkNCnZuaS5nYXJjaDIxcyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcyMXMgKQ0Kdm5pLmdhcmNoMjFzcyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcyMXNzKQ0Kdm5pLmdhcmNoMjFnIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzIxZyApDQp2bmkuZ2FyY2gyMXNnIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzIxc2cgKSAjMTUNCnZuaS5nYXJjaDIybiA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcyMm4gKQ0Kdm5pLmdhcmNoMjJzIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzIycyApDQp2bmkuZ2FyY2gyMnNzIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzIyc3MgKQ0Kdm5pLmdhcmNoMjJnPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMjJnICkNCnZuaS5nYXJjaDIyc2cgPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMjJzZyApDQptb2RlbC5haWMubGlzdCA8LSBsaXN0KHZuaS5nYXJjaDExbix2bmkuZ2FyY2gxMXMsdm5pLmdhcmNoMTFzcyx2bmkuZ2FyY2gxMWcsdm5pLmdhcmNoMTFzZyx2bmkuZ2FyY2gxMm4sdm5pLmdhcmNoMTJzLHZuaS5nYXJjaDEyc3Msdm5pLmdhcmNoMTJnLHZuaS5nYXJjaDEyc2csdm5pLmdhcmNoMjFuLHZuaS5nYXJjaDIxcyx2bmkuZ2FyY2gyMXNzLHZuaS5nYXJjaDIxZyx2bmkuZ2FyY2gyMXNnLHZuaS5nYXJjaDIybix2bmkuZ2FyY2gyMnMsdm5pLmdhcmNoMjJzcyx2bmkuZ2FyY2gyMmcsdm5pLmdhcmNoMjJzZykNCm1vZGVsLmFpYyA8LSBzYXBwbHkobW9kZWwuYWljLmxpc3QsIGluZm9jcml0ZXJpYSlbLTQsXVstMyxdWy0yLF0NCm1pbl9wb3MgPC0gd2hpY2gobW9kZWwuYWljID09IG1pbihtb2RlbC5haWMpLCBhcnIuaW5kID0gVFJVRSkNCm1pbl9wb3MNCnZuaS5nYXJjaDIxc3NAZml0JG1hdGNvZWYNCnByaW50KCJBcmdlbnRpbmEiKQ0KbWVydmFsLmcxMW4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KbWVydmFsLmcxMXMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQptZXJ2YWwuZzExc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0KbWVydmFsLmcxMWcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQptZXJ2YWwuZzExc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KbWVydmFsLmcxMm4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KbWVydmFsLmcxMnMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQptZXJ2YWwuZzEyc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0KbWVydmFsLmcxMmcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQptZXJ2YWwuZzEyc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KbWVydmFsLmcyMW4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KbWVydmFsLmcyMXMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQptZXJ2YWwuZzIxc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0KbWVydmFsLmcyMWcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQptZXJ2YWwuZzIxc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KbWVydmFsLmcyMm4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KbWVydmFsLmcyMnMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQptZXJ2YWwuZzIyc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0KbWVydmFsLmcyMmcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQptZXJ2YWwuZzIyc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KbWVydmFsLmdhcmNoMTFuIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcxMW4gKSAjMQ0KbWVydmFsLmdhcmNoMTFzIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcxMXMgKSANCm1lcnZhbC5nYXJjaDExc3MgPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzExc3MgKSANCm1lcnZhbC5nYXJjaDExZyA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMTFnICkNCm1lcnZhbC5nYXJjaDExc2cgPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzExc2cgKSAjNQ0KbWVydmFsLmdhcmNoMTJuIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcxMm4gKQ0KbWVydmFsLmdhcmNoMTJzIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcxMnMgKQ0KbWVydmFsLmdhcmNoMTJzcyA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMTJzcyApDQptZXJ2YWwuZ2FyY2gxMmc8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMTJnICkNCm1lcnZhbC5nYXJjaDEyc2cgPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzEyc2cgKSAjMTANCm1lcnZhbC5nYXJjaDIxbiA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMjFuICkNCm1lcnZhbC5nYXJjaDIxcyA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMjFzICkNCm1lcnZhbC5nYXJjaDIxc3MgPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzIxc3MpDQptZXJ2YWwuZ2FyY2gyMWcgPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzIxZyApDQptZXJ2YWwuZ2FyY2gyMXNnIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcyMXNnICkgIzE1DQptZXJ2YWwuZ2FyY2gyMm4gPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzIybiApDQptZXJ2YWwuZ2FyY2gyMnMgPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzIycyApDQptZXJ2YWwuZ2FyY2gyMnNzIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcyMnNzICkNCm1lcnZhbC5nYXJjaDIyZzwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcyMmcgKQ0KbWVydmFsLmdhcmNoMjJzZyA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMjJzZyApDQptb2RlbC5haWMubGlzdCA8LSBsaXN0KG1lcnZhbC5nYXJjaDExbixtZXJ2YWwuZ2FyY2gxMXMsbWVydmFsLmdhcmNoMTFzcyxtZXJ2YWwuZ2FyY2gxMWcsbWVydmFsLmdhcmNoMTFzZyxtZXJ2YWwuZ2FyY2gxMm4sbWVydmFsLmdhcmNoMTJzLG1lcnZhbC5nYXJjaDEyc3MsbWVydmFsLmdhcmNoMTJnLG1lcnZhbC5nYXJjaDEyc2csbWVydmFsLmdhcmNoMjFuLG1lcnZhbC5nYXJjaDIxcyxtZXJ2YWwuZ2FyY2gyMXNzLG1lcnZhbC5nYXJjaDIxZyxtZXJ2YWwuZ2FyY2gyMXNnLG1lcnZhbC5nYXJjaDIybixtZXJ2YWwuZ2FyY2gyMnMsbWVydmFsLmdhcmNoMjJzcyxtZXJ2YWwuZ2FyY2gyMmcsbWVydmFsLmdhcmNoMjJzZykNCm1vZGVsLmFpYyA8LSBzYXBwbHkobW9kZWwuYWljLmxpc3QsIGluZm9jcml0ZXJpYSlbLTQsXVstMyxdWy0yLF0NCm1pbl9wb3MgPC0gd2hpY2gobW9kZWwuYWljID09IG1pbihtb2RlbC5haWMpLCBhcnIuaW5kID0gVFJVRSkNCm1pbl9wb3MNCm1lcnZhbC5nYXJjaDIxc0BmaXQkbWF0Y29lZg0KcHJpbnQoIkNyb3RpYSIpDQpjcm9iZXguZzExbiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KY3JvYmV4LmcxMXMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KY3JvYmV4LmcxMXNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQpjcm9iZXguZzExZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQpjcm9iZXguZzExc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCmNyb2JleC5nMTJuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQpjcm9iZXguZzEycyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQpjcm9iZXguZzEyc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCmNyb2JleC5nMTJnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCmNyb2JleC5nMTJzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KY3JvYmV4LmcyMW4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCmNyb2JleC5nMjFzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCmNyb2JleC5nMjFzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0KY3JvYmV4LmcyMWcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KY3JvYmV4LmcyMXNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQpjcm9iZXguZzIybiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KY3JvYmV4LmcyMnMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KY3JvYmV4LmcyMnNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQpjcm9iZXguZzIyZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQpjcm9iZXguZzIyc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCmNyb2JleC5nYXJjaDExbiA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMTFuICkgIzENCmNyb2JleC5nYXJjaDExcyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMTFzICkgDQpjcm9iZXguZ2FyY2gxMXNzIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcxMXNzICkgDQpjcm9iZXguZ2FyY2gxMWcgPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzExZyApDQpjcm9iZXguZ2FyY2gxMXNnIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcxMXNnICkgIzUNCmNyb2JleC5nYXJjaDEybiA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMTJuICkNCmNyb2JleC5nYXJjaDEycyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMTJzICkNCmNyb2JleC5nYXJjaDEyc3MgPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzEyc3MgKQ0KY3JvYmV4LmdhcmNoMTJnPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzEyZyApDQpjcm9iZXguZ2FyY2gxMnNnIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcxMnNnICkgIzEwDQpjcm9iZXguZ2FyY2gyMW4gPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzIxbiApDQpjcm9iZXguZ2FyY2gyMXMgPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzIxcyApDQpjcm9iZXguZ2FyY2gyMXNzIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcyMXNzKQ0KY3JvYmV4LmdhcmNoMjFnIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcyMWcgKQ0KY3JvYmV4LmdhcmNoMjFzZyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMjFzZyApICMxNQ0KY3JvYmV4LmdhcmNoMjJuIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcyMm4gKQ0KY3JvYmV4LmdhcmNoMjJzIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcyMnMgKQ0KY3JvYmV4LmdhcmNoMjJzcyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMjJzcyApDQpjcm9iZXguZ2FyY2gyMmc8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMjJnICkNCmNyb2JleC5nYXJjaDIyc2cgPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzIyc2cgKQ0KbW9kZWwuYWljLmxpc3QgPC0gbGlzdChjcm9iZXguZ2FyY2gxMW4sY3JvYmV4LmdhcmNoMTFzLGNyb2JleC5nYXJjaDExc3MsY3JvYmV4LmdhcmNoMTFnLGNyb2JleC5nYXJjaDExc2csY3JvYmV4LmdhcmNoMTJuLGNyb2JleC5nYXJjaDEycyxjcm9iZXguZ2FyY2gxMnNzLGNyb2JleC5nYXJjaDEyZyxjcm9iZXguZ2FyY2gxMnNnLGNyb2JleC5nYXJjaDIxbixjcm9iZXguZ2FyY2gyMXMsY3JvYmV4LmdhcmNoMjFzcyxjcm9iZXguZ2FyY2gyMWcsY3JvYmV4LmdhcmNoMjFzZyxjcm9iZXguZ2FyY2gyMm4sY3JvYmV4LmdhcmNoMjJzLGNyb2JleC5nYXJjaDIyc3MsY3JvYmV4LmdhcmNoMjJnLGNyb2JleC5nYXJjaDIyc2cpDQptb2RlbC5haWMgPC0gc2FwcGx5KG1vZGVsLmFpYy5saXN0LCBpbmZvY3JpdGVyaWEpWy00LF1bLTMsXVstMixdDQptaW5fcG9zIDwtIHdoaWNoKG1vZGVsLmFpYyA9PSBtaW4obW9kZWwuYWljKSwgYXJyLmluZCA9IFRSVUUpDQptaW5fcG9zDQpjcm9iZXguZ2FyY2gxMXNAZml0JG1hdGNvZWYNCnByaW50KCJNb3JvY2NvIikNCm1hc2kuZzExbiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KbWFzaS5nMTFzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCm1hc2kuZzExc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1hc2kuZzExZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQptYXNpLmcxMXNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQptYXNpLmcxMm4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1hc2kuZzEycyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQptYXNpLmcxMnNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQptYXNpLmcxMmcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbWFzaS5nMTJzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KbWFzaS5nMjFuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQptYXNpLmcyMXMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KbWFzaS5nMjFzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0KbWFzaS5nMjFnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCm1hc2kuZzIxc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCm1hc2kuZzIybiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KbWFzaS5nMjJzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCm1hc2kuZzIyc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1hc2kuZzIyZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQptYXNpLmcyMnNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCm1hc2kuZ2FyY2gxMW4gPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMTFuICkgIzENCm1hc2kuZ2FyY2gxMXMgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMTFzICkgDQptYXNpLmdhcmNoMTFzcyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcxMXNzICkgDQptYXNpLmdhcmNoMTFnIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzExZyApDQptYXNpLmdhcmNoMTFzZyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcxMXNnICkgIzUNCm1hc2kuZ2FyY2gxMm4gPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMTJuICkNCm1hc2kuZ2FyY2gxMnMgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMTJzICkNCm1hc2kuZ2FyY2gxMnNzIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzEyc3MgKQ0KbWFzaS5nYXJjaDEyZzwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzEyZyApDQptYXNpLmdhcmNoMTJzZyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcxMnNnICkgIzEwDQptYXNpLmdhcmNoMjFuIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzIxbiApDQptYXNpLmdhcmNoMjFzIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzIxcyApDQptYXNpLmdhcmNoMjFzcyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcyMXNzKQ0KbWFzaS5nYXJjaDIxZyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcyMWcgKQ0KbWFzaS5nYXJjaDIxc2cgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMjFzZyApICMxNQ0KbWFzaS5nYXJjaDIybiA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcyMm4gKQ0KbWFzaS5nYXJjaDIycyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcyMnMgKQ0KbWFzaS5nYXJjaDIyc3MgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMjJzcyApDQptYXNpLmdhcmNoMjJnPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMjJnICkNCm1hc2kuZ2FyY2gyMnNnIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzIyc2cgKQ0KbW9kZWwuYWljLmxpc3QgPC0gbGlzdChtYXNpLmdhcmNoMTFuLG1hc2kuZ2FyY2gxMXMsbWFzaS5nYXJjaDExc3MsbWFzaS5nYXJjaDExZyxtYXNpLmdhcmNoMTFzZyxtYXNpLmdhcmNoMTJuLG1hc2kuZ2FyY2gxMnMsbWFzaS5nYXJjaDEyc3MsbWFzaS5nYXJjaDEyZyxtYXNpLmdhcmNoMTJzZyxtYXNpLmdhcmNoMjFuLG1hc2kuZ2FyY2gyMXMsbWFzaS5nYXJjaDIxc3MsbWFzaS5nYXJjaDIxZyxtYXNpLmdhcmNoMjFzZyxtYXNpLmdhcmNoMjJuLG1hc2kuZ2FyY2gyMnMsbWFzaS5nYXJjaDIyc3MsbWFzaS5nYXJjaDIyZyxtYXNpLmdhcmNoMjJzZykNCm1vZGVsLmFpYyA8LSBzYXBwbHkobW9kZWwuYWljLmxpc3QsIGluZm9jcml0ZXJpYSlbLTQsXVstMyxdWy0yLF0NCm1pbl9wb3MgPC0gd2hpY2gobW9kZWwuYWljID09IG1pbihtb2RlbC5haWMpLCBhcnIuaW5kID0gVFJVRSkNCm1pbl9wb3MNCm1hc2kuZ2FyY2gxMnNAZml0JG1hdGNvZWYNCnByaW50KCJPbWFuIikNCm1zbTMwLmcxMW4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KbXNtMzAuZzExcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCm1zbTMwLmcxMXNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1zbTMwLmcxMWcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQptc20zMC5nMTFzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQptc20zMC5nMTJuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1zbTMwLmcxMnMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQptc20zMC5nMTJzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQptc20zMC5nMTJnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbXNtMzAuZzEyc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KbXNtMzAuZzIxbiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQptc20zMC5nMjFzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KbXNtMzAuZzIxc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0KbXNtMzAuZzIxZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCm1zbTMwLmcyMXNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCm1zbTMwLmcyMm4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KbXNtMzAuZzIycyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCm1zbTMwLmcyMnNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1zbTMwLmcyMmcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQptc20zMC5nMjJzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQptc20zMC5nYXJjaDExbiA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzExbiApICMxDQptc20zMC5nYXJjaDExcyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzExcyApIA0KbXNtMzAuZ2FyY2gxMXNzIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMTFzcyApIA0KbXNtMzAuZ2FyY2gxMWcgPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcxMWcgKQ0KbXNtMzAuZ2FyY2gxMXNnIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMTFzZyApICM1DQptc20zMC5nYXJjaDEybiA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzEybiApDQptc20zMC5nYXJjaDEycyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzEycyApDQptc20zMC5nYXJjaDEyc3MgPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcxMnNzICkNCm1zbTMwLmdhcmNoMTJnPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcxMmcgKQ0KbXNtMzAuZ2FyY2gxMnNnIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMTJzZyApICMxMA0KbXNtMzAuZ2FyY2gyMW4gPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcyMW4gKQ0KbXNtMzAuZ2FyY2gyMXMgPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcyMXMgKQ0KbXNtMzAuZ2FyY2gyMXNzIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMjFzcykNCm1zbTMwLmdhcmNoMjFnIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMjFnICkNCm1zbTMwLmdhcmNoMjFzZyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzIxc2cgKSAjMTUNCm1zbTMwLmdhcmNoMjJuIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMjJuICkNCm1zbTMwLmdhcmNoMjJzIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMjJzICkNCm1zbTMwLmdhcmNoMjJzcyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzIyc3MgKQ0KbXNtMzAuZ2FyY2gyMmc8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzIyZyApDQptc20zMC5nYXJjaDIyc2cgPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcyMnNnICkNCm1vZGVsLmFpYy5saXN0IDwtIGxpc3QobXNtMzAuZ2FyY2gxMW4sbXNtMzAuZ2FyY2gxMXMsbXNtMzAuZ2FyY2gxMXNzLG1zbTMwLmdhcmNoMTFnLG1zbTMwLmdhcmNoMTFzZyxtc20zMC5nYXJjaDEybixtc20zMC5nYXJjaDEycyxtc20zMC5nYXJjaDEyc3MsbXNtMzAuZ2FyY2gxMmcsbXNtMzAuZ2FyY2gxMnNnLG1zbTMwLmdhcmNoMjFuLG1zbTMwLmdhcmNoMjFzLG1zbTMwLmdhcmNoMjFzcyxtc20zMC5nYXJjaDIxZyxtc20zMC5nYXJjaDIxc2csbXNtMzAuZ2FyY2gyMm4sbXNtMzAuZ2FyY2gyMnMsbXNtMzAuZ2FyY2gyMnNzLG1zbTMwLmdhcmNoMjJnLG1zbTMwLmdhcmNoMjJzZykNCm1vZGVsLmFpYyA8LSBzYXBwbHkobW9kZWwuYWljLmxpc3QsIGluZm9jcml0ZXJpYSlbLTQsXVstMyxdWy0yLF0NCm1pbl9wb3MgPC0gd2hpY2gobW9kZWwuYWljID09IG1pbihtb2RlbC5haWMpLCBhcnIuaW5kID0gVFJVRSkNCm1pbl9wb3MNCm1zbTMwLmdhcmNoMTFzQGZpdCRtYXRjb2VmDQpgYGANCg0KIyMgNC4gQ0hV4bqoTiBIw5NBIFBI4bqmTiBExq8NCg0KYGBge3IsIHdhcm5pbmc9RkFMU0V9DQpTUDUwMF9tb2RlbCA8LSBzcDUwMC5nYXJjaDIxc3MNClZOSV9tb2RlbCA8LSB2bmkuZ2FyY2gyMXNzDQpNRVJWQUxfbW9kZWwgPC0gbWVydmFsLmdhcmNoMjFzDQpDUk9CRVhfbW9kZWwgPC0gY3JvYmV4LmdhcmNoMTFzDQpNQVNJX21vZGVsIDwtIG1hc2kuZ2FyY2gxMnMNCk1TTTMwX21vZGVsIDwtIG1zbTMwLmdhcmNoMTFzDQoNClNQNTAwLnJlcyA8LSByZXNpZHVhbHMoU1A1MDBfbW9kZWwpL3NpZ21hKFNQNTAwX21vZGVsKQ0KVk5JLnJlcyA8LSByZXNpZHVhbHMoVk5JX21vZGVsKS9zaWdtYShWTklfbW9kZWwpDQpNRVJWQUwucmVzIDwtIHJlc2lkdWFscyhNRVJWQUxfbW9kZWwpL3NpZ21hKE1FUlZBTF9tb2RlbCkNCkNST0JFWC5yZXMgPC0gcmVzaWR1YWxzKENST0JFWF9tb2RlbCkvc2lnbWEoQ1JPQkVYX21vZGVsKQ0KTUFTSS5yZXMgPC0gcmVzaWR1YWxzKE1BU0lfbW9kZWwpL3NpZ21hKE1BU0lfbW9kZWwpDQpNU00zMC5yZXMgPC0gcmVzaWR1YWxzKE1TTTMwX21vZGVsKS9zaWdtYShNU00zMF9tb2RlbCkNCg0KZml0ZGlzdChkaXN0cmlidXRpb24gPSAic3N0ZCIsIFNQNTAwLnJlcywgY29udHJvbCA9IGxpc3QoKSkkcGFycw0KZml0ZGlzdChkaXN0cmlidXRpb24gPSAic3N0ZCIsIFZOSS5yZXMsIGNvbnRyb2wgPSBsaXN0KCkpJHBhcnMNCmZpdGRpc3QoZGlzdHJpYnV0aW9uID0gInN0ZCIsIE1FUlZBTC5yZXMsIGNvbnRyb2wgPSBsaXN0KCkpJHBhcnMNCmZpdGRpc3QoZGlzdHJpYnV0aW9uID0gInN0ZCIsIENST0JFWC5yZXMsIGNvbnRyb2wgPSBsaXN0KCkpJHBhcnMNCmZpdGRpc3QoZGlzdHJpYnV0aW9uID0gInN0ZCIsIE1BU0kucmVzLCBjb250cm9sID0gbGlzdCgpKSRwYXJzDQpmaXRkaXN0KGRpc3RyaWJ1dGlvbiA9ICJzdGQiLCBNU00zMC5yZXMsIGNvbnRyb2wgPSBsaXN0KCkpJHBhcnMNCg0KdSA8LSBwZGlzdChkaXN0cmlidXRpb24gPSAic3N0ZCIsIHEgPSBTUDUwMC5yZXMsIG11ID0gMC4wMDYxNTY1NDgsIHNpZ21hID0gMC45OTQzNDgxMTEsIHNrZXc9IDAuODI5ODg2ODI4LHNoYXBlID0gMy43ODE0NDAxNTIpDQp2MSA8LSBwZGlzdChkaXN0cmlidXRpb24gPSAic3N0ZCIsIHEgPSBWTkkucmVzLCBtdSA9LTAuMDAyMjg2NzEyLCBzaWdtYSA9IDEuMDA5NjE0ODkyLCBza2V3PSAwLjkzMzc2MTEwNCxzaGFwZSA9IDMuODAzMTQxOTM0KQ0KdjIgPC0gcGRpc3QoZGlzdHJpYnV0aW9uID0gInN0ZCIsIHEgPSBNRVJWQUwucmVzLCBtdSA9IC0wLjAwMDMzMTIyMDcsIHNpZ21hID0gMC45OTI1NTE0MzgyLCBzaGFwZSA9IDMuOTkyNzM1MjY1NikNCnYzIDwtIHBkaXN0KGRpc3RyaWJ1dGlvbiA9ICJzdGQiLCBxID0gQ1JPQkVYLnJlcywgbXUgPSAxLjczNTI3MmUtMDUsIHNpZ21hID0gOS45MTk4MDRlLTAxLCBzaGFwZSA9IDMuMDUxMjA5ZSswMCkNCnY0IDwtIHBkaXN0KGRpc3RyaWJ1dGlvbiA9ICJzdGQiLCBxID0gTUFTSS5yZXMsIG11ID0gLTAuMDAwMTcxNDkwOCwgc2lnbWEgPSAxLjAxNzY1MzA3NDIsIHNoYXBlID0gMy40NDEyMjk1MzU2KQ0KdjUgPC0gcGRpc3QoZGlzdHJpYnV0aW9uID0gInN0ZCIsIHEgPSBNU00zMC5yZXMsIG11ID0gMC4wMDg1MzYxNjQsIHNpZ21hID0gMS4wMjA5NDI1MDgsIHNoYXBlID0gMy4wNzMxOTY5NDIpDQoNCmdvZnRlc3Q6OmN2bS50ZXN0KHUsICJwdW5pZiIpDQpnb2Z0ZXN0Ojpjdm0udGVzdCh2MSwgInB1bmlmIikNCmdvZnRlc3Q6OmN2bS50ZXN0KHYyLCAicHVuaWYiKQ0KZ29mdGVzdDo6Y3ZtLnRlc3QodjMsICJwdW5pZiIpDQpnb2Z0ZXN0Ojpjdm0udGVzdCh2NCwgInB1bmlmIikNCmdvZnRlc3Q6OmN2bS50ZXN0KHY1LCAicHVuaWYiKQ0KDQpnb2Z0ZXN0OjphZC50ZXN0KHUsICJwdW5pZiIpDQpnb2Z0ZXN0OjphZC50ZXN0KHYxLCAicHVuaWYiKQ0KZ29mdGVzdDo6YWQudGVzdCh2MiwgInB1bmlmIikNCmdvZnRlc3Q6OmFkLnRlc3QodjMsICJwdW5pZiIpDQpnb2Z0ZXN0OjphZC50ZXN0KHY0LCAicHVuaWYiKQ0KZ29mdGVzdDo6YWQudGVzdCh2NSwgInB1bmlmIikNCg0Ka3MudGVzdCh1LCAicHVuaWYiKQ0Ka3MudGVzdCh2MSwgInB1bmlmIikNCmtzLnRlc3QodjIsICJwdW5pZiIpDQprcy50ZXN0KHYzLCAicHVuaWYiKQ0Ka3MudGVzdCh2NCwgInB1bmlmIikNCmtzLnRlc3QodjUsICJwdW5pZiIpDQpgYGANCg0KIyMgNS4gQ09QVUxBDQoNCmBgYHtyfQ0KcHJpbnQoIlZp4buHdCBOYW0iKQ0KYWExIDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSAxLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTIgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDIsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhMyA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gMywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWE0IDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSAxMywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWE1IDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSA0LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTYgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDE0LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTcgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDUsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhOCA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gNiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWE5IDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSAxNiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWExMCA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gNywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWExMSA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gMTcsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhMTIgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDgsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhMTMgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDE4LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTE0IDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSA5LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTE1IDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSAxOSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWExNiA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gMTAsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhMTcgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDIwLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYWNvcHVsYWxpc3QgPC0gbGlzdChzdW1tYXJ5KGFhMSkkQUlDLHN1bW1hcnkoYWEyKSRBSUMsIHN1bW1hcnkoYWEzKSRBSUMsIHN1bW1hcnkoYWE0KSRBSUMsIHN1bW1hcnkoYWE1KSRBSUMsIHN1bW1hcnkoYWE2KSRBSUMsIHN1bW1hcnkoYWE3KSRBSUMsIHN1bW1hcnkoYWE4KSRBSUMsIHN1bW1hcnkoYWE5KSRBSUMsIHN1bW1hcnkoYWExMCkkQUlDLCBzdW1tYXJ5KGFhMTEpJEFJQywgc3VtbWFyeShhYTEyKSRBSUMsIHN1bW1hcnkoYWExMykkQUlDLCBzdW1tYXJ5KGFhMTQpJEFJQywgc3VtbWFyeShhYTE1KSRBSUMsIHN1bW1hcnkoYWExNikkQUlDLCBzdW1tYXJ5KGFhMTcpJEFJQykNCmFhY29wdWxhbGlzdA0KcHJpbnQoIkFyZ2VudGluYSIpDQphYjEgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDEsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiMiA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gMiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWIzIDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSAzLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjQgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDEzLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjUgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDQsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiNiA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gMTQsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiNyA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gNSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWI4IDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSA2LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjkgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDE2LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjEwIDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSA3LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjExIDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSAxNywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWIxMiA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gOCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWIxMyA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gMTgsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiMTQgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDksIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiMTUgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDE5LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjE2IDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSAxMCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWIxNyA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gMjAsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiY29wdWxhbGlzdCA8LSBsaXN0KHN1bW1hcnkoYWIxKSRBSUMsc3VtbWFyeShhYjIpJEFJQywgc3VtbWFyeShhYjMpJEFJQywgc3VtbWFyeShhYjQpJEFJQywgc3VtbWFyeShhYjUpJEFJQywgc3VtbWFyeShhYjYpJEFJQywgc3VtbWFyeShhYjcpJEFJQywgc3VtbWFyeShhYjgpJEFJQywgc3VtbWFyeShhYjkpJEFJQywgc3VtbWFyeShhYjEwKSRBSUMsIHN1bW1hcnkoYWIxMSkkQUlDLCBzdW1tYXJ5KGFiMTIpJEFJQywgc3VtbWFyeShhYjEzKSRBSUMsIHN1bW1hcnkoYWIxNCkkQUlDLCBzdW1tYXJ5KGFiMTUpJEFJQywgc3VtbWFyeShhYjE2KSRBSUMsIHN1bW1hcnkoYWIxNykkQUlDKQ0KYWJjb3B1bGFsaXN0DQpwcmludCgiQ3JvYXRpYSIpDQphYzEgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDEsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjMiA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gMiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWMzIDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSAzLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzQgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDEzLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzUgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDQsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjNiA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gMTQsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjNyA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gNSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWM4IDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSA2LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzkgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDE2LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzEwIDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSA3LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzExIDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSAxNywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWMxMiA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gOCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWMxMyA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gMTgsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjMTQgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDksIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjMTUgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDE5LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzE2IDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSAxMCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWMxNyA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gMjAsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjY29wdWxhbGlzdCA8LSBsaXN0KHN1bW1hcnkoYWMxKSRBSUMsc3VtbWFyeShhYzIpJEFJQywgc3VtbWFyeShhYzMpJEFJQywgc3VtbWFyeShhYzQpJEFJQywgc3VtbWFyeShhYzUpJEFJQywgc3VtbWFyeShhYzYpJEFJQywgc3VtbWFyeShhYzcpJEFJQywgc3VtbWFyeShhYzgpJEFJQywgc3VtbWFyeShhYzkpJEFJQywgc3VtbWFyeShhYzEwKSRBSUMsIHN1bW1hcnkoYWMxMSkkQUlDLCBzdW1tYXJ5KGFjMTIpJEFJQywgc3VtbWFyeShhYzEzKSRBSUMsIHN1bW1hcnkoYWMxNCkkQUlDLCBzdW1tYXJ5KGFjMTUpJEFJQywgc3VtbWFyeShhYzE2KSRBSUMsIHN1bW1hcnkoYWMxNykkQUlDKQ0KYWNjb3B1bGFsaXN0DQpwcmludCgiTW9yb2NjbyIpDQphZDEgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDEsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkMiA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gMiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQzIDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSAzLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDQgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDEzLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDUgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDQsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkNiA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gMTQsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkNyA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gNSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQ4IDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSA2LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDkgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDE2LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDEwIDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSA3LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDExIDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSAxNywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQxMiA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gOCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQxMyA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gMTgsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkMTQgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDksIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkMTUgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDE5LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDE2IDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSAxMCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQxNyA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gMjAsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkY29wdWxhbGlzdCA8LSBsaXN0KHN1bW1hcnkoYWQxKSRBSUMsc3VtbWFyeShhZDIpJEFJQywgc3VtbWFyeShhZDMpJEFJQywgc3VtbWFyeShhZDQpJEFJQywgc3VtbWFyeShhZDUpJEFJQywgc3VtbWFyeShhZDYpJEFJQywgc3VtbWFyeShhZDcpJEFJQywgc3VtbWFyeShhZDgpJEFJQywgc3VtbWFyeShhZDkpJEFJQywgc3VtbWFyeShhZDEwKSRBSUMsIHN1bW1hcnkoYWQxMSkkQUlDLCBzdW1tYXJ5KGFkMTIpJEFJQywgc3VtbWFyeShhZDEzKSRBSUMsIHN1bW1hcnkoYWQxNCkkQUlDLCBzdW1tYXJ5KGFkMTUpJEFJQywgc3VtbWFyeShhZDE2KSRBSUMsIHN1bW1hcnkoYWQxNykkQUlDKQ0KYWRjb3B1bGFsaXN0DQpwcmludCgiT21hbiIpDQphZTEgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDEsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlMiA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gMiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWUzIDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSAzLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTQgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDEzLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTUgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDQsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlNiA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gMTQsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlNyA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gNSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWU4IDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSA2LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTkgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDE2LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTEwIDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSA3LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTExIDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSAxNywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWUxMiA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gOCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWUxMyA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gMTgsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlMTQgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDksIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlMTUgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDE5LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTE2IDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSAxMCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWUxNyA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gMjAsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlY29wdWxhbGlzdCA8LSBsaXN0KHN1bW1hcnkoYWUxKSRBSUMsc3VtbWFyeShhZTIpJEFJQywgc3VtbWFyeShhZTMpJEFJQywgc3VtbWFyeShhZTQpJEFJQywgc3VtbWFyeShhZTUpJEFJQywgc3VtbWFyeShhZTYpJEFJQywgc3VtbWFyeShhZTcpJEFJQywgc3VtbWFyeShhZTgpJEFJQywgc3VtbWFyeShhZTkpJEFJQywgc3VtbWFyeShhZTEwKSRBSUMsIHN1bW1hcnkoYWUxMSkkQUlDLCBzdW1tYXJ5KGFlMTIpJEFJQywgc3VtbWFyeShhZTEzKSRBSUMsIHN1bW1hcnkoYWUxNCkkQUlDLCBzdW1tYXJ5KGFlMTUpJEFJQywgc3VtbWFyeShhZTE2KSRBSUMsIHN1bW1hcnkoYWUxNykkQUlDKQ0KYWVjb3B1bGFsaXN0DQpgYGANCg0KIyBDLiBUUk9ORyBDT1ZJRA0KDQojIyAxLiBOSOG6rFAgROG7riBMSeG7hlUNCg0KYGBge3J9DQpybShsaXN0PWxzKCkpDQpEQVRBIDwtIHJlYWRfeGxzeCgiQzovL1VzZXJzLy84NDg5Ni8vRGVza3RvcC8vREFUQS8vQ04zLUNPUFVMQS54bHN4Iiwgc2hlZXQ9IkR1ciIpDQpTUDUwMCA8LSBEQVRBJHkNClZOSSA8LSBEQVRBJHgxDQpNRVJWQUwgPC0gREFUQSR4Mg0KQ1JPQkVYIDwtIERBVEEkeDMNCk1BU0kgPC0gREFUQSR4NA0KTVNNMzAgPC0gREFUQSR4NQ0KYGBgDQoNCiMjIDIuIE1BIFRS4bqsTiBUxq/GoE5HIFFVQU4NCg0KYGBge3J9DQpjb3IoY2JpbmQoU1A1MDAsIFZOSSwgTUVSVkFMLCBDUk9CRVgsIE1BU0ksIE1TTTMwKSwgbWV0aG9kPSJwZWFyc29uIikNCmBgYA0KDQojIyAzLiBNw5QgSMOMTkggQVJNQS1HSlItR0FSQ0gNCg0KIyMjIDMuMS4gQVJNQQ0KDQpgYGB7cn0NCnByaW50KCJN4bu5IikNCmF1dG9hcmZpbWEoU1A1MDAsYXIubWF4ID0gMiwgbWEubWF4ID0gMiwgY3JpdGVyaW9uID0gIkFJQyIsIG1ldGhvZCA9ICJmdWxsIikkZml0QGZpdCRjb2VmDQpwcmludCgiVmnhu4d0IE5hbSIpDQphdXRvYXJmaW1hKFZOSSxhci5tYXggPSAyLCBtYS5tYXggPSAyLCBjcml0ZXJpb24gPSAiQUlDIiwgbWV0aG9kID0gImZ1bGwiKSRmaXRAZml0JGNvZWYNCnByaW50KCJBcmdlbnRpbmEiKQ0KYXV0b2FyZmltYShNRVJWQUwsYXIubWF4ID0gMiwgbWEubWF4ID0gMiwgY3JpdGVyaW9uID0gIkFJQyIsIG1ldGhvZCA9ICJmdWxsIikkZml0QGZpdCRjb2VmDQpwcmludCgiQ3JvYXRpYSIpDQphdXRvYXJmaW1hKENST0JFWCxhci5tYXggPSAyLCBtYS5tYXggPSAyLCBjcml0ZXJpb24gPSAiQUlDIiwgbWV0aG9kID0gImZ1bGwiKSRmaXRAZml0JGNvZWYNCnByaW50KCJNb3JvY2NvIikNCmF1dG9hcmZpbWEoTUFTSSxhci5tYXggPSAyLCBtYS5tYXggPSAyLCBjcml0ZXJpb24gPSAiQUlDIiwgbWV0aG9kID0gImZ1bGwiKSRmaXRAZml0JGNvZWYNCnByaW50KCJPbWFuIikNCmF1dG9hcmZpbWEoTVNNMzAsYXIubWF4ID0gMiwgbWEubWF4ID0gMiwgY3JpdGVyaW9uID0gIkFJQyIsIG1ldGhvZCA9ICJmdWxsIikkZml0QGZpdCRjb2VmDQpgYGANCg0KIyMjIDMuMi4gR0pSLUdBUkNIDQoNCmBgYHtyfQ0KcHJpbnQoIk3hu7kiKQ0Kc3A1MDAuZzExbiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQpzcDUwMC5nMTFzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0Kc3A1MDAuZzExc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0Kc3A1MDAuZzExZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCnNwNTAwLmcxMXNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCnNwNTAwLmcxMm4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0Kc3A1MDAuZzEycyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCnNwNTAwLmcxMnNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCnNwNTAwLmcxMmcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQpzcDUwMC5nMTJzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQpzcDUwMC5nMjFuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCnNwNTAwLmcyMXMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQpzcDUwMC5nMjFzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQpzcDUwMC5nMjFnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0Kc3A1MDAuZzIxc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0Kc3A1MDAuZzIybiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQpzcDUwMC5nMjJzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0Kc3A1MDAuZzIyc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0Kc3A1MDAuZzIyZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCnNwNTAwLmcyMnNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCnNwNTAwLmdhcmNoMTFuIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcxMW4gKSAjMQ0Kc3A1MDAuZ2FyY2gxMXMgPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzExcyApIA0Kc3A1MDAuZ2FyY2gxMXNzIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcxMXNzICkgDQpzcDUwMC5nYXJjaDExZyA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMTFnICkNCnNwNTAwLmdhcmNoMTFzZyA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMTFzZyApICM1DQpzcDUwMC5nYXJjaDEybiA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMTJuICkNCnNwNTAwLmdhcmNoMTJzIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcxMnMgKQ0Kc3A1MDAuZ2FyY2gxMnNzIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcxMnNzICkNCnNwNTAwLmdhcmNoMTJnPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzEyZyApDQpzcDUwMC5nYXJjaDEyc2cgPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzEyc2cgKSAjMTANCnNwNTAwLmdhcmNoMjFuIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcyMW4gKQ0Kc3A1MDAuZ2FyY2gyMXMgPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzIxcyApDQpzcDUwMC5nYXJjaDIxc3MgPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzIxc3MpDQpzcDUwMC5nYXJjaDIxZyA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMjFnICkNCnNwNTAwLmdhcmNoMjFzZyA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMjFzZyApICMxNQ0Kc3A1MDAuZ2FyY2gyMm4gPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzIybiApDQpzcDUwMC5nYXJjaDIycyA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMjJzICkNCnNwNTAwLmdhcmNoMjJzcyA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMjJzcyApDQpzcDUwMC5nYXJjaDIyZzwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcyMmcgKQ0Kc3A1MDAuZ2FyY2gyMnNnIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcyMnNnICkNCm1vZGVsLmFpYy5saXN0IDwtIGxpc3Qoc3A1MDAuZ2FyY2gxMW4sc3A1MDAuZ2FyY2gxMXMsc3A1MDAuZ2FyY2gxMXNzLHNwNTAwLmdhcmNoMTFnLHNwNTAwLmdhcmNoMTFzZyxzcDUwMC5nYXJjaDEybixzcDUwMC5nYXJjaDEycyxzcDUwMC5nYXJjaDEyc3Msc3A1MDAuZ2FyY2gxMmcsc3A1MDAuZ2FyY2gxMnNnLHNwNTAwLmdhcmNoMjFuLHNwNTAwLmdhcmNoMjFzLHNwNTAwLmdhcmNoMjFzcyxzcDUwMC5nYXJjaDIxZyxzcDUwMC5nYXJjaDIxc2csc3A1MDAuZ2FyY2gyMm4sc3A1MDAuZ2FyY2gyMnMsc3A1MDAuZ2FyY2gyMnNzLHNwNTAwLmdhcmNoMjJnLHNwNTAwLmdhcmNoMjJzZykNCm1vZGVsLmFpYyA8LSBzYXBwbHkobW9kZWwuYWljLmxpc3QsIGluZm9jcml0ZXJpYSlbLTQsXVstMyxdWy0yLF0NCm1pbl9wb3MgPC0gd2hpY2gobW9kZWwuYWljID09IG1pbihtb2RlbC5haWMpLCBhcnIuaW5kID0gVFJVRSkNCm1pbl9wb3MNCnNwNTAwLmdhcmNoMjFzc0BmaXQkbWF0Y29lZg0KcHJpbnQoIlZp4buHdCBOYW0iKQ0Kdm5pLmcxMW4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0Kdm5pLmcxMXMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQp2bmkuZzExc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0Kdm5pLmcxMWcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQp2bmkuZzExc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0Kdm5pLmcxMm4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0Kdm5pLmcxMnMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQp2bmkuZzEyc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0Kdm5pLmcxMmcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQp2bmkuZzEyc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0Kdm5pLmcyMW4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0Kdm5pLmcyMXMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQp2bmkuZzIxc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0Kdm5pLmcyMWcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQp2bmkuZzIxc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0Kdm5pLmcyMm4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0Kdm5pLmcyMnMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQp2bmkuZzIyc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0Kdm5pLmcyMmcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQp2bmkuZzIyc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0Kdm5pLmdhcmNoMTFuIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzExbiApICMxDQp2bmkuZ2FyY2gxMXMgPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMTFzICkgDQp2bmkuZ2FyY2gxMXNzIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzExc3MgKSANCnZuaS5nYXJjaDExZyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcxMWcgKQ0Kdm5pLmdhcmNoMTFzZyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcxMXNnICkgIzUNCnZuaS5nYXJjaDEybiA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcxMm4gKQ0Kdm5pLmdhcmNoMTJzIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzEycyApDQp2bmkuZ2FyY2gxMnNzIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzEyc3MgKQ0Kdm5pLmdhcmNoMTJnPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMTJnICkNCnZuaS5nYXJjaDEyc2cgPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMTJzZyApICMxMA0Kdm5pLmdhcmNoMjFuIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzIxbiApDQp2bmkuZ2FyY2gyMXMgPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMjFzICkNCnZuaS5nYXJjaDIxc3MgPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMjFzcykNCnZuaS5nYXJjaDIxZyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcyMWcgKQ0Kdm5pLmdhcmNoMjFzZyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcyMXNnICkgIzE1DQp2bmkuZ2FyY2gyMm4gPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMjJuICkNCnZuaS5nYXJjaDIycyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcyMnMgKQ0Kdm5pLmdhcmNoMjJzcyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcyMnNzICkNCiN2bmkuZ2FyY2gyMmc8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcyMmcgKQ0Kdm5pLmdhcmNoMjJzZyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcyMnNnICkgIzE5DQptb2RlbC5haWMubGlzdCA8LSBsaXN0KHZuaS5nYXJjaDExbix2bmkuZ2FyY2gxMXMsdm5pLmdhcmNoMTFzcyx2bmkuZ2FyY2gxMWcsdm5pLmdhcmNoMTFzZyx2bmkuZ2FyY2gxMm4sdm5pLmdhcmNoMTJzLHZuaS5nYXJjaDEyc3Msdm5pLmdhcmNoMTJnLHZuaS5nYXJjaDEyc2csdm5pLmdhcmNoMjFuLHZuaS5nYXJjaDIxcyx2bmkuZ2FyY2gyMXNzLHZuaS5nYXJjaDIxZyx2bmkuZ2FyY2gyMXNnLHZuaS5nYXJjaDIybix2bmkuZ2FyY2gyMnMsdm5pLmdhcmNoMjJzcyx2bmkuZ2FyY2gyMnNnKQ0KbW9kZWwuYWljIDwtIHNhcHBseShtb2RlbC5haWMubGlzdCwgaW5mb2NyaXRlcmlhKVstNCxdWy0zLF1bLTIsXQ0KbWluX3BvcyA8LSB3aGljaChtb2RlbC5haWMgPT0gbWluKG1vZGVsLmFpYyksIGFyci5pbmQgPSBUUlVFKQ0KbWluX3Bvcw0Kdm5pLmdhcmNoMTFzQGZpdCRtYXRjb2VmDQpwcmludCgiQXJnZW50aW5hIikNCm1lcnZhbC5nMTFuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1lcnZhbC5nMTFzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KbWVydmFsLmcxMXNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1lcnZhbC5nMTFnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbWVydmFsLmcxMXNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCm1lcnZhbC5nMTJuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1lcnZhbC5nMTJzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KbWVydmFsLmcxMnNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1lcnZhbC5nMTJnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbWVydmFsLmcxMnNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCm1lcnZhbC5nMjFuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1lcnZhbC5nMjFzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KbWVydmFsLmcyMXNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1lcnZhbC5nMjFnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbWVydmFsLmcyMXNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCm1lcnZhbC5nMjJuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1lcnZhbC5nMjJzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KbWVydmFsLmcyMnNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1lcnZhbC5nMjJnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbWVydmFsLmcyMnNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCm1lcnZhbC5nYXJjaDExbiA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMTFuICkgIzENCm1lcnZhbC5nYXJjaDExcyA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMTFzICkgDQptZXJ2YWwuZ2FyY2gxMXNzIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcxMXNzICkgDQptZXJ2YWwuZ2FyY2gxMWcgPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzExZyApDQptZXJ2YWwuZ2FyY2gxMXNnIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcxMXNnICkgIzUNCm1lcnZhbC5nYXJjaDEybiA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMTJuICkNCm1lcnZhbC5nYXJjaDEycyA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMTJzICkNCm1lcnZhbC5nYXJjaDEyc3MgPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzEyc3MgKQ0KbWVydmFsLmdhcmNoMTJnPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzEyZyApDQptZXJ2YWwuZ2FyY2gxMnNnIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcxMnNnICkgIzEwDQptZXJ2YWwuZ2FyY2gyMW4gPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzIxbiApDQptZXJ2YWwuZ2FyY2gyMXMgPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzIxcyApDQptZXJ2YWwuZ2FyY2gyMXNzIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcyMXNzKQ0KbWVydmFsLmdhcmNoMjFnIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcyMWcgKQ0KbWVydmFsLmdhcmNoMjFzZyA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMjFzZyApICMxNQ0KbWVydmFsLmdhcmNoMjJuIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcyMm4gKQ0KbWVydmFsLmdhcmNoMjJzIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcyMnMgKQ0KbWVydmFsLmdhcmNoMjJzcyA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMjJzcyApDQptZXJ2YWwuZ2FyY2gyMmc8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMjJnICkNCm1lcnZhbC5nYXJjaDIyc2cgPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzIyc2cgKQ0KbW9kZWwuYWljLmxpc3QgPC0gbGlzdChtZXJ2YWwuZ2FyY2gxMW4sbWVydmFsLmdhcmNoMTFzLG1lcnZhbC5nYXJjaDExc3MsbWVydmFsLmdhcmNoMTFnLG1lcnZhbC5nYXJjaDExc2csbWVydmFsLmdhcmNoMTJuLG1lcnZhbC5nYXJjaDEycyxtZXJ2YWwuZ2FyY2gxMnNzLG1lcnZhbC5nYXJjaDEyZyxtZXJ2YWwuZ2FyY2gxMnNnLG1lcnZhbC5nYXJjaDIxbixtZXJ2YWwuZ2FyY2gyMXMsbWVydmFsLmdhcmNoMjFzcyxtZXJ2YWwuZ2FyY2gyMWcsbWVydmFsLmdhcmNoMjFzZyxtZXJ2YWwuZ2FyY2gyMm4sbWVydmFsLmdhcmNoMjJzLG1lcnZhbC5nYXJjaDIyc3MsbWVydmFsLmdhcmNoMjJnLG1lcnZhbC5nYXJjaDIyc2cpDQptb2RlbC5haWMgPC0gc2FwcGx5KG1vZGVsLmFpYy5saXN0LCBpbmZvY3JpdGVyaWEpWy00LF1bLTMsXVstMixdDQptaW5fcG9zIDwtIHdoaWNoKG1vZGVsLmFpYyA9PSBtaW4obW9kZWwuYWljKSwgYXJyLmluZCA9IFRSVUUpDQptaW5fcG9zDQptZXJ2YWwuZ2FyY2gyMXNAZml0JG1hdGNvZWYNCnByaW50KCJDcm90aWEiKQ0KY3JvYmV4LmcxMW4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCmNyb2JleC5nMTFzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCmNyb2JleC5nMTFzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0KY3JvYmV4LmcxMWcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KY3JvYmV4LmcxMXNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQpjcm9iZXguZzEybiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KY3JvYmV4LmcxMnMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KY3JvYmV4LmcxMnNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQpjcm9iZXguZzEyZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQpjcm9iZXguZzEyc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCmNyb2JleC5nMjFuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQpjcm9iZXguZzIxcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQpjcm9iZXguZzIxc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCmNyb2JleC5nMjFnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCmNyb2JleC5nMjFzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KY3JvYmV4LmcyMm4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCmNyb2JleC5nMjJzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCmNyb2JleC5nMjJzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0KY3JvYmV4LmcyMmcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KY3JvYmV4LmcyMnNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQpjcm9iZXguZ2FyY2gxMW4gPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzExbiApICMxDQpjcm9iZXguZ2FyY2gxMXMgPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzExcyApIA0KY3JvYmV4LmdhcmNoMTFzcyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMTFzcyApIA0KY3JvYmV4LmdhcmNoMTFnIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcxMWcgKQ0KY3JvYmV4LmdhcmNoMTFzZyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMTFzZyApICM1DQpjcm9iZXguZ2FyY2gxMm4gPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzEybiApDQpjcm9iZXguZ2FyY2gxMnMgPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzEycyApDQpjcm9iZXguZ2FyY2gxMnNzIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcxMnNzICkNCmNyb2JleC5nYXJjaDEyZzwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcxMmcgKQ0KY3JvYmV4LmdhcmNoMTJzZyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMTJzZyApICMxMA0KY3JvYmV4LmdhcmNoMjFuIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcyMW4gKQ0KY3JvYmV4LmdhcmNoMjFzIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcyMXMgKQ0KY3JvYmV4LmdhcmNoMjFzcyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMjFzcykNCmNyb2JleC5nYXJjaDIxZyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMjFnICkNCmNyb2JleC5nYXJjaDIxc2cgPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzIxc2cgKSAjMTUNCmNyb2JleC5nYXJjaDIybiA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMjJuICkNCmNyb2JleC5nYXJjaDIycyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMjJzICkNCmNyb2JleC5nYXJjaDIyc3MgPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzIyc3MgKQ0KY3JvYmV4LmdhcmNoMjJnPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzIyZyApDQpjcm9iZXguZ2FyY2gyMnNnIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcyMnNnICkNCm1vZGVsLmFpYy5saXN0IDwtIGxpc3QoY3JvYmV4LmdhcmNoMTFuLGNyb2JleC5nYXJjaDExcyxjcm9iZXguZ2FyY2gxMXNzLGNyb2JleC5nYXJjaDExZyxjcm9iZXguZ2FyY2gxMXNnLGNyb2JleC5nYXJjaDEybixjcm9iZXguZ2FyY2gxMnMsY3JvYmV4LmdhcmNoMTJzcyxjcm9iZXguZ2FyY2gxMmcsY3JvYmV4LmdhcmNoMTJzZyxjcm9iZXguZ2FyY2gyMW4sY3JvYmV4LmdhcmNoMjFzLGNyb2JleC5nYXJjaDIxc3MsY3JvYmV4LmdhcmNoMjFnLGNyb2JleC5nYXJjaDIxc2csY3JvYmV4LmdhcmNoMjJuLGNyb2JleC5nYXJjaDIycyxjcm9iZXguZ2FyY2gyMnNzLGNyb2JleC5nYXJjaDIyZyxjcm9iZXguZ2FyY2gyMnNnKQ0KbW9kZWwuYWljIDwtIHNhcHBseShtb2RlbC5haWMubGlzdCwgaW5mb2NyaXRlcmlhKVstNCxdWy0zLF1bLTIsXQ0KbWluX3BvcyA8LSB3aGljaChtb2RlbC5haWMgPT0gbWluKG1vZGVsLmFpYyksIGFyci5pbmQgPSBUUlVFKQ0KbWluX3Bvcw0KY3JvYmV4LmdhcmNoMTFzQGZpdCRtYXRjb2VmDQpwcmludCgiTW9yb2NjbyIpDQptYXNpLmcxMW4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1hc2kuZzExcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQptYXNpLmcxMXNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQptYXNpLmcxMWcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbWFzaS5nMTFzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KbWFzaS5nMTJuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQptYXNpLmcxMnMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KbWFzaS5nMTJzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0KbWFzaS5nMTJnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCm1hc2kuZzEyc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCm1hc2kuZzIxbiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KbWFzaS5nMjFzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCm1hc2kuZzIxc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1hc2kuZzIxZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQptYXNpLmcyMXNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQptYXNpLmcyMm4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1hc2kuZzIycyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQptYXNpLmcyMnNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQptYXNpLmcyMmcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbWFzaS5nMjJzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQptYXNpLmdhcmNoMTFuIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzExbiApICMxDQptYXNpLmdhcmNoMTFzIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzExcyApIA0KbWFzaS5nYXJjaDExc3MgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMTFzcyApIA0KbWFzaS5nYXJjaDExZyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcxMWcgKQ0KbWFzaS5nYXJjaDExc2cgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMTFzZyApICM1DQptYXNpLmdhcmNoMTJuIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzEybiApDQptYXNpLmdhcmNoMTJzIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzEycyApDQptYXNpLmdhcmNoMTJzcyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcxMnNzICkNCm1hc2kuZ2FyY2gxMmc8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcxMmcgKQ0KbWFzaS5nYXJjaDEyc2cgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMTJzZyApICMxMA0KbWFzaS5nYXJjaDIxbiA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcyMW4gKQ0KbWFzaS5nYXJjaDIxcyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcyMXMgKQ0KbWFzaS5nYXJjaDIxc3MgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMjFzcykNCm1hc2kuZ2FyY2gyMWcgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMjFnICkNCm1hc2kuZ2FyY2gyMXNnIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzIxc2cgKSAjMTUNCiNtYXNpLmdhcmNoMjJuIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzIybiApDQptYXNpLmdhcmNoMjJzIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzIycyApICMxNg0KbWFzaS5nYXJjaDIyc3MgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMjJzcyApDQptYXNpLmdhcmNoMjJnPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMjJnICkNCm1hc2kuZ2FyY2gyMnNnIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzIyc2cgKQ0KbW9kZWwuYWljLmxpc3QgPC0gbGlzdChtYXNpLmdhcmNoMTFuLG1hc2kuZ2FyY2gxMXMsbWFzaS5nYXJjaDExc3MsbWFzaS5nYXJjaDExZyxtYXNpLmdhcmNoMTFzZyxtYXNpLmdhcmNoMTJuLG1hc2kuZ2FyY2gxMnMsbWFzaS5nYXJjaDEyc3MsbWFzaS5nYXJjaDEyZyxtYXNpLmdhcmNoMTJzZyxtYXNpLmdhcmNoMjFuLG1hc2kuZ2FyY2gyMXMsbWFzaS5nYXJjaDIxc3MsbWFzaS5nYXJjaDIxZyxtYXNpLmdhcmNoMjFzZyxtYXNpLmdhcmNoMjJzLG1hc2kuZ2FyY2gyMnNzLG1hc2kuZ2FyY2gyMmcsbWFzaS5nYXJjaDIyc2cpDQptb2RlbC5haWMgPC0gc2FwcGx5KG1vZGVsLmFpYy5saXN0LCBpbmZvY3JpdGVyaWEpWy00LF1bLTMsXVstMixdDQptaW5fcG9zIDwtIHdoaWNoKG1vZGVsLmFpYyA9PSBtaW4obW9kZWwuYWljKSwgYXJyLmluZCA9IFRSVUUpDQptaW5fcG9zDQptYXNpLmdhcmNoMTJzQGZpdCRtYXRjb2VmDQpwcmludCgiT21hbiIpDQptc20zMC5nMTFuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1zbTMwLmcxMXMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQptc20zMC5nMTFzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMSwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQptc20zMC5nMTFnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbXNtMzAuZzExc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KbXNtMzAuZzEybiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMSwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQptc20zMC5nMTJzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KbXNtMzAuZzEyc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0KbXNtMzAuZzEyZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMSwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCm1zbTMwLmcxMnNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCm1zbTMwLmcyMW4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KbXNtMzAuZzIxcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMSwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCm1zbTMwLmcyMXNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1zbTMwLmcyMWcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQptc20zMC5nMjFzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMSwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQptc20zMC5nMjJuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1zbTMwLmcyMnMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQptc20zMC5nMjJzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMSwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQptc20zMC5nMjJnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbXNtMzAuZzIyc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KbXNtMzAuZ2FyY2gxMW4gPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcxMW4gKSAjMQ0KbXNtMzAuZ2FyY2gxMXMgPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcxMXMgKSANCm1zbTMwLmdhcmNoMTFzcyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzExc3MgKSANCm1zbTMwLmdhcmNoMTFnIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMTFnICkNCm1zbTMwLmdhcmNoMTFzZyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzExc2cgKSAjNQ0KbXNtMzAuZ2FyY2gxMm4gPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcxMm4gKQ0KbXNtMzAuZ2FyY2gxMnMgPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcxMnMgKQ0KbXNtMzAuZ2FyY2gxMnNzIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMTJzcyApDQptc20zMC5nYXJjaDEyZzwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMTJnICkNCm1zbTMwLmdhcmNoMTJzZyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzEyc2cgKSAjMTANCm1zbTMwLmdhcmNoMjFuIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMjFuICkNCm1zbTMwLmdhcmNoMjFzIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMjFzICkNCm1zbTMwLmdhcmNoMjFzcyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzIxc3MpDQptc20zMC5nYXJjaDIxZyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzIxZyApDQptc20zMC5nYXJjaDIxc2cgPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcyMXNnICkgIzE1DQptc20zMC5nYXJjaDIybiA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzIybiApDQptc20zMC5nYXJjaDIycyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzIycyApDQptc20zMC5nYXJjaDIyc3MgPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcyMnNzICkNCm1zbTMwLmdhcmNoMjJnPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcyMmcgKQ0KbXNtMzAuZ2FyY2gyMnNnIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMjJzZyApDQptb2RlbC5haWMubGlzdCA8LSBsaXN0KG1zbTMwLmdhcmNoMTFuLG1zbTMwLmdhcmNoMTFzLG1zbTMwLmdhcmNoMTFzcyxtc20zMC5nYXJjaDExZyxtc20zMC5nYXJjaDExc2csbXNtMzAuZ2FyY2gxMm4sbXNtMzAuZ2FyY2gxMnMsbXNtMzAuZ2FyY2gxMnNzLG1zbTMwLmdhcmNoMTJnLG1zbTMwLmdhcmNoMTJzZyxtc20zMC5nYXJjaDIxbixtc20zMC5nYXJjaDIxcyxtc20zMC5nYXJjaDIxc3MsbXNtMzAuZ2FyY2gyMWcsbXNtMzAuZ2FyY2gyMXNnLG1zbTMwLmdhcmNoMjJuLG1zbTMwLmdhcmNoMjJzLG1zbTMwLmdhcmNoMjJzcyxtc20zMC5nYXJjaDIyZyxtc20zMC5nYXJjaDIyc2cpDQptb2RlbC5haWMgPC0gc2FwcGx5KG1vZGVsLmFpYy5saXN0LCBpbmZvY3JpdGVyaWEpWy00LF1bLTMsXVstMixdDQptaW5fcG9zIDwtIHdoaWNoKG1vZGVsLmFpYyA9PSBtaW4obW9kZWwuYWljKSwgYXJyLmluZCA9IFRSVUUpDQptaW5fcG9zDQptc20zMC5nYXJjaDExc0BmaXQkbWF0Y29lZg0KYGBgDQoNCiMjIDQuIENIVeG6qE4gSMOTQSBQSOG6pk4gRMavDQoNCmBgYHtyLCB3YXJuaW5nPUZBTFNFfQ0KU1A1MDBfbW9kZWwgPC0gc3A1MDAuZ2FyY2gyMXNzDQpWTklfbW9kZWwgPC0gdm5pLmdhcmNoMTFzDQpNRVJWQUxfbW9kZWwgPC0gbWVydmFsLmdhcmNoMjFzDQpDUk9CRVhfbW9kZWwgPC0gY3JvYmV4LmdhcmNoMTFzDQpNQVNJX21vZGVsIDwtIG1hc2kuZ2FyY2gxMnMNCk1TTTMwX21vZGVsIDwtIG1zbTMwLmdhcmNoMTFzDQoNClNQNTAwLnJlcyA8LSByZXNpZHVhbHMoU1A1MDBfbW9kZWwpL3NpZ21hKFNQNTAwX21vZGVsKQ0KVk5JLnJlcyA8LSByZXNpZHVhbHMoVk5JX21vZGVsKS9zaWdtYShWTklfbW9kZWwpDQpNRVJWQUwucmVzIDwtIHJlc2lkdWFscyhNRVJWQUxfbW9kZWwpL3NpZ21hKE1FUlZBTF9tb2RlbCkNCkNST0JFWC5yZXMgPC0gcmVzaWR1YWxzKENST0JFWF9tb2RlbCkvc2lnbWEoQ1JPQkVYX21vZGVsKQ0KTUFTSS5yZXMgPC0gcmVzaWR1YWxzKE1BU0lfbW9kZWwpL3NpZ21hKE1BU0lfbW9kZWwpDQpNU00zMC5yZXMgPC0gcmVzaWR1YWxzKE1TTTMwX21vZGVsKS9zaWdtYShNU00zMF9tb2RlbCkNCg0KZml0ZGlzdChkaXN0cmlidXRpb24gPSAic3N0ZCIsIFNQNTAwLnJlcywgY29udHJvbCA9IGxpc3QoKSkkcGFycw0KZml0ZGlzdChkaXN0cmlidXRpb24gPSAic3RkIiwgVk5JLnJlcywgY29udHJvbCA9IGxpc3QoKSkkcGFycw0KZml0ZGlzdChkaXN0cmlidXRpb24gPSAic3RkIiwgTUVSVkFMLnJlcywgY29udHJvbCA9IGxpc3QoKSkkcGFycw0KZml0ZGlzdChkaXN0cmlidXRpb24gPSAic3RkIiwgQ1JPQkVYLnJlcywgY29udHJvbCA9IGxpc3QoKSkkcGFycw0KZml0ZGlzdChkaXN0cmlidXRpb24gPSAic3RkIiwgTUFTSS5yZXMsIGNvbnRyb2wgPSBsaXN0KCkpJHBhcnMNCmZpdGRpc3QoZGlzdHJpYnV0aW9uID0gInN0ZCIsIE1TTTMwLnJlcywgY29udHJvbCA9IGxpc3QoKSkkcGFycw0KDQp1IDwtIHBkaXN0KGRpc3RyaWJ1dGlvbiA9ICJzc3RkIiwgcSA9IFNQNTAwLnJlcywgbXUgPSAwLjAyMzM3MjcxLCBzaWdtYSA9IDAuOTYwMDk4MDgsIHNrZXc9IDAuNzk0MzU3NzYsc2hhcGUgPSA0LjIwODI3MjY3KQ0KdjEgPC0gcGRpc3QoZGlzdHJpYnV0aW9uID0gInN0ZCIsIHEgPSBWTkkucmVzLCBtdSA9MC4wMDE2NzAyNzMsIHNpZ21hID0gMy44NjY2NTc2OTEsIHNoYXBlPSAyLjAxMDAwMDE1MykNCnYyIDwtIHBkaXN0KGRpc3RyaWJ1dGlvbiA9ICJzdGQiLCBxID0gTUVSVkFMLnJlcywgbXUgPSAwLjAxMTQ4ODM3LCBzaWdtYSA9IDAuOTg1OTExODQsIHNoYXBlID0gNC4xMDE3NzAxNykNCnYzIDwtIHBkaXN0KGRpc3RyaWJ1dGlvbiA9ICJzdGQiLCBxID0gQ1JPQkVYLnJlcywgbXUgPSAtMC4wMDM3OTI1NzgsIHNpZ21hID0gMC44NTQxOTI3OTksIHNoYXBlID0gMi41MjUxNzQ1NjcpDQp2NCA8LSBwZGlzdChkaXN0cmlidXRpb24gPSAic3RkIiwgcSA9IE1BU0kucmVzLCBtdSA9IC0wLjAwNTI2ODM0Nywgc2lnbWEgPSAxLjEzOTk0OTA0NSwgc2hhcGUgPSAyLjU0NDEwMTMzOSkNCnY1IDwtIHBkaXN0KGRpc3RyaWJ1dGlvbiA9ICJzdGQiLCBxID0gTVNNMzAucmVzLCBtdSA9IDAuMDAzMjE4Njg0LCBzaWdtYSA9IDEuMDY0MDM1Mzg0LCBzaGFwZSA9IDIuODQ3MTQ4NDE5KQ0KDQpnb2Z0ZXN0Ojpjdm0udGVzdCh1LCAicHVuaWYiKQ0KZ29mdGVzdDo6Y3ZtLnRlc3QodjEsICJwdW5pZiIpDQpnb2Z0ZXN0Ojpjdm0udGVzdCh2MiwgInB1bmlmIikNCmdvZnRlc3Q6OmN2bS50ZXN0KHYzLCAicHVuaWYiKQ0KZ29mdGVzdDo6Y3ZtLnRlc3QodjQsICJwdW5pZiIpDQpnb2Z0ZXN0Ojpjdm0udGVzdCh2NSwgInB1bmlmIikNCg0KZ29mdGVzdDo6YWQudGVzdCh1LCAicHVuaWYiKQ0KZ29mdGVzdDo6YWQudGVzdCh2MSwgInB1bmlmIikNCmdvZnRlc3Q6OmFkLnRlc3QodjIsICJwdW5pZiIpDQpnb2Z0ZXN0OjphZC50ZXN0KHYzLCAicHVuaWYiKQ0KZ29mdGVzdDo6YWQudGVzdCh2NCwgInB1bmlmIikNCmdvZnRlc3Q6OmFkLnRlc3QodjUsICJwdW5pZiIpDQoNCmtzLnRlc3QodSwgInB1bmlmIikNCmtzLnRlc3QodjEsICJwdW5pZiIpDQprcy50ZXN0KHYyLCAicHVuaWYiKQ0Ka3MudGVzdCh2MywgInB1bmlmIikNCmtzLnRlc3QodjQsICJwdW5pZiIpDQprcy50ZXN0KHY1LCAicHVuaWYiKQ0KYGBgDQoNCiMjIDUuIENPUFVMQQ0KDQpgYGB7cn0NCnByaW50KCJWaeG7h3QgTmFtIikNCmFhMSA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gMSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWEyIDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSAyLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTMgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDMsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhNCA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gMTMsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhNSA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gNCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWE2IDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSAxNCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWE3IDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSA1LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTggPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDYsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhOSA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gMTYsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhMTAgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDcsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhMTEgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDE3LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTEyIDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSA4LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTEzIDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSAxOCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWExNCA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gOSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWExNSA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gMTksIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhMTYgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDEwLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTE3IDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSAyMCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWFjb3B1bGFsaXN0IDwtIGxpc3Qoc3VtbWFyeShhYTEpJEFJQyxzdW1tYXJ5KGFhMikkQUlDLCBzdW1tYXJ5KGFhMykkQUlDLCBzdW1tYXJ5KGFhNCkkQUlDLCBzdW1tYXJ5KGFhNSkkQUlDLCBzdW1tYXJ5KGFhNikkQUlDLCBzdW1tYXJ5KGFhNykkQUlDLCBzdW1tYXJ5KGFhOCkkQUlDLCBzdW1tYXJ5KGFhOSkkQUlDLCBzdW1tYXJ5KGFhMTApJEFJQywgc3VtbWFyeShhYTExKSRBSUMsIHN1bW1hcnkoYWExMikkQUlDLCBzdW1tYXJ5KGFhMTMpJEFJQywgc3VtbWFyeShhYTE0KSRBSUMsIHN1bW1hcnkoYWExNSkkQUlDLCBzdW1tYXJ5KGFhMTYpJEFJQywgc3VtbWFyeShhYTE3KSRBSUMpDQphYWNvcHVsYWxpc3QNCnByaW50KCJBcmdlbnRpbmEiKQ0KYWIxIDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSAxLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjIgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDIsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiMyA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gMywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWI0IDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSAxMywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWI1IDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSA0LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjYgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDE0LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjcgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDUsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiOCA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gNiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWI5IDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSAxNiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWIxMCA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gNywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWIxMSA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gMTcsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiMTIgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDgsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiMTMgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDE4LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjE0IDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSA5LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjE1IDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSAxOSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWIxNiA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gMTAsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiMTcgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDIwLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYmNvcHVsYWxpc3QgPC0gbGlzdChzdW1tYXJ5KGFiMSkkQUlDLHN1bW1hcnkoYWIyKSRBSUMsIHN1bW1hcnkoYWIzKSRBSUMsIHN1bW1hcnkoYWI0KSRBSUMsIHN1bW1hcnkoYWI1KSRBSUMsIHN1bW1hcnkoYWI2KSRBSUMsIHN1bW1hcnkoYWI3KSRBSUMsIHN1bW1hcnkoYWI4KSRBSUMsIHN1bW1hcnkoYWI5KSRBSUMsIHN1bW1hcnkoYWIxMCkkQUlDLCBzdW1tYXJ5KGFiMTEpJEFJQywgc3VtbWFyeShhYjEyKSRBSUMsIHN1bW1hcnkoYWIxMykkQUlDLCBzdW1tYXJ5KGFiMTQpJEFJQywgc3VtbWFyeShhYjE1KSRBSUMsIHN1bW1hcnkoYWIxNikkQUlDLCBzdW1tYXJ5KGFiMTcpJEFJQykNCmFiY29wdWxhbGlzdA0KcHJpbnQoIkNyb2F0aWEiKQ0KYWMxIDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSAxLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzIgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDIsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjMyA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gMywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWM0IDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSAxMywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWM1IDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSA0LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzYgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDE0LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzcgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDUsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjOCA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gNiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWM5IDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSAxNiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWMxMCA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gNywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWMxMSA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gMTcsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjMTIgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDgsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjMTMgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDE4LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzE0IDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSA5LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzE1IDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSAxOSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWMxNiA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gMTAsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjMTcgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDIwLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphY2NvcHVsYWxpc3QgPC0gbGlzdChzdW1tYXJ5KGFjMSkkQUlDLHN1bW1hcnkoYWMyKSRBSUMsIHN1bW1hcnkoYWMzKSRBSUMsIHN1bW1hcnkoYWM0KSRBSUMsIHN1bW1hcnkoYWM1KSRBSUMsIHN1bW1hcnkoYWM2KSRBSUMsIHN1bW1hcnkoYWM3KSRBSUMsIHN1bW1hcnkoYWM4KSRBSUMsIHN1bW1hcnkoYWM5KSRBSUMsIHN1bW1hcnkoYWMxMCkkQUlDLCBzdW1tYXJ5KGFjMTEpJEFJQywgc3VtbWFyeShhYzEyKSRBSUMsIHN1bW1hcnkoYWMxMykkQUlDLCBzdW1tYXJ5KGFjMTQpJEFJQywgc3VtbWFyeShhYzE1KSRBSUMsIHN1bW1hcnkoYWMxNikkQUlDLCBzdW1tYXJ5KGFjMTcpJEFJQykNCmFjY29wdWxhbGlzdA0KcHJpbnQoIk1vcm9jY28iKQ0KYWQxIDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSAxLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDIgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDIsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkMyA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gMywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQ0IDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSAxMywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQ1IDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSA0LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDYgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDE0LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDcgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDUsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkOCA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gNiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQ5IDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSAxNiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQxMCA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gNywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQxMSA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gMTcsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkMTIgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDgsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkMTMgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDE4LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDE0IDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSA5LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDE1IDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSAxOSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQxNiA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gMTAsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkMTcgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDIwLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZGNvcHVsYWxpc3QgPC0gbGlzdChzdW1tYXJ5KGFkMSkkQUlDLHN1bW1hcnkoYWQyKSRBSUMsIHN1bW1hcnkoYWQzKSRBSUMsIHN1bW1hcnkoYWQ0KSRBSUMsIHN1bW1hcnkoYWQ1KSRBSUMsIHN1bW1hcnkoYWQ2KSRBSUMsIHN1bW1hcnkoYWQ3KSRBSUMsIHN1bW1hcnkoYWQ4KSRBSUMsIHN1bW1hcnkoYWQ5KSRBSUMsIHN1bW1hcnkoYWQxMCkkQUlDLCBzdW1tYXJ5KGFkMTEpJEFJQywgc3VtbWFyeShhZDEyKSRBSUMsIHN1bW1hcnkoYWQxMykkQUlDLCBzdW1tYXJ5KGFkMTQpJEFJQywgc3VtbWFyeShhZDE1KSRBSUMsIHN1bW1hcnkoYWQxNikkQUlDLCBzdW1tYXJ5KGFkMTcpJEFJQykNCmFkY29wdWxhbGlzdA0KcHJpbnQoIk9tYW4iKQ0KYWUxIDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSAxLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTIgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDIsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlMyA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gMywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWU0IDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSAxMywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWU1IDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSA0LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTYgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDE0LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTcgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDUsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlOCA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gNiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWU5IDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSAxNiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWUxMCA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gNywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWUxMSA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gMTcsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlMTIgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDgsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlMTMgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDE4LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTE0IDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSA5LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTE1IDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSAxOSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWUxNiA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gMTAsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlMTcgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDIwLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZWNvcHVsYWxpc3QgPC0gbGlzdChzdW1tYXJ5KGFlMSkkQUlDLHN1bW1hcnkoYWUyKSRBSUMsIHN1bW1hcnkoYWUzKSRBSUMsIHN1bW1hcnkoYWU0KSRBSUMsIHN1bW1hcnkoYWU1KSRBSUMsIHN1bW1hcnkoYWU2KSRBSUMsIHN1bW1hcnkoYWU3KSRBSUMsIHN1bW1hcnkoYWU4KSRBSUMsIHN1bW1hcnkoYWU5KSRBSUMsIHN1bW1hcnkoYWUxMCkkQUlDLCBzdW1tYXJ5KGFlMTEpJEFJQywgc3VtbWFyeShhZTEyKSRBSUMsIHN1bW1hcnkoYWUxMykkQUlDLCBzdW1tYXJ5KGFlMTQpJEFJQywgc3VtbWFyeShhZTE1KSRBSUMsIHN1bW1hcnkoYWUxNikkQUlDLCBzdW1tYXJ5KGFlMTcpJEFJQykNCmFlY29wdWxhbGlzdA0KYGBgDQoNCg0KDQoNCg0KIyBDLiBTQVUgQ09WSUQNCg0KIyMgMS4gTkjhuqxQIEThu64gTEnhu4ZVDQoNCmBgYHtyfQ0Kcm0obGlzdD1scygpKQ0KREFUQSA8LSByZWFkX3hsc3goIkM6Ly9Vc2Vycy8vODQ4OTYvL0Rlc2t0b3AvL0RBVEEvL0NOMy1DT1BVTEEueGxzeCIsIHNoZWV0PSJBZnRlciIpDQpTUDUwMCA8LSBEQVRBJHkNClZOSSA8LSBEQVRBJHgxDQpNRVJWQUwgPC0gREFUQSR4Mg0KQ1JPQkVYIDwtIERBVEEkeDMNCk1BU0kgPC0gREFUQSR4NA0KTVNNMzAgPC0gREFUQSR4NQ0KYGBgDQoNCiMjIDIuIE1BIFRS4bqsTiBUxq/GoE5HIFFVQU4NCg0KYGBge3J9DQpjb3IoY2JpbmQoU1A1MDAsIFZOSSwgTUVSVkFMLCBDUk9CRVgsIE1BU0ksIE1TTTMwKSwgbWV0aG9kPSJwZWFyc29uIikNCmBgYA0KDQojIyAzLiBNw5QgSMOMTkggQVJNQS1HSlItR0FSQ0gNCg0KIyMjIDMuMS4gQVJNQQ0KDQpgYGB7cn0NCnByaW50KCJN4bu5IikNCmF1dG9hcmZpbWEoU1A1MDAsYXIubWF4ID0gMiwgbWEubWF4ID0gMiwgY3JpdGVyaW9uID0gIkFJQyIsIG1ldGhvZCA9ICJmdWxsIikkZml0QGZpdCRjb2VmDQpwcmludCgiVmnhu4d0IE5hbSIpDQphdXRvYXJmaW1hKFZOSSxhci5tYXggPSAyLCBtYS5tYXggPSAyLCBjcml0ZXJpb24gPSAiQUlDIiwgbWV0aG9kID0gImZ1bGwiKSRmaXRAZml0JGNvZWYNCnByaW50KCJBcmdlbnRpbmEiKQ0KYXV0b2FyZmltYShNRVJWQUwsYXIubWF4ID0gMiwgbWEubWF4ID0gMiwgY3JpdGVyaW9uID0gIkFJQyIsIG1ldGhvZCA9ICJmdWxsIikkZml0QGZpdCRjb2VmDQpwcmludCgiQ3JvYXRpYSIpDQphdXRvYXJmaW1hKENST0JFWCxhci5tYXggPSAyLCBtYS5tYXggPSAyLCBjcml0ZXJpb24gPSAiQUlDIiwgbWV0aG9kID0gImZ1bGwiKSRmaXRAZml0JGNvZWYNCnByaW50KCJNb3JvY2NvIikNCmF1dG9hcmZpbWEoTUFTSSxhci5tYXggPSAyLCBtYS5tYXggPSAyLCBjcml0ZXJpb24gPSAiQUlDIiwgbWV0aG9kID0gImZ1bGwiKSRmaXRAZml0JGNvZWYNCnByaW50KCJPbWFuIikNCmF1dG9hcmZpbWEoTVNNMzAsYXIubWF4ID0gMiwgbWEubWF4ID0gMiwgY3JpdGVyaW9uID0gIkFJQyIsIG1ldGhvZCA9ICJmdWxsIikkZml0QGZpdCRjb2VmDQpgYGANCg0KIyMjIDMuMi4gR0pSLUdBUkNIDQoNCmBgYHtyfQ0KcHJpbnQoIk3hu7kiKQ0Kc3A1MDAuZzExbiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQpzcDUwMC5nMTFzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0Kc3A1MDAuZzExc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0Kc3A1MDAuZzExZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCnNwNTAwLmcxMXNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCnNwNTAwLmcxMm4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0Kc3A1MDAuZzEycyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCnNwNTAwLmcxMnNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCnNwNTAwLmcxMmcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQpzcDUwMC5nMTJzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQpzcDUwMC5nMjFuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCnNwNTAwLmcyMXMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQpzcDUwMC5nMjFzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQpzcDUwMC5nMjFnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0Kc3A1MDAuZzIxc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0Kc3A1MDAuZzIybiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQpzcDUwMC5nMjJzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0Kc3A1MDAuZzIyc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDIsMikpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0Kc3A1MDAuZzIyZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCnNwNTAwLmcyMnNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCnNwNTAwLmdhcmNoMTFuIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcxMW4gKSAjMQ0Kc3A1MDAuZ2FyY2gxMXMgPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzExcyApIA0Kc3A1MDAuZ2FyY2gxMXNzIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcxMXNzICkgDQpzcDUwMC5nYXJjaDExZyA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMTFnICkNCnNwNTAwLmdhcmNoMTFzZyA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMTFzZyApICM1DQpzcDUwMC5nYXJjaDEybiA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMTJuICkNCnNwNTAwLmdhcmNoMTJzIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcxMnMgKQ0Kc3A1MDAuZ2FyY2gxMnNzIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcxMnNzICkNCnNwNTAwLmdhcmNoMTJnPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzEyZyApDQpzcDUwMC5nYXJjaDEyc2cgPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzEyc2cgKSAjMTANCnNwNTAwLmdhcmNoMjFuIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcyMW4gKQ0Kc3A1MDAuZ2FyY2gyMXMgPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzIxcyApDQojc3A1MDAuZ2FyY2gyMXNzIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcyMXNzKQ0Kc3A1MDAuZ2FyY2gyMWcgPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzIxZyApICMxMw0Kc3A1MDAuZ2FyY2gyMXNnIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcyMXNnICkNCiNzcDUwMC5nYXJjaDIybiA8LXVnYXJjaGZpdChkYXRhPVNQNTAwLCBzcGVjPSBzcDUwMC5nMjJuICkNCnNwNTAwLmdhcmNoMjJzIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcyMnMgKQ0Kc3A1MDAuZ2FyY2gyMnNzIDwtdWdhcmNoZml0KGRhdGE9U1A1MDAsIHNwZWM9IHNwNTAwLmcyMnNzICkNCnNwNTAwLmdhcmNoMjJnPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzIyZyApDQpzcDUwMC5nYXJjaDIyc2cgPC11Z2FyY2hmaXQoZGF0YT1TUDUwMCwgc3BlYz0gc3A1MDAuZzIyc2cgKQ0KbW9kZWwuYWljLmxpc3QgPC0gbGlzdChzcDUwMC5nYXJjaDExbixzcDUwMC5nYXJjaDExcyxzcDUwMC5nYXJjaDExc3Msc3A1MDAuZ2FyY2gxMWcsc3A1MDAuZ2FyY2gxMXNnLHNwNTAwLmdhcmNoMTJuLHNwNTAwLmdhcmNoMTJzLHNwNTAwLmdhcmNoMTJzcyxzcDUwMC5nYXJjaDEyZyxzcDUwMC5nYXJjaDEyc2csc3A1MDAuZ2FyY2gyMW4sc3A1MDAuZ2FyY2gyMXMsc3A1MDAuZ2FyY2gyMWcsc3A1MDAuZ2FyY2gyMXNnLHNwNTAwLmdhcmNoMjJzLHNwNTAwLmdhcmNoMjJzcyxzcDUwMC5nYXJjaDIyZyxzcDUwMC5nYXJjaDIyc2cpDQptb2RlbC5haWMgPC0gc2FwcGx5KG1vZGVsLmFpYy5saXN0LCBpbmZvY3JpdGVyaWEpWy00LF1bLTMsXVstMixdDQptaW5fcG9zIDwtIHdoaWNoKG1vZGVsLmFpYyA9PSBtaW4obW9kZWwuYWljKSwgYXJyLmluZCA9IFRSVUUpDQptaW5fcG9zDQpzcDUwMC5nYXJjaDIxc2dAZml0JG1hdGNvZWYNCnByaW50KCJWaeG7h3QgTmFtIikNCnZuaS5nMTFuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCnZuaS5nMTFzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0Kdm5pLmcxMXNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCnZuaS5nMTFnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0Kdm5pLmcxMXNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCnZuaS5nMTJuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCnZuaS5nMTJzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0Kdm5pLmcxMnNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCnZuaS5nMTJnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0Kdm5pLmcxMnNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCnZuaS5nMjFuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCnZuaS5nMjFzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0Kdm5pLmcyMXNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCnZuaS5nMjFnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0Kdm5pLmcyMXNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCnZuaS5nMjJuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCnZuaS5nMjJzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0Kdm5pLmcyMnNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCnZuaS5nMjJnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0Kdm5pLmcyMnNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygyLDIpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCnZuaS5nYXJjaDExbiA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcxMW4gKSAjMQ0Kdm5pLmdhcmNoMTFzIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzExcyApIA0Kdm5pLmdhcmNoMTFzcyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcxMXNzICkgDQp2bmkuZ2FyY2gxMWcgPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMTFnICkNCnZuaS5nYXJjaDExc2cgPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMTFzZyApICM1DQp2bmkuZ2FyY2gxMm4gPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMTJuICkNCnZuaS5nYXJjaDEycyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcxMnMgKQ0Kdm5pLmdhcmNoMTJzcyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcxMnNzICkNCnZuaS5nYXJjaDEyZzwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzEyZyApDQp2bmkuZ2FyY2gxMnNnIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzEyc2cgKSAjMTANCnZuaS5nYXJjaDIxbiA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcyMW4gKQ0Kdm5pLmdhcmNoMjFzIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzIxcyApDQp2bmkuZ2FyY2gyMXNzIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzIxc3MpDQp2bmkuZ2FyY2gyMWcgPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMjFnICkNCnZuaS5nYXJjaDIxc2cgPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMjFzZyApICMxNQ0Kdm5pLmdhcmNoMjJuIDwtdWdhcmNoZml0KGRhdGE9Vk5JLCBzcGVjPSB2bmkuZzIybiApDQp2bmkuZ2FyY2gyMnMgPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMjJzICkNCnZuaS5nYXJjaDIyc3MgPC11Z2FyY2hmaXQoZGF0YT1WTkksIHNwZWM9IHZuaS5nMjJzcyApDQp2bmkuZ2FyY2gyMmc8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcyMmcgKQ0Kdm5pLmdhcmNoMjJzZyA8LXVnYXJjaGZpdChkYXRhPVZOSSwgc3BlYz0gdm5pLmcyMnNnICkNCm1vZGVsLmFpYy5saXN0IDwtIGxpc3Qodm5pLmdhcmNoMTFuLHZuaS5nYXJjaDExcyx2bmkuZ2FyY2gxMXNzLHZuaS5nYXJjaDExZyx2bmkuZ2FyY2gxMXNnLHZuaS5nYXJjaDEybix2bmkuZ2FyY2gxMnMsdm5pLmdhcmNoMTJzcyx2bmkuZ2FyY2gxMmcsdm5pLmdhcmNoMTJzZyx2bmkuZ2FyY2gyMW4sdm5pLmdhcmNoMjFzLHZuaS5nYXJjaDIxc3Msdm5pLmdhcmNoMjFnLHZuaS5nYXJjaDIxc2csdm5pLmdhcmNoMjJuLHZuaS5nYXJjaDIycyx2bmkuZ2FyY2gyMnNzLHZuaS5nYXJjaDIyZyx2bmkuZ2FyY2gyMnNnKQ0KbW9kZWwuYWljIDwtIHNhcHBseShtb2RlbC5haWMubGlzdCwgaW5mb2NyaXRlcmlhKVstNCxdWy0zLF1bLTIsXQ0KbWluX3BvcyA8LSB3aGljaChtb2RlbC5haWMgPT0gbWluKG1vZGVsLmFpYyksIGFyci5pbmQgPSBUUlVFKQ0KbWluX3Bvcw0Kdm5pLmdhcmNoMTFzZ0BmaXQkbWF0Y29lZg0KcHJpbnQoIkFyZ2VudGluYSIpDQptZXJ2YWwuZzExbiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQptZXJ2YWwuZzExcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCm1lcnZhbC5nMTFzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQptZXJ2YWwuZzExZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCm1lcnZhbC5nMTFzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQptZXJ2YWwuZzEybiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQptZXJ2YWwuZzEycyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCm1lcnZhbC5nMTJzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQptZXJ2YWwuZzEyZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCm1lcnZhbC5nMTJzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQptZXJ2YWwuZzIxbiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQptZXJ2YWwuZzIxcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCm1lcnZhbC5nMjFzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQptZXJ2YWwuZzIxZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCm1lcnZhbC5nMjFzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQptZXJ2YWwuZzIybiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQptZXJ2YWwuZzIycyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCm1lcnZhbC5nMjJzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQptZXJ2YWwuZzIyZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCm1lcnZhbC5nMjJzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMiwyKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQptZXJ2YWwuZ2FyY2gxMW4gPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzExbiApICMxDQptZXJ2YWwuZ2FyY2gxMXMgPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzExcyApIA0KbWVydmFsLmdhcmNoMTFzcyA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMTFzcyApIA0KbWVydmFsLmdhcmNoMTFnIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcxMWcgKQ0KbWVydmFsLmdhcmNoMTFzZyA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMTFzZyApICM1DQptZXJ2YWwuZ2FyY2gxMm4gPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzEybiApDQptZXJ2YWwuZ2FyY2gxMnMgPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzEycyApDQptZXJ2YWwuZ2FyY2gxMnNzIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcxMnNzICkNCm1lcnZhbC5nYXJjaDEyZzwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcxMmcgKQ0KbWVydmFsLmdhcmNoMTJzZyA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMTJzZyApICMxMA0KbWVydmFsLmdhcmNoMjFuIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcyMW4gKQ0KbWVydmFsLmdhcmNoMjFzIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcyMXMgKQ0KbWVydmFsLmdhcmNoMjFzcyA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMjFzcykNCm1lcnZhbC5nYXJjaDIxZyA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMjFnICkNCm1lcnZhbC5nYXJjaDIxc2cgPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzIxc2cgKSAjMTUNCm1lcnZhbC5nYXJjaDIybiA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMjJuICkNCm1lcnZhbC5nYXJjaDIycyA8LXVnYXJjaGZpdChkYXRhPSBNRVJWQUwsIHNwZWM9IG1lcnZhbC5nMjJzICkNCm1lcnZhbC5nYXJjaDIyc3MgPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzIyc3MgKQ0KbWVydmFsLmdhcmNoMjJnPC11Z2FyY2hmaXQoZGF0YT0gTUVSVkFMLCBzcGVjPSBtZXJ2YWwuZzIyZyApDQptZXJ2YWwuZ2FyY2gyMnNnIDwtdWdhcmNoZml0KGRhdGE9IE1FUlZBTCwgc3BlYz0gbWVydmFsLmcyMnNnICkNCm1vZGVsLmFpYy5saXN0IDwtIGxpc3QobWVydmFsLmdhcmNoMTFuLG1lcnZhbC5nYXJjaDExcyxtZXJ2YWwuZ2FyY2gxMXNzLG1lcnZhbC5nYXJjaDExZyxtZXJ2YWwuZ2FyY2gxMXNnLG1lcnZhbC5nYXJjaDEybixtZXJ2YWwuZ2FyY2gxMnMsbWVydmFsLmdhcmNoMTJzcyxtZXJ2YWwuZ2FyY2gxMmcsbWVydmFsLmdhcmNoMTJzZyxtZXJ2YWwuZ2FyY2gyMW4sbWVydmFsLmdhcmNoMjFzLG1lcnZhbC5nYXJjaDIxc3MsbWVydmFsLmdhcmNoMjFnLG1lcnZhbC5nYXJjaDIxc2csbWVydmFsLmdhcmNoMjJuLG1lcnZhbC5nYXJjaDIycyxtZXJ2YWwuZ2FyY2gyMnNzLG1lcnZhbC5nYXJjaDIyZyxtZXJ2YWwuZ2FyY2gyMnNnKQ0KbW9kZWwuYWljIDwtIHNhcHBseShtb2RlbC5haWMubGlzdCwgaW5mb2NyaXRlcmlhKVstNCxdWy0zLF1bLTIsXQ0KbWluX3BvcyA8LSB3aGljaChtb2RlbC5haWMgPT0gbWluKG1vZGVsLmFpYyksIGFyci5pbmQgPSBUUlVFKQ0KbWluX3Bvcw0KbWVydmFsLmdhcmNoMTJzQGZpdCRtYXRjb2VmDQpwcmludCgiQ3JvdGlhIikNCmNyb2JleC5nMTFuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQpjcm9iZXguZzExcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQpjcm9iZXguZzExc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCmNyb2JleC5nMTFnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCmNyb2JleC5nMTFzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KY3JvYmV4LmcxMm4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCmNyb2JleC5nMTJzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCmNyb2JleC5nMTJzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0KY3JvYmV4LmcxMmcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KY3JvYmV4LmcxMnNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQpjcm9iZXguZzIxbiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KY3JvYmV4LmcyMXMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KY3JvYmV4LmcyMXNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQpjcm9iZXguZzIxZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQpjcm9iZXguZzIxc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCmNyb2JleC5nMjJuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQpjcm9iZXguZzIycyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQpjcm9iZXguZzIyc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygwLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCmNyb2JleC5nMjJnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMCwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCmNyb2JleC5nMjJzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDAsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KY3JvYmV4LmdhcmNoMTFuIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcxMW4gKSAjMQ0KI2Nyb2JleC5nYXJjaDExcyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMTFzKSANCiNjcm9iZXguZ2FyY2gxMXNzIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcxMXNzKSANCmNyb2JleC5nYXJjaDExZyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMTFnICkNCmNyb2JleC5nYXJjaDExc2cgPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzExc2cgKSANCmNyb2JleC5nYXJjaDEybiA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMTJuICkNCmNyb2JleC5nYXJjaDEycyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMTJzICkgIzUNCmNyb2JleC5nYXJjaDEyc3MgPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzEyc3MgKQ0KY3JvYmV4LmdhcmNoMTJnPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzEyZyApDQpjcm9iZXguZ2FyY2gxMnNnIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcxMnNnICkgDQpjcm9iZXguZ2FyY2gyMW4gPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzIxbiApDQpjcm9iZXguZ2FyY2gyMXMgPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzIxcyApICMxMA0KY3JvYmV4LmdhcmNoMjFzcyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMjFzcykNCmNyb2JleC5nYXJjaDIxZyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMjFnICkNCmNyb2JleC5nYXJjaDIxc2cgPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzIxc2cgKSANCmNyb2JleC5nYXJjaDIybiA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMjJuICkNCmNyb2JleC5nYXJjaDIycyA8LXVnYXJjaGZpdChkYXRhPSBDUk9CRVgsIHNwZWM9IGNyb2JleC5nMjJzICkNCmNyb2JleC5nYXJjaDIyc3MgPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzIyc3MgKSMxNQ0KY3JvYmV4LmdhcmNoMjJnPC11Z2FyY2hmaXQoZGF0YT0gQ1JPQkVYLCBzcGVjPSBjcm9iZXguZzIyZyApDQpjcm9iZXguZ2FyY2gyMnNnIDwtdWdhcmNoZml0KGRhdGE9IENST0JFWCwgc3BlYz0gY3JvYmV4LmcyMnNnICkNCm1vZGVsLmFpYy5saXN0IDwtIGxpc3QoY3JvYmV4LmdhcmNoMTFuLGNyb2JleC5nYXJjaDExZyxjcm9iZXguZ2FyY2gxMXNnLGNyb2JleC5nYXJjaDEybixjcm9iZXguZ2FyY2gxMnMsY3JvYmV4LmdhcmNoMTJzcyxjcm9iZXguZ2FyY2gxMmcsY3JvYmV4LmdhcmNoMTJzZyxjcm9iZXguZ2FyY2gyMW4sY3JvYmV4LmdhcmNoMjFzLGNyb2JleC5nYXJjaDIxc3MsY3JvYmV4LmdhcmNoMjFnLGNyb2JleC5nYXJjaDIxc2csY3JvYmV4LmdhcmNoMjJuLGNyb2JleC5nYXJjaDIycyxjcm9iZXguZ2FyY2gyMnNzLGNyb2JleC5nYXJjaDIyZyxjcm9iZXguZ2FyY2gyMnNnKQ0KbW9kZWwuYWljIDwtIHNhcHBseShtb2RlbC5haWMubGlzdCwgaW5mb2NyaXRlcmlhKVstNCxdWy0zLF1bLTIsXQ0KbWluX3BvcyA8LSB3aGljaChtb2RlbC5haWMgPT0gbWluKG1vZGVsLmFpYyksIGFyci5pbmQgPSBUUlVFKQ0KbWluX3Bvcw0KY3JvYmV4LmdhcmNoMjFzQGZpdCRtYXRjb2VmDQpwcmludCgiTW9yb2NjbyIpDQptYXNpLmcxMW4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1hc2kuZzExcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQptYXNpLmcxMXNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQptYXNpLmcxMWcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbWFzaS5nMTFzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KbWFzaS5nMTJuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQptYXNpLmcxMnMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KbWFzaS5nMTJzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0KbWFzaS5nMTJnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCm1hc2kuZzEyc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCm1hc2kuZzIxbiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KbWFzaS5nMjFzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCm1hc2kuZzIxc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1hc2kuZzIxZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQptYXNpLmcyMXNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQptYXNpLmcyMm4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1hc2kuZzIycyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9ICBjKDEsMCkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQptYXNpLmcyMnNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gIGMoMSwwKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQptYXNpLmcyMmcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSAgYygxLDApKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbWFzaS5nMjJzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMCwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQptYXNpLmdhcmNoMTFuIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzExbiApICMxDQptYXNpLmdhcmNoMTFzIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzExcyApIA0KbWFzaS5nYXJjaDExc3MgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMTFzcyApIA0KbWFzaS5nYXJjaDExZyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcxMWcgKQ0KbWFzaS5nYXJjaDExc2cgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMTFzZyApICM1DQptYXNpLmdhcmNoMTJuIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzEybiApDQptYXNpLmdhcmNoMTJzIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzEycyApDQptYXNpLmdhcmNoMTJzcyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcxMnNzICkNCm1hc2kuZ2FyY2gxMmc8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcxMmcgKQ0KbWFzaS5nYXJjaDEyc2cgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMTJzZyApICMxMA0KbWFzaS5nYXJjaDIxbiA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcyMW4gKQ0KbWFzaS5nYXJjaDIxcyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcyMXMgKQ0KbWFzaS5nYXJjaDIxc3MgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMjFzcykNCm1hc2kuZ2FyY2gyMWcgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMjFnICkNCm1hc2kuZ2FyY2gyMXNnIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzIxc2cgKSAjMTUNCm1hc2kuZ2FyY2gyMm4gPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMjJuICkNCm1hc2kuZ2FyY2gyMnMgPC11Z2FyY2hmaXQoZGF0YT0gTUFTSSwgc3BlYz0gbWFzaS5nMjJzICkNCm1hc2kuZ2FyY2gyMnNzIDwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzIyc3MgKQ0KbWFzaS5nYXJjaDIyZzwtdWdhcmNoZml0KGRhdGE9IE1BU0ksIHNwZWM9IG1hc2kuZzIyZyApDQptYXNpLmdhcmNoMjJzZyA8LXVnYXJjaGZpdChkYXRhPSBNQVNJLCBzcGVjPSBtYXNpLmcyMnNnICkNCm1vZGVsLmFpYy5saXN0IDwtIGxpc3QobWFzaS5nYXJjaDExbixtYXNpLmdhcmNoMTFzLG1hc2kuZ2FyY2gxMXNzLG1hc2kuZ2FyY2gxMWcsbWFzaS5nYXJjaDExc2csbWFzaS5nYXJjaDEybixtYXNpLmdhcmNoMTJzLG1hc2kuZ2FyY2gxMnNzLG1hc2kuZ2FyY2gxMmcsbWFzaS5nYXJjaDEyc2csbWFzaS5nYXJjaDIxbixtYXNpLmdhcmNoMjFzLG1hc2kuZ2FyY2gyMXNzLG1hc2kuZ2FyY2gyMWcsbWFzaS5nYXJjaDIxc2csbWFzaS5nYXJjaDIybixtYXNpLmdhcmNoMjJzLG1hc2kuZ2FyY2gyMnNzLG1hc2kuZ2FyY2gyMmcsbWFzaS5nYXJjaDIyc2cpDQptb2RlbC5haWMgPC0gc2FwcGx5KG1vZGVsLmFpYy5saXN0LCBpbmZvY3JpdGVyaWEpWy00LF1bLTMsXVstMixdDQptaW5fcG9zIDwtIHdoaWNoKG1vZGVsLmFpYyA9PSBtaW4obW9kZWwuYWljKSwgYXJyLmluZCA9IFRSVUUpDQptaW5fcG9zDQptYXNpLmdhcmNoMTFzQGZpdCRtYXRjb2VmDQpwcmludCgiT21hbiIpDQptc20zMC5nMTFuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1zbTMwLmcxMXMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQptc20zMC5nMTFzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMSwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQptc20zMC5nMTFnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbXNtMzAuZzExc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KbXNtMzAuZzEybiA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMSwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAibm9ybSIpDQptc20zMC5nMTJzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzdGQiKQ0KbXNtMzAuZzEyc3MgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygxLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNzdGQiKQ0KbXNtMzAuZzEyZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMSwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDEsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAiZ2VkIikNCm1zbTMwLmcxMnNnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMSwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzZ2VkIikNCm1zbTMwLmcyMW4gPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gIm5vcm0iKQ0KbXNtMzAuZzIxcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMSwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3RkIikNCm1zbTMwLmcyMXNzIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwxKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJzc3RkIikNCm1zbTMwLmcyMWcgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDEpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gImdlZCIpDQptc20zMC5nMjFzZyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMSwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMSksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic2dlZCIpDQptc20zMC5nMjJuIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJub3JtIikNCm1zbTMwLmcyMnMgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInN0ZCIpDQptc20zMC5nMjJzcyA8LSB1Z2FyY2hzcGVjKG1lYW4ubW9kZWwgPSBsaXN0KGFybWFPcmRlciA9IGMoMSwxKSksdmFyaWFuY2UubW9kZWw9IGxpc3QoZ2FyY2hPcmRlcj1jKDIsMiksIG1vZGVsPSJnanJHQVJDSCIpLCBkaXN0cmlidXRpb24ubW9kZWwgPSAic3N0ZCIpDQptc20zMC5nMjJnIDwtIHVnYXJjaHNwZWMobWVhbi5tb2RlbCA9IGxpc3QoYXJtYU9yZGVyID0gYygxLDEpKSx2YXJpYW5jZS5tb2RlbD0gbGlzdChnYXJjaE9yZGVyPWMoMiwyKSwgbW9kZWw9ImdqckdBUkNIIiksIGRpc3RyaWJ1dGlvbi5tb2RlbCA9ICJnZWQiKQ0KbXNtMzAuZzIyc2cgPC0gdWdhcmNoc3BlYyhtZWFuLm1vZGVsID0gbGlzdChhcm1hT3JkZXIgPSBjKDEsMSkpLHZhcmlhbmNlLm1vZGVsPSBsaXN0KGdhcmNoT3JkZXI9YygyLDIpLCBtb2RlbD0iZ2pyR0FSQ0giKSwgZGlzdHJpYnV0aW9uLm1vZGVsID0gInNnZWQiKQ0KbXNtMzAuZ2FyY2gxMW4gPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcxMW4gKSAjMQ0KbXNtMzAuZ2FyY2gxMXMgPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcxMXMgKSANCm1zbTMwLmdhcmNoMTFzcyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzExc3MgKSANCm1zbTMwLmdhcmNoMTFnIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMTFnICkNCm1zbTMwLmdhcmNoMTFzZyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzExc2cgKSAjNQ0KbXNtMzAuZ2FyY2gxMm4gPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcxMm4gKQ0KbXNtMzAuZ2FyY2gxMnMgPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcxMnMgKQ0KbXNtMzAuZ2FyY2gxMnNzIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMTJzcyApDQptc20zMC5nYXJjaDEyZzwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMTJnICkNCm1zbTMwLmdhcmNoMTJzZyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzEyc2cgKSAjMTANCm1zbTMwLmdhcmNoMjFuIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMjFuICkNCm1zbTMwLmdhcmNoMjFzIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMjFzICkNCm1zbTMwLmdhcmNoMjFzcyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzIxc3MpDQptc20zMC5nYXJjaDIxZyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzIxZyApDQptc20zMC5nYXJjaDIxc2cgPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcyMXNnICkgIzE1DQojbXNtMzAuZ2FyY2gyMm4gPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcyMm4gKQ0KbXNtMzAuZ2FyY2gyMnMgPC11Z2FyY2hmaXQoZGF0YT0gTVNNMzAsIHNwZWM9IG1zbTMwLmcyMnMgKQ0KbXNtMzAuZ2FyY2gyMnNzIDwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMjJzcyApDQptc20zMC5nYXJjaDIyZzwtdWdhcmNoZml0KGRhdGE9IE1TTTMwLCBzcGVjPSBtc20zMC5nMjJnICkNCm1zbTMwLmdhcmNoMjJzZyA8LXVnYXJjaGZpdChkYXRhPSBNU00zMCwgc3BlYz0gbXNtMzAuZzIyc2cgKQ0KbW9kZWwuYWljLmxpc3QgPC0gbGlzdChtc20zMC5nYXJjaDExbixtc20zMC5nYXJjaDExcyxtc20zMC5nYXJjaDExc3MsbXNtMzAuZ2FyY2gxMWcsbXNtMzAuZ2FyY2gxMXNnLG1zbTMwLmdhcmNoMTJuLG1zbTMwLmdhcmNoMTJzLG1zbTMwLmdhcmNoMTJzcyxtc20zMC5nYXJjaDEyZyxtc20zMC5nYXJjaDEyc2csbXNtMzAuZ2FyY2gyMW4sbXNtMzAuZ2FyY2gyMXMsbXNtMzAuZ2FyY2gyMXNzLG1zbTMwLmdhcmNoMjFnLG1zbTMwLmdhcmNoMjFzZyxtc20zMC5nYXJjaDIycyxtc20zMC5nYXJjaDIyc3MsbXNtMzAuZ2FyY2gyMmcsbXNtMzAuZ2FyY2gyMnNnKQ0KbW9kZWwuYWljIDwtIHNhcHBseShtb2RlbC5haWMubGlzdCwgaW5mb2NyaXRlcmlhKVstNCxdWy0zLF1bLTIsXQ0KbWluX3BvcyA8LSB3aGljaChtb2RlbC5haWMgPT0gbWluKG1vZGVsLmFpYyksIGFyci5pbmQgPSBUUlVFKQ0KbWluX3Bvcw0KbXNtMzAuZ2FyY2gxMnNnQGZpdCRtYXRjb2VmDQpgYGANCg0KIyMgNC4gQ0hV4bqoTiBIw5NBIFBI4bqmTiBExq8NCg0KYGBge3IsIHdhcm5pbmc9RkFMU0V9DQpTUDUwMF9tb2RlbCA8LSBzcDUwMC5nYXJjaDIxc2cNClZOSV9tb2RlbCA8LSB2bmkuZ2FyY2gxMXNnDQpNRVJWQUxfbW9kZWwgPC0gbWVydmFsLmdhcmNoMTJzDQpDUk9CRVhfbW9kZWwgPC0gY3JvYmV4LmdhcmNoMjFzDQpNQVNJX21vZGVsIDwtIG1hc2kuZ2FyY2gxMXMNCk1TTTMwX21vZGVsIDwtIG1zbTMwLmdhcmNoMTJzZw0KDQpTUDUwMC5yZXMgPC0gcmVzaWR1YWxzKFNQNTAwX21vZGVsKS9zaWdtYShTUDUwMF9tb2RlbCkNClZOSS5yZXMgPC0gcmVzaWR1YWxzKFZOSV9tb2RlbCkvc2lnbWEoVk5JX21vZGVsKQ0KTUVSVkFMLnJlcyA8LSByZXNpZHVhbHMoTUVSVkFMX21vZGVsKS9zaWdtYShNRVJWQUxfbW9kZWwpDQpDUk9CRVgucmVzIDwtIHJlc2lkdWFscyhDUk9CRVhfbW9kZWwpL3NpZ21hKENST0JFWF9tb2RlbCkNCk1BU0kucmVzIDwtIHJlc2lkdWFscyhNQVNJX21vZGVsKS9zaWdtYShNQVNJX21vZGVsKQ0KTVNNMzAucmVzIDwtIHJlc2lkdWFscyhNU00zMF9tb2RlbCkvc2lnbWEoTVNNMzBfbW9kZWwpDQoNCmZpdGRpc3QoZGlzdHJpYnV0aW9uID0gInNnZWQiLCBTUDUwMC5yZXMsIGNvbnRyb2wgPSBsaXN0KCkpJHBhcnMNCmZpdGRpc3QoZGlzdHJpYnV0aW9uID0gInNnZWQiLCBWTkkucmVzLCBjb250cm9sID0gbGlzdCgpKSRwYXJzDQpmaXRkaXN0KGRpc3RyaWJ1dGlvbiA9ICJzdGQiLCBNRVJWQUwucmVzLCBjb250cm9sID0gbGlzdCgpKSRwYXJzDQpmaXRkaXN0KGRpc3RyaWJ1dGlvbiA9ICJzdGQiLCBDUk9CRVgucmVzLCBjb250cm9sID0gbGlzdCgpKSRwYXJzDQpmaXRkaXN0KGRpc3RyaWJ1dGlvbiA9ICJzdGQiLCBNQVNJLnJlcywgY29udHJvbCA9IGxpc3QoKSkkcGFycw0KZml0ZGlzdChkaXN0cmlidXRpb24gPSAic2dlZCIsIE1TTTMwLnJlcywgY29udHJvbCA9IGxpc3QoKSkkcGFycw0KDQp1IDwtIHBkaXN0KGRpc3RyaWJ1dGlvbiA9ICJzZ2VkIiwgcSA9IFNQNTAwLnJlcywgbXUgPSAtMC4wMTc3MTQxNSwgc2lnbWEgPSAwLjk5ODk0Mjc3LCBza2V3PSAwLjgyMjYzMjA4LHNoYXBlID0gMi4wMTAzNzE3MikNCnYxIDwtIHBkaXN0KGRpc3RyaWJ1dGlvbiA9ICJzZ2VkIiwgcSA9IFZOSS5yZXMsIG11ID0tMC4wMjYyODE0NSwgc2lnbWEgPSAxLjAxMzY2ODEwLCBza2V3PSAwLjc2NTIxMzgwLHNoYXBlPSAxLjA5NTg0OTIyKQ0KdjIgPC0gcGRpc3QoZGlzdHJpYnV0aW9uID0gInN0ZCIsIHEgPSBNRVJWQUwucmVzLCBtdSA9IDAuMDAyNDE3MTEsIHNpZ21hID0gMC42NzAyNDYxNywgc2hhcGUgPSAzLjU1OTI1ODU2KQ0KdjMgPC0gcGRpc3QoZGlzdHJpYnV0aW9uID0gInN0ZCIsIHEgPSBDUk9CRVgucmVzLCBtdSA9LTAuMDAyMTk4Mjk2ICwgc2lnbWEgPSAxLjAyNDUzMjgyNSxzaGFwZT0gMy4wNzE3ODA4MjApDQp2NCA8LSBwZGlzdChkaXN0cmlidXRpb24gPSAic3RkIiwgcSA9IE1BU0kucmVzLCBtdSA9IDAuMDAwMjg2NzkyMywgc2lnbWEgPSAxLjAxNDQ3MDY5OTcsIHNoYXBlID0gMy4zNjk4NzY3MDI0KQ0KdjUgPC0gcGRpc3QoZGlzdHJpYnV0aW9uID0gInNnZWQiLCBxID0gTVNNMzAucmVzLCBtdSA9IC0wLjAxNjE4Njk1LCBzaWdtYSA9IDAuOTk2MTUxMDYsIHNrZXcgPSAxLjE0MTczNzYzLCBzaGFwZT0gMS4xMTg3NDE5NSkNCg0KZ29mdGVzdDo6Y3ZtLnRlc3QodSwgInB1bmlmIikNCmdvZnRlc3Q6OmN2bS50ZXN0KHYxLCAicHVuaWYiKQ0KZ29mdGVzdDo6Y3ZtLnRlc3QodjIsICJwdW5pZiIpDQpnb2Z0ZXN0Ojpjdm0udGVzdCh2MywgInB1bmlmIikNCmdvZnRlc3Q6OmN2bS50ZXN0KHY0LCAicHVuaWYiKQ0KZ29mdGVzdDo6Y3ZtLnRlc3QodjUsICJwdW5pZiIpDQoNCmdvZnRlc3Q6OmFkLnRlc3QodSwgInB1bmlmIikNCmdvZnRlc3Q6OmFkLnRlc3QodjEsICJwdW5pZiIpDQpnb2Z0ZXN0OjphZC50ZXN0KHYyLCAicHVuaWYiKQ0KZ29mdGVzdDo6YWQudGVzdCh2MywgInB1bmlmIikNCmdvZnRlc3Q6OmFkLnRlc3QodjQsICJwdW5pZiIpDQpnb2Z0ZXN0OjphZC50ZXN0KHY1LCAicHVuaWYiKQ0KDQprcy50ZXN0KHUsICJwdW5pZiIpDQprcy50ZXN0KHYxLCAicHVuaWYiKQ0Ka3MudGVzdCh2MiwgInB1bmlmIikNCmtzLnRlc3QodjMsICJwdW5pZiIpDQprcy50ZXN0KHY0LCAicHVuaWYiKQ0Ka3MudGVzdCh2NSwgInB1bmlmIikNCmBgYA0KDQojIyA1LiBDT1BVTEENCg0KYGBge3J9DQpwcmludCgiVmnhu4d0IE5hbSIpDQphYTEgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDEsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhMiA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gMiwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWEzIDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSAzLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTQgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDEzLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTUgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDQsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhNiA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gMTQsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhNyA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gNSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWE4IDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSA2LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTkgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDE2LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTEwIDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSA3LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTExIDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSAxNywgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWExMiA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gOCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWExMyA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gMTgsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhMTQgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDksIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhMTUgPC0gQmlDb3BFc3QodSwgdjEsIGZhbWlseSA9IDE5LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYTE2IDwtIEJpQ29wRXN0KHUsIHYxLCBmYW1pbHkgPSAxMCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWExNyA8LSBCaUNvcEVzdCh1LCB2MSwgZmFtaWx5ID0gMjAsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFhY29wdWxhbGlzdCA8LSBsaXN0KHN1bW1hcnkoYWExKSRBSUMsc3VtbWFyeShhYTIpJEFJQywgc3VtbWFyeShhYTMpJEFJQywgc3VtbWFyeShhYTQpJEFJQywgc3VtbWFyeShhYTUpJEFJQywgc3VtbWFyeShhYTYpJEFJQywgc3VtbWFyeShhYTcpJEFJQywgc3VtbWFyeShhYTgpJEFJQywgc3VtbWFyeShhYTkpJEFJQywgc3VtbWFyeShhYTEwKSRBSUMsIHN1bW1hcnkoYWExMSkkQUlDLCBzdW1tYXJ5KGFhMTIpJEFJQywgc3VtbWFyeShhYTEzKSRBSUMsIHN1bW1hcnkoYWExNCkkQUlDLCBzdW1tYXJ5KGFhMTUpJEFJQywgc3VtbWFyeShhYTE2KSRBSUMsIHN1bW1hcnkoYWExNykkQUlDKQ0KYWFjb3B1bGFsaXN0DQpwcmludCgiQXJnZW50aW5hIikNCmFiMSA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gMSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWIyIDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSAyLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjMgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDMsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiNCA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gMTMsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiNSA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gNCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWI2IDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSAxNCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWI3IDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSA1LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjggPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDYsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiOSA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gMTYsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiMTAgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDcsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiMTEgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDE3LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjEyIDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSA4LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjEzIDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSAxOCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWIxNCA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gOSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWIxNSA8LSBCaUNvcEVzdCh1LCB2MiwgZmFtaWx5ID0gMTksIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFiMTYgPC0gQmlDb3BFc3QodSwgdjIsIGZhbWlseSA9IDEwLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYjE3IDwtIEJpQ29wRXN0KHUsIHYyLCBmYW1pbHkgPSAyMCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWJjb3B1bGFsaXN0IDwtIGxpc3Qoc3VtbWFyeShhYjEpJEFJQyxzdW1tYXJ5KGFiMikkQUlDLCBzdW1tYXJ5KGFiMykkQUlDLCBzdW1tYXJ5KGFiNCkkQUlDLCBzdW1tYXJ5KGFiNSkkQUlDLCBzdW1tYXJ5KGFiNikkQUlDLCBzdW1tYXJ5KGFiNykkQUlDLCBzdW1tYXJ5KGFiOCkkQUlDLCBzdW1tYXJ5KGFiOSkkQUlDLCBzdW1tYXJ5KGFiMTApJEFJQywgc3VtbWFyeShhYjExKSRBSUMsIHN1bW1hcnkoYWIxMikkQUlDLCBzdW1tYXJ5KGFiMTMpJEFJQywgc3VtbWFyeShhYjE0KSRBSUMsIHN1bW1hcnkoYWIxNSkkQUlDLCBzdW1tYXJ5KGFiMTYpJEFJQywgc3VtbWFyeShhYjE3KSRBSUMpDQphYmNvcHVsYWxpc3QNCnByaW50KCJDcm9hdGlhIikNCmFjMSA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gMSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWMyIDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSAyLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzMgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDMsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjNCA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gMTMsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjNSA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gNCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWM2IDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSAxNCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWM3IDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSA1LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzggPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDYsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjOSA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gMTYsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjMTAgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDcsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjMTEgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDE3LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzEyIDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSA4LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzEzIDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSAxOCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWMxNCA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gOSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWMxNSA8LSBCaUNvcEVzdCh1LCB2MywgZmFtaWx5ID0gMTksIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFjMTYgPC0gQmlDb3BFc3QodSwgdjMsIGZhbWlseSA9IDEwLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphYzE3IDwtIEJpQ29wRXN0KHUsIHYzLCBmYW1pbHkgPSAyMCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWNjb3B1bGFsaXN0IDwtIGxpc3Qoc3VtbWFyeShhYzEpJEFJQyxzdW1tYXJ5KGFjMikkQUlDLCBzdW1tYXJ5KGFjMykkQUlDLCBzdW1tYXJ5KGFjNCkkQUlDLCBzdW1tYXJ5KGFjNSkkQUlDLCBzdW1tYXJ5KGFjNikkQUlDLCBzdW1tYXJ5KGFjNykkQUlDLCBzdW1tYXJ5KGFjOCkkQUlDLCBzdW1tYXJ5KGFjOSkkQUlDLCBzdW1tYXJ5KGFjMTApJEFJQywgc3VtbWFyeShhYzExKSRBSUMsIHN1bW1hcnkoYWMxMikkQUlDLCBzdW1tYXJ5KGFjMTMpJEFJQywgc3VtbWFyeShhYzE0KSRBSUMsIHN1bW1hcnkoYWMxNSkkQUlDLCBzdW1tYXJ5KGFjMTYpJEFJQywgc3VtbWFyeShhYzE3KSRBSUMpDQphY2NvcHVsYWxpc3QNCnByaW50KCJNb3JvY2NvIikNCmFkMSA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gMSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQyIDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSAyLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDMgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDMsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkNCA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gMTMsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkNSA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gNCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQ2IDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSAxNCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQ3IDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSA1LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDggPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDYsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkOSA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gMTYsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkMTAgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDcsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkMTEgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDE3LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDEyIDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSA4LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDEzIDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSAxOCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQxNCA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gOSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWQxNSA8LSBCaUNvcEVzdCh1LCB2NCwgZmFtaWx5ID0gMTksIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFkMTYgPC0gQmlDb3BFc3QodSwgdjQsIGZhbWlseSA9IDEwLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZDE3IDwtIEJpQ29wRXN0KHUsIHY0LCBmYW1pbHkgPSAyMCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWRjb3B1bGFsaXN0IDwtIGxpc3Qoc3VtbWFyeShhZDEpJEFJQyxzdW1tYXJ5KGFkMikkQUlDLCBzdW1tYXJ5KGFkMykkQUlDLCBzdW1tYXJ5KGFkNCkkQUlDLCBzdW1tYXJ5KGFkNSkkQUlDLCBzdW1tYXJ5KGFkNikkQUlDLCBzdW1tYXJ5KGFkNykkQUlDLCBzdW1tYXJ5KGFkOCkkQUlDLCBzdW1tYXJ5KGFkOSkkQUlDLCBzdW1tYXJ5KGFkMTApJEFJQywgc3VtbWFyeShhZDExKSRBSUMsIHN1bW1hcnkoYWQxMikkQUlDLCBzdW1tYXJ5KGFkMTMpJEFJQywgc3VtbWFyeShhZDE0KSRBSUMsIHN1bW1hcnkoYWQxNSkkQUlDLCBzdW1tYXJ5KGFkMTYpJEFJQywgc3VtbWFyeShhZDE3KSRBSUMpDQphZGNvcHVsYWxpc3QNCnByaW50KCJPbWFuIikNCmFlMSA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gMSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWUyIDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSAyLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTMgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDMsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlNCA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gMTMsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlNSA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gNCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWU2IDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSAxNCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWU3IDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSA1LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTggPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDYsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlOSA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gMTYsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlMTAgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDcsIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlMTEgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDE3LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTEyIDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSA4LCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTEzIDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSAxOCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWUxNCA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gOSwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWUxNSA8LSBCaUNvcEVzdCh1LCB2NSwgZmFtaWx5ID0gMTksIG1ldGhvZCA9ICJtbGUiLCBzZSA9IEYpICU+JSBzdW1tYXJ5KCkNCmFlMTYgPC0gQmlDb3BFc3QodSwgdjUsIGZhbWlseSA9IDEwLCBtZXRob2QgPSAibWxlIiwgc2UgPSBGKSAlPiUgc3VtbWFyeSgpDQphZTE3IDwtIEJpQ29wRXN0KHUsIHY1LCBmYW1pbHkgPSAyMCwgbWV0aG9kID0gIm1sZSIsIHNlID0gRikgJT4lIHN1bW1hcnkoKQ0KYWVjb3B1bGFsaXN0IDwtIGxpc3Qoc3VtbWFyeShhZTEpJEFJQyxzdW1tYXJ5KGFlMikkQUlDLCBzdW1tYXJ5KGFlMykkQUlDLCBzdW1tYXJ5KGFlNCkkQUlDLCBzdW1tYXJ5KGFlNSkkQUlDLCBzdW1tYXJ5KGFlNikkQUlDLCBzdW1tYXJ5KGFlNykkQUlDLCBzdW1tYXJ5KGFlOCkkQUlDLCBzdW1tYXJ5KGFlOSkkQUlDLCBzdW1tYXJ5KGFlMTApJEFJQywgc3VtbWFyeShhZTExKSRBSUMsIHN1bW1hcnkoYWUxMikkQUlDLCBzdW1tYXJ5KGFlMTMpJEFJQywgc3VtbWFyeShhZTE0KSRBSUMsIHN1bW1hcnkoYWUxNSkkQUlDLCBzdW1tYXJ5KGFlMTYpJEFJQywgc3VtbWFyeShhZTE3KSRBSUMpDQphZWNvcHVsYWxpc3QNCmBgYA0K