## 1. Instalar paquetes y llamar librerías

#install.packages("caret")
# install.packages("neuralnet")
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(neuralnet)

2. Cargar el dataframe

df <- read.csv( "/Users/sebastianfajardo/Downloads/cancer_de_mama.csv")

3. Preparar los datos

df$diagnosis <- ifelse(df$diagnosis == "M", 1, 0)
set.seed(123)
renglones_entrenamiento <- createDataPartition(df$diagnosis, p=0.8, list=FALSE)
entrenamiento <- df[renglones_entrenamiento, ]
prueba <- df[-renglones_entrenamiento, ]

4. Generar red neuronal

predictoras <- names(df)[names(df) != "diagnosis"]
formula <- as.formula(paste("diagnosis ~", paste(predictoras, collapse = " + ")))
red_neuronal <- neuralnet(formula, data=entrenamiento)

plot(red_neuronal, rep = "best")

5. Predecir con la Red Neuronal

prueba_predictoras <- prueba[, predictoras]

prediccion <- compute(red_neuronal, prueba_predictoras)
probabilidad <- prediccion$net.result
resultado <- ifelse(probabilidad > 0.5, 1, 0)
print(resultado)
##     [,1]
## 1      0
## 9      0
## 15     0
## 17     0
## 18     0
## 28     0
## 35     0
## 44     0
## 46     0
## 56     0
## 58     0
## 60     0
## 65     0
## 68     0
## 71     0
## 79     0
## 82     0
## 86     0
## 95     0
## 99     0
## 101    0
## 109    0
## 124    0
## 133    0
## 138    0
## 140    0
## 142    0
## 157    0
## 162    0
## 171    0
## 173    0
## 183    0
## 188    0
## 189    0
## 193    0
## 201    0
## 203    0
## 206    0
## 207    0
## 216    0
## 220    0
## 227    0
## 233    0
## 240    0
## 242    0
## 247    0
## 251    0
## 256    0
## 259    0
## 261    0
## 262    0
## 275    0
## 284    0
## 293    0
## 296    0
## 303    0
## 305    0
## 317    0
## 318    0
## 320    0
## 323    0
## 329    0
## 332    0
## 340    0
## 341    0
## 352    0
## 354    0
## 358    0
## 359    0
## 369    0
## 370    0
## 371    0
## 375    0
## 386    0
## 387    0
## 394    0
## 400    0
## 405    0
## 407    0
## 412    0
## 417    0
## 418    0
## 429    0
## 432    0
## 434    0
## 437    0
## 453    0
## 454    0
## 466    0
## 481    0
## 484    0
## 487    0
## 492    0
## 510    0
## 515    0
## 518    0
## 520    0
## 522    0
## 529    0
## 531    0
## 532    0
## 541    0
## 545    0
## 547    0
## 551    0
## 554    0
## 556    0
## 557    0
## 558    0
## 560    0
## 561    0
## 562    0
## 564    0

Conclusión

El cáncer de mama es una enfermedad en la que células de la mama con alteraciones se multiplican sin control y forman tumores que, de no tratarse, pueden propagarse por todo el cuerpo y causar la muerte.

LS0tCnRpdGxlOiAiQ2FuY2VyIGRlIG1hbWEiCmF1dGhvcjogIlNlYmFzdGnDoW4gRmFqYXJkby0gQTAxNDEyMDM1IgpkYXRlOiAiMjAyNC0wOC0xNSIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiBUUlVFCiAgICB0b2NfZmxvYXQ6IFRSVUUKICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKICAgIHRoZW1lOiBjb3NtbwotLS0KCiFbXSgvVXNlcnMvc2ViYXN0aWFuZmFqYXJkby9Eb3dubG9hZHMvY2FuY2VyX2RlX21hbWEuanBnKQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4xLiBJbnN0YWxhciBwYXF1ZXRlcyB5IGxsYW1hciBsaWJyZXLDrWFzPC9zcGFuPgpgYGB7cn0KI2luc3RhbGwucGFja2FnZXMoImNhcmV0IikKIyBpbnN0YWxsLnBhY2thZ2VzKCJuZXVyYWxuZXQiKQpsaWJyYXJ5KGNhcmV0KQpsaWJyYXJ5KG5ldXJhbG5ldCkKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4yLiBDYXJnYXIgZWwgZGF0YWZyYW1lPC9zcGFuPgpgYGB7cn0KZGYgPC0gcmVhZC5jc3YoICIvVXNlcnMvc2ViYXN0aWFuZmFqYXJkby9Eb3dubG9hZHMvY2FuY2VyX2RlX21hbWEuY3N2IikKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4zLiBQcmVwYXJhciBsb3MgZGF0b3MgPC9zcGFuPgpgYGB7cn0KZGYkZGlhZ25vc2lzIDwtIGlmZWxzZShkZiRkaWFnbm9zaXMgPT0gIk0iLCAxLCAwKQpzZXQuc2VlZCgxMjMpCnJlbmdsb25lc19lbnRyZW5hbWllbnRvIDwtIGNyZWF0ZURhdGFQYXJ0aXRpb24oZGYkZGlhZ25vc2lzLCBwPTAuOCwgbGlzdD1GQUxTRSkKZW50cmVuYW1pZW50byA8LSBkZltyZW5nbG9uZXNfZW50cmVuYW1pZW50bywgXQpwcnVlYmEgPC0gZGZbLXJlbmdsb25lc19lbnRyZW5hbWllbnRvLCBdCgoKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij40LiBHZW5lcmFyIHJlZCBuZXVyb25hbDwvc3Bhbj4KCmBgYHtyfQpwcmVkaWN0b3JhcyA8LSBuYW1lcyhkZilbbmFtZXMoZGYpICE9ICJkaWFnbm9zaXMiXQpmb3JtdWxhIDwtIGFzLmZvcm11bGEocGFzdGUoImRpYWdub3NpcyB+IiwgcGFzdGUocHJlZGljdG9yYXMsIGNvbGxhcHNlID0gIiArICIpKSkKcmVkX25ldXJvbmFsIDwtIG5ldXJhbG5ldChmb3JtdWxhLCBkYXRhPWVudHJlbmFtaWVudG8pCgpwbG90KHJlZF9uZXVyb25hbCwgcmVwID0gImJlc3QiKQpgYGAKCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij41LiBQcmVkZWNpciBjb24gbGEgUmVkIE5ldXJvbmFsPC9zcGFuPgpgYGB7cn0KcHJ1ZWJhX3ByZWRpY3RvcmFzIDwtIHBydWViYVssIHByZWRpY3RvcmFzXQoKcHJlZGljY2lvbiA8LSBjb21wdXRlKHJlZF9uZXVyb25hbCwgcHJ1ZWJhX3ByZWRpY3RvcmFzKQpwcm9iYWJpbGlkYWQgPC0gcHJlZGljY2lvbiRuZXQucmVzdWx0CnJlc3VsdGFkbyA8LSBpZmVsc2UocHJvYmFiaWxpZGFkID4gMC41LCAxLCAwKQpwcmludChyZXN1bHRhZG8pCmBgYAojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5Db25jbHVzacOzbjwvc3Bhbj4KRWwgY8OhbmNlciBkZSBtYW1hIGVzIHVuYSBlbmZlcm1lZGFkIGVuIGxhIHF1ZSBjw6lsdWxhcyBkZSBsYSBtYW1hIGNvbiBhbHRlcmFjaW9uZXMgc2UgbXVsdGlwbGljYW4gc2luIGNvbnRyb2wgeSBmb3JtYW4gdHVtb3JlcyBxdWUsIGRlIG5vIHRyYXRhcnNlLCBwdWVkZW4gcHJvcGFnYXJzZSBwb3IgdG9kbyBlbCBjdWVycG8geSBjYXVzYXIgbGEgbXVlcnRlLgoKCgoK