Redes Neuronales

0. Concepto

Una Red Neural Artificial (ANN) modela la relación entre un conjunto de entradas y una salida, resolviendo un problema de aprendizaje.

Ejemplos de aplicación de Redes Neuronales son:
1. La recomendación de contenido de Netflix.
2. El feed de Instagram o TikTok.
3. Determinar el número o letra escrito a mano.

1. Instalar paquetes y llamar librerías

# install.packages("neuralnet")
library(neuralnet)

2. Alimentar con ejemplos

examen <- c(20,10,30,20,80,30)
proyecto <- c(90,20,40,50,50,80)
estatus <- c(1,0,0,0,0,1)
df <- data.frame(examen,proyecto,estatus)

3. Generar la Red Neuronal

red_neuronal <- neuralnet(estatus~., data=df)
plot(red_neuronal, rep = "best")

4. Predecir con la Red Neuronal

prueba_examen <- c(30,40,85)
prueba_proyecto <- c(85,50,40)
prueba <-data.frame(prueba_examen,prueba_proyecto)
# sacar tabla nueva de prueba
prediccion <- compute(red_neuronal, prueba) # función de computar para hacer predicción
prediccion$net.result
##           [,1]
## [1,] 0.3341509
## [2,] 0.3341509
## [3,] 0.3341509
probabilidad <- prediccion$net.result
resultado <- ifelse(probabilidad>0.5,1,0)
resultado
##      [,1]
## [1,]    0
## [2,]    0
## [3,]    0
# 1 = pasa
# 0 = no pasa
# Se necesitan más ejemplos para mayor precisión

Conclusion

Las redes neuronales permiten que los programas reconozcan patrones y resuelvan problemas comunes en inteligencia artificial y aprendizaje automático.

LS0tCnRpdGxlOiAiUmVkZXMgbmV1cm9uYWxlcyIKYXV0aG9yOiAiWWVzc2ljYSBBY29zdGEiCmRhdGU6ICIyMDI0LTA4LTE1IgpvdXRwdXQ6IAogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IFRSVUUKICAgIHRvY19mbG9hdDogVFJVRQogICAgY29kZV9kb3dubG9hZDogVFJVRQogICAgdGhlbWU6ICJzcGFjZWxhYiIKICAgIGhpZ2hsaWdodDogImthdGUiCi0tLQoKIVtdKC9Vc2Vycy95ZXNzaWNhYWNvc3RhL0Rvd25sb2Fkcy9uZXVyb25hLmdpZikKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+UmVkZXMgTmV1cm9uYWxlczwvc3Bhbj4KCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPjAuIENvbmNlcHRvPC9zcGFuPgpVbmEgUmVkIE5ldXJhbCBBcnRpZmljaWFsIChBTk4pIG1vZGVsYSBsYSByZWxhY2nDs24gZW50cmUgdW4gY29uanVudG8gZGUgZW50cmFkYXMgeSB1bmEgc2FsaWRhLCByZXNvbHZpZW5kbyB1biBwcm9ibGVtYSBkZSBhcHJlbmRpemFqZS4gIAoKRWplbXBsb3MgZGUgYXBsaWNhY2nDs24gZGUgUmVkZXMgTmV1cm9uYWxlcyBzb246ICAKMS4gTGEgcmVjb21lbmRhY2nDs24gZGUgY29udGVuaWRvIGRlIE5ldGZsaXguICAKMi4gRWwgZmVlZCBkZSBJbnN0YWdyYW0gbyBUaWtUb2suICAKMy4gRGV0ZXJtaW5hciBlbCBuw7ptZXJvIG8gbGV0cmEgZXNjcml0byBhIG1hbm8uICAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPjEuIEluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXM8L3NwYW4+CmBgYHtyfQojIGluc3RhbGwucGFja2FnZXMoIm5ldXJhbG5ldCIpCmxpYnJhcnkobmV1cmFsbmV0KQpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPjIuIEFsaW1lbnRhciBjb24gZWplbXBsb3M8L3NwYW4+CmBgYHtyfQpleGFtZW4gPC0gYygyMCwxMCwzMCwyMCw4MCwzMCkKcHJveWVjdG8gPC0gYyg5MCwyMCw0MCw1MCw1MCw4MCkKZXN0YXR1cyA8LSBjKDEsMCwwLDAsMCwxKQpkZiA8LSBkYXRhLmZyYW1lKGV4YW1lbixwcm95ZWN0byxlc3RhdHVzKQpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPjMuIEdlbmVyYXIgbGEgUmVkIE5ldXJvbmFsPC9zcGFuPgpgYGB7cn0KcmVkX25ldXJvbmFsIDwtIG5ldXJhbG5ldChlc3RhdHVzfi4sIGRhdGE9ZGYpCnBsb3QocmVkX25ldXJvbmFsLCByZXAgPSAiYmVzdCIpCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+NC4gUHJlZGVjaXIgY29uIGxhIFJlZCBOZXVyb25hbDwvc3Bhbj4KYGBge3J9CnBydWViYV9leGFtZW4gPC0gYygzMCw0MCw4NSkKcHJ1ZWJhX3Byb3llY3RvIDwtIGMoODUsNTAsNDApCnBydWViYSA8LWRhdGEuZnJhbWUocHJ1ZWJhX2V4YW1lbixwcnVlYmFfcHJveWVjdG8pCiMgc2FjYXIgdGFibGEgbnVldmEgZGUgcHJ1ZWJhCnByZWRpY2Npb24gPC0gY29tcHV0ZShyZWRfbmV1cm9uYWwsIHBydWViYSkgIyBmdW5jacOzbiBkZSBjb21wdXRhciBwYXJhIGhhY2VyIHByZWRpY2Npw7NuCnByZWRpY2Npb24kbmV0LnJlc3VsdApwcm9iYWJpbGlkYWQgPC0gcHJlZGljY2lvbiRuZXQucmVzdWx0CnJlc3VsdGFkbyA8LSBpZmVsc2UocHJvYmFiaWxpZGFkPjAuNSwxLDApCnJlc3VsdGFkbwojIDEgPSBwYXNhCiMgMCA9IG5vIHBhc2EKIyBTZSBuZWNlc2l0YW4gbcOhcyBlamVtcGxvcyBwYXJhIG1heW9yIHByZWNpc2nDs24KYGBgCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+Q29uY2x1c2lvbjwvc3Bhbj4KTGFzIHJlZGVzIG5ldXJvbmFsZXMgcGVybWl0ZW4gcXVlIGxvcyBwcm9ncmFtYXMgcmVjb25vemNhbiBwYXRyb25lcyB5IHJlc3VlbHZhbiBwcm9ibGVtYXMgY29tdW5lcyBlbiBpbnRlbGlnZW5jaWEgYXJ0aWZpY2lhbCB5IGFwcmVuZGl6YWplIGF1dG9tw6F0aWNvLgo=