Redes Neuronales

0. Concepto

Una Red Neural Artificial (ANN) modela la relación entre un conjunto de entradas y una salida, resolviendo un problema de aprendizaje.

Ejemplos de aplicación de Redes Neuronales son:
1. La recomendación de contenido de Netflix.
2. El feed de Instagram o TikTok.
3. Determinar el número o letra escrito a mano.

1. Instalar paquetes y llamar librerías

# install.packages("neuralnet")
library(neuralnet)

2. Alimentar con ejemplos

examen <- c(20,10,30,20,80,30)
proyecto <- c(90,20,40,50,50,80)
estatus <- c(1,0,0,0,0,1)
df <- data.frame(examen,proyecto,estatus)

3. Generar la Red Neuronal

red_neuronal <- neuralnet(estatus~., data=df)
plot(red_neuronal, rep = "best")

4. Predecir con la Red Neuronal

prueba_examen <- c(30,40,85)
prueba_proyecto <- c(85,50,40)
prueba <-data.frame(prueba_examen,prueba_proyecto)
prediccion <- compute(red_neuronal, prueba)
prediccion$net.result
##           [,1]
## [1,] 0.3339696
## [2,] 0.3339696
## [3,] 0.3339696
probabilidad <- prediccion$net.result
resultado <- ifelse(probabilidad>0.5,1,0)
resultado
##      [,1]
## [1,]    0
## [2,]    0
## [3,]    0

Conclusion

Las redes neuronales permite a los programas reconocer patrones y resolver problemas comunes a través de la inteligencia artificial y aprendizaje automático. Permitiendo la simplificación de labores manuales.

LS0tDQp0aXRsZTogIlJlZGVzIE5ldXJvbmFsZXMiDQphdXRob3I6ICJSb2RyaWdvIEFycm95byAtIEEwMTc0NzM4MCINCmRhdGU6ICIyMDI0LTA4LTE0Ig0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6ICJzcGFjZWxhYiINCiAgICBoaWdobGlnaHQ6ICJrYXRlIg0KLS0tDQoNCiFbXShDOlxcVXNlcnNcXHJvZGlvXFxEb3dubG9hZHNcXHJlZC5naWYpDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+KipSZWRlcyBOZXVyb25hbGVzKio8L3NwYW4+DQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPiowLiBDb25jZXB0byo8L3NwYW4+DQpVbmEgKipSZWQgTmV1cmFsIEFydGlmaWNpYWwgKEFOTikqKiBtb2RlbGEgbGEgcmVsYWNpw7NuIGVudHJlIHVuIGNvbmp1bnRvIGRlIGVudHJhZGFzIHkgdW5hIHNhbGlkYSwgcmVzb2x2aWVuZG8gdW4gcHJvYmxlbWEgZGUgYXByZW5kaXphamUuICANCg0KRWplbXBsb3MgZGUgYXBsaWNhY2nDs24gZGUgUmVkZXMgTmV1cm9uYWxlcyBzb246ICANCjEuIExhIHJlY29tZW5kYWNpw7NuIGRlIGNvbnRlbmlkbyBkZSBOZXRmbGl4LiAgDQoyLiBFbCBmZWVkIGRlIEluc3RhZ3JhbSBvIFRpa1Rvay4gIA0KMy4gRGV0ZXJtaW5hciBlbCBuw7ptZXJvIG8gbGV0cmEgZXNjcml0byBhIG1hbm8uICANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+KjEuIEluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXMqPC9zcGFuPg0KYGBge3J9DQojIGluc3RhbGwucGFja2FnZXMoIm5ldXJhbG5ldCIpDQpsaWJyYXJ5KG5ldXJhbG5ldCkNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4qMi4gQWxpbWVudGFyIGNvbiBlamVtcGxvcyo8L3NwYW4+DQpgYGB7cn0NCmV4YW1lbiA8LSBjKDIwLDEwLDMwLDIwLDgwLDMwKQ0KcHJveWVjdG8gPC0gYyg5MCwyMCw0MCw1MCw1MCw4MCkNCmVzdGF0dXMgPC0gYygxLDAsMCwwLDAsMSkNCmRmIDwtIGRhdGEuZnJhbWUoZXhhbWVuLHByb3llY3RvLGVzdGF0dXMpDQpgYGANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+KjMuIEdlbmVyYXIgbGEgUmVkIE5ldXJvbmFsKjwvc3Bhbj4NCmBgYHtyfQ0KcmVkX25ldXJvbmFsIDwtIG5ldXJhbG5ldChlc3RhdHVzfi4sIGRhdGE9ZGYpDQpwbG90KHJlZF9uZXVyb25hbCwgcmVwID0gImJlc3QiKQ0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPio0LiBQcmVkZWNpciBjb24gbGEgUmVkIE5ldXJvbmFsKjwvc3Bhbj4NCmBgYHtyfQ0KcHJ1ZWJhX2V4YW1lbiA8LSBjKDMwLDQwLDg1KQ0KcHJ1ZWJhX3Byb3llY3RvIDwtIGMoODUsNTAsNDApDQpwcnVlYmEgPC1kYXRhLmZyYW1lKHBydWViYV9leGFtZW4scHJ1ZWJhX3Byb3llY3RvKQ0KcHJlZGljY2lvbiA8LSBjb21wdXRlKHJlZF9uZXVyb25hbCwgcHJ1ZWJhKQ0KcHJlZGljY2lvbiRuZXQucmVzdWx0DQpwcm9iYWJpbGlkYWQgPC0gcHJlZGljY2lvbiRuZXQucmVzdWx0DQpyZXN1bHRhZG8gPC0gaWZlbHNlKHByb2JhYmlsaWRhZD4wLjUsMSwwKQ0KcmVzdWx0YWRvDQpgYGANCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij4qKkNvbmNsdXNpb24qKjwvc3Bhbj4NCkxhcyByZWRlcyBuZXVyb25hbGVzIHBlcm1pdGUgYSBsb3MgcHJvZ3JhbWFzIHJlY29ub2NlciBwYXRyb25lcyB5IHJlc29sdmVyIHByb2JsZW1hcyBjb211bmVzIGEgdHJhdsOpcyBkZSBsYSBpbnRlbGlnZW5jaWEgYXJ0aWZpY2lhbCB5IGFwcmVuZGl6YWplIGF1dG9tw6F0aWNvLiBQZXJtaXRpZW5kbyBsYSBzaW1wbGlmaWNhY2nDs24gZGUgbGFib3JlcyBtYW51YWxlcy4NCg0K