This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Cmd+Shift+Enter.

plot(cars)

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Cmd+Option+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Cmd+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

library(lavaan)
library(semPlot)
library(haven)
library(dplyr)
library(caTools)  # For Linear regression 
library(car)      # To check multicollinearity 
library(quantmod) 
library(MASS)
library(haven)
data <- read_sav("/Users/mj/Library/CloudStorage/Dropbox/Chat GPT and User Adaptation/ChatGPT_cleaned.sav")
data

model 2 or model 3 - KU (Know and Understand) items are: know wha AI and recall the definitions, how to use AI applications, can compare differences between AI concepts. - Test Chronbach’s alpha of the three items and check if it makes sense to delete the second item.

#Testing chronbach's alpha of Ng_K
# Specify mediation model with MH expert, objective, accurate only 
model_3<-
'
  # Direct effects of IVs on DV
    factcheck_A ~ c1*Lit_Pin_TK + c2*Lit_Pin_SK + c3*Lit_Ng_SE + c4*Lit_Ng_KU + c5*Lit_Ng_EC

  # Direct effects of IVs on first-level mediators
    MH_expert ~ a3_1*Lit_Pin_TK + a3_2*Lit_Pin_SK + a3_3*Lit_Ng_SE + a3_4*Lit_Ng_KU + a3_5*Lit_Ng_EC
    MH_objective ~ a4_1*Lit_Pin_TK + a4_2*Lit_Pin_SK + a4_3*Lit_Ng_SE + a4_4*Lit_Ng_KU + a4_5*Lit_Ng_EC
    MH_accurate ~ a5_1*Lit_Pin_TK + a5_2*Lit_Pin_SK + a5_3*Lit_Ng_SE + a5_4*Lit_Ng_KU + a5_5*Lit_Ng_EC

  # Direct effects of first-level mediators on second-level mediators
    credible ~ b1_3*MH_expert + b1_4*MH_objective + b1_5*MH_accurate
    trust ~ b2_3*MH_expert + b2_4*MH_objective + b2_5*MH_accurate

  # Direct effects of second-level mediators on DV
    factcheck_A ~ d1*credible + d2*trust

  # Indirect effects via first and second-level mediators
    SE_expert_credible := a3_3*b1_3*d1
    SE_obj_credible := a4_3*b1_4*d1
    SE_acc_credible := a5_3*b1_5*d1
    
    EC_expert_credible := a3_5*b1_3*d1
    EC_obj_credible := a4_5*b1_3*d1
    EC_acc_credible := a5_5*b1_3*d1
    
    KU_expert_credible := a3_4*b1_3*d1
    
  #Estimating covariance and residuals 
  #Estimating variances of exogenous variables (Xs)
    Lit_Pin_TK~~Lit_Pin_TK
    Lit_Pin_SK~~Lit_Pin_SK
    Lit_Ng_SE~~Lit_Ng_SE
    Lit_Ng_KU~~Lit_Ng_KU
    Lit_Ng_EC~~Lit_Ng_EC

  #Estimating co-variances of exogenous variables (Xs)
    Lit_Pin_TK~~Lit_Pin_SK
    Lit_Pin_TK~~Lit_Ng_SE
    Lit_Pin_TK~~Lit_Ng_KU
    Lit_Pin_TK~~Lit_Ng_EC
    
    Lit_Pin_SK~~Lit_Ng_SE
    Lit_Pin_SK~~Lit_Ng_KU
    Lit_Pin_SK~~Lit_Ng_EC
    
    Lit_Ng_SE~~Lit_Ng_KU
    Lit_Ng_SE~~Lit_Ng_EC
    
    Lit_Ng_KU~~Lit_Ng_EC

  #Estimating the residual variances (e1,…) for endogenous variables (Ms and Ys)
    MH_expert~~MH_expert
    MH_objective~~MH_objective
    MH_accurate~~MH_accurate
    
    credible~~credible
    trust~~trust
    
    factcheck_A~~factcheck_A

  #Estimating the covariances of residuals for Ms 
    MH_expert~~MH_objective
    MH_expert~~MH_accurate 
    MH_objective~~MH_accurate 
    
    credible~~trust
'
# Add bootstrapping to the lavaan function call
result.model_3 <- lavaan(model_3, data = data, se = "boot", bootstrap = 5000)

# Display the results with the specified options
summary(result.model_3, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
lavaan 0.6-18 ended normally after 43 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        53

                                                  Used       Total
  Number of observations                           223         225

Model Test User Model:
                                                      
  Test statistic                                25.538
  Degrees of freedom                                13
  P-value (Chi-square)                           0.020

Model Test Baseline Model:

  Test statistic                              1437.268
  Degrees of freedom                                55
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.991
  Tucker-Lewis Index (TLI)                       0.962

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -3342.687
  Loglikelihood unrestricted model (H1)      -3329.918
                                                      
  Akaike (AIC)                                6791.374
  Bayesian (BIC)                              6971.954
  Sample-size adjusted Bayesian (SABIC)       6803.990

Root Mean Square Error of Approximation:

  RMSEA                                          0.066
  90 Percent confidence interval - lower         0.026
  90 Percent confidence interval - upper         0.103
  P-value H_0: RMSEA <= 0.050                    0.220
  P-value H_0: RMSEA >= 0.080                    0.294

Standardized Root Mean Square Residual:

  SRMR                                           0.036

Parameter Estimates:

  Standard errors                            Bootstrap
  Number of requested bootstrap draws             5000
  Number of successful bootstrap draws            5000

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  factcheck_A ~                                                         
    Lt_P_TK   (c1)   -0.125    0.107   -1.168    0.243   -0.125   -0.131
    Lt_P_SK   (c2)    0.257    0.096    2.669    0.008    0.257    0.265
    Lt_N_SE   (c3)    0.111    0.099    1.126    0.260    0.111    0.100
    Lt_N_KU   (c4)    0.030    0.117    0.254    0.800    0.030    0.021
    Lt_N_EC   (c5)    0.042    0.106    0.399    0.690    0.042    0.040
  MH_expert ~                                                           
    Lt_P_TK (a3_1)   -0.088    0.117   -0.754    0.451   -0.088   -0.085
    Lt_P_SK (a3_2)    0.016    0.113    0.140    0.888    0.016    0.015
    Lt_N_SE (a3_3)    0.250    0.102    2.447    0.014    0.250    0.209
    Lt_N_KU (a3_4)   -0.373    0.132   -2.822    0.005   -0.373   -0.246
    Lt_N_EC (a3_5)    0.438    0.106    4.112    0.000    0.438    0.390
  MH_objective ~                                                        
    Lt_P_TK (a4_1)   -0.072    0.145   -0.496    0.620   -0.072   -0.061
    Lt_P_SK (a4_2)   -0.084    0.146   -0.579    0.563   -0.084   -0.070
    Lt_N_SE (a4_3)    0.272    0.117    2.318    0.020    0.272    0.197
    Lt_N_KU (a4_4)   -0.209    0.157   -1.335    0.182   -0.209   -0.120
    Lt_N_EC (a4_5)    0.429    0.127    3.381    0.001    0.429    0.331
  MH_accurate ~                                                         
    Lt_P_TK (a5_1)   -0.162    0.126   -1.289    0.197   -0.162   -0.153
    Lt_P_SK (a5_2)   -0.048    0.126   -0.379    0.705   -0.048   -0.045
    Lt_N_SE (a5_3)    0.265    0.108    2.465    0.014    0.265    0.216
    Lt_N_KU (a5_4)   -0.241    0.135   -1.789    0.074   -0.241   -0.155
    Lt_N_EC (a5_5)    0.482    0.111    4.362    0.000    0.482    0.418
  credible ~                                                            
    MH_xprt (b1_3)    0.364    0.050    7.250    0.000    0.364    0.418
    MH_bjct (b1_4)    0.066    0.042    1.559    0.119    0.066    0.087
    MH_ccrt (b1_5)    0.345    0.051    6.797    0.000    0.345    0.407
  trust ~                                                               
    MH_xprt (b2_3)    0.304    0.056    5.452    0.000    0.304    0.386
    MH_bjct (b2_4)    0.033    0.040    0.813    0.416    0.033    0.048
    MH_ccrt (b2_5)    0.293    0.061    4.817    0.000    0.293    0.382
  factcheck_A ~                                                         
    credibl   (d1)   -0.403    0.138   -2.920    0.004   -0.403   -0.378
    trust     (d2)    0.041    0.149    0.276    0.782    0.041    0.035

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  Lit_Pin_TK ~~                                                         
    Lit_Pin_SK        1.468    0.140   10.498    0.000    1.468    0.820
    Lit_Ng_SE         0.719    0.123    5.846    0.000    0.719    0.458
    Lit_Ng_KU         0.721    0.095    7.556    0.000    0.721    0.583
    Lit_Ng_EC         0.912    0.134    6.812    0.000    0.912    0.547
  Lit_Pin_SK ~~                                                         
    Lit_Ng_SE         0.625    0.113    5.513    0.000    0.625    0.405
    Lit_Ng_KU         0.653    0.083    7.920    0.000    0.653    0.536
    Lit_Ng_EC         0.782    0.121    6.468    0.000    0.782    0.477
  Lit_Ng_SE ~~                                                          
    Lit_Ng_KU         0.565    0.075    7.530    0.000    0.565    0.529
    Lit_Ng_EC         0.816    0.132    6.181    0.000    0.816    0.567
  Lit_Ng_KU ~~                                                          
    Lit_Ng_EC         0.745    0.082    9.092    0.000    0.745    0.656
 .MH_expert ~~                                                          
   .MH_objective      0.961    0.156    6.147    0.000    0.961    0.501
   .MH_accurate       0.978    0.155    6.317    0.000    0.978    0.588
 .MH_objective ~~                                                       
   .MH_accurate       1.089    0.138    7.911    0.000    1.089    0.561
 .credible ~~                                                           
   .trust             0.281    0.048    5.839    0.000    0.281    0.527

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    Lit_Pin_TK        1.818    0.157   11.594    0.000    1.818    1.000
    Lit_Pin_SK        1.761    0.139   12.645    0.000    1.761    1.000
    Lit_Ng_SE         1.354    0.151    8.991    0.000    1.354    1.000
    Lit_Ng_KU         0.843    0.071   11.918    0.000    0.843    1.000
    Lit_Ng_EC         1.529    0.135   11.291    0.000    1.529    1.000
   .MH_expert         1.644    0.190    8.669    0.000    1.644    0.851
   .MH_objective      2.242    0.179   12.498    0.000    2.242    0.873
   .MH_accurate       1.683    0.159   10.596    0.000    1.683    0.827
   .credible          0.506    0.054    9.296    0.000    0.506    0.345
   .trust             0.560    0.058    9.737    0.000    0.560    0.468
   .factcheck_A       1.396    0.124   11.255    0.000    1.396    0.841

R-Square:
                   Estimate
    MH_expert         0.149
    MH_objective      0.127
    MH_accurate       0.173
    credible          0.655
    trust             0.532
    factcheck_A       0.159

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    SE_exprt_crdbl   -0.037    0.022   -1.639    0.101   -0.037   -0.033
    SE_obj_credibl   -0.007    0.007   -1.023    0.306   -0.007   -0.007
    SE_acc_credibl   -0.037    0.022   -1.711    0.087   -0.037   -0.033
    EC_exprt_crdbl   -0.064    0.029   -2.205    0.027   -0.064   -0.062
    EC_obj_credibl   -0.063    0.029   -2.203    0.028   -0.063   -0.052
    EC_acc_credibl   -0.071    0.030   -2.382    0.017   -0.071   -0.066
    KU_exprt_crdbl    0.055    0.026    2.075    0.038    0.055    0.039
# Specify mediation model with all five MH (efficient, useful, expert, objective, and accurate)
model_2<-
'
  # Direct effects of IVs on DV
    factcheck_A ~ c1*Lit_Pin_TK + c2*Lit_Pin_SK + c3*Lit_Ng_SE + c4*Lit_Ng_KU + c5*Lit_Ng_EC

  # Direct effects of IVs on first-level mediators
    MH_efficient ~ a1_1*Lit_Pin_TK + a1_2*Lit_Pin_SK + a1_3*Lit_Ng_SE + a1_4*Lit_Ng_KU + a1_5*Lit_Ng_EC
    MH_useful ~ a2_1*Lit_Pin_TK + a2_2*Lit_Pin_SK + a2_3*Lit_Ng_SE + a2_4*Lit_Ng_KU + a2_5*Lit_Ng_EC
    MH_expert ~ a3_1*Lit_Pin_TK + a3_2*Lit_Pin_SK + a3_3*Lit_Ng_SE + a3_4*Lit_Ng_KU + a3_5*Lit_Ng_EC
    MH_objective ~ a4_1*Lit_Pin_TK + a4_2*Lit_Pin_SK + a4_3*Lit_Ng_SE + a4_4*Lit_Ng_KU + a4_5*Lit_Ng_EC
    MH_accurate ~ a5_1*Lit_Pin_TK + a5_2*Lit_Pin_SK + a5_3*Lit_Ng_SE + a5_4*Lit_Ng_KU + a5_5*Lit_Ng_EC

  # Direct effects of first-level mediators on second-level mediators
    credible ~ b1_1*MH_efficient + b1_2*MH_useful + b1_3*MH_expert + b1_4*MH_objective + b1_5*MH_accurate
    trust ~ b2_1*MH_efficient + b2_2*MH_useful + b2_3*MH_expert + b2_4*MH_objective + b2_5*MH_accurate

  # Direct effects of second-level mediators on DV
    factcheck_A ~ d1*credible + d2*trust

  # Indirect effects via first and second-level mediators
    SE_expert_credible := a3_3*b1_3*d1
    SE_obj_credible := a4_3*b1_4*d1
    SE_acc_credible := a5_3*b1_5*d1
    
    EC_expert_credible := a3_5*b1_3*d1
    EC_obj_credible := a4_5*b1_3*d1
    EC_acc_credible := a5_5*b1_3*d1
    
    KU_expert_credible := a3_4*b1_3*d1
    
  #Estimating covariance and residuals 
  #Estimating variances of exogenous variables (Xs)
    Lit_Pin_TK~~Lit_Pin_TK
    Lit_Pin_SK~~Lit_Pin_SK
    Lit_Ng_SE~~Lit_Ng_SE
    Lit_Ng_KU~~Lit_Ng_KU
    Lit_Ng_EC~~Lit_Ng_EC

  #Estimating co-variances of exogenous variables (Xs)
    Lit_Pin_TK~~Lit_Pin_SK
    Lit_Pin_TK~~Lit_Ng_SE
    Lit_Pin_TK~~Lit_Ng_KU
    Lit_Pin_TK~~Lit_Ng_EC
    
    Lit_Pin_SK~~Lit_Ng_SE
    Lit_Pin_SK~~Lit_Ng_KU
    Lit_Pin_SK~~Lit_Ng_EC
    
    Lit_Ng_SE~~Lit_Ng_KU
    Lit_Ng_SE~~Lit_Ng_EC
    
    Lit_Ng_KU~~Lit_Ng_EC

  #Estimating the residual variances (e1,…) for endogenous variables (Ms and Ys)
    MH_efficient~~MH_efficient
    MH_useful~~MH_useful
    MH_expert~~MH_expert
    MH_objective~~MH_objective
    MH_accurate~~MH_accurate
    
    credible~~credible
    trust~~trust
    
    factcheck_A~~factcheck_A

  #Estimating the covariances of residuals for Ms 
    MH_efficient~~MH_useful
    MH_efficient~~MH_expert
    MH_efficient~~MH_objective
    MH_efficient~~MH_accurate
    
    MH_useful~~MH_expert
    MH_useful~~MH_objective
    MH_useful~~MH_accurate
    
    MH_expert~~MH_objective
    MH_expert~~MH_accurate 
    
    MH_objective~~MH_accurate 
    
    credible~~trust
'
# Add bootstrapping to the lavaan function call
result.model_2 <- lavaan(model_2, data = data, se = "boot", bootstrap = 5000)

# Display the results with the specified options
summary(result.model_2, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
lavaan 0.6-18 ended normally after 58 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        76

                                                  Used       Total
  Number of observations                           223         225

Model Test User Model:
                                                      
  Test statistic                                20.784
  Degrees of freedom                                15
  P-value (Chi-square)                           0.144

Model Test Baseline Model:

  Test statistic                              1802.248
  Degrees of freedom                                78
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.997
  Tucker-Lewis Index (TLI)                       0.983

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -3729.368
  Loglikelihood unrestricted model (H1)      -3718.976
                                                      
  Akaike (AIC)                                7610.736
  Bayesian (BIC)                              7869.681
  Sample-size adjusted Bayesian (SABIC)       7628.827

Root Mean Square Error of Approximation:

  RMSEA                                          0.042
  90 Percent confidence interval - lower         0.000
  90 Percent confidence interval - upper         0.081
  P-value H_0: RMSEA <= 0.050                    0.590
  P-value H_0: RMSEA >= 0.080                    0.055

Standardized Root Mean Square Residual:

  SRMR                                           0.023

Parameter Estimates:

  Standard errors                            Bootstrap
  Number of requested bootstrap draws             5000
  Number of successful bootstrap draws            5000

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  factcheck_A ~                                                         
    Lt_P_TK   (c1)   -0.125    0.109   -1.153    0.249   -0.125   -0.131
    Lt_P_SK   (c2)    0.257    0.098    2.634    0.008    0.257    0.265
    Lt_N_SE   (c3)    0.111    0.097    1.150    0.250    0.111    0.100
    Lt_N_KU   (c4)    0.030    0.116    0.256    0.798    0.030    0.021
    Lt_N_EC   (c5)    0.042    0.109    0.387    0.699    0.042    0.041
  MH_efficient ~                                                        
    Lt_P_TK (a1_1)   -0.065    0.079   -0.819    0.413   -0.065   -0.109
    Lt_P_SK (a1_2)    0.025    0.083    0.303    0.762    0.025    0.042
    Lt_N_SE (a1_3)    0.131    0.052    2.535    0.011    0.131    0.190
    Lt_N_KU (a1_4)   -0.013    0.106   -0.123    0.902   -0.013   -0.015
    Lt_N_EC (a1_5)    0.099    0.074    1.335    0.182    0.099    0.152
  MH_useful ~                                                           
    Lt_P_TK (a2_1)   -0.017    0.085   -0.203    0.839   -0.017   -0.024
    Lt_P_SK (a2_2)   -0.070    0.090   -0.778    0.437   -0.070   -0.098
    Lt_N_SE (a2_3)    0.240    0.087    2.763    0.006    0.240    0.295
    Lt_N_KU (a2_4)   -0.100    0.105   -0.946    0.344   -0.100   -0.097
    Lt_N_EC (a2_5)    0.241    0.088    2.718    0.007    0.241    0.314
  MH_expert ~                                                           
    Lt_P_TK (a3_1)   -0.088    0.121   -0.730    0.466   -0.088   -0.085
    Lt_P_SK (a3_2)    0.016    0.115    0.138    0.890    0.016    0.015
    Lt_N_SE (a3_3)    0.250    0.102    2.446    0.014    0.250    0.209
    Lt_N_KU (a3_4)   -0.373    0.135   -2.760    0.006   -0.373   -0.246
    Lt_N_EC (a3_5)    0.438    0.109    4.017    0.000    0.438    0.390
  MH_objective ~                                                        
    Lt_P_TK (a4_1)   -0.072    0.144   -0.500    0.617   -0.072   -0.061
    Lt_P_SK (a4_2)   -0.084    0.143   -0.589    0.556   -0.084   -0.070
    Lt_N_SE (a4_3)    0.272    0.118    2.310    0.021    0.272    0.197
    Lt_N_KU (a4_4)   -0.209    0.157   -1.334    0.182   -0.209   -0.120
    Lt_N_EC (a4_5)    0.429    0.126    3.406    0.001    0.429    0.331
  MH_accurate ~                                                         
    Lt_P_TK (a5_1)   -0.162    0.128   -1.260    0.208   -0.162   -0.153
    Lt_P_SK (a5_2)   -0.048    0.127   -0.376    0.707   -0.048   -0.045
    Lt_N_SE (a5_3)    0.265    0.108    2.452    0.014    0.265    0.216
    Lt_N_KU (a5_4)   -0.241    0.135   -1.780    0.075   -0.241   -0.155
    Lt_N_EC (a5_5)    0.482    0.109    4.419    0.000    0.482    0.418
  credible ~                                                            
    MH_ffcn (b1_1)    0.003    0.082    0.033    0.974    0.003    0.002
    MH_usfl (b1_2)    0.177    0.084    2.106    0.035    0.177    0.139
    MH_xprt (b1_3)    0.291    0.060    4.815    0.000    0.291    0.334
    MH_bjct (b1_4)    0.078    0.042    1.847    0.065    0.078    0.103
    MH_ccrt (b1_5)    0.311    0.052    6.043    0.000    0.311    0.367
  trust ~                                                               
    MH_ffcn (b2_1)    0.065    0.090    0.714    0.475    0.065    0.047
    MH_usfl (b2_2)    0.347    0.078    4.461    0.000    0.347    0.300
    MH_xprt (b2_3)    0.141    0.063    2.248    0.025    0.141    0.179
    MH_bjct (b2_4)    0.058    0.039    1.513    0.130    0.058    0.085
    MH_ccrt (b2_5)    0.223    0.058    3.832    0.000    0.223    0.290
  factcheck_A ~                                                         
    credibl   (d1)   -0.403    0.139   -2.905    0.004   -0.403   -0.379
    trust     (d2)    0.041    0.148    0.277    0.781    0.041    0.035

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  Lit_Pin_TK ~~                                                         
    Lit_Pin_SK        1.468    0.140   10.495    0.000    1.468    0.820
    Lit_Ng_SE         0.719    0.124    5.787    0.000    0.719    0.458
    Lit_Ng_KU         0.721    0.097    7.436    0.000    0.721    0.583
    Lit_Ng_EC         0.912    0.136    6.693    0.000    0.912    0.547
  Lit_Pin_SK ~~                                                         
    Lit_Ng_SE         0.625    0.114    5.489    0.000    0.625    0.405
    Lit_Ng_KU         0.653    0.084    7.767    0.000    0.653    0.536
    Lit_Ng_EC         0.782    0.123    6.369    0.000    0.782    0.477
  Lit_Ng_SE ~~                                                          
    Lit_Ng_KU         0.565    0.074    7.640    0.000    0.565    0.529
    Lit_Ng_EC         0.816    0.134    6.084    0.000    0.816    0.567
  Lit_Ng_KU ~~                                                          
    Lit_Ng_EC         0.745    0.081    9.187    0.000    0.745    0.656
 .MH_efficient ~~                                                       
   .MH_useful         0.421    0.062    6.831    0.000    0.421    0.639
   .MH_expert         0.547    0.080    6.836    0.000    0.547    0.551
   .MH_objective      0.275    0.085    3.253    0.001    0.275    0.237
   .MH_accurate       0.378    0.069    5.514    0.000    0.378    0.376
 .MH_useful ~~                                                          
   .MH_expert         0.745    0.103    7.217    0.000    0.745    0.682
   .MH_objective      0.385    0.086    4.494    0.000    0.385    0.302
   .MH_accurate       0.586    0.097    6.050    0.000    0.586    0.530
 .MH_expert ~~                                                          
   .MH_objective      0.961    0.158    6.077    0.000    0.961    0.501
   .MH_accurate       0.978    0.153    6.397    0.000    0.978    0.588
 .MH_objective ~~                                                       
   .MH_accurate       1.089    0.140    7.803    0.000    1.089    0.561
 .credible ~~                                                           
   .trust             0.254    0.045    5.638    0.000    0.254    0.510

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    Lit_Pin_TK        1.818    0.159   11.410    0.000    1.818    1.000
    Lit_Pin_SK        1.761    0.141   12.514    0.000    1.761    1.000
    Lit_Ng_SE         1.354    0.155    8.730    0.000    1.354    1.000
    Lit_Ng_KU         0.843    0.069   12.209    0.000    0.843    1.000
    Lit_Ng_EC         1.529    0.139   10.991    0.000    1.529    1.000
   .MH_efficient      0.599    0.088    6.793    0.000    0.599    0.931
   .MH_useful         0.727    0.091    7.962    0.000    0.727    0.811
   .MH_expert         1.644    0.186    8.828    0.000    1.644    0.851
   .MH_objective      2.242    0.183   12.260    0.000    2.242    0.873
   .MH_accurate       1.683    0.158   10.622    0.000    1.683    0.827
   .credible          0.493    0.055    8.951    0.000    0.493    0.337
   .trust             0.503    0.052    9.745    0.000    0.503    0.420
   .factcheck_A       1.396    0.124   11.301    0.000    1.396    0.842

R-Square:
                   Estimate
    MH_efficient      0.069
    MH_useful         0.189
    MH_expert         0.149
    MH_objective      0.127
    MH_accurate       0.173
    credible          0.663
    trust             0.580
    factcheck_A       0.158

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    SE_exprt_crdbl   -0.029    0.018   -1.646    0.100   -0.029   -0.026
    SE_obj_credibl   -0.009    0.008   -1.110    0.267   -0.009   -0.008
    SE_acc_credibl   -0.033    0.020   -1.686    0.092   -0.033   -0.030
    EC_exprt_crdbl   -0.051    0.025   -2.063    0.039   -0.051   -0.049
    EC_obj_credibl   -0.050    0.024   -2.133    0.033   -0.050   -0.042
    EC_acc_credibl   -0.056    0.024   -2.308    0.021   -0.056   -0.053
    KU_exprt_crdbl    0.044    0.022    1.942    0.052    0.044    0.031
# Specify mediation model 
model <-
'
#direct effect

factcheck_A ~ Lit_Pin_TK + Lit_Pin_SK + Lit_Ng_SE + Lit_Ng_KU + Lit_Ng_EC

#indirect effects a-> b

MH_efficient ~ a1*Lit_Pin_TK + a2*Lit_Pin_SK + a3*Lit_Ng_SE + a4*Lit_Ng_KU + a5*Lit_Ng_EC
MH_useful ~ a6*Lit_Pin_TK + a7*Lit_Pin_SK + a8*Lit_Ng_SE + a9*Lit_Ng_KU + a10*Lit_Ng_EC
MH_expert  ~ a11*Lit_Pin_TK + a12*Lit_Pin_SK + a13*Lit_Ng_SE + a14*Lit_Ng_KU + a15*Lit_Ng_EC
MH_objective  ~ a16*Lit_Pin_TK + Lit_Pin_SK + Lit_Ng_SE + Lit_Ng_KU + Lit_Ng_EC
MH_accurate  ~ a21*Lit_Pin_TK + Lit_Pin_SK + Lit_Ng_SE + Lit_Ng_KU + Lit_Ng_EC

# indirect effects a -> c

credible ~ Lit_Pin_TK + Lit_Pin_SK + Lit_Ng_SE + Lit_Ng_KU + Lit_Ng_EC
trust ~ Lit_Pin_TK + Lit_Pin_SK + Lit_Ng_SE + Lit_Ng_KU + Lit_Ng_EC

# indirect effects b -> c 

credible ~ MH_efficient + MH_useful + MH_expert + MH_objective + MH_accurate
trust ~ MH_efficient + MH_useful + MH_expert + MH_objective + MH_accurate

# indirect effects c -> d

factcheck_A ~ credible + trust 

#Estimating covariance and residuals 
#Estimating variances of exogenous variables (Xs)

Lit_Pin_TK~~Lit_Pin_TK
Lit_Pin_SK~~Lit_Pin_SK
Lit_Ng_SE~~Lit_Ng_SE
Lit_Ng_KU~~Lit_Ng_KU
Lit_Ng_EC~~Lit_Ng_EC

#Estimating co-variances of exogenous variables (Xs)
Lit_Pin_TK~~Lit_Pin_SK
Lit_Pin_TK~~Lit_Ng_SE
Lit_Pin_TK~~Lit_Ng_KU
Lit_Pin_TK~~Lit_Ng_EC

Lit_Pin_SK~~Lit_Ng_SE
Lit_Pin_SK~~Lit_Ng_KU
Lit_Pin_SK~~Lit_Ng_EC

Lit_Ng_SE~~Lit_Ng_KU
Lit_Ng_SE~~Lit_Ng_EC

Lit_Ng_KU~~Lit_Ng_EC

#Estimating the residual variances (e1,…) for endogenous variables (Ms and Ys)

MH_efficient~~MH_efficient
MH_useful~~MH_useful
MH_expert~~MH_expert
MH_objective~~MH_objective
MH_accurate~~MH_accurate

credible~~credible
trust~~trust

factcheck_A~~factcheck_A

#Estimating the covariances of residuals for Ms 

MH_efficient~~MH_useful
MH_efficient~~MH_expert
MH_efficient~~MH_objective
MH_efficient~~MH_accurate

MH_useful~~MH_expert
MH_useful~~MH_objective
MH_useful~~MH_accurate

MH_expert~~MH_objective
MH_expert~~MH_accurate 

MH_objective~~MH_accurate 

credible~~trust'
result.model <- lavaan(model, data=data)
result.model
summary (result.model, fit.measure=TRUE, standardized = TRUE, rsquare = TRUE, modindices = TRUE)
colnames(data)
library(psych)
tbl_df(data)
data %>%
  dplyr::select(Expectancyviolation_1:Expectancyviolation_4) %>%
  psych::alpha(,title = "EV")
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKVGhpcyBpcyBhbiBbUiBNYXJrZG93bl0oaHR0cDovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbSkgTm90ZWJvb2suIFdoZW4geW91IGV4ZWN1dGUgY29kZSB3aXRoaW4gdGhlIG5vdGVib29rLCB0aGUgcmVzdWx0cyBhcHBlYXIgYmVuZWF0aCB0aGUgY29kZS4KClRyeSBleGVjdXRpbmcgdGhpcyBjaHVuayBieSBjbGlja2luZyB0aGUgKlJ1biogYnV0dG9uIHdpdGhpbiB0aGUgY2h1bmsgb3IgYnkgcGxhY2luZyB5b3VyIGN1cnNvciBpbnNpZGUgaXQgYW5kIHByZXNzaW5nICpDbWQrU2hpZnQrRW50ZXIqLgoKYGBge3J9CnBsb3QoY2FycykKYGBgCgpBZGQgYSBuZXcgY2h1bmsgYnkgY2xpY2tpbmcgdGhlICpJbnNlcnQgQ2h1bmsqIGJ1dHRvbiBvbiB0aGUgdG9vbGJhciBvciBieSBwcmVzc2luZyAqQ21kK09wdGlvbitJKi4KCldoZW4geW91IHNhdmUgdGhlIG5vdGVib29rLCBhbiBIVE1MIGZpbGUgY29udGFpbmluZyB0aGUgY29kZSBhbmQgb3V0cHV0IHdpbGwgYmUgc2F2ZWQgYWxvbmdzaWRlIGl0IChjbGljayB0aGUgKlByZXZpZXcqIGJ1dHRvbiBvciBwcmVzcyAqQ21kK1NoaWZ0K0sqIHRvIHByZXZpZXcgdGhlIEhUTUwgZmlsZSkuCgpUaGUgcHJldmlldyBzaG93cyB5b3UgYSByZW5kZXJlZCBIVE1MIGNvcHkgb2YgdGhlIGNvbnRlbnRzIG9mIHRoZSBlZGl0b3IuIENvbnNlcXVlbnRseSwgdW5saWtlICpLbml0KiwgKlByZXZpZXcqIGRvZXMgbm90IHJ1biBhbnkgUiBjb2RlIGNodW5rcy4gSW5zdGVhZCwgdGhlIG91dHB1dCBvZiB0aGUgY2h1bmsgd2hlbiBpdCB3YXMgbGFzdCBydW4gaW4gdGhlIGVkaXRvciBpcyBkaXNwbGF5ZWQuCgpgYGB7cn0KbGlicmFyeShsYXZhYW4pCmxpYnJhcnkoc2VtUGxvdCkKbGlicmFyeShoYXZlbikKbGlicmFyeShkcGx5cikKYGBgCgpgYGB7cn0KbGlicmFyeShjYVRvb2xzKSAgIyBGb3IgTGluZWFyIHJlZ3Jlc3Npb24gCmxpYnJhcnkoY2FyKSAgICAgICMgVG8gY2hlY2sgbXVsdGljb2xsaW5lYXJpdHkgCmxpYnJhcnkocXVhbnRtb2QpIApsaWJyYXJ5KE1BU1MpCmxpYnJhcnkoaGF2ZW4pCmBgYAoKYGBge3J9CmRhdGEgPC0gcmVhZF9zYXYoIi9Vc2Vycy9tai9MaWJyYXJ5L0Nsb3VkU3RvcmFnZS9Ecm9wYm94L0NoYXQgR1BUIGFuZCBVc2VyIEFkYXB0YXRpb24vQ2hhdEdQVF9jbGVhbmVkLnNhdiIpCmRhdGEKYGBgCgptb2RlbCAyIG9yIG1vZGVsIDMgCi0gS1UgKEtub3cgYW5kIFVuZGVyc3RhbmQpIGl0ZW1zIGFyZToga25vdyB3aGEgIEFJIGFuZCByZWNhbGwgdGhlIGRlZmluaXRpb25zLCBob3cgdG8gdXNlIEFJIGFwcGxpY2F0aW9ucywgY2FuIGNvbXBhcmUgZGlmZmVyZW5jZXMgYmV0d2VlbiBBSSBjb25jZXB0cy4gCi0gVGVzdCBDaHJvbmJhY2gncyBhbHBoYSBvZiB0aGUgdGhyZWUgaXRlbXMgYW5kIGNoZWNrIGlmIGl0IG1ha2VzIHNlbnNlIHRvIGRlbGV0ZSB0aGUgc2Vjb25kIGl0ZW0uIAoKYGBge3J9CiNUZXN0aW5nIGNocm9uYmFjaCdzIGFscGhhIG9mIE5nX0sKYGBgCgoKCmBgYHtyfQojIFNwZWNpZnkgbWVkaWF0aW9uIG1vZGVsIHdpdGggTUggZXhwZXJ0LCBvYmplY3RpdmUsIGFjY3VyYXRlIG9ubHkgCm1vZGVsXzM8LQonCiAgIyBEaXJlY3QgZWZmZWN0cyBvZiBJVnMgb24gRFYKICAgIGZhY3RjaGVja19BIH4gYzEqTGl0X1Bpbl9USyArIGMyKkxpdF9QaW5fU0sgKyBjMypMaXRfTmdfU0UgKyBjNCpMaXRfTmdfS1UgKyBjNSpMaXRfTmdfRUMKCiAgIyBEaXJlY3QgZWZmZWN0cyBvZiBJVnMgb24gZmlyc3QtbGV2ZWwgbWVkaWF0b3JzCiAgICBNSF9leHBlcnQgfiBhM18xKkxpdF9QaW5fVEsgKyBhM18yKkxpdF9QaW5fU0sgKyBhM18zKkxpdF9OZ19TRSArIGEzXzQqTGl0X05nX0tVICsgYTNfNSpMaXRfTmdfRUMKICAgIE1IX29iamVjdGl2ZSB+IGE0XzEqTGl0X1Bpbl9USyArIGE0XzIqTGl0X1Bpbl9TSyArIGE0XzMqTGl0X05nX1NFICsgYTRfNCpMaXRfTmdfS1UgKyBhNF81KkxpdF9OZ19FQwogICAgTUhfYWNjdXJhdGUgfiBhNV8xKkxpdF9QaW5fVEsgKyBhNV8yKkxpdF9QaW5fU0sgKyBhNV8zKkxpdF9OZ19TRSArIGE1XzQqTGl0X05nX0tVICsgYTVfNSpMaXRfTmdfRUMKCiAgIyBEaXJlY3QgZWZmZWN0cyBvZiBmaXJzdC1sZXZlbCBtZWRpYXRvcnMgb24gc2Vjb25kLWxldmVsIG1lZGlhdG9ycwogICAgY3JlZGlibGUgfiBiMV8zKk1IX2V4cGVydCArIGIxXzQqTUhfb2JqZWN0aXZlICsgYjFfNSpNSF9hY2N1cmF0ZQogICAgdHJ1c3QgfiBiMl8zKk1IX2V4cGVydCArIGIyXzQqTUhfb2JqZWN0aXZlICsgYjJfNSpNSF9hY2N1cmF0ZQoKICAjIERpcmVjdCBlZmZlY3RzIG9mIHNlY29uZC1sZXZlbCBtZWRpYXRvcnMgb24gRFYKICAgIGZhY3RjaGVja19BIH4gZDEqY3JlZGlibGUgKyBkMip0cnVzdAoKICAjIEluZGlyZWN0IGVmZmVjdHMgdmlhIGZpcnN0IGFuZCBzZWNvbmQtbGV2ZWwgbWVkaWF0b3JzCiAgICBTRV9leHBlcnRfY3JlZGlibGUgOj0gYTNfMypiMV8zKmQxCiAgICBTRV9vYmpfY3JlZGlibGUgOj0gYTRfMypiMV80KmQxCiAgICBTRV9hY2NfY3JlZGlibGUgOj0gYTVfMypiMV81KmQxCiAgICAKICAgIEVDX2V4cGVydF9jcmVkaWJsZSA6PSBhM181KmIxXzMqZDEKICAgIEVDX29ial9jcmVkaWJsZSA6PSBhNF81KmIxXzMqZDEKICAgIEVDX2FjY19jcmVkaWJsZSA6PSBhNV81KmIxXzMqZDEKICAgIAogICAgS1VfZXhwZXJ0X2NyZWRpYmxlIDo9IGEzXzQqYjFfMypkMQogICAgCiAgI0VzdGltYXRpbmcgY292YXJpYW5jZSBhbmQgcmVzaWR1YWxzIAogICNFc3RpbWF0aW5nIHZhcmlhbmNlcyBvZiBleG9nZW5vdXMgdmFyaWFibGVzIChYcykKICAgIExpdF9QaW5fVEt+fkxpdF9QaW5fVEsKICAgIExpdF9QaW5fU0t+fkxpdF9QaW5fU0sKICAgIExpdF9OZ19TRX5+TGl0X05nX1NFCiAgICBMaXRfTmdfS1V+fkxpdF9OZ19LVQogICAgTGl0X05nX0VDfn5MaXRfTmdfRUMKCiAgI0VzdGltYXRpbmcgY28tdmFyaWFuY2VzIG9mIGV4b2dlbm91cyB2YXJpYWJsZXMgKFhzKQogICAgTGl0X1Bpbl9US35+TGl0X1Bpbl9TSwogICAgTGl0X1Bpbl9US35+TGl0X05nX1NFCiAgICBMaXRfUGluX1RLfn5MaXRfTmdfS1UKICAgIExpdF9QaW5fVEt+fkxpdF9OZ19FQwogICAgCiAgICBMaXRfUGluX1NLfn5MaXRfTmdfU0UKICAgIExpdF9QaW5fU0t+fkxpdF9OZ19LVQogICAgTGl0X1Bpbl9TS35+TGl0X05nX0VDCiAgICAKICAgIExpdF9OZ19TRX5+TGl0X05nX0tVCiAgICBMaXRfTmdfU0V+fkxpdF9OZ19FQwogICAgCiAgICBMaXRfTmdfS1V+fkxpdF9OZ19FQwoKICAjRXN0aW1hdGluZyB0aGUgcmVzaWR1YWwgdmFyaWFuY2VzIChlMSzigKYpIGZvciBlbmRvZ2Vub3VzIHZhcmlhYmxlcyAoTXMgYW5kIFlzKQogICAgTUhfZXhwZXJ0fn5NSF9leHBlcnQKICAgIE1IX29iamVjdGl2ZX5+TUhfb2JqZWN0aXZlCiAgICBNSF9hY2N1cmF0ZX5+TUhfYWNjdXJhdGUKICAgIAogICAgY3JlZGlibGV+fmNyZWRpYmxlCiAgICB0cnVzdH5+dHJ1c3QKICAgIAogICAgZmFjdGNoZWNrX0F+fmZhY3RjaGVja19BCgogICNFc3RpbWF0aW5nIHRoZSBjb3ZhcmlhbmNlcyBvZiByZXNpZHVhbHMgZm9yIE1zIAogICAgTUhfZXhwZXJ0fn5NSF9vYmplY3RpdmUKICAgIE1IX2V4cGVydH5+TUhfYWNjdXJhdGUgCiAgICBNSF9vYmplY3RpdmV+fk1IX2FjY3VyYXRlIAogICAgCiAgICBjcmVkaWJsZX5+dHJ1c3QKJwpgYGAKCmBgYHtyfQojIEFkZCBib290c3RyYXBwaW5nIHRvIHRoZSBsYXZhYW4gZnVuY3Rpb24gY2FsbApyZXN1bHQubW9kZWxfMyA8LSBsYXZhYW4obW9kZWxfMywgZGF0YSA9IGRhdGEsIHNlID0gImJvb3QiLCBib290c3RyYXAgPSA1MDAwKQoKIyBEaXNwbGF5IHRoZSByZXN1bHRzIHdpdGggdGhlIHNwZWNpZmllZCBvcHRpb25zCnN1bW1hcnkocmVzdWx0Lm1vZGVsXzMsIGZpdC5tZWFzdXJlcyA9IFRSVUUsIHN0YW5kYXJkaXplZCA9IFRSVUUsIHJzcXVhcmUgPSBUUlVFKQoKYGBgCgoKCgpgYGB7cn0KIyBTcGVjaWZ5IG1lZGlhdGlvbiBtb2RlbCB3aXRoIGFsbCBmaXZlIE1IIChlZmZpY2llbnQsIHVzZWZ1bCwgZXhwZXJ0LCBvYmplY3RpdmUsIGFuZCBhY2N1cmF0ZSkKbW9kZWxfMjwtCicKICAjIERpcmVjdCBlZmZlY3RzIG9mIElWcyBvbiBEVgogICAgZmFjdGNoZWNrX0EgfiBjMSpMaXRfUGluX1RLICsgYzIqTGl0X1Bpbl9TSyArIGMzKkxpdF9OZ19TRSArIGM0KkxpdF9OZ19LVSArIGM1KkxpdF9OZ19FQwoKICAjIERpcmVjdCBlZmZlY3RzIG9mIElWcyBvbiBmaXJzdC1sZXZlbCBtZWRpYXRvcnMKICAgIE1IX2VmZmljaWVudCB+IGExXzEqTGl0X1Bpbl9USyArIGExXzIqTGl0X1Bpbl9TSyArIGExXzMqTGl0X05nX1NFICsgYTFfNCpMaXRfTmdfS1UgKyBhMV81KkxpdF9OZ19FQwogICAgTUhfdXNlZnVsIH4gYTJfMSpMaXRfUGluX1RLICsgYTJfMipMaXRfUGluX1NLICsgYTJfMypMaXRfTmdfU0UgKyBhMl80KkxpdF9OZ19LVSArIGEyXzUqTGl0X05nX0VDCiAgICBNSF9leHBlcnQgfiBhM18xKkxpdF9QaW5fVEsgKyBhM18yKkxpdF9QaW5fU0sgKyBhM18zKkxpdF9OZ19TRSArIGEzXzQqTGl0X05nX0tVICsgYTNfNSpMaXRfTmdfRUMKICAgIE1IX29iamVjdGl2ZSB+IGE0XzEqTGl0X1Bpbl9USyArIGE0XzIqTGl0X1Bpbl9TSyArIGE0XzMqTGl0X05nX1NFICsgYTRfNCpMaXRfTmdfS1UgKyBhNF81KkxpdF9OZ19FQwogICAgTUhfYWNjdXJhdGUgfiBhNV8xKkxpdF9QaW5fVEsgKyBhNV8yKkxpdF9QaW5fU0sgKyBhNV8zKkxpdF9OZ19TRSArIGE1XzQqTGl0X05nX0tVICsgYTVfNSpMaXRfTmdfRUMKCiAgIyBEaXJlY3QgZWZmZWN0cyBvZiBmaXJzdC1sZXZlbCBtZWRpYXRvcnMgb24gc2Vjb25kLWxldmVsIG1lZGlhdG9ycwogICAgY3JlZGlibGUgfiBiMV8xKk1IX2VmZmljaWVudCArIGIxXzIqTUhfdXNlZnVsICsgYjFfMypNSF9leHBlcnQgKyBiMV80Kk1IX29iamVjdGl2ZSArIGIxXzUqTUhfYWNjdXJhdGUKICAgIHRydXN0IH4gYjJfMSpNSF9lZmZpY2llbnQgKyBiMl8yKk1IX3VzZWZ1bCArIGIyXzMqTUhfZXhwZXJ0ICsgYjJfNCpNSF9vYmplY3RpdmUgKyBiMl81Kk1IX2FjY3VyYXRlCgogICMgRGlyZWN0IGVmZmVjdHMgb2Ygc2Vjb25kLWxldmVsIG1lZGlhdG9ycyBvbiBEVgogICAgZmFjdGNoZWNrX0EgfiBkMSpjcmVkaWJsZSArIGQyKnRydXN0CgogICMgSW5kaXJlY3QgZWZmZWN0cyB2aWEgZmlyc3QgYW5kIHNlY29uZC1sZXZlbCBtZWRpYXRvcnMKICAgIFNFX2V4cGVydF9jcmVkaWJsZSA6PSBhM18zKmIxXzMqZDEKICAgIFNFX29ial9jcmVkaWJsZSA6PSBhNF8zKmIxXzQqZDEKICAgIFNFX2FjY19jcmVkaWJsZSA6PSBhNV8zKmIxXzUqZDEKICAgIAogICAgRUNfZXhwZXJ0X2NyZWRpYmxlIDo9IGEzXzUqYjFfMypkMQogICAgRUNfb2JqX2NyZWRpYmxlIDo9IGE0XzUqYjFfMypkMQogICAgRUNfYWNjX2NyZWRpYmxlIDo9IGE1XzUqYjFfMypkMQogICAgCiAgICBLVV9leHBlcnRfY3JlZGlibGUgOj0gYTNfNCpiMV8zKmQxCiAgICAKICAjRXN0aW1hdGluZyBjb3ZhcmlhbmNlIGFuZCByZXNpZHVhbHMgCiAgI0VzdGltYXRpbmcgdmFyaWFuY2VzIG9mIGV4b2dlbm91cyB2YXJpYWJsZXMgKFhzKQogICAgTGl0X1Bpbl9US35+TGl0X1Bpbl9USwogICAgTGl0X1Bpbl9TS35+TGl0X1Bpbl9TSwogICAgTGl0X05nX1NFfn5MaXRfTmdfU0UKICAgIExpdF9OZ19LVX5+TGl0X05nX0tVCiAgICBMaXRfTmdfRUN+fkxpdF9OZ19FQwoKICAjRXN0aW1hdGluZyBjby12YXJpYW5jZXMgb2YgZXhvZ2Vub3VzIHZhcmlhYmxlcyAoWHMpCiAgICBMaXRfUGluX1RLfn5MaXRfUGluX1NLCiAgICBMaXRfUGluX1RLfn5MaXRfTmdfU0UKICAgIExpdF9QaW5fVEt+fkxpdF9OZ19LVQogICAgTGl0X1Bpbl9US35+TGl0X05nX0VDCiAgICAKICAgIExpdF9QaW5fU0t+fkxpdF9OZ19TRQogICAgTGl0X1Bpbl9TS35+TGl0X05nX0tVCiAgICBMaXRfUGluX1NLfn5MaXRfTmdfRUMKICAgIAogICAgTGl0X05nX1NFfn5MaXRfTmdfS1UKICAgIExpdF9OZ19TRX5+TGl0X05nX0VDCiAgICAKICAgIExpdF9OZ19LVX5+TGl0X05nX0VDCgogICNFc3RpbWF0aW5nIHRoZSByZXNpZHVhbCB2YXJpYW5jZXMgKGUxLOKApikgZm9yIGVuZG9nZW5vdXMgdmFyaWFibGVzIChNcyBhbmQgWXMpCiAgICBNSF9lZmZpY2llbnR+fk1IX2VmZmljaWVudAogICAgTUhfdXNlZnVsfn5NSF91c2VmdWwKICAgIE1IX2V4cGVydH5+TUhfZXhwZXJ0CiAgICBNSF9vYmplY3RpdmV+fk1IX29iamVjdGl2ZQogICAgTUhfYWNjdXJhdGV+fk1IX2FjY3VyYXRlCiAgICAKICAgIGNyZWRpYmxlfn5jcmVkaWJsZQogICAgdHJ1c3R+fnRydXN0CiAgICAKICAgIGZhY3RjaGVja19Bfn5mYWN0Y2hlY2tfQQoKICAjRXN0aW1hdGluZyB0aGUgY292YXJpYW5jZXMgb2YgcmVzaWR1YWxzIGZvciBNcyAKICAgIE1IX2VmZmljaWVudH5+TUhfdXNlZnVsCiAgICBNSF9lZmZpY2llbnR+fk1IX2V4cGVydAogICAgTUhfZWZmaWNpZW50fn5NSF9vYmplY3RpdmUKICAgIE1IX2VmZmljaWVudH5+TUhfYWNjdXJhdGUKICAgIAogICAgTUhfdXNlZnVsfn5NSF9leHBlcnQKICAgIE1IX3VzZWZ1bH5+TUhfb2JqZWN0aXZlCiAgICBNSF91c2VmdWx+fk1IX2FjY3VyYXRlCiAgICAKICAgIE1IX2V4cGVydH5+TUhfb2JqZWN0aXZlCiAgICBNSF9leHBlcnR+fk1IX2FjY3VyYXRlIAogICAgCiAgICBNSF9vYmplY3RpdmV+fk1IX2FjY3VyYXRlIAogICAgCiAgICBjcmVkaWJsZX5+dHJ1c3QKJwpgYGAKCmBgYHtyfQojIEFkZCBib290c3RyYXBwaW5nIHRvIHRoZSBsYXZhYW4gZnVuY3Rpb24gY2FsbApyZXN1bHQubW9kZWxfMiA8LSBsYXZhYW4obW9kZWxfMiwgZGF0YSA9IGRhdGEsIHNlID0gImJvb3QiLCBib290c3RyYXAgPSA1MDAwKQoKIyBEaXNwbGF5IHRoZSByZXN1bHRzIHdpdGggdGhlIHNwZWNpZmllZCBvcHRpb25zCnN1bW1hcnkocmVzdWx0Lm1vZGVsXzIsIGZpdC5tZWFzdXJlcyA9IFRSVUUsIHN0YW5kYXJkaXplZCA9IFRSVUUsIHJzcXVhcmUgPSBUUlVFKQoKYGBgCgoKCgpgYGB7cn0KIyBTcGVjaWZ5IG1lZGlhdGlvbiBtb2RlbCAKbW9kZWwgPC0KJwojZGlyZWN0IGVmZmVjdAoKZmFjdGNoZWNrX0EgfiBMaXRfUGluX1RLICsgTGl0X1Bpbl9TSyArIExpdF9OZ19TRSArIExpdF9OZ19LVSArIExpdF9OZ19FQwoKI2luZGlyZWN0IGVmZmVjdHMgYS0+IGIKCk1IX2VmZmljaWVudCB+IGExKkxpdF9QaW5fVEsgKyBhMipMaXRfUGluX1NLICsgYTMqTGl0X05nX1NFICsgYTQqTGl0X05nX0tVICsgYTUqTGl0X05nX0VDCk1IX3VzZWZ1bCB+IGE2KkxpdF9QaW5fVEsgKyBhNypMaXRfUGluX1NLICsgYTgqTGl0X05nX1NFICsgYTkqTGl0X05nX0tVICsgYTEwKkxpdF9OZ19FQwpNSF9leHBlcnQgIH4gYTExKkxpdF9QaW5fVEsgKyBhMTIqTGl0X1Bpbl9TSyArIGExMypMaXRfTmdfU0UgKyBhMTQqTGl0X05nX0tVICsgYTE1KkxpdF9OZ19FQwpNSF9vYmplY3RpdmUgIH4gYTE2KkxpdF9QaW5fVEsgKyBMaXRfUGluX1NLICsgTGl0X05nX1NFICsgTGl0X05nX0tVICsgTGl0X05nX0VDCk1IX2FjY3VyYXRlICB+IGEyMSpMaXRfUGluX1RLICsgTGl0X1Bpbl9TSyArIExpdF9OZ19TRSArIExpdF9OZ19LVSArIExpdF9OZ19FQwoKIyBpbmRpcmVjdCBlZmZlY3RzIGEgLT4gYwoKY3JlZGlibGUgfiBMaXRfUGluX1RLICsgTGl0X1Bpbl9TSyArIExpdF9OZ19TRSArIExpdF9OZ19LVSArIExpdF9OZ19FQwp0cnVzdCB+IExpdF9QaW5fVEsgKyBMaXRfUGluX1NLICsgTGl0X05nX1NFICsgTGl0X05nX0tVICsgTGl0X05nX0VDCgojIGluZGlyZWN0IGVmZmVjdHMgYiAtPiBjIAoKY3JlZGlibGUgfiBNSF9lZmZpY2llbnQgKyBNSF91c2VmdWwgKyBNSF9leHBlcnQgKyBNSF9vYmplY3RpdmUgKyBNSF9hY2N1cmF0ZQp0cnVzdCB+IE1IX2VmZmljaWVudCArIE1IX3VzZWZ1bCArIE1IX2V4cGVydCArIE1IX29iamVjdGl2ZSArIE1IX2FjY3VyYXRlCgojIGluZGlyZWN0IGVmZmVjdHMgYyAtPiBkCgpmYWN0Y2hlY2tfQSB+IGNyZWRpYmxlICsgdHJ1c3QgCgojRXN0aW1hdGluZyBjb3ZhcmlhbmNlIGFuZCByZXNpZHVhbHMgCiNFc3RpbWF0aW5nIHZhcmlhbmNlcyBvZiBleG9nZW5vdXMgdmFyaWFibGVzIChYcykKCkxpdF9QaW5fVEt+fkxpdF9QaW5fVEsKTGl0X1Bpbl9TS35+TGl0X1Bpbl9TSwpMaXRfTmdfU0V+fkxpdF9OZ19TRQpMaXRfTmdfS1V+fkxpdF9OZ19LVQpMaXRfTmdfRUN+fkxpdF9OZ19FQwoKI0VzdGltYXRpbmcgY28tdmFyaWFuY2VzIG9mIGV4b2dlbm91cyB2YXJpYWJsZXMgKFhzKQpMaXRfUGluX1RLfn5MaXRfUGluX1NLCkxpdF9QaW5fVEt+fkxpdF9OZ19TRQpMaXRfUGluX1RLfn5MaXRfTmdfS1UKTGl0X1Bpbl9US35+TGl0X05nX0VDCgpMaXRfUGluX1NLfn5MaXRfTmdfU0UKTGl0X1Bpbl9TS35+TGl0X05nX0tVCkxpdF9QaW5fU0t+fkxpdF9OZ19FQwoKTGl0X05nX1NFfn5MaXRfTmdfS1UKTGl0X05nX1NFfn5MaXRfTmdfRUMKCkxpdF9OZ19LVX5+TGl0X05nX0VDCgojRXN0aW1hdGluZyB0aGUgcmVzaWR1YWwgdmFyaWFuY2VzIChlMSzigKYpIGZvciBlbmRvZ2Vub3VzIHZhcmlhYmxlcyAoTXMgYW5kIFlzKQoKTUhfZWZmaWNpZW50fn5NSF9lZmZpY2llbnQKTUhfdXNlZnVsfn5NSF91c2VmdWwKTUhfZXhwZXJ0fn5NSF9leHBlcnQKTUhfb2JqZWN0aXZlfn5NSF9vYmplY3RpdmUKTUhfYWNjdXJhdGV+fk1IX2FjY3VyYXRlCgpjcmVkaWJsZX5+Y3JlZGlibGUKdHJ1c3R+fnRydXN0CgpmYWN0Y2hlY2tfQX5+ZmFjdGNoZWNrX0EKCiNFc3RpbWF0aW5nIHRoZSBjb3ZhcmlhbmNlcyBvZiByZXNpZHVhbHMgZm9yIE1zIAoKTUhfZWZmaWNpZW50fn5NSF91c2VmdWwKTUhfZWZmaWNpZW50fn5NSF9leHBlcnQKTUhfZWZmaWNpZW50fn5NSF9vYmplY3RpdmUKTUhfZWZmaWNpZW50fn5NSF9hY2N1cmF0ZQoKTUhfdXNlZnVsfn5NSF9leHBlcnQKTUhfdXNlZnVsfn5NSF9vYmplY3RpdmUKTUhfdXNlZnVsfn5NSF9hY2N1cmF0ZQoKTUhfZXhwZXJ0fn5NSF9vYmplY3RpdmUKTUhfZXhwZXJ0fn5NSF9hY2N1cmF0ZSAKCk1IX29iamVjdGl2ZX5+TUhfYWNjdXJhdGUgCgpjcmVkaWJsZX5+dHJ1c3QnCgoKYGBgCgpgYGB7cn0KcmVzdWx0Lm1vZGVsIDwtIGxhdmFhbihtb2RlbCwgZGF0YT1kYXRhKQpyZXN1bHQubW9kZWwKc3VtbWFyeSAocmVzdWx0Lm1vZGVsLCBmaXQubWVhc3VyZT1UUlVFLCBzdGFuZGFyZGl6ZWQgPSBUUlVFLCByc3F1YXJlID0gVFJVRSwgbW9kaW5kaWNlcyA9IFRSVUUpCmBgYAoKYGBge3J9CmNvbG5hbWVzKGRhdGEpCmBgYAoKCgoKCgoKCmBgYHtyfQpsaWJyYXJ5KHBzeWNoKQpgYGAKCmBgYHtyfQp0YmxfZGYoZGF0YSkKYGBgCgpgYGB7cn0KZGF0YSAlPiUKICBkcGx5cjo6c2VsZWN0KEV4cGVjdGFuY3l2aW9sYXRpb25fMTpFeHBlY3RhbmN5dmlvbGF0aW9uXzQpICU+JQogIHBzeWNoOjphbHBoYSgsdGl0bGUgPSAiRVYiKQpgYGAK