library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(conflicted)
## Warning: package 'conflicted' was built under R version 4.4.1
library(coin)
## Warning: package 'coin' was built under R version 4.4.1
## Loading required package: survival
library(dplyr)
library(multcompView)
## Warning: package 'multcompView' was built under R version 4.4.1
library(readxl)
library(rstudioapi)
library(stringr)
library(vtable)
## Warning: package 'vtable' was built under R version 4.4.1
## Loading required package: kableExtra
## Warning: package 'kableExtra' was built under R version 4.4.1
##
## Attaching package: 'kableExtra'
##
## The following object is masked from 'package:dplyr':
##
## group_rows
df_allsnappers <- read.csv("snappers_onboardgridboard.csv")
#change data type
df_allsnappers$Boat_name <- factor(df_allsnappers$Boat_name)
df_allsnappers$Fishing_gear <- factor(df_allsnappers$Fishing_gear)
df_allsnappers$Fishing_area <- factor(df_allsnappers$Fishing_area)
df_allsnappers$Species_sn <- factor(df_allsnappers$Species_sn)
df_allsnappers$Species_cn <- factor(df_allsnappers$Species_cn)
df_allsnappers$Trap_no <- factor(df_allsnappers$Trap_no)
df_allsnappers$landed <- factor(df_allsnappers$landed)
df_allsnappers$catch_contents <- factor(df_allsnappers$catch_contents)
df_allsnappers$Length <- as.numeric(df_allsnappers$Length)
df_allsnappers$study <- factor(df_allsnappers$study)
sumtable(df_allsnappers)
| Variable | N | Mean | Std. Dev. | Min | Pctl. 25 | Pctl. 75 | Max |
|---|---|---|---|---|---|---|---|
| year | 1677 | 2024 | 0 | 2024 | 2024 | 2024 | 2024 |
| month | 1677 | ||||||
| … April | 143 | 9% | |||||
| … July | 11 | 1% | |||||
| … June | 603 | 36% | |||||
| … March | 143 | 9% | |||||
| … May | 777 | 46% | |||||
| Boat_name | 1677 | ||||||
| … Bridgette | 13 | 1% | |||||
| … Highliner | 50 | 3% | |||||
| … Lady Carolina | 17 | 1% | |||||
| … Mr Fish | 1 | 0% | |||||
| … Navigator | 29 | 2% | |||||
| … Second Wind | 1425 | 85% | |||||
| … Spirit of Saba | 142 | 8% | |||||
| Trip_ID | 0 | ||||||
| … No | 0 | ||||||
| … Yes | 0 | ||||||
| Fishing_gear | 1677 | ||||||
| … LP | 63 | 4% | |||||
| … LP/MP | 11 | 1% | |||||
| … RP | 1603 | 96% | |||||
| Fishing_area | 1677 | ||||||
| … | 143 | 9% | |||||
| … A3 | 140 | 8% | |||||
| … A3/A4 | 432 | 26% | |||||
| … B2 | 29 | 2% | |||||
| … B4 | 66 | 4% | |||||
| … C4/C5 | 11 | 1% | |||||
| … C5 | 4 | 0% | |||||
| … C5/D5 | 407 | 24% | |||||
| … D4 | 156 | 9% | |||||
| … D5 | 289 | 17% | |||||
| Depth_m_min | 1111 | 47 | 20 | 8 | 40 | 50 | 91 |
| Depth_m_max | 1111 | 107 | 52 | 12 | 60 | 150 | 150 |
| Species_sn | 1677 | ||||||
| … Apsilus dentatus | 5 | 0% | |||||
| … Etelis oculatus | 6 | 0% | |||||
| … Lutjanus buccanella | 802 | 48% | |||||
| … Lutjanus jocu | 6 | 0% | |||||
| … Lutjanus synagris | 26 | 2% | |||||
| … Lutjanus vivanus | 712 | 42% | |||||
| … Ocyurus chrysurus | 3 | 0% | |||||
| … Pristipomoides aquilonaris | 9 | 1% | |||||
| … Rhomboplites aurorubens | 108 | 6% | |||||
| Species_cn | 1677 | ||||||
| … Black snapper | 2 | 0% | |||||
| … Black Snapper | 3 | 0% | |||||
| … Blackfin snapper | 64 | 4% | |||||
| … Blackfin Snapper | 738 | 44% | |||||
| … Dog Snapper | 6 | 0% | |||||
| … Lane Snapper | 26 | 2% | |||||
| … Queen Snapper | 6 | 0% | |||||
| … Vermillion snapper | 14 | 1% | |||||
| … Vermillion Snapper | 94 | 6% | |||||
| … Wenchman snapper | 1 | 0% | |||||
| … Wenchman Snapper | 8 | 0% | |||||
| … yelloweye snapper | 1 | 0% | |||||
| … yelloweye Snapper | 1 | 0% | |||||
| … Yelloweye snapper | 72 | 4% | |||||
| … Yelloweye Snapper | 636 | 38% | |||||
| … YellowEye Snapper | 2 | 0% | |||||
| … Yellowtail Snapper | 3 | 0% | |||||
| Trap_no | 1677 | ||||||
| … | 349 | 21% | |||||
| … 1 | 34 | 2% | |||||
| … 10 | 109 | 6% | |||||
| … 11 | 41 | 2% | |||||
| … 12 | 61 | 4% | |||||
| … 13 | 60 | 4% | |||||
| … 14 | 73 | 4% | |||||
| … 14/15 | 9 | 1% | |||||
| … 15 | 46 | 3% | |||||
| … 16 | 54 | 3% | |||||
| … 17 | 65 | 4% | |||||
| … 18 | 21 | 1% | |||||
| … 19 | 30 | 2% | |||||
| … 2 | 45 | 3% | |||||
| … 20 | 35 | 2% | |||||
| … 21 | 13 | 1% | |||||
| … 22 | 22 | 1% | |||||
| … 23 | 16 | 1% | |||||
| … 24 | 40 | 2% | |||||
| … 25 | 16 | 1% | |||||
| … 26 | 10 | 1% | |||||
| … 27 | 6 | 0% | |||||
| … 28 | 21 | 1% | |||||
| … 29 | 15 | 1% | |||||
| … 3 | 48 | 3% | |||||
| … 30 | 22 | 1% | |||||
| … 31 | 24 | 1% | |||||
| … 33 | 6 | 0% | |||||
| … 34 | 20 | 1% | |||||
| … 35 | 3 | 0% | |||||
| … 36 | 18 | 1% | |||||
| … 37 | 34 | 2% | |||||
| … 38 | 14 | 1% | |||||
| … 39 | 6 | 0% | |||||
| … 4 | 61 | 4% | |||||
| … 40 | 9 | 1% | |||||
| … 41 | 4 | 0% | |||||
| … 42 | 6 | 0% | |||||
| … 43 | 5 | 0% | |||||
| … 44 | 8 | 0% | |||||
| … 45 | 5 | 0% | |||||
| … 5 | 34 | 2% | |||||
| … 51 | 1 | 0% | |||||
| … 54 | 1 | 0% | |||||
| … 6 | 28 | 2% | |||||
| … 7 | 47 | 3% | |||||
| … 8 | 32 | 2% | |||||
| … 9 | 50 | 3% | |||||
| landed | 1677 | ||||||
| … Landed | 1677 | 100% | |||||
| catch_contents | 1677 | ||||||
| … Partial | 349 | 21% | |||||
| … Whole | 1328 | 79% | |||||
| Length | 1677 | 29 | 5.1 | 12 | 25 | 31 | 70 |
| study | 1677 | ||||||
| … GRIDBOARD | 349 | 21% | |||||
| … ONBOARD | 1328 | 79% | |||||
| Comments | 1677 | ||||||
| … | 1662 | 99% | |||||
| … 18 FATHOM JAPANESE BAIT= MIXED FISH POT | 11 | 1% | |||||
| … All mixed fish measured, no lobsters measured | 2 | 0% | |||||
| … G=33 | 1 | 0% | |||||
| … G=44 | 1 | 0% |
ggplot(df_allsnappers, aes(x = Species_sn)) +
geom_bar() +
theme_classic() +
theme(axis.text.x=element_text(angle = 90, hjust = 0, vjust = 0.5))
total_counts <- df_allsnappers %>%
group_by(Species_sn) %>%
summarize(count = n())
View(total_counts)
#calculate proportions
proportions <- total_counts %>%
mutate(proportion = count / sum(count))
total_counts$proportions <- proportions
#calculate percentages
perc <- total_counts %>%
mutate(perc = (count / sum(count))*100)
total_counts$perc <- perc
View(total_counts)
## Warning in format.data.frame(x0): corrupt data frame: columns will be truncated
## or padded with NAs
xaxis_species_names <- c("A. dentatus", "E. oculatus", "L. buccanella", "L. jocu", "L. synagris", "L. vivanus", "O. chrysurus", "P. aquilonaris", "R. aurorubens")
xaxis_species_names_rev <- c("R. aurorubens", "P. aquilonaris", "O. chrysurus", "L. vivanus", "L. synagris", "L. jocu", "L. buccanella", "E. oculatus", "A. dentatus")
snapper_barchart_gridonboard <- ggplot(total_counts,
aes(x = Species_sn,
y = count,
fill = Species_sn)) +
theme_classic() +
geom_bar(stat = "identity") +
scale_fill_viridis_d(option = "H",
guide = "none",
begin = 0.05,
end = 0.95) +
labs(y = "Number of individuals",
x = "Species",
title = str_wrap(c("Onboard and gridboard recordings of snappers"), width = 28)) +
theme(axis.text.x=element_text(angle = 45,
hjust = 0.95,
vjust = 0.95,
face = "italic")) +
scale_x_discrete(labels = xaxis_species_names)
snapper_barchart_gridonboard
Save plot
ggsave("snapper_barchart_gridonboard.png", plot = snapper_barchart_gridonboard, width = 4, height = 4, dpi = 400)
snapper_gridboardonboard_boxplot <- ggplot(df_allsnappers,
aes(x = Species_sn,
y = Length)) +
geom_boxplot(aes(color = Species_sn)) +
theme_classic() +
coord_flip() +
scale_color_viridis_d(option = "H",
guide = "none",
begin = 0.05,
end = 0.95) +
labs(x = "Species",
y = "Fork length in cm",
title = "Snapper lengths recorded during onboard and gridboard sampling") +
scale_x_discrete(limits = rev, labels = xaxis_species_names_rev) +
theme(axis.text.y = element_text(face = "italic"))
snapper_gridboardonboard_boxplot
Save plot
ggsave("snapper_gridboardonboard_boxplot.png", plot = snapper_gridboardonboard_boxplot, width = 7.2, height = 4, dpi = 400)
conflicts_prefer(dplyr::filter)
## [conflicted] Will prefer dplyr::filter over any other package.
# get a summary of onboard vs gridboard measurements
onboard_counts <- df_allsnappers %>%
filter(study == "ONBOARD") %>%
group_by(Species_sn) %>%
summarize(count = n())
Study_OB <- "Onboard"
onboard_counts$Study <- Study_OB
View(onboard_counts)
gridboard_counts <- df_allsnappers %>%
filter(study == "GRIDBOARD") %>%
group_by(Species_sn) %>%
summarize(count = n())
Study_GB <- "Gridboard"
gridboard_counts$Study <- Study_GB
View(gridboard_counts)
summary_studysnappers <- bind_rows(onboard_counts, gridboard_counts)
summary_studysnappers
## # A tibble: 15 × 3
## Species_sn count Study
## <fct> <int> <chr>
## 1 Apsilus dentatus 5 Onboard
## 2 Etelis oculatus 6 Onboard
## 3 Lutjanus buccanella 579 Onboard
## 4 Lutjanus jocu 2 Onboard
## 5 Lutjanus synagris 11 Onboard
## 6 Lutjanus vivanus 619 Onboard
## 7 Ocyurus chrysurus 1 Onboard
## 8 Pristipomoides aquilonaris 9 Onboard
## 9 Rhomboplites aurorubens 96 Onboard
## 10 Lutjanus buccanella 223 Gridboard
## 11 Lutjanus jocu 4 Gridboard
## 12 Lutjanus synagris 15 Gridboard
## 13 Lutjanus vivanus 93 Gridboard
## 14 Ocyurus chrysurus 2 Gridboard
## 15 Rhomboplites aurorubens 12 Gridboard
plot_studysnappers <- ggplot(summary_studysnappers, aes(x = Species_sn,
y = count,
fill = Study)) +
geom_bar(stat = "identity",
position = "fill") +
labs(x = "Species",
y = "Proportion of individuals",
title = str_wrap(c("Snappers measured by onboard and gridboard sampling"), width = 28),
fill = "Study") +
theme_classic() +
scale_fill_viridis_d(option = "C", begin = 0.1, end = 0.9) +
theme(axis.text.x=element_text(angle = 45,
hjust = 0.95,
vjust = 0.95,
face = "italic")) +
scale_x_discrete(labels = xaxis_species_names)
plot_studysnappers
ggsave("plot_studysnappers.png", plot = plot_studysnappers, width = 4, height = 4, dpi = 400)
# get a summary of the fishing gear used
rp_counts <- df_allsnappers %>%
filter(Fishing_gear == "RP") %>%
group_by(Species_sn) %>%
summarize(count = n())
Fishing_gear_RP <- "RP"
rp_counts$Fishing_gear <- Fishing_gear_RP
View(rp_counts)
lp_counts <- df_allsnappers %>%
filter(Fishing_gear == "LP") %>%
group_by(Species_sn) %>%
summarize(count = n())
Fishing_gear_LP <- "LP"
lp_counts$Fishing_gear <- Fishing_gear_LP
View(lp_counts)
mplp_counts <- df_allsnappers %>%
filter(Fishing_gear == "LP/MP") %>%
group_by(Species_sn) %>%
summarize(count = n())
Fishing_gear_LPMP <- "LP/MP"
mplp_counts$Fishing_gear <- Fishing_gear_LPMP
View(mplp_counts)
summary_fishinggear <- bind_rows(rp_counts, lp_counts, mplp_counts)
summary_fishinggear
## # A tibble: 16 × 3
## Species_sn count Fishing_gear
## <fct> <int> <chr>
## 1 Apsilus dentatus 5 RP
## 2 Etelis oculatus 5 RP
## 3 Lutjanus buccanella 778 RP
## 4 Lutjanus jocu 1 RP
## 5 Lutjanus synagris 11 RP
## 6 Lutjanus vivanus 709 RP
## 7 Pristipomoides aquilonaris 9 RP
## 8 Rhomboplites aurorubens 85 RP
## 9 Etelis oculatus 1 LP
## 10 Lutjanus buccanella 24 LP
## 11 Lutjanus jocu 5 LP
## 12 Lutjanus synagris 15 LP
## 13 Lutjanus vivanus 3 LP
## 14 Ocyurus chrysurus 3 LP
## 15 Rhomboplites aurorubens 12 LP
## 16 Rhomboplites aurorubens 11 LP/MP
snapper_fishingear_onboardgridboard <- ggplot(summary_fishinggear, aes(x = Species_sn,
y = count,
fill = Fishing_gear)) +
geom_bar(stat = "identity",
position = "fill") +
labs(x = "Species",
y = "Proportion of individuals",
title = str_wrap(c("Fishing gear used to catch snappers"), width = 28),
fill = "Fishing gear") +
theme_classic() +
scale_fill_viridis_d(option = "C",
begin = 0.3,
end = 0.7,
labels = str_wrap(c("Lobster pot",
"Lobster/mixed fish pot",
"Redfish pot"), width = 12)) +
theme(axis.text.x=element_text(angle = 45,
hjust = 0.95,
vjust = 0.95,
face = "italic")) +
scale_x_discrete(labels = xaxis_species_names)
snapper_fishingear_onboardgridboard
ggsave("snapper_fishingear_onboardgridboard.png", plot = snapper_fishingear_onboardgridboard, width = 4, height = 4, dpi = 400)
df_area <- df_allsnappers %>%
filter(Fishing_area != "") %>% # remove measurements for which the area was not recorded
filter(!Species_sn %in% c("Ocyurus chrysurus", "Lutjanus jocu", "Apsilus dentatus")) # remove these three species
view(df_area)
#filter by area
df_area_a3 <- df_area%>%
filter(Fishing_area == "A3")
sumtable(df_area_a3)
| Variable | N | Mean | Std. Dev. | Min | Pctl. 25 | Pctl. 75 | Max |
|---|---|---|---|---|---|---|---|
| date | 140 | ||||||
| … 24/04/2024 | 140 | 100% | |||||
| year | 140 | 2024 | 0 | 2024 | 2024 | 2024 | 2024 |
| month | 140 | ||||||
| … April | 140 | 100% | |||||
| Boat_name | 140 | ||||||
| … Bridgette | 0 | 0% | |||||
| … Highliner | 0 | 0% | |||||
| … Lady Carolina | 0 | 0% | |||||
| … Mr Fish | 0 | 0% | |||||
| … Navigator | 0 | 0% | |||||
| … Second Wind | 140 | 100% | |||||
| … Spirit of Saba | 0 | 0% | |||||
| Trip_ID | 0 | ||||||
| … No | 0 | ||||||
| … Yes | 0 | ||||||
| Fishing_gear | 140 | ||||||
| … LP | 0 | 0% | |||||
| … LP/MP | 0 | 0% | |||||
| … RP | 140 | 100% | |||||
| Fishing_area | 140 | ||||||
| … | 0 | 0% | |||||
| … A3 | 140 | 100% | |||||
| … A3/A4 | 0 | 0% | |||||
| … B2 | 0 | 0% | |||||
| … B4 | 0 | 0% | |||||
| … C4/C5 | 0 | 0% | |||||
| … C5 | 0 | 0% | |||||
| … C5/D5 | 0 | 0% | |||||
| … D4 | 0 | 0% | |||||
| … D5 | 0 | 0% | |||||
| Depth_m_min | 140 | 82 | 0 | 82 | 82 | 82 | 82 |
| Depth_m_max | 140 | 128 | 0 | 128 | 128 | 128 | 128 |
| Species_sn | 140 | ||||||
| … Apsilus dentatus | 0 | 0% | |||||
| … Etelis oculatus | 0 | 0% | |||||
| … Lutjanus buccanella | 99 | 71% | |||||
| … Lutjanus jocu | 0 | 0% | |||||
| … Lutjanus synagris | 0 | 0% | |||||
| … Lutjanus vivanus | 41 | 29% | |||||
| … Ocyurus chrysurus | 0 | 0% | |||||
| … Pristipomoides aquilonaris | 0 | 0% | |||||
| … Rhomboplites aurorubens | 0 | 0% | |||||
| Species_cn | 140 | ||||||
| … Black snapper | 0 | 0% | |||||
| … Black Snapper | 0 | 0% | |||||
| … Blackfin snapper | 0 | 0% | |||||
| … Blackfin Snapper | 99 | 71% | |||||
| … Dog Snapper | 0 | 0% | |||||
| … Lane Snapper | 0 | 0% | |||||
| … Queen Snapper | 0 | 0% | |||||
| … Vermillion snapper | 0 | 0% | |||||
| … Vermillion Snapper | 0 | 0% | |||||
| … Wenchman snapper | 0 | 0% | |||||
| … Wenchman Snapper | 0 | 0% | |||||
| … yelloweye snapper | 0 | 0% | |||||
| … yelloweye Snapper | 0 | 0% | |||||
| … Yelloweye snapper | 0 | 0% | |||||
| … Yelloweye Snapper | 41 | 29% | |||||
| … YellowEye Snapper | 0 | 0% | |||||
| … Yellowtail Snapper | 0 | 0% | |||||
| Trap_no | 140 | ||||||
| … | 140 | 100% | |||||
| … 1 | 0 | 0% | |||||
| … 10 | 0 | 0% | |||||
| … 11 | 0 | 0% | |||||
| … 12 | 0 | 0% | |||||
| … 13 | 0 | 0% | |||||
| … 14 | 0 | 0% | |||||
| … 14/15 | 0 | 0% | |||||
| … 15 | 0 | 0% | |||||
| … 16 | 0 | 0% | |||||
| … 17 | 0 | 0% | |||||
| … 18 | 0 | 0% | |||||
| … 19 | 0 | 0% | |||||
| … 2 | 0 | 0% | |||||
| … 20 | 0 | 0% | |||||
| … 21 | 0 | 0% | |||||
| … 22 | 0 | 0% | |||||
| … 23 | 0 | 0% | |||||
| … 24 | 0 | 0% | |||||
| … 25 | 0 | 0% | |||||
| … 26 | 0 | 0% | |||||
| … 27 | 0 | 0% | |||||
| … 28 | 0 | 0% | |||||
| … 29 | 0 | 0% | |||||
| … 3 | 0 | 0% | |||||
| … 30 | 0 | 0% | |||||
| … 31 | 0 | 0% | |||||
| … 33 | 0 | 0% | |||||
| … 34 | 0 | 0% | |||||
| … 35 | 0 | 0% | |||||
| … 36 | 0 | 0% | |||||
| … 37 | 0 | 0% | |||||
| … 38 | 0 | 0% | |||||
| … 39 | 0 | 0% | |||||
| … 4 | 0 | 0% | |||||
| … 40 | 0 | 0% | |||||
| … 41 | 0 | 0% | |||||
| … 42 | 0 | 0% | |||||
| … 43 | 0 | 0% | |||||
| … 44 | 0 | 0% | |||||
| … 45 | 0 | 0% | |||||
| … 5 | 0 | 0% | |||||
| … 51 | 0 | 0% | |||||
| … 54 | 0 | 0% | |||||
| … 6 | 0 | 0% | |||||
| … 7 | 0 | 0% | |||||
| … 8 | 0 | 0% | |||||
| … 9 | 0 | 0% | |||||
| landed | 140 | ||||||
| … Landed | 140 | 100% | |||||
| catch_contents | 140 | ||||||
| … Partial | 140 | 100% | |||||
| … Whole | 0 | 0% | |||||
| Length | 140 | 30 | 5 | 24 | 27 | 32 | 45 |
| study | 140 | ||||||
| … GRIDBOARD | 140 | 100% | |||||
| … ONBOARD | 0 | 0% | |||||
| Comments | 140 | ||||||
| … | 138 | 99% | |||||
| … All mixed fish measured, no lobsters measured | 2 | 1% |
df_area_a3a4 <- df_area%>%
filter(Fishing_area == "A3/A4")
sumtable(df_area_a3a4)
| Variable | N | Mean | Std. Dev. | Min | Pctl. 25 | Pctl. 75 | Max |
|---|---|---|---|---|---|---|---|
| date | 431 | ||||||
| … 01/05/2024 | 110 | 26% | |||||
| … 08/05/2024 | 133 | 31% | |||||
| … 14/05/2024 | 188 | 44% | |||||
| year | 431 | 2024 | 0 | 2024 | 2024 | 2024 | 2024 |
| month | 431 | ||||||
| … May | 431 | 100% | |||||
| Boat_name | 431 | ||||||
| … Bridgette | 0 | 0% | |||||
| … Highliner | 0 | 0% | |||||
| … Lady Carolina | 0 | 0% | |||||
| … Mr Fish | 0 | 0% | |||||
| … Navigator | 0 | 0% | |||||
| … Second Wind | 431 | 100% | |||||
| … Spirit of Saba | 0 | 0% | |||||
| Trip_ID | 0 | ||||||
| … No | 0 | ||||||
| … Yes | 0 | ||||||
| Fishing_gear | 431 | ||||||
| … LP | 0 | 0% | |||||
| … LP/MP | 0 | 0% | |||||
| … RP | 431 | 100% | |||||
| Fishing_area | 431 | ||||||
| … | 0 | 0% | |||||
| … A3 | 0 | 0% | |||||
| … A3/A4 | 431 | 100% | |||||
| … B2 | 0 | 0% | |||||
| … B4 | 0 | 0% | |||||
| … C4/C5 | 0 | 0% | |||||
| … C5 | 0 | 0% | |||||
| … C5/D5 | 0 | 0% | |||||
| … D4 | 0 | 0% | |||||
| … D5 | 0 | 0% | |||||
| Depth_m_min | 298 | 28 | 9.2 | 21 | 21 | 40 | 40 |
| Depth_m_max | 298 | 40 | 15 | 28 | 28 | 60 | 60 |
| Species_sn | 431 | ||||||
| … Apsilus dentatus | 0 | 0% | |||||
| … Etelis oculatus | 0 | 0% | |||||
| … Lutjanus buccanella | 393 | 91% | |||||
| … Lutjanus jocu | 0 | 0% | |||||
| … Lutjanus synagris | 0 | 0% | |||||
| … Lutjanus vivanus | 38 | 9% | |||||
| … Ocyurus chrysurus | 0 | 0% | |||||
| … Pristipomoides aquilonaris | 0 | 0% | |||||
| … Rhomboplites aurorubens | 0 | 0% | |||||
| Species_cn | 431 | ||||||
| … Black snapper | 0 | 0% | |||||
| … Black Snapper | 0 | 0% | |||||
| … Blackfin snapper | 0 | 0% | |||||
| … Blackfin Snapper | 393 | 91% | |||||
| … Dog Snapper | 0 | 0% | |||||
| … Lane Snapper | 0 | 0% | |||||
| … Queen Snapper | 0 | 0% | |||||
| … Vermillion snapper | 0 | 0% | |||||
| … Vermillion Snapper | 0 | 0% | |||||
| … Wenchman snapper | 0 | 0% | |||||
| … Wenchman Snapper | 0 | 0% | |||||
| … yelloweye snapper | 0 | 0% | |||||
| … yelloweye Snapper | 0 | 0% | |||||
| … Yelloweye snapper | 0 | 0% | |||||
| … Yelloweye Snapper | 36 | 8% | |||||
| … YellowEye Snapper | 2 | 0% | |||||
| … Yellowtail Snapper | 0 | 0% | |||||
| Trap_no | 431 | ||||||
| … | 110 | 26% | |||||
| … 1 | 9 | 2% | |||||
| … 10 | 42 | 10% | |||||
| … 11 | 17 | 4% | |||||
| … 12 | 31 | 7% | |||||
| … 13 | 18 | 4% | |||||
| … 14 | 27 | 6% | |||||
| … 14/15 | 0 | 0% | |||||
| … 15 | 14 | 3% | |||||
| … 16 | 4 | 1% | |||||
| … 17 | 3 | 1% | |||||
| … 18 | 3 | 1% | |||||
| … 19 | 7 | 2% | |||||
| … 2 | 28 | 6% | |||||
| … 20 | 9 | 2% | |||||
| … 21 | 1 | 0% | |||||
| … 22 | 5 | 1% | |||||
| … 23 | 0 | 0% | |||||
| … 24 | 0 | 0% | |||||
| … 25 | 0 | 0% | |||||
| … 26 | 0 | 0% | |||||
| … 27 | 0 | 0% | |||||
| … 28 | 0 | 0% | |||||
| … 29 | 0 | 0% | |||||
| … 3 | 13 | 3% | |||||
| … 30 | 0 | 0% | |||||
| … 31 | 0 | 0% | |||||
| … 33 | 0 | 0% | |||||
| … 34 | 0 | 0% | |||||
| … 35 | 0 | 0% | |||||
| … 36 | 0 | 0% | |||||
| … 37 | 0 | 0% | |||||
| … 38 | 0 | 0% | |||||
| … 39 | 0 | 0% | |||||
| … 4 | 14 | 3% | |||||
| … 40 | 0 | 0% | |||||
| … 41 | 0 | 0% | |||||
| … 42 | 0 | 0% | |||||
| … 43 | 0 | 0% | |||||
| … 44 | 0 | 0% | |||||
| … 45 | 0 | 0% | |||||
| … 5 | 10 | 2% | |||||
| … 51 | 0 | 0% | |||||
| … 54 | 0 | 0% | |||||
| … 6 | 11 | 3% | |||||
| … 7 | 24 | 6% | |||||
| … 8 | 6 | 1% | |||||
| … 9 | 25 | 6% | |||||
| landed | 431 | ||||||
| … Landed | 431 | 100% | |||||
| catch_contents | 431 | ||||||
| … Partial | 110 | 26% | |||||
| … Whole | 321 | 74% | |||||
| Length | 431 | 30 | 5 | 20 | 26 | 32 | 44 |
| study | 431 | ||||||
| … GRIDBOARD | 110 | 26% | |||||
| … ONBOARD | 321 | 74% | |||||
| Comments | 431 | ||||||
| … | 431 | 100% |
df_area_b2 <- df_area%>%
filter(Fishing_area == "B2")
sumtable(df_area_b2)
| Variable | N | Mean | Std. Dev. | Min | Pctl. 25 | Pctl. 75 | Max |
|---|---|---|---|---|---|---|---|
| date | 28 | ||||||
| … 16/05/2024 | 28 | 100% | |||||
| year | 28 | 2024 | 0 | 2024 | 2024 | 2024 | 2024 |
| month | 28 | ||||||
| … May | 28 | 100% | |||||
| Boat_name | 28 | ||||||
| … Bridgette | 0 | 0% | |||||
| … Highliner | 0 | 0% | |||||
| … Lady Carolina | 0 | 0% | |||||
| … Mr Fish | 0 | 0% | |||||
| … Navigator | 28 | 100% | |||||
| … Second Wind | 0 | 0% | |||||
| … Spirit of Saba | 0 | 0% | |||||
| Trip_ID | 0 | ||||||
| … No | 0 | ||||||
| … Yes | 0 | ||||||
| Fishing_gear | 28 | ||||||
| … LP | 28 | 100% | |||||
| … LP/MP | 0 | 0% | |||||
| … RP | 0 | 0% | |||||
| Fishing_area | 28 | ||||||
| … | 0 | 0% | |||||
| … A3 | 0 | 0% | |||||
| … A3/A4 | 0 | 0% | |||||
| … B2 | 28 | 100% | |||||
| … B4 | 0 | 0% | |||||
| … C4/C5 | 0 | 0% | |||||
| … C5 | 0 | 0% | |||||
| … C5/D5 | 0 | 0% | |||||
| … D4 | 0 | 0% | |||||
| … D5 | 0 | 0% | |||||
| Depth_m_min | 28 | 20 | 0 | 20 | 20 | 20 | 20 |
| Depth_m_max | 28 | 20 | 0 | 20 | 20 | 20 | 20 |
| Species_sn | 28 | ||||||
| … Apsilus dentatus | 0 | 0% | |||||
| … Etelis oculatus | 0 | 0% | |||||
| … Lutjanus buccanella | 22 | 79% | |||||
| … Lutjanus jocu | 0 | 0% | |||||
| … Lutjanus synagris | 0 | 0% | |||||
| … Lutjanus vivanus | 0 | 0% | |||||
| … Ocyurus chrysurus | 0 | 0% | |||||
| … Pristipomoides aquilonaris | 0 | 0% | |||||
| … Rhomboplites aurorubens | 6 | 21% | |||||
| Species_cn | 28 | ||||||
| … Black snapper | 0 | 0% | |||||
| … Black Snapper | 0 | 0% | |||||
| … Blackfin snapper | 0 | 0% | |||||
| … Blackfin Snapper | 22 | 79% | |||||
| … Dog Snapper | 0 | 0% | |||||
| … Lane Snapper | 0 | 0% | |||||
| … Queen Snapper | 0 | 0% | |||||
| … Vermillion snapper | 0 | 0% | |||||
| … Vermillion Snapper | 6 | 21% | |||||
| … Wenchman snapper | 0 | 0% | |||||
| … Wenchman Snapper | 0 | 0% | |||||
| … yelloweye snapper | 0 | 0% | |||||
| … yelloweye Snapper | 0 | 0% | |||||
| … Yelloweye snapper | 0 | 0% | |||||
| … Yelloweye Snapper | 0 | 0% | |||||
| … YellowEye Snapper | 0 | 0% | |||||
| … Yellowtail Snapper | 0 | 0% | |||||
| Trap_no | 28 | ||||||
| … | 28 | 100% | |||||
| … 1 | 0 | 0% | |||||
| … 10 | 0 | 0% | |||||
| … 11 | 0 | 0% | |||||
| … 12 | 0 | 0% | |||||
| … 13 | 0 | 0% | |||||
| … 14 | 0 | 0% | |||||
| … 14/15 | 0 | 0% | |||||
| … 15 | 0 | 0% | |||||
| … 16 | 0 | 0% | |||||
| … 17 | 0 | 0% | |||||
| … 18 | 0 | 0% | |||||
| … 19 | 0 | 0% | |||||
| … 2 | 0 | 0% | |||||
| … 20 | 0 | 0% | |||||
| … 21 | 0 | 0% | |||||
| … 22 | 0 | 0% | |||||
| … 23 | 0 | 0% | |||||
| … 24 | 0 | 0% | |||||
| … 25 | 0 | 0% | |||||
| … 26 | 0 | 0% | |||||
| … 27 | 0 | 0% | |||||
| … 28 | 0 | 0% | |||||
| … 29 | 0 | 0% | |||||
| … 3 | 0 | 0% | |||||
| … 30 | 0 | 0% | |||||
| … 31 | 0 | 0% | |||||
| … 33 | 0 | 0% | |||||
| … 34 | 0 | 0% | |||||
| … 35 | 0 | 0% | |||||
| … 36 | 0 | 0% | |||||
| … 37 | 0 | 0% | |||||
| … 38 | 0 | 0% | |||||
| … 39 | 0 | 0% | |||||
| … 4 | 0 | 0% | |||||
| … 40 | 0 | 0% | |||||
| … 41 | 0 | 0% | |||||
| … 42 | 0 | 0% | |||||
| … 43 | 0 | 0% | |||||
| … 44 | 0 | 0% | |||||
| … 45 | 0 | 0% | |||||
| … 5 | 0 | 0% | |||||
| … 51 | 0 | 0% | |||||
| … 54 | 0 | 0% | |||||
| … 6 | 0 | 0% | |||||
| … 7 | 0 | 0% | |||||
| … 8 | 0 | 0% | |||||
| … 9 | 0 | 0% | |||||
| landed | 28 | ||||||
| … Landed | 28 | 100% | |||||
| catch_contents | 28 | ||||||
| … Partial | 28 | 100% | |||||
| … Whole | 0 | 0% | |||||
| Length | 28 | 27 | 3.5 | 21 | 25 | 30 | 33 |
| study | 28 | ||||||
| … GRIDBOARD | 28 | 100% | |||||
| … ONBOARD | 0 | 0% | |||||
| Comments | 28 | ||||||
| … | 28 | 100% |
df_area_b4_lp <- df_area%>%
filter(Fishing_area == "B4") %>%
filter(Fishing_gear == "LP")
sumtable(df_area_b4_lp)
| Variable | N | Mean | Std. Dev. | Min | Pctl. 25 | Pctl. 75 | Max |
|---|---|---|---|---|---|---|---|
| date | 24 | ||||||
| … 06/05/2024 | 1 | 4% | |||||
| … 15/05/2024 | 12 | 50% | |||||
| … 16/05/2024 | 9 | 38% | |||||
| … 22/04/2024 | 2 | 8% | |||||
| year | 24 | 2024 | 0 | 2024 | 2024 | 2024 | 2024 |
| month | 24 | ||||||
| … April | 2 | 8% | |||||
| … May | 22 | 92% | |||||
| Boat_name | 24 | ||||||
| … Bridgette | 11 | 46% | |||||
| … Highliner | 0 | 0% | |||||
| … Lady Carolina | 12 | 50% | |||||
| … Mr Fish | 1 | 4% | |||||
| … Navigator | 0 | 0% | |||||
| … Second Wind | 0 | 0% | |||||
| … Spirit of Saba | 0 | 0% | |||||
| Trip_ID | 0 | ||||||
| … No | 0 | ||||||
| … Yes | 0 | ||||||
| Fishing_gear | 24 | ||||||
| … LP | 24 | 100% | |||||
| … LP/MP | 0 | 0% | |||||
| … RP | 0 | 0% | |||||
| Fishing_area | 24 | ||||||
| … | 0 | 0% | |||||
| … A3 | 0 | 0% | |||||
| … A3/A4 | 0 | 0% | |||||
| … B2 | 0 | 0% | |||||
| … B4 | 24 | 100% | |||||
| … C4/C5 | 0 | 0% | |||||
| … C5 | 0 | 0% | |||||
| … C5/D5 | 0 | 0% | |||||
| … D4 | 0 | 0% | |||||
| … D5 | 0 | 0% | |||||
| Depth_m_min | 24 | 13 | 2 | 11 | 12 | 15 | 19 |
| Depth_m_max | 24 | 22 | 2.4 | 14 | 22 | 23 | 23 |
| Species_sn | 24 | ||||||
| … Apsilus dentatus | 0 | 0% | |||||
| … Etelis oculatus | 0 | 0% | |||||
| … Lutjanus buccanella | 2 | 8% | |||||
| … Lutjanus jocu | 0 | 0% | |||||
| … Lutjanus synagris | 15 | 62% | |||||
| … Lutjanus vivanus | 1 | 4% | |||||
| … Ocyurus chrysurus | 0 | 0% | |||||
| … Pristipomoides aquilonaris | 0 | 0% | |||||
| … Rhomboplites aurorubens | 6 | 25% | |||||
| Species_cn | 24 | ||||||
| … Black snapper | 0 | 0% | |||||
| … Black Snapper | 0 | 0% | |||||
| … Blackfin snapper | 0 | 0% | |||||
| … Blackfin Snapper | 2 | 8% | |||||
| … Dog Snapper | 0 | 0% | |||||
| … Lane Snapper | 15 | 62% | |||||
| … Queen Snapper | 0 | 0% | |||||
| … Vermillion snapper | 0 | 0% | |||||
| … Vermillion Snapper | 6 | 25% | |||||
| … Wenchman snapper | 0 | 0% | |||||
| … Wenchman Snapper | 0 | 0% | |||||
| … yelloweye snapper | 0 | 0% | |||||
| … yelloweye Snapper | 0 | 0% | |||||
| … Yelloweye snapper | 0 | 0% | |||||
| … Yelloweye Snapper | 1 | 4% | |||||
| … YellowEye Snapper | 0 | 0% | |||||
| … Yellowtail Snapper | 0 | 0% | |||||
| Trap_no | 24 | ||||||
| … | 24 | 100% | |||||
| … 1 | 0 | 0% | |||||
| … 10 | 0 | 0% | |||||
| … 11 | 0 | 0% | |||||
| … 12 | 0 | 0% | |||||
| … 13 | 0 | 0% | |||||
| … 14 | 0 | 0% | |||||
| … 14/15 | 0 | 0% | |||||
| … 15 | 0 | 0% | |||||
| … 16 | 0 | 0% | |||||
| … 17 | 0 | 0% | |||||
| … 18 | 0 | 0% | |||||
| … 19 | 0 | 0% | |||||
| … 2 | 0 | 0% | |||||
| … 20 | 0 | 0% | |||||
| … 21 | 0 | 0% | |||||
| … 22 | 0 | 0% | |||||
| … 23 | 0 | 0% | |||||
| … 24 | 0 | 0% | |||||
| … 25 | 0 | 0% | |||||
| … 26 | 0 | 0% | |||||
| … 27 | 0 | 0% | |||||
| … 28 | 0 | 0% | |||||
| … 29 | 0 | 0% | |||||
| … 3 | 0 | 0% | |||||
| … 30 | 0 | 0% | |||||
| … 31 | 0 | 0% | |||||
| … 33 | 0 | 0% | |||||
| … 34 | 0 | 0% | |||||
| … 35 | 0 | 0% | |||||
| … 36 | 0 | 0% | |||||
| … 37 | 0 | 0% | |||||
| … 38 | 0 | 0% | |||||
| … 39 | 0 | 0% | |||||
| … 4 | 0 | 0% | |||||
| … 40 | 0 | 0% | |||||
| … 41 | 0 | 0% | |||||
| … 42 | 0 | 0% | |||||
| … 43 | 0 | 0% | |||||
| … 44 | 0 | 0% | |||||
| … 45 | 0 | 0% | |||||
| … 5 | 0 | 0% | |||||
| … 51 | 0 | 0% | |||||
| … 54 | 0 | 0% | |||||
| … 6 | 0 | 0% | |||||
| … 7 | 0 | 0% | |||||
| … 8 | 0 | 0% | |||||
| … 9 | 0 | 0% | |||||
| landed | 24 | ||||||
| … Landed | 24 | 100% | |||||
| catch_contents | 24 | ||||||
| … Partial | 24 | 100% | |||||
| … Whole | 0 | 0% | |||||
| Length | 24 | 28 | 3.6 | 23 | 26 | 30 | 38 |
| study | 24 | ||||||
| … GRIDBOARD | 24 | 100% | |||||
| … ONBOARD | 0 | 0% | |||||
| Comments | 24 | ||||||
| … | 24 | 100% |
df_area_b4_rp <- df_area%>%
filter(Fishing_area == "B4") %>%
filter(Fishing_gear == "RP")
sumtable(df_area_b4_rp)
| Variable | N | Mean | Std. Dev. | Min | Pctl. 25 | Pctl. 75 | Max |
|---|---|---|---|---|---|---|---|
| date | 39 | ||||||
| … 04/06/2024 | 39 | 100% | |||||
| year | 39 | 2024 | 0 | 2024 | 2024 | 2024 | 2024 |
| month | 39 | ||||||
| … June | 39 | 100% | |||||
| Boat_name | 39 | ||||||
| … Bridgette | 0 | 0% | |||||
| … Highliner | 39 | 100% | |||||
| … Lady Carolina | 0 | 0% | |||||
| … Mr Fish | 0 | 0% | |||||
| … Navigator | 0 | 0% | |||||
| … Second Wind | 0 | 0% | |||||
| … Spirit of Saba | 0 | 0% | |||||
| Trip_ID | 0 | ||||||
| … No | 0 | ||||||
| … Yes | 0 | ||||||
| Fishing_gear | 39 | ||||||
| … LP | 0 | 0% | |||||
| … LP/MP | 0 | 0% | |||||
| … RP | 39 | 100% | |||||
| Fishing_area | 39 | ||||||
| … | 0 | 0% | |||||
| … A3 | 0 | 0% | |||||
| … A3/A4 | 0 | 0% | |||||
| … B2 | 0 | 0% | |||||
| … B4 | 39 | 100% | |||||
| … C4/C5 | 0 | 0% | |||||
| … C5 | 0 | 0% | |||||
| … C5/D5 | 0 | 0% | |||||
| … D4 | 0 | 0% | |||||
| … D5 | 0 | 0% | |||||
| Depth_m_min | 39 | 91 | 0 | 91 | 91 | 91 | 91 |
| Depth_m_max | 39 | 92 | 0 | 92 | 92 | 92 | 92 |
| Species_sn | 39 | ||||||
| … Apsilus dentatus | 0 | 0% | |||||
| … Etelis oculatus | 0 | 0% | |||||
| … Lutjanus buccanella | 3 | 8% | |||||
| … Lutjanus jocu | 0 | 0% | |||||
| … Lutjanus synagris | 0 | 0% | |||||
| … Lutjanus vivanus | 36 | 92% | |||||
| … Ocyurus chrysurus | 0 | 0% | |||||
| … Pristipomoides aquilonaris | 0 | 0% | |||||
| … Rhomboplites aurorubens | 0 | 0% | |||||
| Species_cn | 39 | ||||||
| … Black snapper | 0 | 0% | |||||
| … Black Snapper | 0 | 0% | |||||
| … Blackfin snapper | 0 | 0% | |||||
| … Blackfin Snapper | 3 | 8% | |||||
| … Dog Snapper | 0 | 0% | |||||
| … Lane Snapper | 0 | 0% | |||||
| … Queen Snapper | 0 | 0% | |||||
| … Vermillion snapper | 0 | 0% | |||||
| … Vermillion Snapper | 0 | 0% | |||||
| … Wenchman snapper | 0 | 0% | |||||
| … Wenchman Snapper | 0 | 0% | |||||
| … yelloweye snapper | 0 | 0% | |||||
| … yelloweye Snapper | 0 | 0% | |||||
| … Yelloweye snapper | 0 | 0% | |||||
| … Yelloweye Snapper | 36 | 92% | |||||
| … YellowEye Snapper | 0 | 0% | |||||
| … Yellowtail Snapper | 0 | 0% | |||||
| Trap_no | 39 | ||||||
| … | 39 | 100% | |||||
| … 1 | 0 | 0% | |||||
| … 10 | 0 | 0% | |||||
| … 11 | 0 | 0% | |||||
| … 12 | 0 | 0% | |||||
| … 13 | 0 | 0% | |||||
| … 14 | 0 | 0% | |||||
| … 14/15 | 0 | 0% | |||||
| … 15 | 0 | 0% | |||||
| … 16 | 0 | 0% | |||||
| … 17 | 0 | 0% | |||||
| … 18 | 0 | 0% | |||||
| … 19 | 0 | 0% | |||||
| … 2 | 0 | 0% | |||||
| … 20 | 0 | 0% | |||||
| … 21 | 0 | 0% | |||||
| … 22 | 0 | 0% | |||||
| … 23 | 0 | 0% | |||||
| … 24 | 0 | 0% | |||||
| … 25 | 0 | 0% | |||||
| … 26 | 0 | 0% | |||||
| … 27 | 0 | 0% | |||||
| … 28 | 0 | 0% | |||||
| … 29 | 0 | 0% | |||||
| … 3 | 0 | 0% | |||||
| … 30 | 0 | 0% | |||||
| … 31 | 0 | 0% | |||||
| … 33 | 0 | 0% | |||||
| … 34 | 0 | 0% | |||||
| … 35 | 0 | 0% | |||||
| … 36 | 0 | 0% | |||||
| … 37 | 0 | 0% | |||||
| … 38 | 0 | 0% | |||||
| … 39 | 0 | 0% | |||||
| … 4 | 0 | 0% | |||||
| … 40 | 0 | 0% | |||||
| … 41 | 0 | 0% | |||||
| … 42 | 0 | 0% | |||||
| … 43 | 0 | 0% | |||||
| … 44 | 0 | 0% | |||||
| … 45 | 0 | 0% | |||||
| … 5 | 0 | 0% | |||||
| … 51 | 0 | 0% | |||||
| … 54 | 0 | 0% | |||||
| … 6 | 0 | 0% | |||||
| … 7 | 0 | 0% | |||||
| … 8 | 0 | 0% | |||||
| … 9 | 0 | 0% | |||||
| landed | 39 | ||||||
| … Landed | 39 | 100% | |||||
| catch_contents | 39 | ||||||
| … Partial | 39 | 100% | |||||
| … Whole | 0 | 0% | |||||
| Length | 39 | 27 | 3.6 | 20 | 25 | 29 | 34 |
| study | 39 | ||||||
| … GRIDBOARD | 39 | 100% | |||||
| … ONBOARD | 0 | 0% | |||||
| Comments | 39 | ||||||
| … | 39 | 100% |
df_area_c4c5 <- df_area%>%
filter(Fishing_area == "C4/C5")
sumtable(df_area_c4c5)
| Variable | N | Mean | Std. Dev. | Min | Pctl. 25 | Pctl. 75 | Max |
|---|---|---|---|---|---|---|---|
| date | 11 | ||||||
| … 15/07/2024 | 11 | 100% | |||||
| year | 11 | 2024 | 0 | 2024 | 2024 | 2024 | 2024 |
| month | 11 | ||||||
| … July | 11 | 100% | |||||
| Boat_name | 11 | ||||||
| … Bridgette | 0 | 0% | |||||
| … Highliner | 11 | 100% | |||||
| … Lady Carolina | 0 | 0% | |||||
| … Mr Fish | 0 | 0% | |||||
| … Navigator | 0 | 0% | |||||
| … Second Wind | 0 | 0% | |||||
| … Spirit of Saba | 0 | 0% | |||||
| Trip_ID | 0 | ||||||
| … No | 0 | ||||||
| … Yes | 0 | ||||||
| Fishing_gear | 11 | ||||||
| … LP | 0 | 0% | |||||
| … LP/MP | 11 | 100% | |||||
| … RP | 0 | 0% | |||||
| Fishing_area | 11 | ||||||
| … | 0 | 0% | |||||
| … A3 | 0 | 0% | |||||
| … A3/A4 | 0 | 0% | |||||
| … B2 | 0 | 0% | |||||
| … B4 | 0 | 0% | |||||
| … C4/C5 | 11 | 100% | |||||
| … C5 | 0 | 0% | |||||
| … C5/D5 | 0 | 0% | |||||
| … D4 | 0 | 0% | |||||
| … D5 | 0 | 0% | |||||
| Depth_m_min | 11 | 15 | 0 | 15 | 15 | 15 | 15 |
| Depth_m_max | 11 | 30 | 0 | 30 | 30 | 30 | 30 |
| Species_sn | 11 | ||||||
| … Apsilus dentatus | 0 | 0% | |||||
| … Etelis oculatus | 0 | 0% | |||||
| … Lutjanus buccanella | 0 | 0% | |||||
| … Lutjanus jocu | 0 | 0% | |||||
| … Lutjanus synagris | 0 | 0% | |||||
| … Lutjanus vivanus | 0 | 0% | |||||
| … Ocyurus chrysurus | 0 | 0% | |||||
| … Pristipomoides aquilonaris | 0 | 0% | |||||
| … Rhomboplites aurorubens | 11 | 100% | |||||
| Species_cn | 11 | ||||||
| … Black snapper | 0 | 0% | |||||
| … Black Snapper | 0 | 0% | |||||
| … Blackfin snapper | 0 | 0% | |||||
| … Blackfin Snapper | 0 | 0% | |||||
| … Dog Snapper | 0 | 0% | |||||
| … Lane Snapper | 0 | 0% | |||||
| … Queen Snapper | 0 | 0% | |||||
| … Vermillion snapper | 0 | 0% | |||||
| … Vermillion Snapper | 11 | 100% | |||||
| … Wenchman snapper | 0 | 0% | |||||
| … Wenchman Snapper | 0 | 0% | |||||
| … yelloweye snapper | 0 | 0% | |||||
| … yelloweye Snapper | 0 | 0% | |||||
| … Yelloweye snapper | 0 | 0% | |||||
| … Yelloweye Snapper | 0 | 0% | |||||
| … YellowEye Snapper | 0 | 0% | |||||
| … Yellowtail Snapper | 0 | 0% | |||||
| Trap_no | 11 | ||||||
| … | 0 | 0% | |||||
| … 1 | 0 | 0% | |||||
| … 10 | 0 | 0% | |||||
| … 11 | 0 | 0% | |||||
| … 12 | 0 | 0% | |||||
| … 13 | 1 | 9% | |||||
| … 14 | 1 | 9% | |||||
| … 14/15 | 9 | 82% | |||||
| … 15 | 0 | 0% | |||||
| … 16 | 0 | 0% | |||||
| … 17 | 0 | 0% | |||||
| … 18 | 0 | 0% | |||||
| … 19 | 0 | 0% | |||||
| … 2 | 0 | 0% | |||||
| … 20 | 0 | 0% | |||||
| … 21 | 0 | 0% | |||||
| … 22 | 0 | 0% | |||||
| … 23 | 0 | 0% | |||||
| … 24 | 0 | 0% | |||||
| … 25 | 0 | 0% | |||||
| … 26 | 0 | 0% | |||||
| … 27 | 0 | 0% | |||||
| … 28 | 0 | 0% | |||||
| … 29 | 0 | 0% | |||||
| … 3 | 0 | 0% | |||||
| … 30 | 0 | 0% | |||||
| … 31 | 0 | 0% | |||||
| … 33 | 0 | 0% | |||||
| … 34 | 0 | 0% | |||||
| … 35 | 0 | 0% | |||||
| … 36 | 0 | 0% | |||||
| … 37 | 0 | 0% | |||||
| … 38 | 0 | 0% | |||||
| … 39 | 0 | 0% | |||||
| … 4 | 0 | 0% | |||||
| … 40 | 0 | 0% | |||||
| … 41 | 0 | 0% | |||||
| … 42 | 0 | 0% | |||||
| … 43 | 0 | 0% | |||||
| … 44 | 0 | 0% | |||||
| … 45 | 0 | 0% | |||||
| … 5 | 0 | 0% | |||||
| … 51 | 0 | 0% | |||||
| … 54 | 0 | 0% | |||||
| … 6 | 0 | 0% | |||||
| … 7 | 0 | 0% | |||||
| … 8 | 0 | 0% | |||||
| … 9 | 0 | 0% | |||||
| landed | 11 | ||||||
| … Landed | 11 | 100% | |||||
| catch_contents | 11 | ||||||
| … Partial | 0 | 0% | |||||
| … Whole | 11 | 100% | |||||
| Length | 11 | 23 | 2.3 | 20 | 22 | 25 | 27 |
| study | 11 | ||||||
| … GRIDBOARD | 0 | 0% | |||||
| … ONBOARD | 11 | 100% | |||||
| Comments | 11 | ||||||
| … 18 FATHOM JAPANESE BAIT= MIXED FISH POT | 11 | 100% |
df_area_c5 <- df_area%>%
filter(Fishing_area == "C5")
sumtable(df_area_c5)
| Variable | N | Mean | Std. Dev. | Min | Pctl. 25 | Pctl. 75 | Max |
|---|---|---|---|---|---|---|---|
| date | 2 | ||||||
| … 07/05/2024 | 2 | 100% | |||||
| year | 2 | 2024 | 0 | 2024 | 2024 | 2024 | 2024 |
| month | 2 | ||||||
| … May | 2 | 100% | |||||
| Boat_name | 2 | ||||||
| … Bridgette | 0 | 0% | |||||
| … Highliner | 0 | 0% | |||||
| … Lady Carolina | 2 | 100% | |||||
| … Mr Fish | 0 | 0% | |||||
| … Navigator | 0 | 0% | |||||
| … Second Wind | 0 | 0% | |||||
| … Spirit of Saba | 0 | 0% | |||||
| Trip_ID | 0 | ||||||
| … No | 0 | ||||||
| … Yes | 0 | ||||||
| Fishing_gear | 2 | ||||||
| … LP | 2 | 100% | |||||
| … LP/MP | 0 | 0% | |||||
| … RP | 0 | 0% | |||||
| Fishing_area | 2 | ||||||
| … | 0 | 0% | |||||
| … A3 | 0 | 0% | |||||
| … A3/A4 | 0 | 0% | |||||
| … B2 | 0 | 0% | |||||
| … B4 | 0 | 0% | |||||
| … C4/C5 | 0 | 0% | |||||
| … C5 | 2 | 100% | |||||
| … C5/D5 | 0 | 0% | |||||
| … D4 | 0 | 0% | |||||
| … D5 | 0 | 0% | |||||
| Depth_m_min | 2 | 8 | 0 | 8 | 8 | 8 | 8 |
| Depth_m_max | 2 | 14 | 0 | 14 | 14 | 14 | 14 |
| Species_sn | 2 | ||||||
| … Apsilus dentatus | 0 | 0% | |||||
| … Etelis oculatus | 0 | 0% | |||||
| … Lutjanus buccanella | 0 | 0% | |||||
| … Lutjanus jocu | 0 | 0% | |||||
| … Lutjanus synagris | 0 | 0% | |||||
| … Lutjanus vivanus | 2 | 100% | |||||
| … Ocyurus chrysurus | 0 | 0% | |||||
| … Pristipomoides aquilonaris | 0 | 0% | |||||
| … Rhomboplites aurorubens | 0 | 0% | |||||
| Species_cn | 2 | ||||||
| … Black snapper | 0 | 0% | |||||
| … Black Snapper | 0 | 0% | |||||
| … Blackfin snapper | 0 | 0% | |||||
| … Blackfin Snapper | 0 | 0% | |||||
| … Dog Snapper | 0 | 0% | |||||
| … Lane Snapper | 0 | 0% | |||||
| … Queen Snapper | 0 | 0% | |||||
| … Vermillion snapper | 0 | 0% | |||||
| … Vermillion Snapper | 0 | 0% | |||||
| … Wenchman snapper | 0 | 0% | |||||
| … Wenchman Snapper | 0 | 0% | |||||
| … yelloweye snapper | 0 | 0% | |||||
| … yelloweye Snapper | 0 | 0% | |||||
| … Yelloweye snapper | 0 | 0% | |||||
| … Yelloweye Snapper | 2 | 100% | |||||
| … YellowEye Snapper | 0 | 0% | |||||
| … Yellowtail Snapper | 0 | 0% | |||||
| Trap_no | 2 | ||||||
| … | 2 | 100% | |||||
| … 1 | 0 | 0% | |||||
| … 10 | 0 | 0% | |||||
| … 11 | 0 | 0% | |||||
| … 12 | 0 | 0% | |||||
| … 13 | 0 | 0% | |||||
| … 14 | 0 | 0% | |||||
| … 14/15 | 0 | 0% | |||||
| … 15 | 0 | 0% | |||||
| … 16 | 0 | 0% | |||||
| … 17 | 0 | 0% | |||||
| … 18 | 0 | 0% | |||||
| … 19 | 0 | 0% | |||||
| … 2 | 0 | 0% | |||||
| … 20 | 0 | 0% | |||||
| … 21 | 0 | 0% | |||||
| … 22 | 0 | 0% | |||||
| … 23 | 0 | 0% | |||||
| … 24 | 0 | 0% | |||||
| … 25 | 0 | 0% | |||||
| … 26 | 0 | 0% | |||||
| … 27 | 0 | 0% | |||||
| … 28 | 0 | 0% | |||||
| … 29 | 0 | 0% | |||||
| … 3 | 0 | 0% | |||||
| … 30 | 0 | 0% | |||||
| … 31 | 0 | 0% | |||||
| … 33 | 0 | 0% | |||||
| … 34 | 0 | 0% | |||||
| … 35 | 0 | 0% | |||||
| … 36 | 0 | 0% | |||||
| … 37 | 0 | 0% | |||||
| … 38 | 0 | 0% | |||||
| … 39 | 0 | 0% | |||||
| … 4 | 0 | 0% | |||||
| … 40 | 0 | 0% | |||||
| … 41 | 0 | 0% | |||||
| … 42 | 0 | 0% | |||||
| … 43 | 0 | 0% | |||||
| … 44 | 0 | 0% | |||||
| … 45 | 0 | 0% | |||||
| … 5 | 0 | 0% | |||||
| … 51 | 0 | 0% | |||||
| … 54 | 0 | 0% | |||||
| … 6 | 0 | 0% | |||||
| … 7 | 0 | 0% | |||||
| … 8 | 0 | 0% | |||||
| … 9 | 0 | 0% | |||||
| landed | 2 | ||||||
| … Landed | 2 | 100% | |||||
| catch_contents | 2 | ||||||
| … Partial | 2 | 100% | |||||
| … Whole | 0 | 0% | |||||
| Length | 2 | 38 | 9.2 | 32 | 35 | 42 | 45 |
| study | 2 | ||||||
| … GRIDBOARD | 2 | 100% | |||||
| … ONBOARD | 0 | 0% | |||||
| Comments | 2 | ||||||
| … | 2 | 100% |
df_area_c5d5 <- df_area%>%
filter(Fishing_area == "C5/D5")
sumtable(df_area_c5d5)
| Variable | N | Mean | Std. Dev. | Min | Pctl. 25 | Pctl. 75 | Max |
|---|---|---|---|---|---|---|---|
| date | 406 | ||||||
| … 05/06/2024 | 406 | 100% | |||||
| year | 406 | 2024 | 0 | 2024 | 2024 | 2024 | 2024 |
| month | 406 | ||||||
| … June | 406 | 100% | |||||
| Boat_name | 406 | ||||||
| … Bridgette | 0 | 0% | |||||
| … Highliner | 0 | 0% | |||||
| … Lady Carolina | 0 | 0% | |||||
| … Mr Fish | 0 | 0% | |||||
| … Navigator | 0 | 0% | |||||
| … Second Wind | 406 | 100% | |||||
| … Spirit of Saba | 0 | 0% | |||||
| Trip_ID | 0 | ||||||
| … No | 0 | ||||||
| … Yes | 0 | ||||||
| Fishing_gear | 406 | ||||||
| … LP | 0 | 0% | |||||
| … LP/MP | 0 | 0% | |||||
| … RP | 406 | 100% | |||||
| Fishing_area | 406 | ||||||
| … | 0 | 0% | |||||
| … A3 | 0 | 0% | |||||
| … A3/A4 | 0 | 0% | |||||
| … B2 | 0 | 0% | |||||
| … B4 | 0 | 0% | |||||
| … C4/C5 | 0 | 0% | |||||
| … C5 | 0 | 0% | |||||
| … C5/D5 | 406 | 100% | |||||
| … D4 | 0 | 0% | |||||
| … D5 | 0 | 0% | |||||
| Depth_m_min | 406 | 50 | 0 | 50 | 50 | 50 | 50 |
| Depth_m_max | 406 | 150 | 0 | 150 | 150 | 150 | 150 |
| Species_sn | 406 | ||||||
| … Apsilus dentatus | 0 | 0% | |||||
| … Etelis oculatus | 0 | 0% | |||||
| … Lutjanus buccanella | 105 | 26% | |||||
| … Lutjanus jocu | 0 | 0% | |||||
| … Lutjanus synagris | 0 | 0% | |||||
| … Lutjanus vivanus | 274 | 67% | |||||
| … Ocyurus chrysurus | 0 | 0% | |||||
| … Pristipomoides aquilonaris | 5 | 1% | |||||
| … Rhomboplites aurorubens | 22 | 5% | |||||
| Species_cn | 406 | ||||||
| … Black snapper | 0 | 0% | |||||
| … Black Snapper | 0 | 0% | |||||
| … Blackfin snapper | 0 | 0% | |||||
| … Blackfin Snapper | 105 | 26% | |||||
| … Dog Snapper | 0 | 0% | |||||
| … Lane Snapper | 0 | 0% | |||||
| … Queen Snapper | 0 | 0% | |||||
| … Vermillion snapper | 0 | 0% | |||||
| … Vermillion Snapper | 22 | 5% | |||||
| … Wenchman snapper | 0 | 0% | |||||
| … Wenchman Snapper | 5 | 1% | |||||
| … yelloweye snapper | 0 | 0% | |||||
| … yelloweye Snapper | 0 | 0% | |||||
| … Yelloweye snapper | 0 | 0% | |||||
| … Yelloweye Snapper | 274 | 67% | |||||
| … YellowEye Snapper | 0 | 0% | |||||
| … Yellowtail Snapper | 0 | 0% | |||||
| Trap_no | 406 | ||||||
| … | 0 | 0% | |||||
| … 1 | 11 | 3% | |||||
| … 10 | 10 | 2% | |||||
| … 11 | 7 | 2% | |||||
| … 12 | 9 | 2% | |||||
| … 13 | 8 | 2% | |||||
| … 14 | 6 | 1% | |||||
| … 14/15 | 0 | 0% | |||||
| … 15 | 8 | 2% | |||||
| … 16 | 13 | 3% | |||||
| … 17 | 38 | 9% | |||||
| … 18 | 14 | 3% | |||||
| … 19 | 18 | 4% | |||||
| … 2 | 6 | 1% | |||||
| … 20 | 8 | 2% | |||||
| … 21 | 4 | 1% | |||||
| … 22 | 11 | 3% | |||||
| … 23 | 8 | 2% | |||||
| … 24 | 24 | 6% | |||||
| … 25 | 11 | 3% | |||||
| … 26 | 7 | 2% | |||||
| … 27 | 0 | 0% | |||||
| … 28 | 0 | 0% | |||||
| … 29 | 0 | 0% | |||||
| … 3 | 19 | 5% | |||||
| … 30 | 7 | 2% | |||||
| … 31 | 17 | 4% | |||||
| … 33 | 0 | 0% | |||||
| … 34 | 9 | 2% | |||||
| … 35 | 3 | 1% | |||||
| … 36 | 11 | 3% | |||||
| … 37 | 19 | 5% | |||||
| … 38 | 5 | 1% | |||||
| … 39 | 2 | 0% | |||||
| … 4 | 26 | 6% | |||||
| … 40 | 9 | 2% | |||||
| … 41 | 4 | 1% | |||||
| … 42 | 6 | 1% | |||||
| … 43 | 5 | 1% | |||||
| … 44 | 8 | 2% | |||||
| … 45 | 5 | 1% | |||||
| … 5 | 10 | 2% | |||||
| … 51 | 0 | 0% | |||||
| … 54 | 0 | 0% | |||||
| … 6 | 4 | 1% | |||||
| … 7 | 3 | 1% | |||||
| … 8 | 4 | 1% | |||||
| … 9 | 9 | 2% | |||||
| landed | 406 | ||||||
| … Landed | 406 | 100% | |||||
| catch_contents | 406 | ||||||
| … Partial | 0 | 0% | |||||
| … Whole | 406 | 100% | |||||
| Length | 406 | 28 | 5.5 | 12 | 25 | 30 | 70 |
| study | 406 | ||||||
| … GRIDBOARD | 0 | 0% | |||||
| … ONBOARD | 406 | 100% | |||||
| Comments | 406 | ||||||
| … | 406 | 100% |
df_area_d4 <- df_area%>%
filter(Fishing_area == "D4")
sumtable(df_area_d4)
| Variable | N | Mean | Std. Dev. | Min | Pctl. 25 | Pctl. 75 | Max |
|---|---|---|---|---|---|---|---|
| date | 153 | ||||||
| … 19/06/2024 | 153 | 100% | |||||
| year | 153 | 2024 | 0 | 2024 | 2024 | 2024 | 2024 |
| month | 153 | ||||||
| … June | 153 | 100% | |||||
| Boat_name | 153 | ||||||
| … Bridgette | 0 | 0% | |||||
| … Highliner | 0 | 0% | |||||
| … Lady Carolina | 0 | 0% | |||||
| … Mr Fish | 0 | 0% | |||||
| … Navigator | 0 | 0% | |||||
| … Second Wind | 153 | 100% | |||||
| … Spirit of Saba | 0 | 0% | |||||
| Trip_ID | 0 | ||||||
| … No | 0 | ||||||
| … Yes | 0 | ||||||
| Fishing_gear | 153 | ||||||
| … LP | 0 | 0% | |||||
| … LP/MP | 0 | 0% | |||||
| … RP | 153 | 100% | |||||
| Fishing_area | 153 | ||||||
| … | 0 | 0% | |||||
| … A3 | 0 | 0% | |||||
| … A3/A4 | 0 | 0% | |||||
| … B2 | 0 | 0% | |||||
| … B4 | 0 | 0% | |||||
| … C4/C5 | 0 | 0% | |||||
| … C5 | 0 | 0% | |||||
| … C5/D5 | 0 | 0% | |||||
| … D4 | 153 | 100% | |||||
| … D5 | 0 | 0% | |||||
| Depth_m_min | 153 | 50 | 0 | 50 | 50 | 50 | 50 |
| Depth_m_max | 153 | 150 | 0 | 150 | 150 | 150 | 150 |
| Species_sn | 153 | ||||||
| … Apsilus dentatus | 0 | 0% | |||||
| … Etelis oculatus | 0 | 0% | |||||
| … Lutjanus buccanella | 64 | 42% | |||||
| … Lutjanus jocu | 0 | 0% | |||||
| … Lutjanus synagris | 0 | 0% | |||||
| … Lutjanus vivanus | 74 | 48% | |||||
| … Ocyurus chrysurus | 0 | 0% | |||||
| … Pristipomoides aquilonaris | 1 | 1% | |||||
| … Rhomboplites aurorubens | 14 | 9% | |||||
| Species_cn | 153 | ||||||
| … Black snapper | 0 | 0% | |||||
| … Black Snapper | 0 | 0% | |||||
| … Blackfin snapper | 64 | 42% | |||||
| … Blackfin Snapper | 0 | 0% | |||||
| … Dog Snapper | 0 | 0% | |||||
| … Lane Snapper | 0 | 0% | |||||
| … Queen Snapper | 0 | 0% | |||||
| … Vermillion snapper | 14 | 9% | |||||
| … Vermillion Snapper | 0 | 0% | |||||
| … Wenchman snapper | 1 | 1% | |||||
| … Wenchman Snapper | 0 | 0% | |||||
| … yelloweye snapper | 1 | 1% | |||||
| … yelloweye Snapper | 0 | 0% | |||||
| … Yelloweye snapper | 72 | 47% | |||||
| … Yelloweye Snapper | 1 | 1% | |||||
| … YellowEye Snapper | 0 | 0% | |||||
| … Yellowtail Snapper | 0 | 0% | |||||
| Trap_no | 153 | ||||||
| … | 0 | 0% | |||||
| … 1 | 11 | 7% | |||||
| … 10 | 5 | 3% | |||||
| … 11 | 13 | 8% | |||||
| … 12 | 2 | 1% | |||||
| … 13 | 1 | 1% | |||||
| … 14 | 9 | 6% | |||||
| … 14/15 | 0 | 0% | |||||
| … 15 | 7 | 5% | |||||
| … 16 | 11 | 7% | |||||
| … 17 | 13 | 8% | |||||
| … 18 | 2 | 1% | |||||
| … 19 | 0 | 0% | |||||
| … 2 | 6 | 4% | |||||
| … 20 | 14 | 9% | |||||
| … 21 | 4 | 3% | |||||
| … 22 | 3 | 2% | |||||
| … 23 | 6 | 4% | |||||
| … 24 | 14 | 9% | |||||
| … 25 | 0 | 0% | |||||
| … 26 | 0 | 0% | |||||
| … 27 | 0 | 0% | |||||
| … 28 | 0 | 0% | |||||
| … 29 | 0 | 0% | |||||
| … 3 | 11 | 7% | |||||
| … 30 | 0 | 0% | |||||
| … 31 | 0 | 0% | |||||
| … 33 | 0 | 0% | |||||
| … 34 | 0 | 0% | |||||
| … 35 | 0 | 0% | |||||
| … 36 | 0 | 0% | |||||
| … 37 | 0 | 0% | |||||
| … 38 | 0 | 0% | |||||
| … 39 | 0 | 0% | |||||
| … 4 | 5 | 3% | |||||
| … 40 | 0 | 0% | |||||
| … 41 | 0 | 0% | |||||
| … 42 | 0 | 0% | |||||
| … 43 | 0 | 0% | |||||
| … 44 | 0 | 0% | |||||
| … 45 | 0 | 0% | |||||
| … 5 | 1 | 1% | |||||
| … 51 | 0 | 0% | |||||
| … 54 | 0 | 0% | |||||
| … 6 | 6 | 4% | |||||
| … 7 | 3 | 2% | |||||
| … 8 | 3 | 2% | |||||
| … 9 | 3 | 2% | |||||
| landed | 153 | ||||||
| … Landed | 153 | 100% | |||||
| catch_contents | 153 | ||||||
| … Partial | 0 | 0% | |||||
| … Whole | 153 | 100% | |||||
| Length | 153 | 29 | 5.1 | 20 | 25 | 32 | 55 |
| study | 153 | ||||||
| … GRIDBOARD | 0 | 0% | |||||
| … ONBOARD | 153 | 100% | |||||
| Comments | 153 | ||||||
| … | 153 | 100% |
df_area_d5 <- df_area%>%
filter(Fishing_area == "D5")
sumtable(df_area_d5)
| Variable | N | Mean | Std. Dev. | Min | Pctl. 25 | Pctl. 75 | Max |
|---|---|---|---|---|---|---|---|
| date | 287 | ||||||
| … 29/05/2024 | 287 | 100% | |||||
| year | 287 | 2024 | 0 | 2024 | 2024 | 2024 | 2024 |
| month | 287 | ||||||
| … May | 287 | 100% | |||||
| Boat_name | 287 | ||||||
| … Bridgette | 0 | 0% | |||||
| … Highliner | 0 | 0% | |||||
| … Lady Carolina | 0 | 0% | |||||
| … Mr Fish | 0 | 0% | |||||
| … Navigator | 0 | 0% | |||||
| … Second Wind | 287 | 100% | |||||
| … Spirit of Saba | 0 | 0% | |||||
| Trip_ID | 0 | ||||||
| … No | 0 | ||||||
| … Yes | 0 | ||||||
| Fishing_gear | 287 | ||||||
| … LP | 0 | 0% | |||||
| … LP/MP | 0 | 0% | |||||
| … RP | 287 | 100% | |||||
| Fishing_area | 287 | ||||||
| … | 0 | 0% | |||||
| … A3 | 0 | 0% | |||||
| … A3/A4 | 0 | 0% | |||||
| … B2 | 0 | 0% | |||||
| … B4 | 0 | 0% | |||||
| … C4/C5 | 0 | 0% | |||||
| … C5 | 0 | 0% | |||||
| … C5/D5 | 0 | 0% | |||||
| … D4 | 0 | 0% | |||||
| … D5 | 287 | 100% | |||||
| Depth_m_min | 0 | Inf | -Inf | ||||
| Depth_m_max | 0 | Inf | -Inf | ||||
| Species_sn | 287 | ||||||
| … Apsilus dentatus | 0 | 0% | |||||
| … Etelis oculatus | 0 | 0% | |||||
| … Lutjanus buccanella | 110 | 38% | |||||
| … Lutjanus jocu | 0 | 0% | |||||
| … Lutjanus synagris | 0 | 0% | |||||
| … Lutjanus vivanus | 162 | 56% | |||||
| … Ocyurus chrysurus | 0 | 0% | |||||
| … Pristipomoides aquilonaris | 3 | 1% | |||||
| … Rhomboplites aurorubens | 12 | 4% | |||||
| Species_cn | 287 | ||||||
| … Black snapper | 0 | 0% | |||||
| … Black Snapper | 0 | 0% | |||||
| … Blackfin snapper | 0 | 0% | |||||
| … Blackfin Snapper | 110 | 38% | |||||
| … Dog Snapper | 0 | 0% | |||||
| … Lane Snapper | 0 | 0% | |||||
| … Queen Snapper | 0 | 0% | |||||
| … Vermillion snapper | 0 | 0% | |||||
| … Vermillion Snapper | 12 | 4% | |||||
| … Wenchman snapper | 0 | 0% | |||||
| … Wenchman Snapper | 3 | 1% | |||||
| … yelloweye snapper | 0 | 0% | |||||
| … yelloweye Snapper | 1 | 0% | |||||
| … Yelloweye snapper | 0 | 0% | |||||
| … Yelloweye Snapper | 161 | 56% | |||||
| … YellowEye Snapper | 0 | 0% | |||||
| … Yellowtail Snapper | 0 | 0% | |||||
| Trap_no | 287 | ||||||
| … | 0 | 0% | |||||
| … 1 | 2 | 1% | |||||
| … 10 | 44 | 15% | |||||
| … 11 | 2 | 1% | |||||
| … 12 | 18 | 6% | |||||
| … 13 | 11 | 4% | |||||
| … 14 | 17 | 6% | |||||
| … 14/15 | 0 | 0% | |||||
| … 15 | 14 | 5% | |||||
| … 16 | 26 | 9% | |||||
| … 17 | 10 | 3% | |||||
| … 18 | 1 | 0% | |||||
| … 19 | 5 | 2% | |||||
| … 2 | 0 | 0% | |||||
| … 20 | 4 | 1% | |||||
| … 21 | 3 | 1% | |||||
| … 22 | 2 | 1% | |||||
| … 23 | 1 | 0% | |||||
| … 24 | 2 | 1% | |||||
| … 25 | 4 | 1% | |||||
| … 26 | 3 | 1% | |||||
| … 27 | 5 | 2% | |||||
| … 28 | 0 | 0% | |||||
| … 29 | 12 | 4% | |||||
| … 3 | 3 | 1% | |||||
| … 30 | 12 | 4% | |||||
| … 31 | 7 | 2% | |||||
| … 33 | 0 | 0% | |||||
| … 34 | 10 | 3% | |||||
| … 35 | 0 | 0% | |||||
| … 36 | 1 | 0% | |||||
| … 37 | 12 | 4% | |||||
| … 38 | 9 | 3% | |||||
| … 39 | 1 | 0% | |||||
| … 4 | 11 | 4% | |||||
| … 40 | 0 | 0% | |||||
| … 41 | 0 | 0% | |||||
| … 42 | 0 | 0% | |||||
| … 43 | 0 | 0% | |||||
| … 44 | 0 | 0% | |||||
| … 45 | 0 | 0% | |||||
| … 5 | 6 | 2% | |||||
| … 51 | 0 | 0% | |||||
| … 54 | 0 | 0% | |||||
| … 6 | 3 | 1% | |||||
| … 7 | 7 | 2% | |||||
| … 8 | 10 | 3% | |||||
| … 9 | 9 | 3% | |||||
| landed | 287 | ||||||
| … Landed | 287 | 100% | |||||
| catch_contents | 287 | ||||||
| … Partial | 0 | 0% | |||||
| … Whole | 287 | 100% | |||||
| Length | 287 | 28 | 4.4 | 19 | 25 | 30 | 47 |
| study | 287 | ||||||
| … GRIDBOARD | 0 | 0% | |||||
| … ONBOARD | 287 | 100% | |||||
| Comments | 287 | ||||||
| … | 287 | 100% |
area_length_summary <- df_area %>%
group_by(Fishing_area) %>%
summarize(
count = n(),
mean = mean(Length, na.rm = TRUE),
sd = sd(Length, na.rm = TRUE),
median = median(Length, na.rm = TRUE),
IQR = IQR(Length, na.rm = TRUE)
)
area_length_summary
## # A tibble: 9 × 6
## Fishing_area count mean sd median IQR
## <fct> <int> <dbl> <dbl> <dbl> <dbl>
## 1 A3 140 30.2 4.97 29 5
## 2 A3/A4 431 29.5 4.99 28 6
## 3 B2 28 27.3 3.54 27.5 5.25
## 4 B4 63 27.7 3.58 27 4.5
## 5 C4/C5 11 23.4 2.29 23 3
## 6 C5 2 38.5 9.19 38.5 6.5
## 7 C5/D5 406 28.0 5.50 27 5
## 8 D4 153 29.1 5.08 28 7
## 9 D5 287 27.7 4.38 27 5
ls_area <- df_area %>%
filter(Species_sn == "Lutjanus synagris")
sumtable(ls_area)
| Variable | N | Mean | Std. Dev. | Min | Pctl. 25 | Pctl. 75 | Max |
|---|---|---|---|---|---|---|---|
| date | 15 | ||||||
| … 06/05/2024 | 1 | 7% | |||||
| … 15/05/2024 | 6 | 40% | |||||
| … 16/05/2024 | 8 | 53% | |||||
| year | 15 | 2024 | 0 | 2024 | 2024 | 2024 | 2024 |
| month | 15 | ||||||
| … May | 15 | 100% | |||||
| Boat_name | 15 | ||||||
| … Bridgette | 8 | 53% | |||||
| … Highliner | 0 | 0% | |||||
| … Lady Carolina | 6 | 40% | |||||
| … Mr Fish | 1 | 7% | |||||
| … Navigator | 0 | 0% | |||||
| … Second Wind | 0 | 0% | |||||
| … Spirit of Saba | 0 | 0% | |||||
| Trip_ID | 0 | ||||||
| … No | 0 | ||||||
| … Yes | 0 | ||||||
| Fishing_gear | 15 | ||||||
| … LP | 15 | 100% | |||||
| … LP/MP | 0 | 0% | |||||
| … RP | 0 | 0% | |||||
| Fishing_area | 15 | ||||||
| … | 0 | 0% | |||||
| … A3 | 0 | 0% | |||||
| … A3/A4 | 0 | 0% | |||||
| … B2 | 0 | 0% | |||||
| … B4 | 15 | 100% | |||||
| … C4/C5 | 0 | 0% | |||||
| … C5 | 0 | 0% | |||||
| … C5/D5 | 0 | 0% | |||||
| … D4 | 0 | 0% | |||||
| … D5 | 0 | 0% | |||||
| Depth_m_min | 15 | 14 | 2 | 12 | 12 | 15 | 19 |
| Depth_m_max | 15 | 22 | 0.64 | 21 | 22 | 23 | 23 |
| Species_sn | 15 | ||||||
| … Apsilus dentatus | 0 | 0% | |||||
| … Etelis oculatus | 0 | 0% | |||||
| … Lutjanus buccanella | 0 | 0% | |||||
| … Lutjanus jocu | 0 | 0% | |||||
| … Lutjanus synagris | 15 | 100% | |||||
| … Lutjanus vivanus | 0 | 0% | |||||
| … Ocyurus chrysurus | 0 | 0% | |||||
| … Pristipomoides aquilonaris | 0 | 0% | |||||
| … Rhomboplites aurorubens | 0 | 0% | |||||
| Species_cn | 15 | ||||||
| … Black snapper | 0 | 0% | |||||
| … Black Snapper | 0 | 0% | |||||
| … Blackfin snapper | 0 | 0% | |||||
| … Blackfin Snapper | 0 | 0% | |||||
| … Dog Snapper | 0 | 0% | |||||
| … Lane Snapper | 15 | 100% | |||||
| … Queen Snapper | 0 | 0% | |||||
| … Vermillion snapper | 0 | 0% | |||||
| … Vermillion Snapper | 0 | 0% | |||||
| … Wenchman snapper | 0 | 0% | |||||
| … Wenchman Snapper | 0 | 0% | |||||
| … yelloweye snapper | 0 | 0% | |||||
| … yelloweye Snapper | 0 | 0% | |||||
| … Yelloweye snapper | 0 | 0% | |||||
| … Yelloweye Snapper | 0 | 0% | |||||
| … YellowEye Snapper | 0 | 0% | |||||
| … Yellowtail Snapper | 0 | 0% | |||||
| Trap_no | 15 | ||||||
| … | 15 | 100% | |||||
| … 1 | 0 | 0% | |||||
| … 10 | 0 | 0% | |||||
| … 11 | 0 | 0% | |||||
| … 12 | 0 | 0% | |||||
| … 13 | 0 | 0% | |||||
| … 14 | 0 | 0% | |||||
| … 14/15 | 0 | 0% | |||||
| … 15 | 0 | 0% | |||||
| … 16 | 0 | 0% | |||||
| … 17 | 0 | 0% | |||||
| … 18 | 0 | 0% | |||||
| … 19 | 0 | 0% | |||||
| … 2 | 0 | 0% | |||||
| … 20 | 0 | 0% | |||||
| … 21 | 0 | 0% | |||||
| … 22 | 0 | 0% | |||||
| … 23 | 0 | 0% | |||||
| … 24 | 0 | 0% | |||||
| … 25 | 0 | 0% | |||||
| … 26 | 0 | 0% | |||||
| … 27 | 0 | 0% | |||||
| … 28 | 0 | 0% | |||||
| … 29 | 0 | 0% | |||||
| … 3 | 0 | 0% | |||||
| … 30 | 0 | 0% | |||||
| … 31 | 0 | 0% | |||||
| … 33 | 0 | 0% | |||||
| … 34 | 0 | 0% | |||||
| … 35 | 0 | 0% | |||||
| … 36 | 0 | 0% | |||||
| … 37 | 0 | 0% | |||||
| … 38 | 0 | 0% | |||||
| … 39 | 0 | 0% | |||||
| … 4 | 0 | 0% | |||||
| … 40 | 0 | 0% | |||||
| … 41 | 0 | 0% | |||||
| … 42 | 0 | 0% | |||||
| … 43 | 0 | 0% | |||||
| … 44 | 0 | 0% | |||||
| … 45 | 0 | 0% | |||||
| … 5 | 0 | 0% | |||||
| … 51 | 0 | 0% | |||||
| … 54 | 0 | 0% | |||||
| … 6 | 0 | 0% | |||||
| … 7 | 0 | 0% | |||||
| … 8 | 0 | 0% | |||||
| … 9 | 0 | 0% | |||||
| landed | 15 | ||||||
| … Landed | 15 | 100% | |||||
| catch_contents | 15 | ||||||
| … Partial | 15 | 100% | |||||
| … Whole | 0 | 0% | |||||
| Length | 15 | 29 | 3.2 | 25 | 26 | 32 | 33 |
| study | 15 | ||||||
| … GRIDBOARD | 15 | 100% | |||||
| … ONBOARD | 0 | 0% | |||||
| Comments | 15 | ||||||
| … | 15 | 100% |
ys_area <- df_area %>%
filter(Species_sn == "Lutjanus vivanus")
sumtable(ys_area)
| Variable | N | Mean | Std. Dev. | Min | Pctl. 25 | Pctl. 75 | Max |
|---|---|---|---|---|---|---|---|
| year | 628 | 2024 | 0 | 2024 | 2024 | 2024 | 2024 |
| month | 628 | ||||||
| … April | 41 | 7% | |||||
| … June | 384 | 61% | |||||
| … May | 203 | 32% | |||||
| Boat_name | 628 | ||||||
| … Bridgette | 1 | 0% | |||||
| … Highliner | 36 | 6% | |||||
| … Lady Carolina | 2 | 0% | |||||
| … Mr Fish | 0 | 0% | |||||
| … Navigator | 0 | 0% | |||||
| … Second Wind | 589 | 94% | |||||
| … Spirit of Saba | 0 | 0% | |||||
| Trip_ID | 0 | ||||||
| … No | 0 | ||||||
| … Yes | 0 | ||||||
| Fishing_gear | 628 | ||||||
| … LP | 3 | 0% | |||||
| … LP/MP | 0 | 0% | |||||
| … RP | 625 | 100% | |||||
| Fishing_area | 628 | ||||||
| … | 0 | 0% | |||||
| … A3 | 41 | 7% | |||||
| … A3/A4 | 38 | 6% | |||||
| … B2 | 0 | 0% | |||||
| … B4 | 37 | 6% | |||||
| … C4/C5 | 0 | 0% | |||||
| … C5 | 2 | 0% | |||||
| … C5/D5 | 274 | 44% | |||||
| … D4 | 74 | 12% | |||||
| … D5 | 162 | 26% | |||||
| Depth_m_min | 453 | 55 | 15 | 8 | 50 | 50 | 91 |
| Depth_m_max | 453 | 137 | 30 | 14 | 150 | 150 | 150 |
| Species_sn | 628 | ||||||
| … Apsilus dentatus | 0 | 0% | |||||
| … Etelis oculatus | 0 | 0% | |||||
| … Lutjanus buccanella | 0 | 0% | |||||
| … Lutjanus jocu | 0 | 0% | |||||
| … Lutjanus synagris | 0 | 0% | |||||
| … Lutjanus vivanus | 628 | 100% | |||||
| … Ocyurus chrysurus | 0 | 0% | |||||
| … Pristipomoides aquilonaris | 0 | 0% | |||||
| … Rhomboplites aurorubens | 0 | 0% | |||||
| Species_cn | 628 | ||||||
| … Black snapper | 0 | 0% | |||||
| … Black Snapper | 0 | 0% | |||||
| … Blackfin snapper | 0 | 0% | |||||
| … Blackfin Snapper | 0 | 0% | |||||
| … Dog Snapper | 0 | 0% | |||||
| … Lane Snapper | 0 | 0% | |||||
| … Queen Snapper | 0 | 0% | |||||
| … Vermillion snapper | 0 | 0% | |||||
| … Vermillion Snapper | 0 | 0% | |||||
| … Wenchman snapper | 0 | 0% | |||||
| … Wenchman Snapper | 0 | 0% | |||||
| … yelloweye snapper | 1 | 0% | |||||
| … yelloweye Snapper | 1 | 0% | |||||
| … Yelloweye snapper | 72 | 11% | |||||
| … Yelloweye Snapper | 552 | 88% | |||||
| … YellowEye Snapper | 2 | 0% | |||||
| … Yellowtail Snapper | 0 | 0% | |||||
| Trap_no | 628 | ||||||
| … | 93 | 15% | |||||
| … 1 | 24 | 4% | |||||
| … 10 | 49 | 8% | |||||
| … 11 | 10 | 2% | |||||
| … 12 | 15 | 2% | |||||
| … 13 | 14 | 2% | |||||
| … 14 | 29 | 5% | |||||
| … 14/15 | 0 | 0% | |||||
| … 15 | 22 | 4% | |||||
| … 16 | 44 | 7% | |||||
| … 17 | 45 | 7% | |||||
| … 18 | 13 | 2% | |||||
| … 19 | 15 | 2% | |||||
| … 2 | 11 | 2% | |||||
| … 20 | 14 | 2% | |||||
| … 21 | 5 | 1% | |||||
| … 22 | 3 | 0% | |||||
| … 23 | 6 | 1% | |||||
| … 24 | 10 | 2% | |||||
| … 25 | 8 | 1% | |||||
| … 26 | 4 | 1% | |||||
| … 27 | 4 | 1% | |||||
| … 28 | 0 | 0% | |||||
| … 29 | 4 | 1% | |||||
| … 3 | 30 | 5% | |||||
| … 30 | 9 | 1% | |||||
| … 31 | 17 | 3% | |||||
| … 33 | 0 | 0% | |||||
| … 34 | 8 | 1% | |||||
| … 35 | 2 | 0% | |||||
| … 36 | 3 | 0% | |||||
| … 37 | 1 | 0% | |||||
| … 38 | 0 | 0% | |||||
| … 39 | 0 | 0% | |||||
| … 4 | 39 | 6% | |||||
| … 40 | 1 | 0% | |||||
| … 41 | 3 | 0% | |||||
| … 42 | 0 | 0% | |||||
| … 43 | 0 | 0% | |||||
| … 44 | 0 | 0% | |||||
| … 45 | 0 | 0% | |||||
| … 5 | 15 | 2% | |||||
| … 51 | 0 | 0% | |||||
| … 54 | 0 | 0% | |||||
| … 6 | 9 | 1% | |||||
| … 7 | 12 | 2% | |||||
| … 8 | 12 | 2% | |||||
| … 9 | 25 | 4% | |||||
| landed | 628 | ||||||
| … Landed | 628 | 100% | |||||
| catch_contents | 628 | ||||||
| … Partial | 93 | 15% | |||||
| … Whole | 535 | 85% | |||||
| Length | 628 | 29 | 5.5 | 12 | 25 | 31 | 70 |
| study | 628 | ||||||
| … GRIDBOARD | 93 | 15% | |||||
| … ONBOARD | 535 | 85% | |||||
| Comments | 628 | ||||||
| … | 627 | 100% | |||||
| … All mixed fish measured, no lobsters measured | 1 | 0% |
# Count the number of Length measurements per Fishing_area
area_counts <- df_area %>%
group_by(Fishing_area) %>%
summarize(count = n()) %>%
filter(count > 5)
# Filter the original data to include only Fishing_area values with more than five measurements
filtered_area_df <- df_area %>%
filter(Fishing_area %in% area_counts$Fishing_area)
filtered_area_length_summary <- filtered_area_df %>%
group_by(Fishing_area) %>%
summarize(
count = n(),
mean = mean(Length, na.rm = TRUE),
sd = sd(Length, na.rm = TRUE),
median = median(Length, na.rm = TRUE),
IQR = IQR(Length, na.rm = TRUE)
)
filtered_area_length_summary
## # A tibble: 8 × 6
## Fishing_area count mean sd median IQR
## <fct> <int> <dbl> <dbl> <dbl> <dbl>
## 1 A3 140 30.2 4.97 29 5
## 2 A3/A4 431 29.5 4.99 28 6
## 3 B2 28 27.3 3.54 27.5 5.25
## 4 B4 63 27.7 3.58 27 4.5
## 5 C4/C5 11 23.4 2.29 23 3
## 6 C5/D5 406 28.0 5.50 27 5
## 7 D4 153 29.1 5.08 28 7
## 8 D5 287 27.7 4.38 27 5
#Overall Area-length correlation ## Kruskal-wallis test length-area
KWtest_length_area <- kruskal.test(Length ~ Fishing_area, data = filtered_area_df)
KWtest_length_area
##
## Kruskal-Wallis rank sum test
##
## data: Length by Fishing_area
## Kruskal-Wallis chi-squared = 73.844, df = 7, p-value = 2.461e-13
pairwilcox_length_area <- pairwise.wilcox.test(filtered_area_df$Length,
filtered_area_df$Fishing_area,
p.adjust.method = "bonferroni",
exact = FALSE,
simulate.p.value = TRUE,
B = 10000) # B is the number of simulations
pairwilcox_length_area
##
## Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: filtered_area_df$Length and filtered_area_df$Fishing_area
##
## A3 A3/A4 B2 B4 C4/C5 C5/D5 D4
## A3/A4 1.00000 - - - - - -
## B2 0.30652 1.00000 - - - - -
## B4 0.02415 0.47487 1.00000 - - - -
## C4/C5 2.8e-05 0.00023 0.08079 0.00485 - - -
## C5/D5 2.3e-06 1.3e-05 1.00000 1.00000 0.00818 - -
## D4 1.00000 1.00000 1.00000 1.00000 0.00083 0.14953 -
## D5 2.2e-06 4.8e-05 1.00000 1.00000 0.00616 1.00000 0.12847
##
## P value adjustment method: bonferroni
A3 - C4/C5 A3 - C5/D5 A3 - D5 A3/A4 - C4/C5 A3/A4 - C5/D5 A3/A4 - D5 B4 - C4/C5 C4/C5 - C5/D5 C4/C5 - D4/D5
# Extract p-values and generate significance letters
p_values <- pairwilcox_length_area$p.value
# Create the initial data frame
p_values <- data.frame(
A3 = c(NA, 1.00000, 0.31322, 0.06237, 2.8e-05, 3.0e-06, 1.00000, 3.4e-06),
A3_A4 = c(1.00000, NA, 1.00000, 0.92696, 0.00022, 1.4e-05, 1.00000, 6.2e-05),
B2 = c(0.31322, 1.00000, NA, 1.00000, 0.06215, 1.00000, 1.00000, 1.00000),
B4 = c(0.06237, 0.92696, 1.00000, NA, 0.00357, 1.00000, 1.00000, 1.00000),
C4_C5 = c(2.8e-05, 0.00022, 0.06215, 0.00357, NA, 0.00802, 0.00073, 0.00583),
C5_D5 = c(3.0e-06, 1.4e-05, 1.00000, 1.00000, 0.00802, NA, 0.07650, 1.00000),
D4 = c(1.00000, 1.00000, 1.00000, 1.00000, 0.00073, 0.07650, NA, 0.07062),
D5 = c(3.4e-06, 6.2e-05, 1.00000, 1.00000, 0.00583, 1.00000, 0.07062, NA)
)
# Set row names
rownames(p_values) <- c("A3", "A3_A4", "B2", "B4", "C4_C5", "C5_D5", "D4", "D5")
# Convert to matrix
matrix_p_values <- as.matrix(p_values)
# Fill the lower triangle to make it symmetric
matrix_p_values[lower.tri(matrix_p_values)] <- t(matrix_p_values)[lower.tri(matrix_p_values)]
# Print the symmetric matrix
print(matrix_p_values)
## A3 A3_A4 B2 B4 C4_C5 C5_D5 D4 D5
## A3 NA 1.000000 0.31322 0.06237 0.000028 0.000003 1.00000 0.0000034
## A3_A4 1.0000000 NA 1.00000 0.92696 0.000220 0.000014 1.00000 0.0000620
## B2 0.3132200 1.000000 NA 1.00000 0.062150 1.000000 1.00000 1.0000000
## B4 0.0623700 0.926960 1.00000 NA 0.003570 1.000000 1.00000 1.0000000
## C4_C5 0.0000280 0.000220 0.06215 0.00357 NA 0.008020 0.00073 0.0058300
## C5_D5 0.0000030 0.000014 1.00000 1.00000 0.008020 NA 0.07650 1.0000000
## D4 1.0000000 1.000000 1.00000 1.00000 0.000730 0.076500 NA 0.0706200
## D5 0.0000034 0.000062 1.00000 1.00000 0.005830 1.000000 0.07062 NA
# Generate significance letters
signif_letters <- multcompLetters(matrix_p_values, threshold = 0.05)$Letters
print(signif_letters)
## A3 A3_A4 B2 B4 C4_C5 C5_D5 D4 D5
## "a" "a" "abc" "ab" "c" "b" "ab" "b"
Fishing_area_only <- c("A3", "A3/A4", "B2", "B4", "C4/C5", "C5/D5", "D4", "D5")
signif_letters_only <- c("a", "a", "abc", "ab", "c", "b","ab", "b")
# Create a data frame with the significance letters
signif_df <- data.frame(x = Fishing_area_only, y = signif_letters)
signif_df
## x y
## A3 A3 a
## A3_A4 A3/A4 a
## B2 B2 abc
## B4 B4 ab
## C4_C5 C4/C5 c
## C5_D5 C5/D5 b
## D4 D4 ab
## D5 D5 b
# Make x labels
fishing_area_x_labels <- c("A3 (n=140)", "A3/A4 (n=432)", "B2 (n=29)", "B4 (n=66)", "C4/C5 (n=11)", "C5/D5 (n=407)", "D4 (n=156)"," D5 (n=289)")
# Make a plot
plot_area_lengths <- ggplot(filtered_area_df,
aes(x = Fishing_area,
y = Length)) +
geom_boxplot(aes(fill = Fishing_area, color = Fishing_area)) +
theme_classic() +
coord_flip() +
scale_fill_viridis_d(option = "C",
guide = "none",
begin = 0.10,
end = 0.90,
alpha = 0.5,
direction = -1) +
scale_color_viridis_d(option = "C",
guide = "none",
begin = 0.10,
end = 0.90,
direction = -1) +
geom_text(data = signif_df, aes(x = x, y = max(filtered_area_df$Length) + 5, label = signif_letters_only),
vjust = 0) +
labs(x = "Saba Bank Quadrant",
y = "Fork length in cm",
title = str_wrap(c("Snapper lengths in different Saba Bank quadrants"), width = 50)) +
ylim(0,75) +
scale_x_discrete(limits = rev, labels = rev(fishing_area_x_labels))
plot_area_lengths
ggsave("area_lengths_KW.png", plot = plot_area_lengths, width = 7.2, height = 4, dpi = 400)
#LP Area-length correlation
#filter by area
df_area_lp <- df_area%>%
filter(Fishing_gear == "LP")
summary(df_area_lp)
## date year month Boat_name
## Length:54 Min. :2024 Length:54 Bridgette :11
## Class :character 1st Qu.:2024 Class :character Highliner : 0
## Mode :character Median :2024 Mode :character Lady Carolina :14
## Mean :2024 Mr Fish : 1
## 3rd Qu.:2024 Navigator :28
## Max. :2024 Second Wind : 0
## Spirit of Saba: 0
## Trip_ID Fishing_gear Fishing_area Depth_m_min Depth_m_max
## Mode:logical LP :54 B2 :28 Min. : 8.00 Min. :14.00
## NA's:54 LP/MP: 0 B4 :24 1st Qu.:12.00 1st Qu.:20.00
## RP : 0 C5 : 2 Median :20.00 Median :20.00
## : 0 Mean :16.59 Mean :20.52
## A3 : 0 3rd Qu.:20.00 3rd Qu.:22.00
## A3/A4 : 0 Max. :20.00 Max. :23.00
## (Other): 0
## Species_sn Species_cn Trap_no landed
## Lutjanus buccanella :24 Blackfin Snapper :24 :54 Landed:54
## Lutjanus synagris :15 Lane Snapper :15 1 : 0
## Rhomboplites aurorubens:12 Vermillion Snapper:12 10 : 0
## Lutjanus vivanus : 3 Yelloweye Snapper : 3 11 : 0
## Apsilus dentatus : 0 Black snapper : 0 12 : 0
## Etelis oculatus : 0 Black Snapper : 0 13 : 0
## (Other) : 0 (Other) : 0 (Other): 0
## catch_contents Length study Comments
## Partial:54 Min. :21.00 GRIDBOARD:54 Length:54
## Whole : 0 1st Qu.:25.25 ONBOARD : 0 Class :character
## Median :28.00 Mode :character
## Mean :28.26
## 3rd Qu.:30.75
## Max. :45.00
##
KWtest_length_area_lp <- kruskal.test(Length ~ Fishing_area, data = df_area_lp)
KWtest_length_area_lp
##
## Kruskal-Wallis rank sum test
##
## data: Length by Fishing_area
## Kruskal-Wallis chi-squared = 4.9772, df = 2, p-value = 0.08302
pairwilcox_length_area_lp <- pairwise.wilcox.test(df_area_lp$Length,
df_area_lp$Fishing_area,
p.adjust.method = "bonferroni",
exact = FALSE,
simulate.p.value = TRUE,
B = 10000) # B is the number of simulations
pairwilcox_length_area_lp
##
## Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: df_area_lp$Length and df_area_lp$Fishing_area
##
## B2 B4
## B4 1.00 -
## C5 0.11 0.24
##
## P value adjustment method: bonferroni
A3 - C4/C5 A3 - C5/D5 A3 - D5 A3/A4 - C4/C5 A3/A4 - C5/D5 A3/A4 - D5 B4 - C4/C5 C4/C5 - C5/D5 C4/C5 - D4/D5
# Extract p-values and generate significance letters
p_values <- pairwilcox_length_area$p.value
# Create the initial data frame
p_values <- data.frame(
A3 = c(NA, 1.00000, 0.31322, 0.06237, 2.8e-05, 3.0e-06, 1.00000, 3.4e-06),
A3_A4 = c(1.00000, NA, 1.00000, 0.92696, 0.00022, 1.4e-05, 1.00000, 6.2e-05),
B2 = c(0.31322, 1.00000, NA, 1.00000, 0.06215, 1.00000, 1.00000, 1.00000),
B4 = c(0.06237, 0.92696, 1.00000, NA, 0.00357, 1.00000, 1.00000, 1.00000),
C4_C5 = c(2.8e-05, 0.00022, 0.06215, 0.00357, NA, 0.00802, 0.00073, 0.00583),
C5_D5 = c(3.0e-06, 1.4e-05, 1.00000, 1.00000, 0.00802, NA, 0.07650, 1.00000),
D4 = c(1.00000, 1.00000, 1.00000, 1.00000, 0.00073, 0.07650, NA, 0.07062),
D5 = c(3.4e-06, 6.2e-05, 1.00000, 1.00000, 0.00583, 1.00000, 0.07062, NA)
)
# Set row names
rownames(p_values) <- c("A3", "A3_A4", "B2", "B4", "C4_C5", "C5_D5", "D4", "D5")
# Convert to matrix
matrix_p_values <- as.matrix(p_values)
# Fill the lower triangle to make it symmetric
matrix_p_values[lower.tri(matrix_p_values)] <- t(matrix_p_values)[lower.tri(matrix_p_values)]
# Print the symmetric matrix
print(matrix_p_values)
## A3 A3_A4 B2 B4 C4_C5 C5_D5 D4 D5
## A3 NA 1.000000 0.31322 0.06237 0.000028 0.000003 1.00000 0.0000034
## A3_A4 1.0000000 NA 1.00000 0.92696 0.000220 0.000014 1.00000 0.0000620
## B2 0.3132200 1.000000 NA 1.00000 0.062150 1.000000 1.00000 1.0000000
## B4 0.0623700 0.926960 1.00000 NA 0.003570 1.000000 1.00000 1.0000000
## C4_C5 0.0000280 0.000220 0.06215 0.00357 NA 0.008020 0.00073 0.0058300
## C5_D5 0.0000030 0.000014 1.00000 1.00000 0.008020 NA 0.07650 1.0000000
## D4 1.0000000 1.000000 1.00000 1.00000 0.000730 0.076500 NA 0.0706200
## D5 0.0000034 0.000062 1.00000 1.00000 0.005830 1.000000 0.07062 NA
# Generate significance letters
signif_letters <- multcompLetters(matrix_p_values, threshold = 0.05)$Letters
print(signif_letters)
## A3 A3_A4 B2 B4 C4_C5 C5_D5 D4 D5
## "a" "a" "abc" "ab" "c" "b" "ab" "b"
Fishing_area_only <- c("A3", "A3/A4", "B2", "B4", "C4/C5", "C5/D5", "D4", "D5")
signif_letters_only <- c("a", "a", "abc", "ab", "c", "b","ab", "b")
# Create a data frame with the significance letters
signif_df <- data.frame(x = Fishing_area_only, y = signif_letters)
signif_df
## x y
## A3 A3 a
## A3_A4 A3/A4 a
## B2 B2 abc
## B4 B4 ab
## C4_C5 C4/C5 c
## C5_D5 C5/D5 b
## D4 D4 ab
## D5 D5 b
# Make x labels
fishing_area_x_labels <- c("A3 (n=140)", "A3/A4 (n=432)", "B2 (n=29)", "B4 (n=66)", "C4/C5 (n=11)", "C5/D5 (n=407)", "D4 (n=156)"," D5 (n=289)")
# Make a plot
plot_area_lengths <- ggplot(filtered_area_df,
aes(x = Fishing_area,
y = Length)) +
geom_boxplot(aes(fill = Fishing_area, color = Fishing_area)) +
theme_classic() +
coord_flip() +
scale_fill_viridis_d(option = "C",
guide = "none",
begin = 0.10,
end = 0.90,
alpha = 0.5,
direction = -1) +
scale_color_viridis_d(option = "C",
guide = "none",
begin = 0.10,
end = 0.90,
direction = -1) +
geom_text(data = signif_df, aes(x = x, y = max(filtered_area_df$Length) + 5, label = signif_letters_only),
vjust = 0) +
labs(x = "Saba Bank Quadrant",
y = "Fork length in cm",
title = str_wrap(c("Snapper lengths in different Saba Bank quadrants"), width = 50)) +
ylim(0,75) +
scale_x_discrete(limits = rev, labels = rev(fishing_area_x_labels))
plot_area_lengths
### Save plot
ggsave("area_lengths_KW.png", plot = plot_area_lengths, width = 7.2, height = 4, dpi = 400)
KWtest_length_mindepth <- kruskal.test(Length ~ Depth_m_min, data = df_allsnappers)
KWtest_length_mindepth
##
## Kruskal-Wallis rank sum test
##
## data: Length by Depth_m_min
## Kruskal-Wallis chi-squared = 56.629, df = 11, p-value = 3.895e-08
pairwilcox_length_mindepth <- pairwise.wilcox.test(df_allsnappers$Length,
df_allsnappers$Depth_m_min,
p.adjust.method = "bonferroni",
exact = FALSE,
simulate.p.value = TRUE,
B = 10000) # B is the number of simulations
pairwilcox_length_mindepth
##
## Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: df_allsnappers$Length and df_allsnappers$Depth_m_min
##
## 8 11 12 14 15 19 20 21 40
## 11 1.00000 - - - - - - - -
## 12 1.00000 1.00000 - - - - - - -
## 14 1.00000 1.00000 1.00000 - - - - - -
## 15 1.00000 1.00000 1.00000 1.00000 - - - - -
## 19 1.00000 1.00000 1.00000 1.00000 1.00000 - - - -
## 20 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 - - -
## 21 1.00000 1.00000 1.00000 1.00000 0.03594 1.00000 1.00000 - -
## 40 1.00000 1.00000 1.00000 1.00000 0.79096 1.00000 1.00000 0.78641 -
## 50 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.00230 1.00000
## 82 1.00000 1.00000 1.00000 1.00000 0.00546 1.00000 0.73831 1.00000 0.06534
## 91 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.25114 1.00000
## 50 82
## 11 - -
## 12 - -
## 14 - -
## 15 - -
## 19 - -
## 20 - -
## 21 - -
## 40 - -
## 50 - -
## 82 0.00024 -
## 91 1.00000 0.03446
##
## P value adjustment method: bonferroni
# Extract p-values and generate significance letters
p_values_lengthgear <- pairwilcox_length_mindepth$p.value
p_values_lengthgear
## 8 11 12 14 15 19 20 21 40 50
## 11 1 NA NA NA NA NA NA NA NA NA
## 12 1 1 NA NA NA NA NA NA NA NA
## 14 1 1 1 NA NA NA NA NA NA NA
## 15 1 1 1 1 NA NA NA NA NA NA
## 19 1 1 1 1 1.000000000 NA NA NA NA NA
## 20 1 1 1 1 1.000000000 1 NA NA NA NA
## 21 1 1 1 1 0.035943817 1 1.0000000 NA NA NA
## 40 1 1 1 1 0.790963850 1 1.0000000 0.786408598 NA NA
## 50 1 1 1 1 1.000000000 1 1.0000000 0.002304588 1.0000000 NA
## 82 1 1 1 1 0.005458853 1 0.7383129 1.000000000 0.0653351 0.0002373001
## 91 1 1 1 1 1.000000000 1 1.0000000 0.251138698 1.0000000 1.0000000000
## 82
## 11 NA
## 12 NA
## 14 NA
## 15 NA
## 19 NA
## 20 NA
## 21 NA
## 40 NA
## 50 NA
## 82 NA
## 91 0.03445688
# Create the initial data frame
p_values_lengthgear <- data.frame(
LP = c(NA, 0.0001805328, 1.0000000000),
LPMP = c(0.0001805328, NA, 1.0000000000),
RP = c(1.0000000000, 0.0001292177, NA))
# Set row names
rownames(p_values_lengthgear) <- c("LP", "LPMP", "RP")
# Convert to matrix
matrix_p_values_lengthgear <- as.matrix(p_values_lengthgear)
# Fill the lower triangle to make it symmetric
matrix_p_values_lengthgear[lower.tri(matrix_p_values_lengthgear)] <- t(matrix_p_values_lengthgear)[lower.tri(matrix_p_values_lengthgear)]
# Print the symmetric matrix
print(matrix_p_values_lengthgear)
## LP LPMP RP
## LP NA 0.0001805328 1.0000000000
## LPMP 0.0001805328 NA 0.0001292177
## RP 1.0000000000 0.0001292177 NA
# Generate significance letters
signif_letters_lengthgear <- multcompLetters(matrix_p_values_lengthgear, threshold = 0.05)$Letters
print(signif_letters_lengthgear)
## LP LPMP RP
## "a" "b" "a"
Fishing_gear_only <- c("LP", "LP/MP", "RP")
signif_letters_only_lengthgear <- c("a", "b", "a")
# Create a data frame with the significance letters
signif_df_lengthgear <- data.frame(x = Fishing_gear_only, y = signif_letters_only_lengthgear)
signif_df_lengthgear
## x y
## 1 LP a
## 2 LP/MP b
## 3 RP a
# Make x labels
fishing_gear_x_labels <- str_wrap(c("Lobster (n=63)", "Lobster and mixed fish (n=11)", "Redfish (n=1603)"), width = 16)
# Make a plot
plot_length_gear <- ggplot(df_allsnappers,
aes(x = Fishing_gear,
y = Length)) +
geom_boxplot(aes(fill = Fishing_gear, color = Fishing_gear)) +
theme_classic() +
coord_flip() +
scale_fill_viridis_d(option = "C",
guide = "none",
begin = 0.10,
end = 0.90,
alpha = 0.5,
direction = -1) +
scale_color_viridis_d(option = "C",
guide = "none",
begin = 0.10,
end = 0.90,
direction = -1) +
geom_text(data = signif_df_lengthgear, aes(x = x, y = max(df_allsnappers$Length) + 5, label = signif_letters_lengthgear),
vjust = 0) +
labs(x = "Fishing gear",
y = "Fork length in cm",
title = str_wrap(c("Snapper lengths from different fishing methods"), width = 30)) +
ylim(0,75) +
scale_x_discrete(limits = rev, labels = rev(fishing_gear_x_labels))
plot_length_gear
ggsave("length_gear_KW.png", plot = plot_length_gear, width = 4, height = 4, dpi = 400)
# Recode Depth_m_min into a factor variable with specified ranges
df_allsnappers$Depth_m_min_factor <- cut(df_allsnappers$Depth_m_min,
breaks = c(-Inf, 19, 39, 59, 79, Inf),
labels = c("<20", "20-39", "40-59", "60-79", ">80"),
right = TRUE)
# Check the result
summary(df_allsnappers)
## date year month Boat_name
## Length:1677 Min. :2024 Length:1677 Bridgette : 13
## Class :character 1st Qu.:2024 Class :character Highliner : 50
## Mode :character Median :2024 Mode :character Lady Carolina : 17
## Mean :2024 Mr Fish : 1
## 3rd Qu.:2024 Navigator : 29
## Max. :2024 Second Wind :1425
## Spirit of Saba: 142
## Trip_ID Fishing_gear Fishing_area Depth_m_min Depth_m_max
## Mode:logical LP : 63 A3/A4 :432 Min. : 8.00 Min. : 12.0
## NA's:1677 LP/MP: 11 C5/D5 :407 1st Qu.:40.00 1st Qu.: 60.0
## RP :1603 D5 :289 Median :50.00 Median :150.0
## D4 :156 Mean :47.39 Mean :107.3
## :143 3rd Qu.:50.00 3rd Qu.:150.0
## A3 :140 Max. :91.00 Max. :150.0
## (Other):110 NA's :566 NA's :566
## Species_sn Species_cn Trap_no
## Lutjanus buccanella :802 Blackfin Snapper :738 :349
## Lutjanus vivanus :712 Yelloweye Snapper :636 10 :109
## Rhomboplites aurorubens :108 Vermillion Snapper: 94 14 : 73
## Lutjanus synagris : 26 Yelloweye snapper : 72 17 : 65
## Pristipomoides aquilonaris: 9 Blackfin snapper : 64 12 : 61
## Etelis oculatus : 6 Lane Snapper : 26 4 : 61
## (Other) : 14 (Other) : 47 (Other):959
## landed catch_contents Length study
## Landed:1677 Partial: 349 Min. :12.00 GRIDBOARD: 349
## Whole :1328 1st Qu.:25.00 ONBOARD :1328
## Median :28.00
## Mean :28.68
## 3rd Qu.:31.00
## Max. :70.00
##
## Comments Depth_m_min_factor
## Length:1677 <20 : 42
## Class :character 20-39:218
## Mode :character 40-59:672
## 60-79: 0
## >80 :179
## NA's :566
##
KWtest_length_mindepth <- kruskal.test(Length ~ Depth_m_min_factor, data = df_allsnappers)
KWtest_length_mindepth
##
## Kruskal-Wallis rank sum test
##
## data: Length by Depth_m_min_factor
## Kruskal-Wallis chi-squared = 21.901, df = 3, p-value = 6.839e-05
pairwilcox_length_mindepth <- pairwise.wilcox.test(df_allsnappers$Length,
df_allsnappers$Depth_m_min_factor,
p.adjust.method = "bonferroni",
exact = FALSE,
simulate.p.value = TRUE,
B = 10000) # B is the number of simulations
pairwilcox_length_mindepth
##
## Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: df_allsnappers$Length and df_allsnappers$Depth_m_min_factor
##
## <20 20-39 40-59
## 20-39 0.4358 - -
## 40-59 1.0000 0.0018 -
## >80 0.4677 1.0000 0.0018
##
## P value adjustment method: bonferroni
# Extract p-values and generate significance letters
p_values_lengthmindepth <- pairwilcox_length_mindepth$p.value
p_values_lengthmindepth
## <20 20-39 40-59
## 20-39 0.4358439 NA NA
## 40-59 1.0000000 0.001785524 NA
## >80 0.4676624 1.000000000 0.001773863
# Create the initial data frame
p_values_lengthmindepth <- data.frame(
t20 = c(NA, 0.4358439, 1.0000000, 0.4676624),
f20t39 = c(0.4358439, NA, 0.001785524, 1.000000000),
f40t59 = c(1.0000000, 0.001785524, NA, 0.001773863),
f80 = c(0.4676624, 1.000000000, 0.001773863, NA))
# Set row names
rownames(p_values_lengthmindepth) <- c("<20", "20-39", "40-59", ">80")
# Convert to matrix
matrix_p_values_lengthmindepth <- as.matrix(p_values_lengthmindepth)
# Fill the lower triangle to make it symmetric
matrix_p_values_lengthmindepth[lower.tri(matrix_p_values_lengthmindepth)] <- t(matrix_p_values_lengthmindepth)[lower.tri(matrix_p_values_lengthmindepth)]
# Print the symmetric matrix
print(matrix_p_values_lengthmindepth)
## t20 f20t39 f40t59 f80
## <20 NA 0.435843900 1.000000000 0.467662400
## 20-39 0.4358439 NA 0.001785524 1.000000000
## 40-59 1.0000000 0.001785524 NA 0.001773863
## >80 0.4676624 1.000000000 0.001773863 NA
# Generate significance letters
signif_letters_lengthmindepth <- multcompLetters(matrix_p_values_lengthmindepth, threshold = 0.05)$Letters
print(signif_letters_lengthmindepth)
## <20 20-39 40-59 >80
## "ab" "a" "b" "a"
Fishing_mindepth_only <- c("<20", "20-39", "40-59", ">80")
signif_letters_only_lengthmindepth <- c("ab", "a", "b", "a")
# Create a data frame with the significance letters
signif_df_lengthmindepth <- data.frame(x = Fishing_mindepth_only, y = signif_letters_only_lengthmindepth)
signif_df_lengthmindepth
## x y
## 1 <20 ab
## 2 20-39 a
## 3 40-59 b
## 4 >80 a
# Make x labels
mindepth_x_labels <- str_wrap(c("<20 (n=42)", "20-39 (n=218)", "40-59 (n=672)", ">80 (n=179)"), width = 16)
# remove NA values
df_mindepth <- df_allsnappers %>% drop_na(Depth_m_min_factor)
# Make a plot
plot_length_mindepth <- ggplot(df_mindepth,
aes(x = Depth_m_min_factor,
y = Length)) +
geom_boxplot(aes(fill = Depth_m_min_factor, color = Depth_m_min_factor)) +
theme_classic() +
coord_flip() +
scale_fill_viridis_d(option = "C",
guide = "none",
begin = 0.10,
end = 0.90,
alpha = 0.5,
direction = -1) +
scale_color_viridis_d(option = "C",
guide = "none",
begin = 0.10,
end = 0.90,
direction = -1) +
geom_text(data = signif_df_lengthmindepth, aes(x = x, y = max(df_allsnappers$Length) + 5, label = signif_letters_lengthmindepth),
vjust = 0) +
labs(x = "Minimum depth in m",
y = "Fork length in cm",
title = str_wrap(c("Snapper lengths at different minimum fishing depths"), width = 30)) +
ylim(0,75) +
scale_x_discrete(limits = rev, labels = rev(mindepth_x_labels))
plot_length_mindepth
ggsave("length_mindepth_KW.png", plot = plot_length_mindepth, width = 4, height = 4, dpi = 400)
# Recode Depth_m_max into a factor variable with specified ranges
df_allsnappers$Depth_m_max_factor <- cut(df_allsnappers$Depth_m_max,
breaks = c(-Inf, 19, 39, 59, 79, 99, 119, 139, Inf),
labels = c("<20", "20-39", "40-59", "60-79", "80-99", "100-119", "120-139", ">140"),
right = TRUE)
# Check the result
summary(df_allsnappers$Depth_m_max_factor)
## <20 20-39 40-59 60-79 80-99 100-119 120-139 >140 NA's
## 5 255 0 110 39 0 140 562 566
KWtest_length_maxdepth <- kruskal.test(Length ~ Depth_m_max_factor, data = df_allsnappers)
KWtest_length_maxdepth
##
## Kruskal-Wallis rank sum test
##
## data: Length by Depth_m_max_factor
## Kruskal-Wallis chi-squared = 35.106, df = 5, p-value = 1.433e-06
pairwilcox_length_maxdepth <- pairwise.wilcox.test(df_allsnappers$Length,
df_allsnappers$Depth_m_max_factor,
p.adjust.method = "bonferroni",
exact = FALSE,
simulate.p.value = TRUE,
B = 10000) # B is the number of simulations
pairwilcox_length_maxdepth
##
## Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: df_allsnappers$Length and df_allsnappers$Depth_m_max_factor
##
## <20 20-39 60-79 80-99 120-139
## 20-39 0.4654 - - - -
## 60-79 0.0521 1.0000 - - -
## 80-99 0.0714 0.4220 1.0000 - -
## 120-139 0.4440 0.8553 0.0148 0.0078 -
## >140 0.0969 0.0527 1.0000 1.0000 5.4e-05
##
## P value adjustment method: bonferroni
# Extract p-values and generate significance letters
p_values_lengthmaxdepth <- pairwilcox_length_maxdepth$p.value
p_values_lengthmaxdepth
## <20 20-39 60-79 80-99 120-139
## 20-39 0.46543322 NA NA NA NA
## 60-79 0.05214866 1.00000000 NA NA NA
## 80-99 0.07144477 0.42198508 1.00000000 NA NA
## 120-139 0.44402894 0.85531674 0.01484889 0.007831109 NA
## >140 0.09691018 0.05266864 1.00000000 1.000000000 5.393184e-05
# Create the initial data frame
p_values_lengthmaxdepth <- data.frame(
t20 = c(NA, 0.46543322, 0.05214866, 0.07144477, 0.44402894, 0.09691018),
f20t39 = c(0.46543322, NA, 1.00000000, 0.42198508, 0.85531674, 0.05266864),
f60t79 = c(0.05214866, 1.00000000, NA, 1.00000000, 0.01484889, 1.00000000),
f80t99 = c(0.07144477, 0.42198508, 1.00000000, NA, 0.007831109, 1.000000000),
f120t139 = c(0.44402894, 0.85531674, 0.01484889, 0.007831109, NA, 5.393184e-05),
f140 = c(0.09691018, 0.05266864, 1.00000000, 1.000000000, 5.393184e-05, NA))
# Set row names
rownames(p_values_lengthmaxdepth) <- c("<20", "20-39", "60-79", "80-99", "120-139", ">140")
# Convert to matrix
matrix_p_values_lengthmaxdepth <- as.matrix(p_values_lengthmaxdepth)
# Fill the lower triangle to make it symmetric
matrix_p_values_lengthmaxdepth[lower.tri(matrix_p_values_lengthmaxdepth)] <- t(matrix_p_values_lengthmaxdepth)[lower.tri(matrix_p_values_lengthmaxdepth)]
# Print the symmetric matrix
print(matrix_p_values_lengthmaxdepth)
## t20 f20t39 f60t79 f80t99 f120t139 f140
## <20 NA 0.46543322 0.05214866 0.071444770 4.440289e-01 9.691018e-02
## 20-39 0.46543322 NA 1.00000000 0.421985080 8.553167e-01 5.266864e-02
## 60-79 0.05214866 1.00000000 NA 1.000000000 1.484889e-02 1.000000e+00
## 80-99 0.07144477 0.42198508 1.00000000 NA 7.831109e-03 1.000000e+00
## 120-139 0.44402894 0.85531674 0.01484889 0.007831109 NA 5.393184e-05
## >140 0.09691018 0.05266864 1.00000000 1.000000000 5.393184e-05 NA
# Generate significance letters
signif_letters_lengthmaxdepth <- multcompLetters(matrix_p_values_lengthmaxdepth, threshold = 0.05)$Letters
print(signif_letters_lengthmaxdepth)
## <20 20-39 60-79 80-99 120-139 >140
## "ab" "ab" "a" "a" "b" "a"
Fishing_maxdepth_only <- c("<20", "20-39", "60-79", "80-99", "120-139", ">140")
signif_letters_only_lengthmaxdepth <- c("ab", "ab", "a", "a", "b", "a")
# Create a data frame with the significance letters
signif_df_lengthmaxdepth <- data.frame(x = Fishing_maxdepth_only, y = signif_letters_only_lengthmaxdepth)
signif_df_lengthmaxdepth
## x y
## 1 <20 ab
## 2 20-39 ab
## 3 60-79 a
## 4 80-99 a
## 5 120-139 b
## 6 >140 a
# Make x labels
max_depth_x_labels <- str_wrap(c("<20 (n=5)", "20-39 (n=255)", "60-79 (n=110)", "80-99 (n=39)", "120-139 (n=140)", ">140 (n=562)"), width = 16)
# remove NA values
df_maxdepth <- df_allsnappers %>% drop_na(Depth_m_max_factor)
plot_length_maxdepth <- ggplot(df_maxdepth,
aes(x = Depth_m_max_factor,
y = Length)) +
geom_boxplot(aes(fill = Depth_m_max_factor, color = Depth_m_max_factor)) +
theme_classic() +
coord_flip() +
scale_fill_viridis_d(option = "C",
guide = "none",
begin = 0.10,
end = 0.90,
alpha = 0.5,
direction = -1) +
scale_color_viridis_d(option = "C",
guide = "none",
begin = 0.10,
end = 0.90,
direction = -1) +
geom_text(data = signif_df_lengthmaxdepth, aes(x = x, y = max(df_allsnappers$Length) + 5, label = signif_letters_lengthmaxdepth),
vjust = 0) +
labs(x = "Maximum depth in m",
y = "Fork length in cm",
title = str_wrap(c("Snapper lengths at different maximum fishing depths"), width = 30)) +
ylim(0,75) +
scale_x_discrete(limits = rev, labels = rev(max_depth_x_labels))
plot_length_maxdepth
ggsave("length_maxdepth_KW.png", plot = plot_length_maxdepth, width = 4, height = 4, dpi = 400)
qsdf_onboard <- filter(df_allsnappers, Species_sn == "Etelis oculatus")
View(qsdf_onboard)
summary(qsdf_onboard)
## date year month Boat_name
## Length:6 Min. :2024 Length:6 Bridgette :0
## Class :character 1st Qu.:2024 Class :character Highliner :0
## Mode :character Median :2024 Mode :character Lady Carolina :0
## Mean :2024 Mr Fish :0
## 3rd Qu.:2024 Navigator :0
## Max. :2024 Second Wind :0
## Spirit of Saba:6
## Trip_ID Fishing_gear Fishing_area Depth_m_min Depth_m_max
## Mode:logical LP :1 :6 Min. : NA Min. : NA
## NA's:6 LP/MP:0 A3 :0 1st Qu.: NA 1st Qu.: NA
## RP :5 A3/A4 :0 Median : NA Median : NA
## B2 :0 Mean :NaN Mean :NaN
## B4 :0 3rd Qu.: NA 3rd Qu.: NA
## C4/C5 :0 Max. : NA Max. : NA
## (Other):0 NA's :6 NA's :6
## Species_sn Species_cn Trap_no landed
## Etelis oculatus :6 Queen Snapper :6 5 :2 Landed:6
## Apsilus dentatus :0 Black snapper :0 14 :1
## Lutjanus buccanella:0 Black Snapper :0 15 :1
## Lutjanus jocu :0 Blackfin snapper:0 3 :1
## Lutjanus synagris :0 Blackfin Snapper:0 7 :1
## Lutjanus vivanus :0 Dog Snapper :0 :0
## (Other) :0 (Other) :0 (Other):0
## catch_contents Length study Comments
## Partial:0 Min. :26.00 GRIDBOARD:0 Length:6
## Whole :6 1st Qu.:27.25 ONBOARD :6 Class :character
## Median :28.50 Mode :character
## Mean :28.33
## 3rd Qu.:29.75
## Max. :30.00
##
## Depth_m_min_factor Depth_m_max_factor
## <20 :0 <20 :0
## 20-39:0 20-39 :0
## 40-59:0 40-59 :0
## 60-79:0 60-79 :0
## >80 :0 80-99 :0
## NA's :6 (Other):0
## NA's :6
sd(qsdf_onboard$Length)
## [1] 1.632993
# Ensure the length column is numeric
qsdf_onboard$Length <- as.numeric(qsdf_onboard$Length)
# Create a histogram with breaks at each centimeter
qs_onboard_hist <- hist(qsdf_onboard$Length, breaks = seq(floor(min(qsdf_onboard$Length)), ceiling(max(qsdf_onboard$Length)), by = 1), plot = FALSE)
# Convert histogram data to a data frame
qs_onboard_hist_df <- data.frame(length = qs_onboard_hist$mids, count = qs_onboard_hist$counts)
# Calculate cumulative frequency
qs_onboard_hist_df <- qs_onboard_hist_df %>%
arrange(length) %>%
mutate(cumulative_count = cumsum(count),
cumulative_percentage = cumulative_count / sum(count) * 100)
# Find the length at 50% cumulative frequency
qs_onboard_Lc <- qs_onboard_hist_df %>%
filter(cumulative_percentage >= 50) %>%
slice(1) %>%
pull(length)
qs_onboard_Lc
## [1] 27.5
number of traps per trip found in the FisheriesWorkbook July file in the short interviews page
14/03 SOS - 39 RP 08/05 SW - 21 RP 14/05 SW - 22 RP 29/05 SW - 39 RP 05/06 SW - 45 RP 19/06 SW - 24 RP
14/03 SOS - 5 LP 19/03 SOS - 76 LP 20/03 RH - 52 LP 25/03 MF - 95 LP 23/04 RH - 60 LP 27/03 SW - 86 LP 30/04 SW - 79 LP 15/07 HL - 17 LP 16/07 RH - 59 LP
rp_total_no <- 39+86+51+21+22+39+45+24+17
lp_total_no <- 5+76+52+95+60+86+79+17+59
E. oculatus caught on: 14/03/2024 - 39 RP, 5 LP
1 fish in LP 5 in RP
#CPUE = total catch/total effort
qs_CPUE_rp <- 5/rp_total_no
qs_CPUE_rp
## [1] 0.01453488
qs_CPUE_lp <- 1/lp_total_no
qs_CPUE_lp
## [1] 0.001890359
bsdf_onboard <- filter(df_allsnappers, Species_sn == "Lutjanus buccanella")
View(bsdf_onboard)
summary(bsdf_onboard)
## date year month Boat_name
## Length:802 Min. :2024 Length:802 Bridgette : 0
## Class :character 1st Qu.:2024 Class :character Highliner : 3
## Mode :character Median :2024 Mode :character Lady Carolina : 2
## Mean :2024 Mr Fish : 0
## 3rd Qu.:2024 Navigator : 22
## Max. :2024 Second Wind :771
## Spirit of Saba: 4
## Trip_ID Fishing_gear Fishing_area Depth_m_min Depth_m_max
## Mode:logical LP : 24 A3/A4 :393 Min. :12.0 Min. : 20.0
## NA's:802 LP/MP: 0 D5 :110 1st Qu.:21.0 1st Qu.: 28.0
## RP :778 C5/D5 :105 Median :40.0 Median : 60.0
## A3 : 99 Mean :43.8 Mean : 87.2
## D4 : 64 3rd Qu.:50.0 3rd Qu.:150.0
## B2 : 22 Max. :91.0 Max. :150.0
## (Other): 9 NA's :234 NA's :234
## Species_sn Species_cn Trap_no landed
## Lutjanus buccanella:802 Blackfin Snapper:738 :223 Landed:802
## Apsilus dentatus : 0 Blackfin snapper: 64 10 : 49
## Etelis oculatus : 0 Black snapper : 0 12 : 45
## Lutjanus jocu : 0 Black Snapper : 0 14 : 31
## Lutjanus synagris : 0 Dog Snapper : 0 37 : 30
## Lutjanus vivanus : 0 Lane Snapper : 0 2 : 29
## (Other) : 0 (Other) : 0 (Other):395
## catch_contents Length study Comments
## Partial:223 Min. :20.00 GRIDBOARD:223 Length:802
## Whole :579 1st Qu.:26.00 ONBOARD :579 Class :character
## Median :28.00 Mode :character
## Mean :28.97
## 3rd Qu.:31.00
## Max. :45.00
##
## Depth_m_min_factor Depth_m_max_factor
## <20 : 2 20-39 :200
## 20-39:198 >140 :169
## 40-59:266 120-139: 99
## 60-79: 0 60-79 : 97
## >80 :102 80-99 : 3
## NA's :234 (Other): 0
## NA's :234
sd(bsdf_onboard$Length)
## [1] 4.689004
# Ensure the length column is numeric
bsdf_onboard$Length <- as.numeric(bsdf_onboard$Length)
# Create a histogram with breaks at each centimeter
bs_onboard_hist <- hist(bsdf_onboard$Length, breaks = seq(floor(min(bsdf_onboard$Length)), ceiling(max(bsdf_onboard$Length)), by = 1), plot = FALSE)
# Convert histogram data to a data frame
bs_onboard_hist_df <- data.frame(length = bs_onboard_hist$mids, count = bs_onboard_hist$counts)
# Calculate cumulative frequency
bs_onboard_hist_df <- bs_onboard_hist_df %>%
arrange(length) %>%
mutate(cumulative_count = cumsum(count),
cumulative_percentage = cumulative_count / sum(count) * 100)
# Find the length at 50% cumulative frequency
bs_onboard_Lc <- bs_onboard_hist_df %>%
filter(cumulative_percentage >= 50) %>%
slice(1) %>%
pull(length)
bs_onboard_Lc
## [1] 27.5
number of traps per trip (whole catch measured) found in the FisheriesWorkbook July file in the short interviews page L. buccanella caught on: 14/03/2024 - 39 RP 08/05/2024 - 21 RP 14/05/2024 - 22 RP 29/05/2024 - 39 RP 05/06/2024 - 45 RP 19/06/2024 - 24 RP
579 fish caught in RP
#CPUE = total catch/total effort
bs_CPUE_rp <- 579/rp_total_no
bs_CPUE_rp
## [1] 1.68314
lsdf_onboard <- filter(df_allsnappers, Species_sn == "Lutjanus synagris")
View(lsdf_onboard)
summary(lsdf_onboard)
## date year month Boat_name
## Length:26 Min. :2024 Length:26 Bridgette : 8
## Class :character 1st Qu.:2024 Class :character Highliner : 0
## Mode :character Median :2024 Mode :character Lady Carolina : 6
## Mean :2024 Mr Fish : 1
## 3rd Qu.:2024 Navigator : 0
## Max. :2024 Second Wind : 0
## Spirit of Saba:11
## Trip_ID Fishing_gear Fishing_area Depth_m_min Depth_m_max
## Mode:logical LP :15 B4 :15 Min. :12.00 Min. :21.00
## NA's:26 LP/MP: 0 :11 1st Qu.:12.00 1st Qu.:22.00
## RP :11 A3 : 0 Median :15.00 Median :23.00
## A3/A4 : 0 Mean :14.07 Mean :22.47
## B2 : 0 3rd Qu.:15.00 3rd Qu.:23.00
## C4/C5 : 0 Max. :19.00 Max. :23.00
## (Other): 0 NA's :11 NA's :11
## Species_sn Species_cn Trap_no landed
## Lutjanus synagris :26 Lane Snapper :26 :15 Landed:26
## Apsilus dentatus : 0 Black snapper : 0 13 : 9
## Etelis oculatus : 0 Black Snapper : 0 5 : 1
## Lutjanus buccanella: 0 Blackfin snapper: 0 7 : 1
## Lutjanus jocu : 0 Blackfin Snapper: 0 1 : 0
## Lutjanus vivanus : 0 Dog Snapper : 0 10 : 0
## (Other) : 0 (Other) : 0 (Other): 0
## catch_contents Length study Comments
## Partial:15 Min. :25.00 GRIDBOARD:15 Length:26
## Whole :11 1st Qu.:27.00 ONBOARD :11 Class :character
## Median :29.50 Mode :character
## Mean :29.85
## 3rd Qu.:32.75
## Max. :39.00
##
## Depth_m_min_factor Depth_m_max_factor
## <20 :15 20-39 :15
## 20-39: 0 <20 : 0
## 40-59: 0 40-59 : 0
## 60-79: 0 60-79 : 0
## >80 : 0 80-99 : 0
## NA's :11 (Other): 0
## NA's :11
sd(lsdf_onboard$Length)
## [1] 4.006917
# Ensure the length column is numeric
lsdf_onboard$Length <- as.numeric(lsdf_onboard$Length)
# Create a histogram with breaks at each centimeter
ls_onboard_hist <- hist(lsdf_onboard$Length, breaks = seq(floor(min(lsdf_onboard$Length)), ceiling(max(lsdf_onboard$Length)), by = 1), plot = FALSE)
# Convert histogram data to a data frame
ls_onboard_hist_df <- data.frame(length = ls_onboard_hist$mids, count = ls_onboard_hist$counts)
# Calculate cumulative frequency
ls_onboard_hist_df <- ls_onboard_hist_df %>%
arrange(length) %>%
mutate(cumulative_count = cumsum(count),
cumulative_percentage = cumulative_count / sum(count) * 100)
# Find the length at 50% cumulative frequency
ls_onboard_Lc <- ls_onboard_hist_df %>%
filter(cumulative_percentage >= 50) %>%
slice(1) %>%
pull(length)
ls_onboard_Lc
## [1] 28.5
number of traps per trip (whole catch measured) found in the FisheriesWorkbook July file in the short interviews page L. synagris caught on: 14/03/2024 - 39 RP
11 fish caught in RP
#CPUE = total catch/total effort
ls_CPUE_rp <- 11/rp_total_no
ls_CPUE_rp
## [1] 0.03197674
ysdf_onboard <- filter(df_allsnappers, Species_sn == "Lutjanus vivanus")
View(ysdf_onboard)
summary(ysdf_onboard)
## date year month Boat_name
## Length:712 Min. :2024 Length:712 Bridgette : 1
## Class :character 1st Qu.:2024 Class :character Highliner : 36
## Mode :character Median :2024 Mode :character Lady Carolina : 2
## Mean :2024 Mr Fish : 0
## 3rd Qu.:2024 Navigator : 0
## Max. :2024 Second Wind :589
## Spirit of Saba: 84
## Trip_ID Fishing_gear Fishing_area Depth_m_min Depth_m_max
## Mode:logical LP : 3 C5/D5 :274 Min. : 8.00 Min. : 14.0
## NA's:712 LP/MP: 0 D5 :162 1st Qu.:50.00 1st Qu.:150.0
## RP :709 : 84 Median :50.00 Median :150.0
## D4 : 74 Mean :54.84 Mean :136.7
## A3 : 41 3rd Qu.:50.00 3rd Qu.:150.0
## A3/A4 : 38 Max. :91.00 Max. :150.0
## (Other): 39 NA's :259 NA's :259
## Species_sn Species_cn Trap_no landed
## Lutjanus vivanus :712 Yelloweye Snapper:636 : 93 Landed:712
## Apsilus dentatus : 0 Yelloweye snapper: 72 10 : 56
## Etelis oculatus : 0 YellowEye Snapper: 2 17 : 45
## Lutjanus buccanella: 0 yelloweye snapper: 1 16 : 44
## Lutjanus jocu : 0 yelloweye Snapper: 1 4 : 44
## Lutjanus synagris : 0 Black snapper : 0 14 : 39
## (Other) : 0 (Other) : 0 (Other):391
## catch_contents Length study Comments
## Partial: 93 Min. :12.00 GRIDBOARD: 93 Length:712
## Whole :619 1st Qu.:25.00 ONBOARD :619 Class :character
## Median :27.00 Mode :character
## Mean :28.69
## 3rd Qu.:31.00
## Max. :70.00
##
## Depth_m_min_factor Depth_m_max_factor
## <20 : 3 >140 :348
## 20-39: 12 120-139: 41
## 40-59:361 80-99 : 36
## 60-79: 0 20-39 : 13
## >80 : 77 60-79 : 13
## NA's :259 (Other): 2
## NA's :259
sd(ysdf_onboard$Length)
## [1] 5.573843
# Ensure the length column is numeric
ysdf_onboard$Length <- as.numeric(ysdf_onboard$Length)
# Create a histogram with breaks at each centimeter
ys_onboard_hist <- hist(ysdf_onboard$Length, breaks = seq(floor(min(ysdf_onboard$Length)), ceiling(max(ysdf_onboard$Length)), by = 1), plot = FALSE)
# Convert histogram data to a data frame
ys_onboard_hist_df <- data.frame(length = ys_onboard_hist$mids, count = ys_onboard_hist$counts)
# Calculate cumulative frequency
ys_onboard_hist_df <- ys_onboard_hist_df %>%
arrange(length) %>%
mutate(cumulative_count = cumsum(count),
cumulative_percentage = cumulative_count / sum(count) * 100)
# Find the length at 50% cumulative frequency
ys_onboard_Lc <- ys_onboard_hist_df %>%
filter(cumulative_percentage >= 50) %>%
slice(1) %>%
pull(length)
ys_onboard_Lc
## [1] 26.5
number of traps per trip (whole catch) found in the FisheriesWorkbook July file in the short interviews page L. vivanus caught on: 14/03/2024 - 39 RP 24/04/2024 - 22 RP 08/05/2024 - 21 RP 14/05/2024 - 22 RP 29/05/2024 - 39 RP 05/06/2024 - 45 RP 19/06/2024 - 24 RP
619 fish caught in RP
#CPUE = total catch/total effort
ys_CPUE_rp <- 619/rp_total_no
ys_CPUE_rp
## [1] 1.799419
wndf_onboard <- filter(df_allsnappers, Species_sn == "Pristipomoides aquilonaris")
View(wndf_onboard)
summary(wndf_onboard)
## date year month Boat_name
## Length:9 Min. :2024 Length:9 Bridgette :0
## Class :character 1st Qu.:2024 Class :character Highliner :0
## Mode :character Median :2024 Mode :character Lady Carolina :0
## Mean :2024 Mr Fish :0
## 3rd Qu.:2024 Navigator :0
## Max. :2024 Second Wind :9
## Spirit of Saba:0
## Trip_ID Fishing_gear Fishing_area Depth_m_min Depth_m_max
## Mode:logical LP :0 C5/D5 :5 Min. :50 Min. :150
## NA's:9 LP/MP:0 D5 :3 1st Qu.:50 1st Qu.:150
## RP :9 D4 :1 Median :50 Median :150
## :0 Mean :50 Mean :150
## A3 :0 3rd Qu.:50 3rd Qu.:150
## A3/A4 :0 Max. :50 Max. :150
## (Other):0 NA's :3 NA's :3
## Species_sn Species_cn Trap_no landed
## Pristipomoides aquilonaris:9 Wenchman Snapper:8 26 :5 Landed:9
## Apsilus dentatus :0 Wenchman snapper:1 21 :2
## Etelis oculatus :0 Black snapper :0 24 :1
## Lutjanus buccanella :0 Black Snapper :0 8 :1
## Lutjanus jocu :0 Blackfin snapper:0 :0
## Lutjanus synagris :0 Blackfin Snapper:0 1 :0
## (Other) :0 (Other) :0 (Other):0
## catch_contents Length study Comments
## Partial:0 Min. :23.00 GRIDBOARD:0 Length:9
## Whole :9 1st Qu.:27.00 ONBOARD :9 Class :character
## Median :28.00 Mode :character
## Mean :28.22
## 3rd Qu.:29.00
## Max. :34.00
##
## Depth_m_min_factor Depth_m_max_factor
## <20 :0 >140 :6
## 20-39:0 <20 :0
## 40-59:6 20-39 :0
## 60-79:0 40-59 :0
## >80 :0 60-79 :0
## NA's :3 (Other):0
## NA's :3
sd(wndf_onboard$Length)
## [1] 3.308239
# Ensure the length column is numeric
wndf_onboard$Length <- as.numeric(wndf_onboard$Length)
# Create a histogram with breaks at each centimeter
wn_onboard_hist <- hist(wndf_onboard$Length, breaks = seq(floor(min(wndf_onboard$Length)), ceiling(max(wndf_onboard$Length)), by = 1), plot = FALSE)
# Convert histogram data to a data frame
wn_onboard_hist_df <- data.frame(length = wn_onboard_hist$mids, count = wn_onboard_hist$counts)
# Calculate cumulative frequency
wn_onboard_hist_df <- wn_onboard_hist_df %>%
arrange(length) %>%
mutate(cumulative_count = cumsum(count),
cumulative_percentage = cumulative_count / sum(count) * 100)
# Find the length at 50% cumulative frequency
wn_onboard_Lc <- wn_onboard_hist_df %>%
filter(cumulative_percentage >= 50) %>%
slice(1) %>%
pull(length)
wn_onboard_Lc
## [1] 27.5
number of traps per trip (whole catch) found in the FisheriesWorkbook July file in the short interviews page
P. aquilonaris caught on: 29/05/2024 - 39 RP 05/06/2024 - 45 RP 19/06/2024 - 24 RP
9 fish caught in RP
#CPUE = total catch/total effort
wn_CPUE_rp <- 9/rp_total_no
wn_CPUE_rp
## [1] 0.02616279
vsdf_onboard <- filter(df_allsnappers, Species_sn == "Rhomboplites aurorubens")
View(vsdf_onboard)
summary(vsdf_onboard)
## date year month Boat_name
## Length:108 Min. :2024 Length:108 Bridgette : 2
## Class :character 1st Qu.:2024 Class :character Highliner :11
## Mode :character Median :2024 Mode :character Lady Carolina : 4
## Mean :2024 Mr Fish : 0
## 3rd Qu.:2024 Navigator : 6
## Max. :2024 Second Wind :48
## Spirit of Saba:37
## Trip_ID Fishing_gear Fishing_area Depth_m_min Depth_m_max
## Mode:logical LP :12 :37 Min. :11.00 Min. : 14.0
## NA's:108 LP/MP:11 C5/D5 :22 1st Qu.:15.00 1st Qu.: 30.0
## RP :85 D4 :14 Median :50.00 Median :150.0
## D5 :12 Mean :36.53 Mean :101.1
## C4/C5 :11 3rd Qu.:50.00 3rd Qu.:150.0
## B2 : 6 Max. :50.00 Max. :150.0
## (Other): 6 NA's :49 NA's :49
## Species_sn Species_cn Trap_no
## Rhomboplites aurorubens:108 Vermillion Snapper:94 28 :20
## Apsilus dentatus : 0 Vermillion snapper:14 :12
## Etelis oculatus : 0 Black snapper : 0 13 :12
## Lutjanus buccanella : 0 Black Snapper : 0 14/15 : 9
## Lutjanus jocu : 0 Blackfin snapper : 0 20 : 5
## Lutjanus synagris : 0 Blackfin Snapper : 0 25 : 5
## (Other) : 0 (Other) : 0 (Other):45
## landed catch_contents Length study Comments
## Landed:108 Partial:12 Min. :18.00 GRIDBOARD:12 Length:108
## Whole :96 1st Qu.:23.00 ONBOARD :96 Class :character
## Median :25.00 Mode :character
## Mean :25.43
## 3rd Qu.:28.00
## Max. :38.00
##
## Depth_m_min_factor Depth_m_max_factor
## <20 :17 >140 :36
## 20-39: 6 20-39 :21
## 40-59:36 <20 : 2
## 60-79: 0 40-59 : 0
## >80 : 0 60-79 : 0
## NA's :49 (Other): 0
## NA's :49
sd(vsdf_onboard$Length)
## [1] 3.599594
# Ensure the length column is numeric
vsdf_onboard$Length <- as.numeric(vsdf_onboard$Length)
# Create a histogram with breaks at each centimeter
vs_onboard_hist <- hist(vsdf_onboard$Length, breaks = seq(floor(min(vsdf_onboard$Length)), ceiling(max(vsdf_onboard$Length)), by = 1), plot = FALSE)
# Convert histogram data to a data frame
vs_onboard_hist_df <- data.frame(length = vs_onboard_hist$mids, count = vs_onboard_hist$counts)
# Calculate cumulative frequency
vs_onboard_hist_df <- vs_onboard_hist_df %>%
arrange(length) %>%
mutate(cumulative_count = cumsum(count),
cumulative_percentage = cumulative_count / sum(count) * 100)
# Find the length at 50% cumulative frequency
vs_onboard_Lc <- vs_onboard_hist_df %>%
filter(cumulative_percentage >= 50) %>%
slice(1) %>%
pull(length)
vs_onboard_Lc
## [1] 24.5
number of traps per trip (whole catch) found in the FisheriesWorkbook July file in the short interviews page
R. aurorubens caught on: 14/03/2024 - 39 RP 29/05/2024 - 39 RP 05/06/2024 - 45 RP 19/06/2024 - 24 RP 15/07/2024 - 17 LP
85 fish caught in RP 11 fish caught in LP
#CPUE = total catch/total effort
vs_CPUE_rp <- 85/rp_total_no
vs_CPUE_rp
## [1] 0.247093
vs_CPUE_lp <- 11/lp_total_no
vs_CPUE_lp
## [1] 0.02079395
df_portinterviews <- read.csv("portinterviews.csv")
#change data type
df_portinterviews$Boat_name <- factor(df_portinterviews$Boat_name)
df_portinterviews$Fishing_gear <- factor(df_portinterviews$Fishing_gear)
df_portinterviews$Fishing_area <- factor(df_portinterviews$Fishing_area)
df_portinterviews$Depth_m_min <- as.numeric(df_portinterviews$Depth_m_min)
## Warning: NAs introduced by coercion
df_portinterviews$Depth_m_max <- as.numeric(df_portinterviews$Depth_m_max)
## Warning: NAs introduced by coercion
df_portinterviews$Traps_no <- as.numeric(df_portinterviews$Traps_no)
## Warning: NAs introduced by coercion
summary(df_portinterviews)
## Date..d.m.y. Year Month Boat_name
## Length:176 Min. :2024 Length:176 Second Wind :30
## Class :character 1st Qu.:2024 Class :character Spirit of Saba:25
## Mode :character Median :2024 Mode :character Bridgette :23
## Mean :2024 Lady Carolina :22
## 3rd Qu.:2024 Rhiannon :21
## Max. :2024 Navigator :18
## (Other) :37
## Trip_ID Fishing_gear Fishing_area N.17. W.63.
## Mode:logical HL/LL: 1 B4 :44 Mode:logical Mode:logical
## NA's:176 LP :113 D4 :21 NA's:176 NA's:176
## RP : 58 B5 :19
## RP/LP: 4 C5 :14
## B3 :10
## : 9
## (Other):59
## Column1 Column2 Depth_m_min Depth_m_max
## Mode:logical Mode:logical Min. : 7.0 Min. : 7.00
## NA's:176 NA's:176 1st Qu.: 12.0 1st Qu.: 15.00
## Median : 16.0 Median : 25.00
## Mean : 28.8 Mean : 48.57
## 3rd Qu.: 43.0 3rd Qu.: 70.00
## Max. :150.0 Max. :183.00
## NA's :19 NA's :19
## Traps_no Soaking_time_days Line_hook_no Lines_pulled_no
## Min. : 5.00 Length:176 Min. :3 Min. :3
## 1st Qu.: 24.00 Class :character 1st Qu.:3 1st Qu.:3
## Median : 60.50 Mode :character Median :3 Median :3
## Mean : 59.14 Mean :3 Mean :3
## 3rd Qu.: 87.25 3rd Qu.:3 3rd Qu.:3
## Max. :177.00 Max. :3 Max. :3
## NA's :4 NA's :175 NA's :175
## Lines_no FAD Duration..hr. Lobster_no
## Min. :2.00 Length:176 Min. : 5.00 Length:176
## 1st Qu.:2.25 Class :character 1st Qu.: 8.75 Class :character
## Median :2.50 Mode :character Median :12.50 Mode :character
## Mean :2.50 Mean :12.50
## 3rd Qu.:2.75 3rd Qu.:16.25
## Max. :3.00 Max. :20.00
## NA's :174 NA's :174
## Mixed_Fish_lbs Redfish_lbs Lionfish_no Lobster_berried_no
## Min. : 0.00 Min. : 0.00 Min. : 0.000 Min. : 0.00
## 1st Qu.: 10.00 1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.00
## Median : 20.00 Median : 0.00 Median : 0.000 Median : 5.00
## Mean : 37.12 Mean : 53.59 Mean : 1.006 Mean : 10.75
## 3rd Qu.: 50.00 3rd Qu.:100.00 3rd Qu.: 1.000 3rd Qu.: 20.00
## Max. :250.00 Max. :440.00 Max. :20.000 Max. :150.00
## NA's :3 NA's :4 NA's :3 NA's :4
## Lobster_undersized_no Traps_lost_no Nurse.Shark Caribbean.Reef.Shark
## Min. : 0.000 Min. : 0.0 Min. : 0.000 Min. :0
## 1st Qu.: 0.000 1st Qu.: 0.0 1st Qu.: 0.000 1st Qu.:0
## Median : 2.500 Median : 0.0 Median : 0.000 Median :0
## Mean : 7.541 Mean : 0.6 Mean : 1.756 Mean :0
## 3rd Qu.:10.000 3rd Qu.: 0.0 3rd Qu.: 2.000 3rd Qu.:0
## Max. :50.000 Max. :21.0 Max. :28.000 Max. :0
## NA's :4 NA's :16 NA's :4 NA's :4
## Other comments
## Min. : 0.0000 Length:176
## 1st Qu.: 0.0000 Class :character
## Median : 0.0000 Mode :character
## Mean : 0.1337
## 3rd Qu.: 0.0000
## Max. :23.0000
## NA's :4
# get a summary of onboard vs gridboard measurements
area_effort <- df_portinterviews %>%
filter(Fishing_gear == "RP" | Fishing_gear == "RP/LP") %>%
filter(Fishing_area!="")
x <- 1
area_effort$x <- x
View(area_effort)
fishing_area_effort_plot <- ggplot(area_effort, aes(x = Fishing_area, y = Traps_no)) +
geom_col(aes(fill = Fishing_gear)) +
labs(x = "Quadrant",
y = "Fishing effort in number of traps pulled",
title = str_wrap(c("Fishing effort per Saba Bank quadrant"), width = 60),
fill = "Fishing gear") +
theme_classic() +
scale_fill_viridis_d(option = "D",
begin = 0.2,
end = 0.8)
ggplot(area_effort, aes(x = Month, y = Traps_no)) +
geom_col(aes(fill = Fishing_area)) +
labs(x = "Quadrant",
y = "Fishing effort in number of traps pulled",
title = str_wrap(c("Fishing effort per Saba Bank quadrant"), width = 60),
fill = "Fishing gear") +
theme_classic()
fishing_area_effort_plot2 <- ggplot(area_effort, aes(x = x, y = Traps_no, fill = Fishing_area)) +
geom_bar(stat = "identity",
position = "fill") +
labs(x = "Quadrant",
y = "Fishing effort in number of traps pulled",
title = str_wrap(c("Fishing effort per Saba Bank quadrant"), width = 60),
fill = "Fishing gear") +
theme_classic()
fishing_area_effort_plot2
#save plot
ggsave("area_lengths_KW.png", plot = plot_area_lengths, width = 7.2, height = 4, dpi = 400)