| No | Variable | Descripción | Tipo |
|---|---|---|---|
| 1 | Store | Número de tienda | Identificación de cada tienda (hay 45 en total). Se tomará como factor. |
| 2 | Date | Fecha de inicio de la semana de ventas | Meses. Se tomará como factor |
| 3 | Weekly_Sales | Ventas | 1. Ventas Bajas, 2. Ventas Medias, 3. Ventas Altas |
| 4 | Holiday_Flag | Marca la presencia o ausencia de un día festivo | 0. Ausencia de día festivo, 1. Presencia de día festivo |
| 5 | Temperature | Temperatura del aire en la región. | Numérica |
| 6 | Fuel_Price | Costo del combustible en la región | Numérica |
| 7 | CPI | Índice de precios al consumidor | Numérica |
| 8 | Unemployment | Tasa de desempleo | Numérica |
Modelo de Regresión Logístico Ordinal
Modelo de Regresión
Un modelo de regresión es una técnica estadística que se utiliza para analizar y modelar la relación entre una variable dependiente y una o más variables independientes. El objetivo es predecir el valor de la variable dependiente (o respuesta) a partir de las variables independientes (o predictores).
Modelo De Regresión Logística Ordinal
Un modelo de regresión logística ordinal se utiliza cuando la variable dependiente es ordinal, es decir, tiene más de dos categorías que están ordenadas de manera natural (por ejemplo, baja, media, alta).
Características Clave:
Variable Dependiente Ordinal: La variable que estamos tratando de predecir tiene categorías que tienen un orden específico.
Modelado de Odds Acumulativas: En lugar de predecir directamente la categoría, el modelo predice las odds acumulativas de estar en una categoría menor o igual a una dada.
Función de Enlace Logística: Similar al modelo binario, usa la función logística, pero en este caso se aplica a las odds acumulativas.
Fórmula General
El modelo de regresión logística ordinal modela las odds acumulativas usando:
\[log \left( \frac{P(Y \le j)}{P(Y > j)} \right) = \alpha_{j} + \beta_{1} x_{1} + \beta_{2} x_{2} + ... + \beta_{p} x_{p}\]
Donde:
\(\frac{P(Y \le j)}{P(Y > j)}\) es la odds acumulativa de estar en una categoría menor o igual a \(j\)
\(\alpha_{j}\) es el umbral específico para la categoría \(j\)
Función De Enlace Logística
La función de enlace logística es una función matemática que convierte una combinación lineal de variables predictoras en una probabilidad. En el contexto de la regresión logística, la función de enlace es la función logística:
Fórmula
\[logit(p) = log \left ( \frac{p}{1-p} \right ) = \beta_{0} + \beta_{1} x_{1} + \beta_{2} x_{2} + ... + \beta_{p} x_{p}\]
Donde:
\(p\) es la probabilidad de que ocurra el evento.
\(\frac{p}{1-p}\) es la odds del evento.
La función logística transforma esta odds en una probabilidad:
\[p = \frac{1}{1 + e^{- ( \beta_{0} + \beta_{1} x_{1} + \beta_{2} x_{2} + ... + \beta_{p} x_{p} )}}\]
Base De Datos
Variables De La Base De Datos
Existen diferentes tipos de bases de datos en las que se puede aplicar un modelo de regresión logística ordinal, en este caso, se aplicará a una base de datos de ventas de uno de los minoristas más grandes del mundo, Walmart. Las variables de esta base de datos son:
Exploración De La Base De Datos
Ahora que ya se tiene una idea de las variables de la base de datos que se utilizará, se procede a la importación de la base. La base de datos con la que se trabajará en este documento, es de tipo .csv y para poder acceder a ella se necesita la librería readr. Este paquete está diseñado para facilitar la importación y exportación de datos en R, especialmente para archivos de texto, como CSV y TSV.
library(readr)
walmart_Sales <- read_csv("C:/Users/MINEDUCYT/Downloads/Base Ventas Walrmart/Walmart_Sales.csv")
head(walmart_Sales)| Store | Date | Weekly_Sales | Holiday_Flag | Temperature | Fuel_Price | CPI | Unemployment |
|---|---|---|---|---|---|---|---|
| 1 | 05-02-2010 | 1643691 | 0 | 42.31 | 2.572 | 211.0964 | 8.106 |
| 1 | 12-02-2010 | 1641957 | 1 | 38.51 | 2.548 | 211.2422 | 8.106 |
| 1 | 19-02-2010 | 1611968 | 0 | 39.93 | 2.514 | 211.2891 | 8.106 |
| 1 | 26-02-2010 | 1409728 | 0 | 46.63 | 2.561 | 211.3196 | 8.106 |
| 1 | 05-03-2010 | 1554807 | 0 | 46.50 | 2.625 | 211.3501 | 8.106 |
| 1 | 12-03-2010 | 1439542 | 0 | 57.79 | 2.667 | 211.3806 | 8.106 |
Ahora se realizará un Summary() para poder verificar que las variables están siendo leídas de manera correcta, además se transformará la base de datos a un Data.Frame.
walmart_Sales <- as.data.frame(walmart_Sales)
summary(walmart_Sales)| Store | Date | Weekly_Sales | Holiday_Flag | Temperature | Fuel_Price | CPI | Unemployment | |
|---|---|---|---|---|---|---|---|---|
| Min. : 1 | Length:6435 | Min. : 209986 | Min. :0.00000 | Min. : -2.06 | Min. :2.472 | Min. :126.1 | Min. : 3.879 | |
| 1st Qu.:12 | Class :character | 1st Qu.: 553350 | 1st Qu.:0.00000 | 1st Qu.: 47.46 | 1st Qu.:2.933 | 1st Qu.:131.7 | 1st Qu.: 6.891 | |
| Median :23 | Mode :character | Median : 960746 | Median :0.00000 | Median : 62.67 | Median :3.445 | Median :182.6 | Median : 7.874 | |
| Mean :23 | NA | Mean :1046965 | Mean :0.06993 | Mean : 60.66 | Mean :3.359 | Mean :171.6 | Mean : 7.999 | |
| 3rd Qu.:34 | NA | 3rd Qu.:1420159 | 3rd Qu.:0.00000 | 3rd Qu.: 74.94 | 3rd Qu.:3.735 | 3rd Qu.:212.7 | 3rd Qu.: 8.622 | |
| Max. :45 | NA | Max. :3818686 | Max. :1.00000 | Max. :100.14 | Max. :4.468 | Max. :227.2 | Max. :14.313 |
Algunas variables requieren transformación:
walmart_Sales$Date <- as.Date(walmart_Sales$Date, format = "%d-%m-%Y")
walmart_Sales$Date <- format(walmart_Sales$Date, "%B")
walmart_Sales$Date <- factor(walmart_Sales$Date)
walmart_Sales$Weekly_Sales <- cut(walmart_Sales$Weekly_Sales,
breaks = c(209986.25, 1412886.32, 2615786.39, 3818686.45),
labels = c("Ventas Bajas", "Ventas Medias", "Ventas Altas"),
include.lowest = TRUE)
walmart_Sales$Store <- factor(walmart_Sales$Store)
walmart_Sales$Holiday_Flag <- factor(walmart_Sales$Holiday_Flag)
summary(walmart_Sales)| Store | Date | Weekly_Sales | Holiday_Flag | Temperature | Fuel_Price | CPI | Unemployment | |
|---|---|---|---|---|---|---|---|---|
| 1 : 143 | abril : 630 | Ventas Bajas :4793 | 0:5985 | Min. : -2.06 | Min. :2.472 | Min. :126.1 | Min. : 3.879 | |
| 2 : 143 | julio : 630 | Ventas Medias:1602 | 1: 450 | 1st Qu.: 47.46 | 1st Qu.:2.933 | 1st Qu.:131.7 | 1st Qu.: 6.891 | |
| 3 : 143 | agosto : 585 | Ventas Altas : 40 | NA | Median : 62.67 | Median :3.445 | Median :182.6 | Median : 7.874 | |
| 4 : 143 | junio : 585 | NA | NA | Mean : 60.66 | Mean :3.359 | Mean :171.6 | Mean : 7.999 | |
| 5 : 143 | marzo : 585 | NA | NA | 3rd Qu.: 74.94 | 3rd Qu.:3.735 | 3rd Qu.:212.7 | 3rd Qu.: 8.622 | |
| 6 : 143 | octubre: 585 | NA | NA | Max. :100.14 | Max. :4.468 | Max. :227.2 | Max. :14.313 | |
| (Other):5577 | (Other):2835 | NA | NA | NA | NA | NA | NA |
Se puede observar en la salida anterior que las variables ya se encuentran en un formato adecuado.
Datos Faltantes
resumen_faltantes <- data.frame(
Columna = names(walmart_Sales),
Faltantes = sapply(walmart_Sales, function(x) sum(is.na(x))),
Porcentaje = sapply(walmart_Sales, function(x) mean(is.na(x)) * 100)
)
resumen_faltantes| Columna | Faltantes | Porcentaje | |
|---|---|---|---|
| Store | Store | 0 | 0 |
| Date | Date | 0 | 0 |
| Weekly_Sales | Weekly_Sales | 0 | 0 |
| Holiday_Flag | Holiday_Flag | 0 | 0 |
| Temperature | Temperature | 0 | 0 |
| Fuel_Price | Fuel_Price | 0 | 0 |
| CPI | CPI | 0 | 0 |
| Unemployment | Unemployment | 0 | 0 |
Prueba De Independiencia
La prueba de independencia, como la prueba chi-cuadrado, se realiza para determinar si dos variables categóricas están relacionadas o asociadas entre sí, o si son independientes. Esta prueba se realiza para entender mejor las relaciones entre variables en un conjunto de datos, lo que puede influir en las decisiones de modelado y en la interpretación de los resultados.
categorical_vars <- names(walmart_Sales)[sapply(walmart_Sales, is.factor)]
for (i in 1:(length(categorical_vars) - 1)) {
for (j in (i + 1):length(categorical_vars)) {
var1 <- categorical_vars[i]
var2 <- categorical_vars[j]
contingency_table <- table(walmart_Sales[[var1]], walmart_Sales[[var2]])
chi_sq_test <- chisq.test(contingency_table)
cat("\nPrueba chi-cuadrado entre", var1, "y", var2, ":\n")
print(chi_sq_test)
}
}
Prueba chi-cuadrado entre Store y Date :
Pearson's Chi-squared test
data: contingency_table
X-squared = 0, df = 484, p-value = 1
Prueba chi-cuadrado entre Store y Weekly_Sales :
Pearson's Chi-squared test
data: contingency_table
X-squared = 4888.8, df = 88, p-value < 2.2e-16
Prueba chi-cuadrado entre Store y Holiday_Flag :
Pearson's Chi-squared test
data: contingency_table
X-squared = 0, df = 44, p-value = 1
Prueba chi-cuadrado entre Date y Weekly_Sales :
Pearson's Chi-squared test
data: contingency_table
X-squared = 340.12, df = 22, p-value < 2.2e-16
Prueba chi-cuadrado entre Date y Holiday_Flag :
Pearson's Chi-squared test
data: contingency_table
X-squared = 1136.8, df = 11, p-value < 2.2e-16
Prueba chi-cuadrado entre Weekly_Sales y Holiday_Flag :
Pearson's Chi-squared test
data: contingency_table
X-squared = 37.035, df = 2, p-value = 9.077e-09
Las variables no muestran dependencia entre sí, excepto por la variable Weekly_Sales, estos resultados son adecuados para continuar con aplicación de un modelo de regresión logístico ordinal.
Entrenamiento Y Prueba
set.seed(2024)
n = nrow(walmart_Sales)
n[1] 6435
La base de datos tiene 6435 filas, ahora se realizara una partición en datos de entrenamiento y datos de prueba:
indices <- sample(n,n * 0.7)
entrenamiento <- walmart_Sales[indices, ]
prueba <- walmart_Sales[-indices, ]El código anterior crea el subconjunto de entrenamiento, que contiene el 70% de las observaciones seleccionadas aleatoriamente de la base walmart_Sales usando los índices generados en d_ind.
Modelo De Regresión Logística Ordinal
La construcción del modelo se realizará con la librería MASS. La variable respuesta que se utilizará será Weekly_Sales que representa tres niveles según el rango de las ventas semanales. Cada nivel representa una categoría de ventas basada en los valores de las ventas.
- Ventas Bajas
- Ventas Medias
- Ventas Altas
El propósito de la realización de un modelo de regresión logístico ordinal es para averiguar que factores influyen en los ingresos obtenidos de uno de los minoristas más grandes del mundo.
¿Pueden factores como la temperatura del aire y el costo del combustible influir en el éxito de una gran empresa junto con el índice de poder adquisitivo y los descuentos estacionales?
Para responder a esta interrogante y poder predecir dichos ingresos, se realizará la siguiente aplicación de regresión logística ordinal:
library(MASS)
modelo_1 <- polr(Weekly_Sales ~ ., data = entrenamiento, Hess = TRUE, method = "logistic")
summary(modelo_1)Call:
polr(formula = Weekly_Sales ~ ., data = entrenamiento, Hess = TRUE,
method = "logistic")
Coefficients:
Value Std. Error t value
Store2 2.87926 7.076e-01 4.069e+00
Store3 -25.48269 3.165e-08 -8.051e+08
Store4 17.38641 5.929e-01 2.933e+01
Store5 -24.85863 4.835e-08 -5.141e+08
Store6 -0.18233 4.919e-01 -3.707e-01
Store7 -20.64731 1.404e-07 -1.471e+08
Store8 -8.55490 8.937e-01 -9.572e+00
Store9 -25.67287 5.900e-08 -4.352e+08
Store10 18.20283 7.072e-01 2.574e+01
Store11 -4.38759 4.533e-01 -9.679e+00
Store12 8.21155 1.139e+00 7.212e+00
Store13 17.27349 5.725e-01 3.017e+01
Store14 8.33842 7.098e-01 1.175e+01
Store15 -9.62081 4.972e-07 -1.935e+07
Store16 -20.81837 1.127e-07 -1.848e+08
Store17 -9.05847 2.378e-07 -3.810e+07
Store18 6.60995 6.229e-01 1.061e+01
Store19 10.75890 3.335e-01 3.226e+01
Store20 4.80920 7.108e-01 6.765e+00
Store21 -24.85898 3.526e-08 -7.049e+08
Store22 6.32484 5.132e-01 1.233e+01
Store23 9.39102 4.101e-01 2.290e+01
Store24 9.33180 3.991e-01 2.338e+01
Store25 -23.38420 5.073e-08 -4.610e+08
Store26 4.70593 1.029e+00 4.572e+00
Store27 14.99123 6.039e-01 2.483e+01
Store28 11.93217 9.880e-01 1.208e+01
Store29 -9.35151 1.076e-06 -8.692e+06
Store30 -24.58897 3.189e-08 -7.711e+08
Store31 -3.72737 4.364e-01 -8.541e+00
Store32 -3.27800 7.467e-01 -4.390e+00
Store33 -8.24486 7.190e-07 -1.147e+07
Store34 6.68184 8.527e-01 7.836e+00
Store35 5.81875 6.204e-01 9.378e+00
Store36 -24.49968 3.793e-08 -6.460e+08
Store37 -24.37899 3.441e-08 -7.085e+08
Store38 -7.47156 2.430e-06 -3.075e+06
Store39 -1.93017 4.067e-01 -4.746e+00
Store40 4.83660 8.111e-01 5.963e+00
Store41 -1.80552 5.064e-01 -3.566e+00
Store42 -8.35440 6.895e-07 -1.212e+07
Store43 -22.87709 1.553e-07 -1.473e+08
Store44 -8.86801 9.776e-08 -9.071e+07
Store45 -2.50596 8.186e-01 -3.061e+00
Dateagosto 1.12033 4.600e-01 2.435e+00
Datediciembre 2.86754 4.272e-01 6.713e+00
Dateenero -3.28363 5.878e-01 -5.586e+00
Datefebrero 0.12052 4.399e-01 2.740e-01
Datejulio 0.25637 4.705e-01 5.449e-01
Datejunio 0.84294 4.277e-01 1.971e+00
Datemarzo -0.31676 3.837e-01 -8.255e-01
Datemayo -0.07758 4.034e-01 -1.923e-01
Datenoviembre 1.94105 3.953e-01 4.910e+00
Dateoctubre -0.92903 3.970e-01 -2.340e+00
Dateseptiembre -0.87226 4.635e-01 -1.882e+00
Holiday_Flag1 0.89947 2.737e-01 3.287e+00
Temperature -0.01320 1.410e-02 -9.361e-01
Fuel_Price -0.88185 2.260e-01 -3.902e+00
CPI 0.16012 4.864e-03 3.292e+01
Unemployment -0.17443 1.421e-01 -1.228e+00
Intercepts:
Value Std. Error t value
Ventas Bajas|Ventas Medias 2.730690e+01 1.483900e+00 1.840250e+01
Ventas Medias|Ventas Altas 3.725200e+01 1.506000e+00 2.473610e+01
Residual Deviance: 1267.147
AIC: 1391.147
Con el fin de poder visualizar mejor los resultados, se hará uso de la siguiente tabla:
library(dplyr)
coeficientes <- summary(modelo_1)$coefficients
resultados <- data.frame(
Variable = rownames(coeficientes),
t_value = coeficientes[, "t value"],
p_value = 2 * pt(abs(coeficientes[, "t value"]), df = modelo_1$df.residual, lower.tail = FALSE)
)
resultados$Significativa <- ifelse(resultados$p_value < 0.05, "Sí", "No")
resultados| Variable | t_value | p_value | Significativa | |
|---|---|---|---|---|
| Store2 | Store2 | 4.069249e+00 | 0.0000480 | Sí |
| Store3 | Store3 | -8.050512e+08 | 0.0000000 | Sí |
| Store4 | Store4 | 2.932625e+01 | 0.0000000 | Sí |
| Store5 | Store5 | -5.141289e+08 | 0.0000000 | Sí |
| Store6 | Store6 | -3.706823e-01 | 0.7108918 | No |
| Store7 | Store7 | -1.470810e+08 | 0.0000000 | Sí |
| Store8 | Store8 | -9.572039e+00 | 0.0000000 | Sí |
| Store9 | Store9 | -4.351684e+08 | 0.0000000 | Sí |
| Store10 | Store10 | 2.574005e+01 | 0.0000000 | Sí |
| Store11 | Store11 | -9.679470e+00 | 0.0000000 | Sí |
| Store12 | Store12 | 7.212034e+00 | 0.0000000 | Sí |
| Store13 | Store13 | 3.017075e+01 | 0.0000000 | Sí |
| Store14 | Store14 | 1.174750e+01 | 0.0000000 | Sí |
| Store15 | Store15 | -1.934861e+07 | 0.0000000 | Sí |
| Store16 | Store16 | -1.847894e+08 | 0.0000000 | Sí |
| Store17 | Store17 | -3.809667e+07 | 0.0000000 | Sí |
| Store18 | Store18 | 1.061102e+01 | 0.0000000 | Sí |
| Store19 | Store19 | 3.226387e+01 | 0.0000000 | Sí |
| Store20 | Store20 | 6.765464e+00 | 0.0000000 | Sí |
| Store21 | Store21 | -7.049490e+08 | 0.0000000 | Sí |
| Store22 | Store22 | 1.232501e+01 | 0.0000000 | Sí |
| Store23 | Store23 | 2.289960e+01 | 0.0000000 | Sí |
| Store24 | Store24 | 2.338295e+01 | 0.0000000 | Sí |
| Store25 | Store25 | -4.609885e+08 | 0.0000000 | Sí |
| Store26 | Store26 | 4.571757e+00 | 0.0000050 | Sí |
| Store27 | Store27 | 2.482511e+01 | 0.0000000 | Sí |
| Store28 | Store28 | 1.207674e+01 | 0.0000000 | Sí |
| Store29 | Store29 | -8.692217e+06 | 0.0000000 | Sí |
| Store30 | Store30 | -7.711274e+08 | 0.0000000 | Sí |
| Store31 | Store31 | -8.540830e+00 | 0.0000000 | Sí |
| Store32 | Store32 | -4.390194e+00 | 0.0000116 | Sí |
| Store33 | Store33 | -1.146762e+07 | 0.0000000 | Sí |
| Store34 | Store34 | 7.835677e+00 | 0.0000000 | Sí |
| Store35 | Store35 | 9.378348e+00 | 0.0000000 | Sí |
| Store36 | Store36 | -6.459865e+08 | 0.0000000 | Sí |
| Store37 | Store37 | -7.084962e+08 | 0.0000000 | Sí |
| Store38 | Store38 | -3.074827e+06 | 0.0000000 | Sí |
| Store39 | Store39 | -4.746374e+00 | 0.0000021 | Sí |
| Store40 | Store40 | 5.963186e+00 | 0.0000000 | Sí |
| Store41 | Store41 | -3.565721e+00 | 0.0003667 | Sí |
| Store42 | Store42 | -1.211654e+07 | 0.0000000 | Sí |
| Store43 | Store43 | -1.472796e+08 | 0.0000000 | Sí |
| Store44 | Store44 | -9.071128e+07 | 0.0000000 | Sí |
| Store45 | Store45 | -3.061118e+00 | 0.0022183 | Sí |
| Dateagosto | Dateagosto | 2.435244e+00 | 0.0149208 | Sí |
| Datediciembre | Datediciembre | 6.712968e+00 | 0.0000000 | Sí |
| Dateenero | Dateenero | -5.586182e+00 | 0.0000000 | Sí |
| Datefebrero | Datefebrero | 2.739515e-01 | 0.7841346 | No |
| Datejulio | Datejulio | 5.448512e-01 | 0.5858832 | No |
| Datejunio | Datejunio | 1.970827e+00 | 0.0488057 | Sí |
| Datemarzo | Datemarzo | -8.254545e-01 | 0.4091579 | No |
| Datemayo | Datemayo | -1.923451e-01 | 0.8474807 | No |
| Datenoviembre | Datenoviembre | 4.910150e+00 | 0.0000009 | Sí |
| Dateoctubre | Dateoctubre | -2.340167e+00 | 0.0193191 | Sí |
| Dateseptiembre | Dateseptiembre | -1.881937e+00 | 0.0599099 | No |
| Holiday_Flag1 | Holiday_Flag1 | 3.286811e+00 | 0.0010212 | Sí |
| Temperature | Temperature | -9.360515e-01 | 0.3492976 | No |
| Fuel_Price | Fuel_Price | -3.902375e+00 | 0.0000967 | Sí |
| CPI | CPI | 3.292060e+01 | 0.0000000 | Sí |
| Unemployment | Unemployment | -1.227944e+00 | 0.2195331 | No |
| Ventas Bajas|Ventas Medias | Ventas Bajas|Ventas Medias | 1.840253e+01 | 0.0000000 | Sí |
| Ventas Medias|Ventas Altas | Ventas Medias|Ventas Altas | 2.473615e+01 | 0.0000000 | Sí |
Se puede observar que no todas las variables son significativas. Con el fin de mejorar el ajuste del modelo, se realizará la eliminación de la variable Temperatura.
modelo_2 <- polr(Weekly_Sales ~ .-Temperature, data = entrenamiento, Hess = TRUE, method = "logistic")
summary(modelo_2)Call:
polr(formula = Weekly_Sales ~ . - Temperature, data = entrenamiento,
Hess = TRUE, method = "logistic")
Coefficients:
Value Std. Error t value
Store2 2.91210 7.089e-01 4.108e+00
Store3 -25.49169 3.230e-08 -7.893e+08
Store4 17.20438 5.780e-01 2.977e+01
Store5 -24.86039 4.630e-08 -5.370e+08
Store6 -0.20484 4.911e-01 -4.171e-01
Store7 -20.54466 1.266e-07 -1.623e+08
Store8 -8.43672 8.812e-01 -9.574e+00
Store9 -25.66411 5.269e-08 -4.871e+08
Store10 17.88841 6.517e-01 2.745e+01
Store11 -4.42285 4.515e-01 -9.796e+00
Store12 7.98674 1.120e+00 7.133e+00
Store13 17.21462 5.737e-01 3.001e+01
Store14 8.39677 7.046e-01 1.192e+01
Store15 -9.61200 5.218e-07 -1.842e+07
Store16 -20.74177 5.841e-08 -3.551e+08
Store17 -9.02977 1.587e-07 -5.691e+07
Store18 6.54677 6.235e-01 1.050e+01
Store19 10.71671 3.334e-01 3.214e+01
Store20 4.96414 6.907e-01 7.187e+00
Store21 -24.85530 3.347e-08 -7.425e+08
Store22 6.24558 5.136e-01 1.216e+01
Store23 9.36704 4.077e-01 2.297e+01
Store24 9.27398 3.985e-01 2.327e+01
Store25 -23.32532 3.563e-08 -6.546e+08
Store26 4.78402 1.018e+00 4.698e+00
Store27 14.90982 6.022e-01 2.476e+01
Store28 11.67261 9.604e-01 1.215e+01
Store29 -9.35418 1.116e-06 -8.385e+06
Store30 -24.58580 3.061e-08 -8.031e+08
Store31 -3.72664 4.357e-01 -8.553e+00
Store32 -3.11885 7.217e-01 -4.321e+00
Store33 -8.33259 7.475e-07 -1.115e+07
Store34 6.59501 8.494e-01 7.764e+00
Store35 5.72780 6.192e-01 9.250e+00
Store36 -24.50950 3.839e-08 -6.384e+08
Store37 -24.39079 3.509e-08 -6.950e+08
Store38 -7.52336 2.703e-06 -2.783e+06
Store39 -1.93885 4.059e-01 -4.776e+00
Store40 4.84601 8.054e-01 6.017e+00
Store41 -1.61788 4.560e-01 -3.548e+00
Store42 -8.43077 7.103e-07 -1.187e+07
Store43 -22.87058 1.509e-07 -1.516e+08
Store44 -8.86874 9.685e-08 -9.157e+07
Store45 -2.46283 8.167e-01 -3.015e+00
Dateagosto 0.83048 3.385e-01 2.454e+00
Datediciembre 3.07664 3.668e-01 8.388e+00
Dateenero -3.03721 5.265e-01 -5.769e+00
Datefebrero 0.35378 3.645e-01 9.705e-01
Datejulio -0.02865 3.571e-01 -8.024e-02
Datejunio 0.61474 3.506e-01 1.753e+00
Datemarzo -0.21718 3.698e-01 -5.874e-01
Datemayo -0.18252 3.878e-01 -4.707e-01
Datenoviembre 2.02597 3.865e-01 5.242e+00
Dateoctubre -0.97757 3.939e-01 -2.481e+00
Dateseptiembre -1.08106 4.065e-01 -2.659e+00
Holiday_Flag1 0.93437 2.715e-01 3.441e+00
Fuel_Price -0.89054 2.254e-01 -3.952e+00
CPI 0.15684 3.946e-03 3.975e+01
Unemployment -0.18265 1.416e-01 -1.290e+00
Intercepts:
Value Std. Error t value
Ventas Bajas|Ventas Medias 2.737560e+01 1.463600e+00 1.870420e+01
Ventas Medias|Ventas Altas 3.732960e+01 1.485000e+00 2.513700e+01
Residual Deviance: 1268.024
AIC: 1390.024
| Variable | t_value | p_value | Significativa | |
|---|---|---|---|---|
| Store2 | Store2 | 4.107637e+00 | 0.0000407 | Sí |
| Store3 | Store3 | -7.893018e+08 | 0.0000000 | Sí |
| Store4 | Store4 | 2.976769e+01 | 0.0000000 | Sí |
| Store5 | Store5 | -5.369939e+08 | 0.0000000 | Sí |
| Store6 | Store6 | -4.171107e-01 | 0.6766176 | No |
| Store7 | Store7 | -1.622668e+08 | 0.0000000 | Sí |
| Store8 | Store8 | -9.573943e+00 | 0.0000000 | Sí |
| Store9 | Store9 | -4.870772e+08 | 0.0000000 | Sí |
| Store10 | Store10 | 2.744936e+01 | 0.0000000 | Sí |
| Store11 | Store11 | -9.796345e+00 | 0.0000000 | Sí |
| Store12 | Store12 | 7.133480e+00 | 0.0000000 | Sí |
| Store13 | Store13 | 3.000889e+01 | 0.0000000 | Sí |
| Store14 | Store14 | 1.191638e+01 | 0.0000000 | Sí |
| Store15 | Store15 | -1.842228e+07 | 0.0000000 | Sí |
| Store16 | Store16 | -3.551320e+08 | 0.0000000 | Sí |
| Store17 | Store17 | -5.691302e+07 | 0.0000000 | Sí |
| Store18 | Store18 | 1.049992e+01 | 0.0000000 | Sí |
| Store19 | Store19 | 3.214039e+01 | 0.0000000 | Sí |
| Store20 | Store20 | 7.186821e+00 | 0.0000000 | Sí |
| Store21 | Store21 | -7.425086e+08 | 0.0000000 | Sí |
| Store22 | Store22 | 1.216116e+01 | 0.0000000 | Sí |
| Store23 | Store23 | 2.297394e+01 | 0.0000000 | Sí |
| Store24 | Store24 | 2.327244e+01 | 0.0000000 | Sí |
| Store25 | Store25 | -6.545850e+08 | 0.0000000 | Sí |
| Store26 | Store26 | 4.698418e+00 | 0.0000027 | Sí |
| Store27 | Store27 | 2.475872e+01 | 0.0000000 | Sí |
| Store28 | Store28 | 1.215352e+01 | 0.0000000 | Sí |
| Store29 | Store29 | -8.385396e+06 | 0.0000000 | Sí |
| Store30 | Store30 | -8.031175e+08 | 0.0000000 | Sí |
| Store31 | Store31 | -8.552690e+00 | 0.0000000 | Sí |
| Store32 | Store32 | -4.321248e+00 | 0.0000159 | Sí |
| Store33 | Store33 | -1.114687e+07 | 0.0000000 | Sí |
| Store34 | Store34 | 7.764256e+00 | 0.0000000 | Sí |
| Store35 | Store35 | 9.249873e+00 | 0.0000000 | Sí |
| Store36 | Store36 | -6.383901e+08 | 0.0000000 | Sí |
| Store37 | Store37 | -6.950288e+08 | 0.0000000 | Sí |
| Store38 | Store38 | -2.783220e+06 | 0.0000000 | Sí |
| Store39 | Store39 | -4.776133e+00 | 0.0000018 | Sí |
| Store40 | Store40 | 6.016982e+00 | 0.0000000 | Sí |
| Store41 | Store41 | -3.547962e+00 | 0.0003922 | Sí |
| Store42 | Store42 | -1.186850e+07 | 0.0000000 | Sí |
| Store43 | Store43 | -1.515816e+08 | 0.0000000 | Sí |
| Store44 | Store44 | -9.157086e+07 | 0.0000000 | Sí |
| Store45 | Store45 | -3.015481e+00 | 0.0025802 | Sí |
| Dateagosto | Dateagosto | 2.453622e+00 | 0.0141807 | Sí |
| Datediciembre | Datediciembre | 8.387650e+00 | 0.0000000 | Sí |
| Dateenero | Dateenero | -5.769202e+00 | 0.0000000 | Sí |
| Datefebrero | Datefebrero | 9.705129e-01 | 0.3318437 | No |
| Datejulio | Datejulio | -8.023930e-02 | 0.9360505 | No |
| Datejunio | Datejunio | 1.753489e+00 | 0.0795870 | No |
| Datemarzo | Datemarzo | -5.873584e-01 | 0.5569928 | No |
| Datemayo | Datemayo | -4.706631e-01 | 0.6379044 | No |
| Datenoviembre | Datenoviembre | 5.242431e+00 | 0.0000002 | Sí |
| Dateoctubre | Dateoctubre | -2.481468e+00 | 0.0131209 | Sí |
| Dateseptiembre | Dateseptiembre | -2.659245e+00 | 0.0078597 | Sí |
| Holiday_Flag1 | Holiday_Flag1 | 3.441384e+00 | 0.0005841 | Sí |
| Fuel_Price | Fuel_Price | -3.951658e+00 | 0.0000788 | Sí |
| CPI | CPI | 3.974987e+01 | 0.0000000 | Sí |
| Unemployment | Unemployment | -1.290297e+00 | 0.1970147 | No |
| Ventas Bajas|Ventas Medias | Ventas Bajas|Ventas Medias | 1.870419e+01 | 0.0000000 | Sí |
| Ventas Medias|Ventas Altas | Ventas Medias|Ventas Altas | 2.513702e+01 | 0.0000000 | Sí |
Se puede observar que no todas las variables son significativas. Con el fin de mejorar el ajuste del modelo, se realizará la eliminación de las variables Temperature y Unemployment.
modelo_3 <- polr(Weekly_Sales ~ .-Temperature-Unemployment, data = entrenamiento, Hess = TRUE, method = "logistic")
summary(modelo_3)Call:
polr(formula = Weekly_Sales ~ . - Temperature - Unemployment,
data = entrenamiento, Hess = TRUE, method = "logistic")
Coefficients:
Value Std. Error t value
Store2 2.92227 7.102e-01 4.115e+00
Store3 -25.49925 3.527e-08 -7.231e+08
Store4 19.24210 5.651e-01 3.405e+01
Store5 -24.64922 2.819e-08 -8.744e+08
Store6 -0.05410 4.722e-01 -1.146e-01
Store7 -20.27392 4.892e-08 -4.144e+08
Store8 -8.24800 8.519e-01 -9.682e+00
Store9 -25.48194 2.882e-08 -8.843e+08
Store10 19.47630 5.905e-01 3.298e+01
Store11 -4.40607 4.433e-01 -9.938e+00
Store12 8.68616 6.326e-01 1.373e+01
Store13 19.07732 5.732e-01 3.328e+01
Store14 8.79496 6.674e-01 1.318e+01
Store15 -8.03923 9.931e-08 -8.095e+07
Store16 -20.09602 3.944e-08 -5.095e+08
Store17 -7.08419 1.030e-07 -6.880e+07
Store18 7.94383 5.617e-01 1.414e+01
Store19 12.24759 2.792e-01 4.386e+01
Store20 5.15078 6.901e-01 7.464e+00
Store21 -24.85151 3.486e-08 -7.129e+08
Store22 7.70442 4.878e-01 1.580e+01
Store23 11.48621 2.842e-01 4.041e+01
Store24 10.73129 3.236e-01 3.316e+01
Store25 -23.14435 3.656e-08 -6.331e+08
Store26 6.35897 1.008e+00 6.311e+00
Store27 16.37000 5.688e-01 2.878e+01
Store28 12.39947 3.097e-01 4.003e+01
Store29 -8.10486 9.391e-08 -8.631e+07
Store30 -24.57489 3.079e-08 -7.981e+08
Store31 -3.71280 4.347e-01 -8.540e+00
Store32 -2.86504 7.045e-01 -4.067e+00
Store33 -6.71727 1.014e-07 -6.625e+07
Store34 7.89901 7.379e-01 1.070e+01
Store35 7.06039 5.645e-01 1.251e+01
Store36 -24.52759 3.452e-08 -7.106e+08
Store37 -24.40263 3.042e-08 -8.022e+08
Store38 -6.73778 1.088e-07 -6.194e+07
Store39 -1.95420 4.043e-01 -4.833e+00
Store40 6.98377 7.449e-01 9.375e+00
Store41 -1.05889 4.499e-01 -2.353e+00
Store42 -6.79137 1.054e-07 -6.442e+07
Store43 -23.13229 3.810e-08 -6.071e+08
Store44 -6.94529 8.289e-08 -8.379e+07
Store45 -2.06331 7.955e-01 -2.594e+00
Dateagosto 0.83436 3.371e-01 2.475e+00
Datediciembre 3.06403 3.659e-01 8.374e+00
Dateenero -3.01347 5.227e-01 -5.765e+00
Datefebrero 0.34631 3.636e-01 9.525e-01
Datejulio -0.01199 3.542e-01 -3.386e-02
Datejunio 0.59980 3.502e-01 1.713e+00
Datemarzo -0.23826 3.694e-01 -6.451e-01
Datemayo -0.18566 3.875e-01 -4.792e-01
Datenoviembre 2.01440 3.861e-01 5.218e+00
Dateoctubre -0.96578 3.903e-01 -2.475e+00
Dateseptiembre -1.08053 4.058e-01 -2.663e+00
Holiday_Flag1 0.93485 2.715e-01 3.443e+00
Fuel_Price -0.85923 1.865e-01 -4.606e+00
CPI 0.17676 3.833e-03 4.612e+01
Intercepts:
Value Std. Error t value
Ventas Bajas|Ventas Medias 3.316880e+01 7.378000e-01 4.495720e+01
Ventas Medias|Ventas Altas 4.312270e+01 8.378000e-01 5.147210e+01
Residual Deviance: 1269.359
AIC: 1389.359
| Variable | t_value | p_value | Significativa | |
|---|---|---|---|---|
| Store2 | Store2 | 4.114798e+00 | 0.0000395 | Sí |
| Store3 | Store3 | -7.230716e+08 | 0.0000000 | Sí |
| Store4 | Store4 | 3.405366e+01 | 0.0000000 | Sí |
| Store5 | Store5 | -8.743861e+08 | 0.0000000 | Sí |
| Store6 | Store6 | -1.145683e-01 | 0.9087925 | No |
| Store7 | Store7 | -4.144242e+08 | 0.0000000 | Sí |
| Store8 | Store8 | -9.681960e+00 | 0.0000000 | Sí |
| Store9 | Store9 | -8.843250e+08 | 0.0000000 | Sí |
| Store10 | Store10 | 3.298162e+01 | 0.0000000 | Sí |
| Store11 | Store11 | -9.938173e+00 | 0.0000000 | Sí |
| Store12 | Store12 | 1.373047e+01 | 0.0000000 | Sí |
| Store13 | Store13 | 3.328238e+01 | 0.0000000 | Sí |
| Store14 | Store14 | 1.317857e+01 | 0.0000000 | Sí |
| Store15 | Store15 | -8.095464e+07 | 0.0000000 | Sí |
| Store16 | Store16 | -5.095271e+08 | 0.0000000 | Sí |
| Store17 | Store17 | -6.880146e+07 | 0.0000000 | Sí |
| Store18 | Store18 | 1.414152e+01 | 0.0000000 | Sí |
| Store19 | Store19 | 4.386260e+01 | 0.0000000 | Sí |
| Store20 | Store20 | 7.463750e+00 | 0.0000000 | Sí |
| Store21 | Store21 | -7.128583e+08 | 0.0000000 | Sí |
| Store22 | Store22 | 1.579533e+01 | 0.0000000 | Sí |
| Store23 | Store23 | 4.041242e+01 | 0.0000000 | Sí |
| Store24 | Store24 | 3.315973e+01 | 0.0000000 | Sí |
| Store25 | Store25 | -6.330565e+08 | 0.0000000 | Sí |
| Store26 | Store26 | 6.311325e+00 | 0.0000000 | Sí |
| Store27 | Store27 | 2.877961e+01 | 0.0000000 | Sí |
| Store28 | Store28 | 4.003201e+01 | 0.0000000 | Sí |
| Store29 | Store29 | -8.630874e+07 | 0.0000000 | Sí |
| Store30 | Store30 | -7.981012e+08 | 0.0000000 | Sí |
| Store31 | Store31 | -8.540083e+00 | 0.0000000 | Sí |
| Store32 | Store32 | -4.066502e+00 | 0.0000486 | Sí |
| Store33 | Store33 | -6.625097e+07 | 0.0000000 | Sí |
| Store34 | Store34 | 1.070444e+01 | 0.0000000 | Sí |
| Store35 | Store35 | 1.250733e+01 | 0.0000000 | Sí |
| Store36 | Store36 | -7.106056e+08 | 0.0000000 | Sí |
| Store37 | Store37 | -8.022181e+08 | 0.0000000 | Sí |
| Store38 | Store38 | -6.194327e+07 | 0.0000000 | Sí |
| Store39 | Store39 | -4.833123e+00 | 0.0000014 | Sí |
| Store40 | Store40 | 9.375157e+00 | 0.0000000 | Sí |
| Store41 | Store41 | -2.353403e+00 | 0.0186458 | Sí |
| Store42 | Store42 | -6.441667e+07 | 0.0000000 | Sí |
| Store43 | Store43 | -6.070707e+08 | 0.0000000 | Sí |
| Store44 | Store44 | -8.379284e+07 | 0.0000000 | Sí |
| Store45 | Store45 | -2.593597e+00 | 0.0095289 | Sí |
| Dateagosto | Dateagosto | 2.475184e+00 | 0.0133538 | Sí |
| Datediciembre | Datediciembre | 8.374092e+00 | 0.0000000 | Sí |
| Dateenero | Dateenero | -5.765347e+00 | 0.0000000 | Sí |
| Datefebrero | Datefebrero | 9.525330e-01 | 0.3408786 | No |
| Datejulio | Datejulio | -3.386060e-02 | 0.9729899 | No |
| Datejunio | Datejunio | 1.712730e+00 | 0.0868319 | No |
| Datemarzo | Datemarzo | -6.450835e-01 | 0.5189064 | No |
| Datemayo | Datemayo | -4.791780e-01 | 0.6318355 | No |
| Datenoviembre | Datenoviembre | 5.217570e+00 | 0.0000002 | Sí |
| Dateoctubre | Dateoctubre | -2.474519e+00 | 0.0133786 | Sí |
| Dateseptiembre | Dateseptiembre | -2.662504e+00 | 0.0077841 | Sí |
| Holiday_Flag1 | Holiday_Flag1 | 3.443308e+00 | 0.0005800 | Sí |
| Fuel_Price | Fuel_Price | -4.606388e+00 | 0.0000042 | Sí |
| CPI | CPI | 4.612095e+01 | 0.0000000 | Sí |
| Ventas Bajas|Ventas Medias | Ventas Bajas|Ventas Medias | 4.495717e+01 | 0.0000000 | Sí |
| Ventas Medias|Ventas Altas | Ventas Medias|Ventas Altas | 5.147213e+01 | 0.0000000 | Sí |
Si bien, no todas las variables que aparecen son significativas, si tiene al menos 1 categoría significativa, por lo que se optara por dejar este modelo.
Interpretación De Los Coeficientes
modelo_3$coefficients| Coeficientes | |
|---|---|
| Store2 | 2.9222713 |
| Store3 | -25.4992517 |
| Store4 | 19.2421035 |
| Store5 | -24.6492245 |
| Store6 | -0.0540958 |
| Store7 | -20.2739246 |
| Store8 | -8.2480030 |
| Store9 | -25.4819382 |
| Store10 | 19.4763032 |
| Store11 | -4.4060692 |
| Store12 | 8.6861583 |
| Store13 | 19.0773231 |
| Store14 | 8.7949597 |
| Store15 | -8.0392331 |
| Store16 | -20.0960153 |
| Store17 | -7.0841865 |
| Store18 | 7.9438283 |
| Store19 | 12.2475947 |
| Store20 | 5.1507822 |
| Store21 | -24.8515074 |
| Store22 | 7.7044217 |
| Store23 | 11.4862055 |
| Store24 | 10.7312873 |
| Store25 | -23.1443451 |
| Store26 | 6.3589693 |
| Store27 | 16.3699993 |
| Store28 | 12.3994691 |
| Store29 | -8.1048556 |
| Store30 | -24.5748919 |
| Store31 | -3.7127971 |
| Store32 | -2.8650450 |
| Store33 | -6.7172709 |
| Store34 | 7.8990140 |
| Store35 | 7.0603889 |
| Store36 | -24.5275906 |
| Store37 | -24.4026313 |
| Store38 | -6.7377758 |
| Store39 | -1.9541964 |
| Store40 | 6.9837714 |
| Store41 | -1.0588857 |
| Store42 | -6.7913706 |
| Store43 | -23.1322863 |
| Store44 | -6.9452888 |
| Store45 | -2.0633072 |
| Dateagosto | 0.8343627 |
| Datediciembre | 3.0640282 |
| Dateenero | -3.0134733 |
| Datefebrero | 0.3463135 |
| Datejulio | -0.0119947 |
| Datejunio | 0.5998049 |
| Datemarzo | -0.2382620 |
| Datemayo | -0.1856595 |
| Datenoviembre | 2.0144049 |
| Dateoctubre | -0.9657845 |
| Dateseptiembre | -1.0805292 |
| Holiday_Flag1 | 0.9348495 |
| Fuel_Price | -0.8592320 |
| CPI | 0.1767599 |
exp(modelo_3$coefficients)| Razón de Probabilidades | |
|---|---|
| Store2 | 1.858345e+01 |
| Store3 | 0.000000e+00 |
| Store4 | 2.273732e+08 |
| Store5 | 0.000000e+00 |
| Store6 | 9.473414e-01 |
| Store7 | 0.000000e+00 |
| Store8 | 2.618000e-04 |
| Store9 | 0.000000e+00 |
| Store10 | 2.873763e+08 |
| Store11 | 1.220310e-02 |
| Store12 | 5.920394e+03 |
| Store13 | 1.928307e+08 |
| Store14 | 6.600889e+03 |
| Store15 | 3.226000e-04 |
| Store16 | 0.000000e+00 |
| Store17 | 8.383000e-04 |
| Store18 | 2.818128e+03 |
| Store19 | 2.084792e+05 |
| Store20 | 1.725664e+02 |
| Store21 | 0.000000e+00 |
| Store22 | 2.218134e+03 |
| Store23 | 9.736338e+04 |
| Store24 | 4.576557e+04 |
| Store25 | 0.000000e+00 |
| Store26 | 5.776506e+02 |
| Store27 | 1.286472e+07 |
| Store28 | 2.426727e+05 |
| Store29 | 3.021000e-04 |
| Store30 | 0.000000e+00 |
| Store31 | 2.440920e-02 |
| Store32 | 5.698060e-02 |
| Store33 | 1.209800e-03 |
| Store34 | 2.694624e+03 |
| Store35 | 1.164898e+03 |
| Store36 | 0.000000e+00 |
| Store37 | 0.000000e+00 |
| Store38 | 1.185300e-03 |
| Store39 | 1.416783e-01 |
| Store40 | 1.078980e+03 |
| Store41 | 3.468421e-01 |
| Store42 | 1.123400e-03 |
| Store43 | 0.000000e+00 |
| Store44 | 9.632000e-04 |
| Store45 | 1.270332e-01 |
| Dateagosto | 2.303346e+00 |
| Datediciembre | 2.141364e+01 |
| Dateenero | 4.912080e-02 |
| Datefebrero | 1.413846e+00 |
| Datejulio | 9.880769e-01 |
| Datejunio | 1.821763e+00 |
| Datemarzo | 7.879962e-01 |
| Datemayo | 8.305563e-01 |
| Datenoviembre | 7.496265e+00 |
| Dateoctubre | 3.806844e-01 |
| Dateseptiembre | 3.394159e-01 |
| Holiday_Flag1 | 2.546830e+00 |
| Fuel_Price | 4.234872e-01 |
| CPI | 1.193345e+00 |
- Store
Debido a que esta variable tiene demasiadas categorías solo se realizará el análisis de los primeros dos resultados:
Store2: La razón de probabilidades para Store2 es 18.58 veces mayor que la categoría de referencia (Store1). Esto sugiere que Store2 tiene una probabilidad significativamente mayor de registrar ventas altas en comparación con la tienda de referencia, indicando un fuerte efecto positivo en las ventas altas.
Store3 (8.43e-12): La razón de probabilidades para Store3 es extremadamente baja, casi cero en comparación con la tienda de referencia. Esto indica que Store3 tiene una probabilidad casi inexistente de registrar ventas altas en comparación con la tienda de referencia. Es decir, Store3 tiene muy poco impacto positivo en las ventas altas.
Los resultados para las demás categorías se realizan de manera similar.
- Date
Debido a que esta variable tiene demasiadas categorías solo se realizará el análisis de los primeros dos resultados:
Dateagosto: Las probabilidades de que se registren ventas altas en agosto son aproximadamente 2.30 veces mayores en comparación con el mes de referencia. Esto sugiere que agosto es un mes asociado con una mayor probabilidad de ventas altas, indicando que este período del año es más favorable para lograr ventas altas en comparación con el mes de referencia.
Datediciembre: Las probabilidades de que se registren ventas altas en diciembre son 21.41 veces mayores que en el mes de referencia. Esto sugiere que diciembre es un mes con una probabilidad significativamente alta de registrar ventas altas, lo que podría estar asociado con la temporada navideña y el aumento general de las compras durante ese tiempo.
Los resultados para las demás categorías se realizan de manera similar.
Holiday_Flag1 (2.55): La probabilidad de registrar ventas altas durante un día festivo es 2.55 veces mayor en comparación con un día no festivo. Es decir, los días festivos están asociados con un aumento en las ventas, lo cual puede estar relacionado con mayores oportunidades de compra y promociones especiales durante estos días.
Temperature: La razón de probabilidades es 0.42. Esto indica que un aumento en el precio del combustible disminuye la probabilidad de que ocurran ventas altas. Esto puede reflejar cómo los altos costos de transporte afectan negativamente el consumo, reduciendo la probabilidad de ventas altas debido a mayores costos que pueden afectar a los consumidores.
Fuel_Price (0.41): Un aumento en el precio del combustible disminuye significativamente la probabilidad del evento de interés, con una razón de probabilidades de 0.41. Esto indica que cuando los precios del combustible son altos, hay una menor probabilidad de que ocurran ventas altas, lo cual podría reflejar una reducción en el consumo.
CPI (1.19): Un aumento en el CPI está asociado con un incremento en la probabilidad de ventas altas. Esto sugiere que cuando los precios en general suben (reflejado en el CPI), hay una mayor probabilidad de que ocurran ventas altas, lo cual podría estar relacionado con un aumento en los costos o precios de los productos
Comparación De Los AIC
AIC(modelo_1)
AIC(modelo_2)
AIC(modelo_3)| Modelo.1 | Modelo.2 | Modelo.3 |
|---|---|---|
| 1391.147 | 1390.024 | 1389.359 |
Se puede observar que el menor AIC es, efectivamente, el del modelo 3, por lo que se usará este modelo para realizar las predicciones requeridas.
probabilidades <- predict(modelo_3, prueba, type = "probs")
probabilidades| Ventas Bajas | Ventas Medias | Ventas Altas | |
|---|---|---|---|
| 1 | 0.0927162 | 0.9068188 | 0.0004650 |
| 4 | 0.0886823 | 0.9108294 | 0.0004883 |
| 7 | 0.1693482 | 0.8304186 | 0.0002331 |
| 8 | 0.1758072 | 0.8239700 | 0.0002228 |
| 9 | 0.1468502 | 0.8528737 | 0.0002761 |
| 11 | 0.1645975 | 0.8351612 | 0.0002412 |
| 12 | 0.1642669 | 0.8354913 | 0.0002418 |
| 15 | 0.2022184 | 0.7975941 | 0.0001875 |
| 17 | 0.1746560 | 0.8251194 | 0.0002246 |
| 18 | 0.0805958 | 0.9188621 | 0.0005420 |
| 29 | 0.0584404 | 0.9407942 | 0.0007654 |
| 30 | 0.0566887 | 0.9425209 | 0.0007905 |
| 37 | 0.2751890 | 0.7246858 | 0.0001252 |
| 44 | 0.0068811 | 0.9863043 | 0.0068146 |
| 47 | 0.0082980 | 0.9860524 | 0.0056495 |
| 48 | 0.0034386 | 0.9829706 | 0.0135908 |
| 50 | 0.7970891 | 0.2028988 | 0.0000121 |
| 61 | 0.1445707 | 0.8551481 | 0.0002812 |
| 62 | 0.1498775 | 0.8498529 | 0.0002696 |
| 64 | 0.1618201 | 0.8379337 | 0.0002462 |
| 65 | 0.1581745 | 0.8415725 | 0.0002530 |
| 70 | 0.0907569 | 0.9087670 | 0.0004761 |
| 71 | 0.0904979 | 0.9090245 | 0.0004776 |
| 72 | 0.0903815 | 0.9091403 | 0.0004782 |
| 76 | 0.1400794 | 0.8596289 | 0.0002918 |
| 94 | 0.0101924 | 0.9852120 | 0.0045956 |
| 97 | 0.0027720 | 0.9804126 | 0.0168154 |
| 98 | 0.0026699 | 0.9798815 | 0.0174486 |
| 101 | 0.5145525 | 0.4854026 | 0.0000448 |
| 102 | 0.5289864 | 0.4709712 | 0.0000423 |
| 106 | 0.0160279 | 0.9810620 | 0.0029101 |
| 109 | 0.0750923 | 0.9243225 | 0.0005852 |
| 115 | 0.0664824 | 0.9328505 | 0.0006671 |
| 118 | 0.0686933 | 0.9306626 | 0.0006441 |
| 119 | 0.0648354 | 0.9344794 | 0.0006852 |
| 128 | 0.0373697 | 0.9614072 | 0.0012231 |
| 129 | 0.0390505 | 0.9597810 | 0.0011685 |
| 134 | 0.0213274 | 0.9764958 | 0.0021768 |
| 135 | 0.0211582 | 0.9766473 | 0.0021946 |
| 137 | 0.1300572 | 0.8696249 | 0.0003179 |
| 139 | 0.1176459 | 0.8819976 | 0.0003564 |
| 150 | 0.0115207 | 0.9844168 | 0.0040624 |
| 154 | 0.0111320 | 0.9846626 | 0.0042053 |
| 159 | 0.0132802 | 0.9831999 | 0.0035198 |
| 162 | 0.0046006 | 0.9852181 | 0.0101813 |
| 163 | 0.0044821 | 0.9850689 | 0.0104490 |
| 164 | 0.0046364 | 0.9852605 | 0.0101031 |
| 171 | 0.0035998 | 0.9834122 | 0.0129880 |
| 174 | 0.0221317 | 0.9757722 | 0.0020961 |
| 178 | 0.0197293 | 0.9779142 | 0.0023566 |
| 179 | 0.0199742 | 0.9776987 | 0.0023271 |
| 182 | 0.0208284 | 0.9769416 | 0.0022300 |
| 185 | 0.0011350 | 0.9587079 | 0.0401570 |
| 186 | 0.0004433 | 0.9027367 | 0.0968200 |
| 190 | 0.0004780 | 0.9090944 | 0.0904277 |
| 195 | 0.1678143 | 0.8319500 | 0.0002357 |
| 198 | 0.0059632 | 0.9861743 | 0.0078625 |
| 201 | 0.0130206 | 0.9833887 | 0.0035907 |
| 204 | 0.0095795 | 0.9855293 | 0.0048912 |
| 206 | 0.0106607 | 0.9849468 | 0.0043925 |
| 207 | 0.0109316 | 0.9847855 | 0.0042830 |
| 209 | 0.0134712 | 0.9830593 | 0.0034695 |
| 214 | 0.0056609 | 0.9860577 | 0.0082815 |
| 215 | 0.0056526 | 0.9860538 | 0.0082936 |
| 218 | 0.0086436 | 0.9859334 | 0.0054230 |
| 220 | 0.0097469 | 0.9854463 | 0.0048068 |
| 229 | 0.0202511 | 0.9774541 | 0.0022947 |
| 230 | 0.0173899 | 0.9799310 | 0.0026791 |
| 237 | 0.0005895 | 0.9248225 | 0.0745880 |
| 239 | 0.0001684 | 0.7796850 | 0.2201466 |
| 241 | 0.0001534 | 0.7633249 | 0.2365217 |
| 243 | 0.0000551 | 0.5369714 | 0.4629734 |
| 245 | 0.0605052 | 0.9387572 | 0.0007376 |
| 247 | 0.0600538 | 0.9392026 | 0.0007435 |
| 248 | 0.0023135 | 0.9775968 | 0.0200896 |
| 250 | 0.0025160 | 0.9789850 | 0.0184990 |
| 255 | 0.0049085 | 0.9855457 | 0.0095458 |
| 256 | 0.0050908 | 0.9857037 | 0.0092055 |
| 260 | 0.0037379 | 0.9837496 | 0.0125125 |
| 261 | 0.0042138 | 0.9846763 | 0.0111099 |
| 268 | 0.0013314 | 0.9642371 | 0.0344315 |
| 270 | 0.0021831 | 0.9765497 | 0.0212672 |
| 282 | 0.0075951 | 0.9862314 | 0.0061735 |
| 288 | 1.0000000 | 0.0000000 | 0.0000000 |
| 290 | 1.0000000 | 0.0000000 | 0.0000000 |
| 302 | 1.0000000 | 0.0000000 | 0.0000000 |
| 303 | 1.0000000 | 0.0000000 | 0.0000000 |
| 312 | 1.0000000 | 0.0000000 | 0.0000000 |
| 313 | 1.0000000 | 0.0000000 | 0.0000000 |
| 314 | 1.0000000 | 0.0000000 | 0.0000000 |
| 317 | 1.0000000 | 0.0000000 | 0.0000000 |
| 325 | 1.0000000 | 0.0000000 | 0.0000000 |
| 329 | 1.0000000 | 0.0000000 | 0.0000000 |
| 330 | 1.0000000 | 0.0000000 | 0.0000000 |
| 344 | 1.0000000 | 0.0000000 | 0.0000000 |
| 346 | 1.0000000 | 0.0000000 | 0.0000000 |
| 348 | 1.0000000 | 0.0000000 | 0.0000000 |
| 352 | 1.0000000 | 0.0000000 | 0.0000000 |
| 353 | 1.0000000 | 0.0000000 | 0.0000000 |
| 357 | 1.0000000 | 0.0000000 | 0.0000000 |
| 364 | 1.0000000 | 0.0000000 | 0.0000000 |
| 366 | 1.0000000 | 0.0000000 | 0.0000000 |
| 370 | 1.0000000 | 0.0000000 | 0.0000000 |
| 372 | 1.0000000 | 0.0000000 | 0.0000000 |
| 373 | 1.0000000 | 0.0000000 | 0.0000000 |
| 376 | 1.0000000 | 0.0000000 | 0.0000000 |
| 380 | 1.0000000 | 0.0000000 | 0.0000000 |
| 383 | 1.0000000 | 0.0000000 | 0.0000000 |
| 387 | 1.0000000 | 0.0000000 | 0.0000000 |
| 392 | 1.0000000 | 0.0000000 | 0.0000000 |
| 394 | 1.0000000 | 0.0000000 | 0.0000000 |
| 404 | 1.0000000 | 0.0000000 | 0.0000000 |
| 405 | 1.0000000 | 0.0000000 | 0.0000000 |
| 408 | 1.0000000 | 0.0000000 | 0.0000000 |
| 412 | 1.0000000 | 0.0000000 | 0.0000000 |
| 416 | 1.0000000 | 0.0000000 | 0.0000000 |
| 418 | 1.0000000 | 0.0000000 | 0.0000000 |
| 423 | 1.0000000 | 0.0000000 | 0.0000000 |
| 430 | 0.0014465 | 0.9667768 | 0.0317767 |
| 437 | 0.0028742 | 0.9809003 | 0.0162255 |
| 443 | 0.0030983 | 0.9818354 | 0.0150663 |
| 451 | 0.0023169 | 0.9776222 | 0.0200609 |
| 453 | 0.0022212 | 0.9768700 | 0.0209087 |
| 454 | 0.0022125 | 0.9767979 | 0.0209896 |
| 455 | 0.0022945 | 0.9774519 | 0.0202536 |
| 461 | 0.0024531 | 0.9785814 | 0.0189655 |
| 462 | 0.0062970 | 0.9862566 | 0.0074463 |
| 479 | 0.0478486 | 0.9512063 | 0.0009451 |
| 486 | 0.0034452 | 0.9829898 | 0.0135650 |
| 487 | 0.0038451 | 0.9839883 | 0.0121665 |
| 494 | 0.0035881 | 0.9833820 | 0.0130299 |
| 495 | 0.0046063 | 0.9852249 | 0.0101688 |
| 498 | 0.0042334 | 0.9847079 | 0.0110587 |
| 502 | 0.0016270 | 0.9700280 | 0.0283450 |
| 503 | 0.0028195 | 0.9806447 | 0.0165357 |
| 504 | 0.0027251 | 0.9801744 | 0.0171005 |
| 505 | 0.0029426 | 0.9812041 | 0.0158533 |
| 507 | 0.0031758 | 0.9821213 | 0.0147029 |
| 509 | 0.0013086 | 0.9636807 | 0.0350107 |
| 512 | 0.0080283 | 0.9861319 | 0.0058398 |
| 514 | 0.0078756 | 0.9861711 | 0.0059533 |
| 516 | 0.0066568 | 0.9862990 | 0.0070442 |
| 518 | 0.0053522 | 0.9858902 | 0.0087576 |
| 520 | 0.0057028 | 0.9860765 | 0.0082207 |
| 522 | 0.0002717 | 0.8508323 | 0.1488960 |
| 529 | 0.0000309 | 0.3941833 | 0.6057858 |
| 533 | 0.0367102 | 0.9620439 | 0.0012459 |
| 536 | 0.0015354 | 0.9684758 | 0.0299889 |
| 537 | 0.0015732 | 0.9691382 | 0.0292886 |
| 540 | 0.0030956 | 0.9818253 | 0.0150791 |
| 541 | 0.0031967 | 0.9821955 | 0.0146078 |
| 542 | 0.0033266 | 0.9826298 | 0.0140437 |
| 544 | 0.0026961 | 0.9800224 | 0.0172815 |
| 546 | 0.0025286 | 0.9790632 | 0.0184082 |
| 547 | 0.0028783 | 0.9809192 | 0.0162024 |
| 549 | 0.0025987 | 0.9794820 | 0.0179193 |
| 560 | 0.0008099 | 0.9437867 | 0.0554034 |
| 561 | 0.0008812 | 0.9479706 | 0.0511482 |
| 567 | 0.0070132 | 0.9863006 | 0.0066862 |
| 569 | 0.0056750 | 0.9860641 | 0.0082609 |
| 573 | 1.0000000 | 0.0000000 | 0.0000000 |
| 575 | 1.0000000 | 0.0000000 | 0.0000000 |
| 577 | 1.0000000 | 0.0000000 | 0.0000000 |
| 580 | 1.0000000 | 0.0000000 | 0.0000000 |
| 584 | 1.0000000 | 0.0000000 | 0.0000000 |
| 586 | 1.0000000 | 0.0000000 | 0.0000000 |
| 588 | 1.0000000 | 0.0000000 | 0.0000000 |
| 592 | 1.0000000 | 0.0000000 | 0.0000000 |
| 593 | 1.0000000 | 0.0000000 | 0.0000000 |
| 599 | 1.0000000 | 0.0000000 | 0.0000000 |
| 605 | 1.0000000 | 0.0000000 | 0.0000000 |
| 606 | 1.0000000 | 0.0000000 | 0.0000000 |
| 613 | 1.0000000 | 0.0000000 | 0.0000000 |
| 614 | 1.0000000 | 0.0000000 | 0.0000000 |
| 616 | 1.0000000 | 0.0000000 | 0.0000000 |
| 618 | 1.0000000 | 0.0000000 | 0.0000000 |
| 627 | 1.0000000 | 0.0000000 | 0.0000000 |
| 633 | 1.0000000 | 0.0000000 | 0.0000000 |
| 634 | 1.0000000 | 0.0000000 | 0.0000000 |
| 638 | 1.0000000 | 0.0000000 | 0.0000000 |
| 640 | 1.0000000 | 0.0000000 | 0.0000000 |
| 643 | 1.0000000 | 0.0000000 | 0.0000000 |
| 653 | 1.0000000 | 0.0000000 | 0.0000000 |
| 654 | 1.0000000 | 0.0000000 | 0.0000000 |
| 657 | 1.0000000 | 0.0000000 | 0.0000000 |
| 666 | 1.0000000 | 0.0000000 | 0.0000000 |
| 667 | 1.0000000 | 0.0000000 | 0.0000000 |
| 668 | 1.0000000 | 0.0000000 | 0.0000000 |
| 670 | 1.0000000 | 0.0000000 | 0.0000000 |
| 672 | 1.0000000 | 0.0000000 | 0.0000000 |
| 673 | 1.0000000 | 0.0000000 | 0.0000000 |
| 677 | 1.0000000 | 0.0000000 | 0.0000000 |
| 678 | 1.0000000 | 0.0000000 | 0.0000000 |
| 681 | 1.0000000 | 0.0000000 | 0.0000000 |
| 682 | 1.0000000 | 0.0000000 | 0.0000000 |
| 684 | 1.0000000 | 0.0000000 | 0.0000000 |
| 690 | 1.0000000 | 0.0000000 | 0.0000000 |
| 694 | 1.0000000 | 0.0000000 | 0.0000000 |
| 707 | 1.0000000 | 0.0000000 | 0.0000000 |
| 708 | 1.0000000 | 0.0000000 | 0.0000000 |
| 710 | 1.0000000 | 0.0000000 | 0.0000000 |
| 711 | 1.0000000 | 0.0000000 | 0.0000000 |
| 712 | 1.0000000 | 0.0000000 | 0.0000000 |
| 716 | 0.0761003 | 0.9233228 | 0.0005768 |
| 731 | 0.1599139 | 0.8398364 | 0.0002497 |
| 735 | 0.0596558 | 0.9395954 | 0.0007488 |
| 738 | 0.1111165 | 0.8885034 | 0.0003802 |
| 739 | 0.1096598 | 0.8899544 | 0.0003858 |
| 742 | 0.0469942 | 0.9520426 | 0.0009632 |
| 746 | 0.2420739 | 0.7577773 | 0.0001488 |
| 748 | 0.2432552 | 0.7565970 | 0.0001479 |
| 750 | 0.2212701 | 0.7785626 | 0.0001673 |
| 751 | 0.2234219 | 0.7764128 | 0.0001652 |
| 759 | 0.0055629 | 0.9860102 | 0.0084269 |
| 761 | 0.0066179 | 0.9862965 | 0.0070856 |
| 766 | 0.7535971 | 0.2463873 | 0.0000155 |
| 767 | 0.7401137 | 0.2598696 | 0.0000167 |
| 768 | 0.0833677 | 0.9161099 | 0.0005224 |
| 772 | 0.1442546 | 0.8554634 | 0.0002819 |
| 776 | 0.1194994 | 0.8801504 | 0.0003502 |
| 782 | 0.1556534 | 0.8440887 | 0.0002578 |
| 784 | 0.1538285 | 0.8459101 | 0.0002614 |
| 787 | 0.0739909 | 0.9254144 | 0.0005946 |
| 790 | 0.1090929 | 0.8905190 | 0.0003881 |
| 791 | 0.1157466 | 0.8838903 | 0.0003631 |
| 793 | 0.1231906 | 0.8764711 | 0.0003383 |
| 797 | 0.0479206 | 0.9511358 | 0.0009436 |
| 798 | 0.2540975 | 0.7457630 | 0.0001395 |
| 801 | 0.2249755 | 0.7748608 | 0.0001637 |
| 804 | 0.1554014 | 0.8443403 | 0.0002583 |
| 805 | 0.1605976 | 0.8391539 | 0.0002484 |
| 807 | 0.0089275 | 0.9858226 | 0.0052500 |
| 812 | 0.0022128 | 0.9767998 | 0.0209875 |
| 822 | 0.0338022 | 0.9648407 | 0.0013571 |
| 824 | 0.0606295 | 0.9386345 | 0.0007360 |
| 829 | 0.0542347 | 0.9449370 | 0.0008283 |
| 831 | 0.0524757 | 0.9466667 | 0.0008577 |
| 832 | 0.0493936 | 0.9496923 | 0.0009141 |
| 835 | 0.0496450 | 0.9494458 | 0.0009092 |
| 838 | 0.0200146 | 0.9776630 | 0.0023224 |
| 845 | 0.0338088 | 0.9648344 | 0.0013568 |
| 849 | 0.0169997 | 0.9802588 | 0.0027415 |
| 852 | 0.1059842 | 0.8936150 | 0.0004009 |
| 854 | 0.0955739 | 0.9039764 | 0.0004497 |
| 859 | 1.0000000 | 0.0000000 | 0.0000000 |
| 861 | 1.0000000 | 0.0000000 | 0.0000000 |
| 862 | 1.0000000 | 0.0000000 | 0.0000000 |
| 864 | 1.0000000 | 0.0000000 | 0.0000000 |
| 866 | 1.0000000 | 0.0000000 | 0.0000000 |
| 867 | 1.0000000 | 0.0000000 | 0.0000000 |
| 868 | 1.0000000 | 0.0000000 | 0.0000000 |
| 869 | 1.0000000 | 0.0000000 | 0.0000000 |
| 872 | 1.0000000 | 0.0000000 | 0.0000000 |
| 880 | 1.0000000 | 0.0000000 | 0.0000000 |
| 886 | 1.0000000 | 0.0000000 | 0.0000000 |
| 891 | 1.0000000 | 0.0000000 | 0.0000000 |
| 892 | 1.0000000 | 0.0000000 | 0.0000000 |
| 895 | 1.0000000 | 0.0000000 | 0.0000000 |
| 896 | 1.0000000 | 0.0000000 | 0.0000000 |
| 897 | 1.0000000 | 0.0000000 | 0.0000000 |
| 898 | 1.0000000 | 0.0000000 | 0.0000000 |
| 901 | 1.0000000 | 0.0000000 | 0.0000000 |
| 905 | 1.0000000 | 0.0000000 | 0.0000000 |
| 909 | 1.0000000 | 0.0000000 | 0.0000000 |
| 913 | 1.0000000 | 0.0000000 | 0.0000000 |
| 914 | 1.0000000 | 0.0000000 | 0.0000000 |
| 931 | 1.0000000 | 0.0000000 | 0.0000000 |
| 934 | 1.0000000 | 0.0000000 | 0.0000000 |
| 936 | 1.0000000 | 0.0000000 | 0.0000000 |
| 938 | 1.0000000 | 0.0000000 | 0.0000000 |
| 941 | 1.0000000 | 0.0000000 | 0.0000000 |
| 943 | 1.0000000 | 0.0000000 | 0.0000000 |
| 947 | 1.0000000 | 0.0000000 | 0.0000000 |
| 948 | 1.0000000 | 0.0000000 | 0.0000000 |
| 951 | 1.0000000 | 0.0000000 | 0.0000000 |
| 957 | 1.0000000 | 0.0000000 | 0.0000000 |
| 963 | 1.0000000 | 0.0000000 | 0.0000000 |
| 966 | 1.0000000 | 0.0000000 | 0.0000000 |
| 967 | 1.0000000 | 0.0000000 | 0.0000000 |
| 971 | 1.0000000 | 0.0000000 | 0.0000000 |
| 977 | 1.0000000 | 0.0000000 | 0.0000000 |
| 979 | 1.0000000 | 0.0000000 | 0.0000000 |
| 983 | 1.0000000 | 0.0000000 | 0.0000000 |
| 988 | 1.0000000 | 0.0000000 | 0.0000000 |
| 990 | 1.0000000 | 0.0000000 | 0.0000000 |
| 994 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1002 | 0.9953698 | 0.0046300 | 0.0000002 |
| 1003 | 0.9877334 | 0.0122660 | 0.0000006 |
| 1006 | 0.9974175 | 0.0025824 | 0.0000001 |
| 1008 | 0.9976796 | 0.0023203 | 0.0000001 |
| 1009 | 0.9977853 | 0.0022146 | 0.0000001 |
| 1017 | 0.9979978 | 0.0020021 | 0.0000001 |
| 1019 | 0.9946152 | 0.0053845 | 0.0000003 |
| 1020 | 0.9941493 | 0.0058504 | 0.0000003 |
| 1031 | 0.9921603 | 0.0078393 | 0.0000004 |
| 1032 | 0.9988031 | 0.0011968 | 0.0000001 |
| 1034 | 0.9988116 | 0.0011883 | 0.0000001 |
| 1036 | 0.9986554 | 0.0013445 | 0.0000001 |
| 1038 | 0.9987524 | 0.0012475 | 0.0000001 |
| 1044 | 0.9424132 | 0.0575839 | 0.0000029 |
| 1046 | 0.9440029 | 0.0559943 | 0.0000028 |
| 1061 | 0.9977688 | 0.0022311 | 0.0000001 |
| 1070 | 0.9978857 | 0.0021142 | 0.0000001 |
| 1084 | 0.9988738 | 0.0011261 | 0.0000001 |
| 1087 | 0.9986770 | 0.0013230 | 0.0000001 |
| 1088 | 0.9984523 | 0.0015477 | 0.0000001 |
| 1092 | 0.9979613 | 0.0020386 | 0.0000001 |
| 1094 | 0.9564847 | 0.0435131 | 0.0000022 |
| 1106 | 0.9880494 | 0.0119500 | 0.0000006 |
| 1107 | 0.9708436 | 0.0291550 | 0.0000014 |
| 1108 | 0.9889939 | 0.0110056 | 0.0000005 |
| 1109 | 0.9890010 | 0.0109985 | 0.0000005 |
| 1112 | 0.9941410 | 0.0058587 | 0.0000003 |
| 1113 | 0.9943268 | 0.0056729 | 0.0000003 |
| 1114 | 0.9945302 | 0.0054695 | 0.0000003 |
| 1116 | 0.9931597 | 0.0068399 | 0.0000003 |
| 1122 | 0.9921402 | 0.0078594 | 0.0000004 |
| 1125 | 0.9802763 | 0.0197228 | 0.0000010 |
| 1128 | 0.9872915 | 0.0127079 | 0.0000006 |
| 1133 | 0.9763684 | 0.0236304 | 0.0000012 |
| 1135 | 0.9779206 | 0.0220783 | 0.0000011 |
| 1141 | 0.9955328 | 0.0044670 | 0.0000002 |
| 1146 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1152 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1153 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1154 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1156 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1160 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1163 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1175 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1176 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1178 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1184 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1190 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1192 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1193 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1196 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1199 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1201 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1205 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1207 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1209 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1210 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1216 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1218 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1222 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1223 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1225 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1226 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1235 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1238 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1240 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1241 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1243 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1246 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1249 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1250 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1252 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1253 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1254 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1256 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1257 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1258 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1260 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1261 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1265 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1270 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1277 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1283 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1285 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1287 | 1.0000000 | 0.0000000 | 0.0000000 |
| 1290 | 0.0014805 | 0.9674516 | 0.0310679 |
| 1298 | 0.0024549 | 0.9785928 | 0.0189524 |
| 1311 | 0.0023737 | 0.9780370 | 0.0195893 |
| 1320 | 0.0072272 | 0.9862847 | 0.0064882 |
| 1328 | 0.0003351 | 0.8754544 | 0.1242105 |
| 1329 | 0.0003087 | 0.8662702 | 0.1334211 |
| 1335 | 0.0000425 | 0.4720922 | 0.5278652 |
| 1342 | 0.0017770 | 0.9722117 | 0.0260113 |
| 1344 | 0.0037417 | 0.9837584 | 0.0124999 |
| 1347 | 0.0036460 | 0.9835290 | 0.0128250 |
| 1348 | 0.0029618 | 0.9812867 | 0.0157515 |
| 1351 | 0.0032173 | 0.9822674 | 0.0145153 |
| 1352 | 0.0039002 | 0.9841037 | 0.0119960 |
| 1357 | 0.0017041 | 0.9712008 | 0.0270951 |
| 1361 | 0.0029821 | 0.9813720 | 0.0156459 |
| 1363 | 0.0028034 | 0.9805669 | 0.0166298 |
| 1366 | 0.0012186 | 0.9612772 | 0.0375042 |
| 1370 | 0.0079767 | 0.9861456 | 0.0058777 |
| 1374 | 0.0081233 | 0.9861053 | 0.0057714 |
| 1377 | 0.0068217 | 0.9863044 | 0.0068740 |
| 1379 | 0.0003431 | 0.8779993 | 0.1216576 |
| 1380 | 0.0003008 | 0.8632437 | 0.1364556 |
| 1382 | 0.0001264 | 0.7265913 | 0.2732823 |
| 1384 | 0.0001017 | 0.6812968 | 0.3186015 |
| 1387 | 0.0000319 | 0.4016819 | 0.5982861 |
| 1392 | 0.0012922 | 0.9632665 | 0.0354413 |
| 1393 | 0.0005885 | 0.9247034 | 0.0747082 |
| 1395 | 0.0017685 | 0.9720980 | 0.0261335 |
| 1399 | 0.0039815 | 0.9842654 | 0.0117531 |
| 1404 | 0.0025404 | 0.9791355 | 0.0183240 |
| 1407 | 0.0037094 | 0.9836828 | 0.0126078 |
| 1413 | 0.0012415 | 0.9619208 | 0.0368378 |
| 1415 | 0.0020333 | 0.9751648 | 0.0228019 |
| 1416 | 0.0018067 | 0.9725994 | 0.0255939 |
| 1419 | 0.0009297 | 0.9504637 | 0.0486066 |
| 1433 | 0.8103834 | 0.1896055 | 0.0000111 |
| 1438 | 0.9069267 | 0.0930684 | 0.0000049 |
| 1442 | 0.9001541 | 0.0998406 | 0.0000053 |
| 1446 | 0.9151139 | 0.0848817 | 0.0000044 |
| 1447 | 0.9062380 | 0.0937571 | 0.0000049 |
| 1449 | 0.7861097 | 0.2138774 | 0.0000129 |
| 1453 | 0.8759869 | 0.1240064 | 0.0000067 |
| 1454 | 0.8743758 | 0.1256174 | 0.0000068 |
| 1455 | 0.8702063 | 0.1297866 | 0.0000071 |
| 1457 | 0.7356861 | 0.2642968 | 0.0000171 |
| 1464 | 0.9489647 | 0.0510327 | 0.0000026 |
| 1465 | 0.9413980 | 0.0585991 | 0.0000030 |
| 1468 | 0.9451726 | 0.0548246 | 0.0000028 |
| 1471 | 0.4609648 | 0.5389796 | 0.0000556 |
| 1472 | 0.4753641 | 0.5245835 | 0.0000525 |
| 1475 | 0.2671883 | 0.7326813 | 0.0001304 |
| 1476 | 0.2738424 | 0.7260316 | 0.0001260 |
| 1483 | 0.8370964 | 0.1628943 | 0.0000093 |
| 1491 | 0.8840959 | 0.1158979 | 0.0000062 |
| 1493 | 0.8944806 | 0.1055138 | 0.0000056 |
| 1494 | 0.8967728 | 0.1032217 | 0.0000055 |
| 1495 | 0.8941622 | 0.1058322 | 0.0000056 |
| 1496 | 0.9146403 | 0.0853553 | 0.0000044 |
| 1498 | 0.9156509 | 0.0843447 | 0.0000044 |
| 1503 | 0.8099685 | 0.1900203 | 0.0000112 |
| 1504 | 0.8791634 | 0.1208301 | 0.0000065 |
| 1508 | 0.8877270 | 0.1122670 | 0.0000060 |
| 1512 | 0.7392101 | 0.2607731 | 0.0000168 |
| 1514 | 0.8828036 | 0.1171901 | 0.0000063 |
| 1515 | 0.9480653 | 0.0519321 | 0.0000026 |
| 1516 | 0.9422909 | 0.0577062 | 0.0000029 |
| 1520 | 0.9147357 | 0.0852599 | 0.0000044 |
| 1524 | 0.3154388 | 0.6844580 | 0.0001032 |
| 1526 | 0.1158387 | 0.8837986 | 0.0003627 |
| 1533 | 0.9800778 | 0.0199213 | 0.0000010 |
| 1534 | 0.9801206 | 0.0198785 | 0.0000010 |
| 1544 | 0.7609534 | 0.2390317 | 0.0000149 |
| 1545 | 0.7585590 | 0.2414259 | 0.0000151 |
| 1547 | 0.7425090 | 0.2574746 | 0.0000165 |
| 1551 | 0.7320104 | 0.2679722 | 0.0000174 |
| 1553 | 0.5313624 | 0.4685957 | 0.0000419 |
| 1555 | 0.5062158 | 0.4937379 | 0.0000464 |
| 1560 | 0.6599590 | 0.3400165 | 0.0000245 |
| 1561 | 0.4560143 | 0.5439290 | 0.0000567 |
| 1562 | 0.4720333 | 0.5279135 | 0.0000532 |
| 1566 | 0.7278576 | 0.2721246 | 0.0000178 |
| 1567 | 0.8677972 | 0.1321956 | 0.0000072 |
| 1569 | 0.8539665 | 0.1460254 | 0.0000081 |
| 1572 | 0.8190273 | 0.1809622 | 0.0000105 |
| 1574 | 0.9870230 | 0.0129764 | 0.0000006 |
| 1578 | 0.9927068 | 0.0072929 | 0.0000003 |
| 1580 | 0.9930776 | 0.0069221 | 0.0000003 |
| 1582 | 0.9914720 | 0.0085276 | 0.0000004 |
| 1583 | 0.9915034 | 0.0084962 | 0.0000004 |
| 1586 | 0.9919305 | 0.0080691 | 0.0000004 |
| 1591 | 0.9839216 | 0.0160777 | 0.0000008 |
| 1593 | 0.9853074 | 0.0146919 | 0.0000007 |
| 1594 | 0.9857776 | 0.0142218 | 0.0000007 |
| 1599 | 0.9918076 | 0.0081920 | 0.0000004 |
| 1606 | 0.9971780 | 0.0028218 | 0.0000001 |
| 1608 | 0.9967107 | 0.0032891 | 0.0000002 |
| 1614 | 0.9420988 | 0.0578983 | 0.0000029 |
| 1618 | 0.8530557 | 0.1469361 | 0.0000082 |
| 1622 | 0.9996057 | 0.0003943 | 0.0000000 |
| 1625 | 0.9995972 | 0.0004028 | 0.0000000 |
| 1628 | 0.9885595 | 0.0114399 | 0.0000006 |
| 1631 | 0.9950608 | 0.0049390 | 0.0000002 |
| 1636 | 0.9934383 | 0.0065613 | 0.0000003 |
| 1641 | 0.9956580 | 0.0043418 | 0.0000002 |
| 1642 | 0.9953534 | 0.0046464 | 0.0000002 |
| 1645 | 0.9885050 | 0.0114945 | 0.0000006 |
| 1648 | 0.9922801 | 0.0077195 | 0.0000004 |
| 1651 | 0.9928422 | 0.0071575 | 0.0000003 |
| 1654 | 0.9823612 | 0.0176379 | 0.0000009 |
| 1656 | 0.9974444 | 0.0025554 | 0.0000001 |
| 1660 | 0.9974908 | 0.0025091 | 0.0000001 |
| 1667 | 0.9424775 | 0.0575196 | 0.0000029 |
| 1672 | 0.8153454 | 0.1846438 | 0.0000108 |
| 1675 | 0.9995079 | 0.0004920 | 0.0000000 |
| 1677 | 0.9995094 | 0.0004905 | 0.0000000 |
| 1680 | 0.9869517 | 0.0130476 | 0.0000006 |
| 1683 | 0.9948461 | 0.0051537 | 0.0000002 |
| 1684 | 0.9948705 | 0.0051293 | 0.0000002 |
| 1685 | 0.9936519 | 0.0063478 | 0.0000003 |
| 1691 | 0.9937729 | 0.0062268 | 0.0000003 |
| 1695 | 0.9879844 | 0.0120150 | 0.0000006 |
| 1706 | 0.9814462 | 0.0185529 | 0.0000009 |
| 1711 | 0.9974013 | 0.0025985 | 0.0000001 |
| 1715 | 0.9977377 | 0.0022622 | 0.0000001 |
| 1716 | 0.9974121 | 0.0025877 | 0.0000001 |
| 1717 | 0.0018075 | 0.9726101 | 0.0255824 |
| 1719 | 0.0017626 | 0.9720193 | 0.0262181 |
| 1722 | 0.0033331 | 0.9826504 | 0.0140165 |
| 1728 | 0.0032017 | 0.9822132 | 0.0145850 |
| 1729 | 0.0032673 | 0.9824371 | 0.0142955 |
| 1734 | 0.0017660 | 0.9720653 | 0.0261687 |
| 1740 | 0.0030286 | 0.9815629 | 0.0154085 |
| 1741 | 0.0030558 | 0.9816709 | 0.0152733 |
| 1746 | 0.0013885 | 0.9655504 | 0.0330611 |
| 1753 | 0.0079414 | 0.9861547 | 0.0059038 |
| 1754 | 0.0078923 | 0.9861671 | 0.0059407 |
| 1755 | 0.0077635 | 0.9861971 | 0.0060394 |
| 1760 | 0.0001288 | 0.7302487 | 0.2696226 |
| 1766 | 0.0520364 | 0.9470983 | 0.0008653 |
| 1770 | 0.0007587 | 0.9403189 | 0.0589224 |
| 1775 | 0.0042413 | 0.9847204 | 0.0110383 |
| 1777 | 0.0034536 | 0.9830140 | 0.0135324 |
| 1778 | 0.0035697 | 0.9833339 | 0.0130964 |
| 1782 | 0.0048895 | 0.9855278 | 0.0095827 |
| 1784 | 0.0051100 | 0.9857189 | 0.0091711 |
| 1788 | 0.0021602 | 0.9763520 | 0.0214877 |
| 1797 | 0.0014817 | 0.9674751 | 0.0310432 |
| 1801 | 0.0101745 | 0.9852218 | 0.0046037 |
| 1807 | 0.0080011 | 0.9861392 | 0.0058597 |
| 1811 | 0.0001437 | 0.7513052 | 0.2485511 |
| 1820 | 0.0355074 | 0.9632029 | 0.0012897 |
| 1827 | 0.0031324 | 0.9819634 | 0.0149043 |
| 1828 | 0.0034938 | 0.9831279 | 0.0133784 |
| 1829 | 0.0036419 | 0.9835188 | 0.0128392 |
| 1832 | 0.0030760 | 0.9817500 | 0.0151740 |
| 1833 | 0.0030631 | 0.9816996 | 0.0152373 |
| 1837 | 0.0036205 | 0.9834649 | 0.0129147 |
| 1844 | 0.0027127 | 0.9801100 | 0.0171772 |
| 1845 | 0.0026151 | 0.9795762 | 0.0178087 |
| 1846 | 0.0025646 | 0.9792814 | 0.0181540 |
| 1854 | 0.0089935 | 0.9857952 | 0.0052113 |
| 1856 | 0.0078945 | 0.9861665 | 0.0059390 |
| 1860 | 0.0032434 | 0.9823569 | 0.0143997 |
| 1861 | 0.0012395 | 0.9618660 | 0.0368945 |
| 1862 | 0.0030477 | 0.9816392 | 0.0153131 |
| 1863 | 0.0030483 | 0.9816415 | 0.0153102 |
| 1869 | 0.0050224 | 0.9856473 | 0.0093303 |
| 1873 | 0.0066938 | 0.9863009 | 0.0070053 |
| 1874 | 0.0067686 | 0.9863035 | 0.0069279 |
| 1877 | 0.0024918 | 0.9788323 | 0.0186758 |
| 1878 | 0.0023314 | 0.9777304 | 0.0199381 |
| 1880 | 0.0023505 | 0.9778700 | 0.0197795 |
| 1884 | 0.0042122 | 0.9846738 | 0.0111140 |
| 1888 | 0.0017403 | 0.9717133 | 0.0265465 |
| 1890 | 0.0110972 | 0.9846842 | 0.0042186 |
| 1891 | 0.0043318 | 0.9848591 | 0.0108091 |
| 1893 | 0.0109524 | 0.9847728 | 0.0042748 |
| 1894 | 0.0096470 | 0.9854962 | 0.0048568 |
| 1896 | 0.0108825 | 0.9848151 | 0.0043024 |
| 1904 | 0.0002518 | 0.8409567 | 0.1587915 |
| 1906 | 0.0002591 | 0.8447583 | 0.1549826 |
| 1907 | 0.0001046 | 0.6875330 | 0.3123623 |
| 1909 | 0.1047494 | 0.8948444 | 0.0004061 |
| 1914 | 0.0033450 | 0.9826878 | 0.0139673 |
| 1915 | 0.0032956 | 0.9825301 | 0.0141744 |
| 1921 | 0.0055156 | 0.9859854 | 0.0084990 |
| 1922 | 0.0058353 | 0.9861302 | 0.0080345 |
| 1923 | 0.0060553 | 0.9862016 | 0.0077431 |
| 1925 | 0.0079209 | 0.9861599 | 0.0059192 |
| 1927 | 0.0079894 | 0.9861423 | 0.0058683 |
| 1928 | 0.0076219 | 0.9862263 | 0.0061518 |
| 1930 | 0.0033133 | 0.9825873 | 0.0140995 |
| 1934 | 0.0049248 | 0.9855608 | 0.0095144 |
| 1939 | 0.0021456 | 0.9762226 | 0.0216318 |
| 1948 | 0.0082098 | 0.9860798 | 0.0057104 |
| 1950 | 0.0081387 | 0.9861009 | 0.0057604 |
| 1951 | 0.0004035 | 0.8942229 | 0.1053736 |
| 1958 | 0.0001037 | 0.6856742 | 0.3142221 |
| 1960 | 0.0425217 | 0.9564090 | 0.0010694 |
| 1965 | 0.0006668 | 0.9328204 | 0.0665128 |
| 1966 | 0.0017365 | 0.9716613 | 0.0266022 |
| 1968 | 0.0032568 | 0.9824021 | 0.0143410 |
| 1971 | 0.0032819 | 0.9824853 | 0.0142328 |
| 1980 | 0.0026284 | 0.9796514 | 0.0177202 |
| 1983 | 0.0010251 | 0.9546963 | 0.0442786 |
| 1984 | 0.0009710 | 0.9523975 | 0.0466315 |
| 1985 | 0.0009182 | 0.9498985 | 0.0491833 |
| 1990 | 0.0008154 | 0.9441358 | 0.0550488 |
| 1996 | 0.0064436 | 0.9862793 | 0.0072771 |
| 1998 | 0.0063587 | 0.9862671 | 0.0073742 |
| 2004 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2006 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2007 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2013 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2015 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2018 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2019 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2023 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2025 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2029 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2032 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2041 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2043 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2052 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2056 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2058 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2059 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2066 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2073 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2076 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2082 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2087 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2091 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2098 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2099 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2105 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2109 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2110 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2112 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2114 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2117 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2118 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2119 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2121 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2123 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2129 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2134 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2138 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2139 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2154 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2157 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2159 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2160 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2161 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2162 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2163 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2164 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2166 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2168 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2171 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2173 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2179 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2182 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2185 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2189 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2192 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2195 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2196 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2197 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2199 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2201 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2203 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2206 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2207 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2209 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2211 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2215 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2218 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2226 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2239 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2242 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2244 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2245 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2247 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2248 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2255 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2256 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2261 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2270 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2271 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2272 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2276 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2277 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2281 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2284 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2286 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2287 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2291 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2294 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2295 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2296 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2298 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2303 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2311 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2314 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2315 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2316 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2318 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2325 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2326 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2328 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2329 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2334 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2348 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2351 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2352 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2361 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2366 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2368 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2370 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2372 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2379 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2384 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2390 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2391 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2392 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2397 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2400 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2401 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2402 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2404 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2409 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2412 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2415 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2418 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2421 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2422 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2433 | 0.9554483 | 0.0445495 | 0.0000022 |
| 2438 | 0.9900193 | 0.0099802 | 0.0000005 |
| 2449 | 0.9754748 | 0.0245240 | 0.0000012 |
| 2452 | 0.9739000 | 0.0260987 | 0.0000013 |
| 2454 | 0.9855022 | 0.0144971 | 0.0000007 |
| 2457 | 0.9851952 | 0.0148040 | 0.0000007 |
| 2462 | 0.9944869 | 0.0055128 | 0.0000003 |
| 2464 | 0.9943549 | 0.0056448 | 0.0000003 |
| 2477 | 0.8030577 | 0.1969306 | 0.0000117 |
| 2478 | 0.8026711 | 0.1973172 | 0.0000117 |
| 2479 | 0.6176366 | 0.3823340 | 0.0000294 |
| 2480 | 0.9994437 | 0.0005562 | 0.0000000 |
| 2481 | 0.9994475 | 0.0005525 | 0.0000000 |
| 2485 | 0.9602833 | 0.0397147 | 0.0000020 |
| 2486 | 0.9838232 | 0.0161761 | 0.0000008 |
| 2487 | 0.9837258 | 0.0162734 | 0.0000008 |
| 2488 | 0.9918279 | 0.0081718 | 0.0000004 |
| 2496 | 0.9925256 | 0.0074740 | 0.0000004 |
| 2500 | 0.9936647 | 0.0063350 | 0.0000003 |
| 2502 | 0.9843943 | 0.0156050 | 0.0000008 |
| 2503 | 0.9833017 | 0.0166975 | 0.0000008 |
| 2504 | 0.9824435 | 0.0175556 | 0.0000008 |
| 2507 | 0.9892724 | 0.0107270 | 0.0000005 |
| 2509 | 0.9895775 | 0.0104220 | 0.0000005 |
| 2511 | 0.9749041 | 0.0250947 | 0.0000012 |
| 2520 | 0.9941707 | 0.0058290 | 0.0000003 |
| 2526 | 0.7667427 | 0.2332428 | 0.0000145 |
| 2537 | 0.9447348 | 0.0552625 | 0.0000028 |
| 2539 | 0.9786530 | 0.0213460 | 0.0000010 |
| 2542 | 0.9886431 | 0.0113564 | 0.0000005 |
| 2545 | 0.9861835 | 0.0138158 | 0.0000007 |
| 2551 | 0.9872463 | 0.0127531 | 0.0000006 |
| 2555 | 0.9668814 | 0.0331169 | 0.0000016 |
| 2560 | 0.9802516 | 0.0197475 | 0.0000010 |
| 2564 | 0.9631869 | 0.0368113 | 0.0000018 |
| 2565 | 0.9636202 | 0.0363780 | 0.0000018 |
| 2568 | 0.9947225 | 0.0052773 | 0.0000003 |
| 2569 | 0.9949445 | 0.0050553 | 0.0000002 |
| 2571 | 0.9940127 | 0.0059870 | 0.0000003 |
| 2572 | 0.9939318 | 0.0060679 | 0.0000003 |
| 2574 | 0.9935347 | 0.0064650 | 0.0000003 |
| 2576 | 0.2510490 | 0.7488092 | 0.0001418 |
| 2578 | 0.4497896 | 0.5501522 | 0.0000582 |
| 2582 | 0.5980351 | 0.4019329 | 0.0000320 |
| 2586 | 0.5450421 | 0.4549182 | 0.0000397 |
| 2591 | 0.5841539 | 0.4158123 | 0.0000338 |
| 2592 | 0.3793007 | 0.6206215 | 0.0000778 |
| 2595 | 0.3641892 | 0.6357278 | 0.0000830 |
| 2599 | 0.5025843 | 0.4973687 | 0.0000470 |
| 2607 | 0.7269578 | 0.2730244 | 0.0000179 |
| 2609 | 0.7029022 | 0.2970777 | 0.0000201 |
| 2622 | 0.0244202 | 0.9736841 | 0.0018956 |
| 2623 | 0.9653009 | 0.0346974 | 0.0000017 |
| 2625 | 0.9655854 | 0.0344129 | 0.0000017 |
| 2634 | 0.6762497 | 0.3237275 | 0.0000228 |
| 2635 | 0.6219594 | 0.3780117 | 0.0000289 |
| 2637 | 0.6472073 | 0.3527668 | 0.0000259 |
| 2638 | 0.6596254 | 0.3403500 | 0.0000245 |
| 2645 | 0.4818591 | 0.5180898 | 0.0000511 |
| 2648 | 0.5881726 | 0.4117941 | 0.0000333 |
| 2651 | 0.5815282 | 0.4184376 | 0.0000342 |
| 2658 | 0.5880263 | 0.4119404 | 0.0000333 |
| 2661 | 0.7690902 | 0.2308956 | 0.0000143 |
| 2665 | 0.7289824 | 0.2709999 | 0.0000177 |
| 2667 | 0.1172572 | 0.8823851 | 0.0003578 |
| 2672 | 0.0401652 | 0.9587000 | 0.0011348 |
| 2680 | 0.2111383 | 0.7886841 | 0.0001776 |
| 2682 | 0.4168132 | 0.5831203 | 0.0000665 |
| 2687 | 0.5832571 | 0.4167090 | 0.0000340 |
| 2689 | 0.5372564 | 0.4627026 | 0.0000409 |
| 2692 | 0.5625776 | 0.4373855 | 0.0000370 |
| 2694 | 0.5391775 | 0.4607819 | 0.0000406 |
| 2698 | 0.3012646 | 0.6986251 | 0.0001103 |
| 2704 | 0.4468703 | 0.5530708 | 0.0000588 |
| 2708 | 0.2846735 | 0.7152070 | 0.0001194 |
| 2712 | 0.7511494 | 0.2488348 | 0.0000157 |
| 2713 | 0.7409415 | 0.2590419 | 0.0000166 |
| 2716 | 0.7140613 | 0.2859197 | 0.0000190 |
| 2721 | 0.0022316 | 0.9769546 | 0.0208139 |
| 2725 | 0.0045588 | 0.9851670 | 0.0102742 |
| 2731 | 0.0052832 | 0.9858452 | 0.0088716 |
| 2736 | 0.0017520 | 0.9718744 | 0.0263736 |
| 2737 | 0.0017083 | 0.9712608 | 0.0270309 |
| 2738 | 0.0017818 | 0.9722747 | 0.0259436 |
| 2742 | 0.0032266 | 0.9822993 | 0.0144741 |
| 2743 | 0.0031840 | 0.9821505 | 0.0146656 |
| 2745 | 0.0013369 | 0.9643690 | 0.0342941 |
| 2753 | 0.0076259 | 0.9862255 | 0.0061485 |
| 2756 | 0.0084769 | 0.9859931 | 0.0055300 |
| 2761 | 0.0001780 | 0.7890580 | 0.2107640 |
| 2763 | 0.0001996 | 0.8075065 | 0.1922939 |
| 2764 | 0.0001996 | 0.8074875 | 0.1923129 |
| 2765 | 0.0000809 | 0.6298384 | 0.3700807 |
| 2766 | 0.0832756 | 0.9162013 | 0.0005231 |
| 2769 | 0.0764369 | 0.9229890 | 0.0005741 |
| 2780 | 0.0039860 | 0.9842741 | 0.0117399 |
| 2781 | 0.0041176 | 0.9845148 | 0.0113676 |
| 2783 | 0.0053400 | 0.9858825 | 0.0087775 |
| 2790 | 0.0021935 | 0.9766383 | 0.0211682 |
| 2791 | 0.0037780 | 0.9838412 | 0.0123808 |
| 2795 | 0.0038262 | 0.9839475 | 0.0122263 |
| 2796 | 0.0016450 | 0.9703122 | 0.0280428 |
| 2805 | 0.0061949 | 0.9862362 | 0.0075689 |
| 2823 | 0.0004070 | 0.8950357 | 0.1045573 |
| 2827 | 0.0019437 | 0.9742269 | 0.0238294 |
| 2828 | 0.0019173 | 0.9739323 | 0.0241504 |
| 2835 | 0.0018104 | 0.9726462 | 0.0255434 |
| 2839 | 0.0006815 | 0.9341468 | 0.0651718 |
| 2843 | 0.0005472 | 0.9195526 | 0.0799002 |
| 2845 | 0.0010086 | 0.9540207 | 0.0449707 |
| 2848 | 0.0004832 | 0.9099735 | 0.0895433 |
| 2850 | 0.0005430 | 0.9189998 | 0.0804571 |
| 2851 | 0.0005431 | 0.9190014 | 0.0804555 |
| 2852 | 0.0005459 | 0.9193807 | 0.0800734 |
| 2854 | 0.0037738 | 0.9838316 | 0.0123946 |
| 2855 | 0.0039424 | 0.9841889 | 0.0118687 |
| 2859 | 0.0029828 | 0.9813750 | 0.0156422 |
| 2860 | 0.0027661 | 0.9803830 | 0.0168509 |
| 2862 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2863 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2865 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2866 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2867 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2868 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2873 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2874 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2877 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2880 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2890 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2893 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2898 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2899 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2900 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2905 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2906 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2907 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2912 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2914 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2915 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2917 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2919 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2920 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2925 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2928 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2932 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2934 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2936 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2948 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2954 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2962 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2964 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2965 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2966 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2976 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2979 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2981 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2986 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2988 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2993 | 1.0000000 | 0.0000000 | 0.0000000 |
| 2997 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3001 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3003 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3006 | 0.9716256 | 0.0283730 | 0.0000014 |
| 3007 | 0.9715056 | 0.0284930 | 0.0000014 |
| 3018 | 0.9848124 | 0.0151869 | 0.0000007 |
| 3019 | 0.9843394 | 0.0156598 | 0.0000008 |
| 3023 | 0.9600006 | 0.0399974 | 0.0000020 |
| 3030 | 0.9481357 | 0.0518617 | 0.0000026 |
| 3032 | 0.9478625 | 0.0521349 | 0.0000026 |
| 3033 | 0.9464606 | 0.0535368 | 0.0000027 |
| 3036 | 0.9912267 | 0.0087729 | 0.0000004 |
| 3044 | 0.8590306 | 0.1409615 | 0.0000078 |
| 3045 | 0.8673517 | 0.1326410 | 0.0000073 |
| 3047 | 0.7083083 | 0.2916721 | 0.0000196 |
| 3051 | 0.5095910 | 0.4903633 | 0.0000457 |
| 3053 | 0.9991410 | 0.0008589 | 0.0000000 |
| 3058 | 0.9749438 | 0.0250549 | 0.0000012 |
| 3060 | 0.9872710 | 0.0127284 | 0.0000006 |
| 3065 | 0.9860274 | 0.0139719 | 0.0000007 |
| 3070 | 0.9908797 | 0.0091198 | 0.0000004 |
| 3071 | 0.9907801 | 0.0092194 | 0.0000004 |
| 3072 | 0.9900821 | 0.0099174 | 0.0000005 |
| 3073 | 0.9770103 | 0.0229885 | 0.0000011 |
| 3075 | 0.9739737 | 0.0260250 | 0.0000013 |
| 3079 | 0.9832293 | 0.0167699 | 0.0000008 |
| 3080 | 0.9837206 | 0.0162786 | 0.0000008 |
| 3082 | 0.9622783 | 0.0377198 | 0.0000019 |
| 3085 | 0.9575681 | 0.0424298 | 0.0000021 |
| 3086 | 0.9934065 | 0.0065931 | 0.0000003 |
| 3096 | 0.8453250 | 0.1546663 | 0.0000087 |
| 3107 | 0.9986894 | 0.0013105 | 0.0000001 |
| 3116 | 0.9824501 | 0.0175491 | 0.0000008 |
| 3117 | 0.9782237 | 0.0217752 | 0.0000011 |
| 3121 | 0.9815887 | 0.0184104 | 0.0000009 |
| 3122 | 0.9806993 | 0.0192997 | 0.0000009 |
| 3124 | 0.9789576 | 0.0210414 | 0.0000010 |
| 3126 | 0.9508700 | 0.0491276 | 0.0000025 |
| 3128 | 0.9455483 | 0.0544489 | 0.0000027 |
| 3131 | 0.9674276 | 0.0325708 | 0.0000016 |
| 3132 | 0.9688412 | 0.0311573 | 0.0000015 |
| 3144 | 0.9903049 | 0.0096946 | 0.0000005 |
| 3146 | 0.9896579 | 0.0103417 | 0.0000005 |
| 3148 | 0.3829970 | 0.6169264 | 0.0000766 |
| 3151 | 0.7334218 | 0.2665609 | 0.0000173 |
| 3153 | 0.7416760 | 0.2583074 | 0.0000166 |
| 3156 | 0.6918386 | 0.3081402 | 0.0000212 |
| 3161 | 0.7450098 | 0.2549739 | 0.0000163 |
| 3163 | 0.7272959 | 0.2726863 | 0.0000178 |
| 3174 | 0.4548817 | 0.5450613 | 0.0000570 |
| 3182 | 0.8275643 | 0.1724258 | 0.0000099 |
| 3186 | 0.2136445 | 0.7861806 | 0.0001750 |
| 3187 | 0.2153737 | 0.7844531 | 0.0001732 |
| 3188 | 0.2274543 | 0.7723843 | 0.0001614 |
| 3189 | 0.1082218 | 0.8913866 | 0.0003916 |
| 3190 | 0.0985078 | 0.9010574 | 0.0004349 |
| 3191 | 0.1050661 | 0.8945291 | 0.0004048 |
| 3195 | 0.9811342 | 0.0188649 | 0.0000009 |
| 3200 | 0.4117053 | 0.5882267 | 0.0000679 |
| 3203 | 0.7784128 | 0.2215737 | 0.0000135 |
| 3206 | 0.7951424 | 0.2048454 | 0.0000122 |
| 3210 | 0.7860038 | 0.2139832 | 0.0000129 |
| 3213 | 0.8314853 | 0.1685051 | 0.0000096 |
| 3215 | 0.8194882 | 0.1805013 | 0.0000105 |
| 3216 | 0.6591615 | 0.3408139 | 0.0000246 |
| 3221 | 0.7255775 | 0.2744045 | 0.0000180 |
| 3222 | 0.7274605 | 0.2725217 | 0.0000178 |
| 3226 | 0.5292804 | 0.4706773 | 0.0000423 |
| 3228 | 0.5081989 | 0.4917551 | 0.0000460 |
| 3229 | 0.8734697 | 0.1265235 | 0.0000069 |
| 3232 | 0.8685190 | 0.1314738 | 0.0000072 |
| 3233 | 0.8599728 | 0.1400195 | 0.0000077 |
| 3234 | 0.8385147 | 0.1614761 | 0.0000092 |
| 3238 | 0.2019892 | 0.7978230 | 0.0001878 |
| 3242 | 0.0759031 | 0.9235185 | 0.0005785 |
| 3244 | 0.0720911 | 0.9272974 | 0.0006115 |
| 3252 | 0.3310108 | 0.6688932 | 0.0000961 |
| 3253 | 0.5637212 | 0.4362420 | 0.0000368 |
| 3260 | 0.6738392 | 0.3261378 | 0.0000230 |
| 3267 | 0.6822172 | 0.3177607 | 0.0000221 |
| 3268 | 0.4833054 | 0.5166438 | 0.0000508 |
| 3270 | 0.4580005 | 0.5419433 | 0.0000563 |
| 3274 | 0.5781020 | 0.4218633 | 0.0000347 |
| 3279 | 0.4309484 | 0.5689889 | 0.0000628 |
| 3282 | 0.6728024 | 0.3271745 | 0.0000231 |
| 3283 | 0.8450935 | 0.1548978 | 0.0000087 |
| 3285 | 0.8444823 | 0.1555089 | 0.0000088 |
| 3286 | 0.8277456 | 0.1722445 | 0.0000099 |
| 3294 | 0.8697142 | 0.1302787 | 0.0000071 |
| 3296 | 0.8719018 | 0.1280912 | 0.0000070 |
| 3297 | 0.8714222 | 0.1285708 | 0.0000070 |
| 3300 | 0.8448671 | 0.1551242 | 0.0000087 |
| 3304 | 0.8741247 | 0.1258684 | 0.0000068 |
| 3309 | 0.7210391 | 0.2789425 | 0.0000184 |
| 3314 | 0.8215148 | 0.1784748 | 0.0000103 |
| 3320 | 0.9251897 | 0.0748065 | 0.0000038 |
| 3321 | 0.8256121 | 0.1743779 | 0.0000100 |
| 3322 | 0.9238292 | 0.0761669 | 0.0000039 |
| 3324 | 0.9150926 | 0.0849030 | 0.0000044 |
| 3326 | 0.9250428 | 0.0749533 | 0.0000039 |
| 3328 | 0.9270370 | 0.0729592 | 0.0000037 |
| 3329 | 0.3886946 | 0.6112307 | 0.0000748 |
| 3332 | 0.2219316 | 0.7779017 | 0.0001666 |
| 3334 | 0.2172855 | 0.7825433 | 0.0001712 |
| 3338 | 0.9921708 | 0.0078288 | 0.0000004 |
| 3339 | 0.9921832 | 0.0078164 | 0.0000004 |
| 3340 | 0.9922368 | 0.0077629 | 0.0000004 |
| 3342 | 0.8132286 | 0.1867605 | 0.0000109 |
| 3344 | 0.8108137 | 0.1891752 | 0.0000111 |
| 3348 | 0.9070613 | 0.0929338 | 0.0000049 |
| 3352 | 0.8931276 | 0.1068668 | 0.0000057 |
| 3354 | 0.9013353 | 0.0986595 | 0.0000052 |
| 3357 | 0.9189079 | 0.0810879 | 0.0000042 |
| 3358 | 0.9132299 | 0.0867656 | 0.0000045 |
| 3359 | 0.8171213 | 0.1828681 | 0.0000106 |
| 3365 | 0.8596404 | 0.1403518 | 0.0000078 |
| 3366 | 0.8635811 | 0.1364114 | 0.0000075 |
| 3368 | 0.7327053 | 0.2672773 | 0.0000173 |
| 3371 | 0.7072846 | 0.2926958 | 0.0000197 |
| 3374 | 0.9429953 | 0.0570018 | 0.0000029 |
| 3376 | 0.9381669 | 0.0618300 | 0.0000031 |
| 3378 | 0.9234303 | 0.0765658 | 0.0000039 |
| 3385 | 0.1676090 | 0.8321549 | 0.0002360 |
| 3387 | 0.1601042 | 0.8396464 | 0.0002493 |
| 3388 | 0.1560689 | 0.8436741 | 0.0002570 |
| 3393 | 0.9884899 | 0.0115095 | 0.0000006 |
| 3396 | 0.7609919 | 0.2389932 | 0.0000149 |
| 3398 | 0.8590096 | 0.1409826 | 0.0000078 |
| 3399 | 0.8611775 | 0.1388149 | 0.0000077 |
| 3402 | 0.8644164 | 0.1355762 | 0.0000075 |
| 3405 | 0.8377076 | 0.1622832 | 0.0000092 |
| 3406 | 0.8355551 | 0.1644355 | 0.0000094 |
| 3407 | 0.8542009 | 0.1457910 | 0.0000081 |
| 3409 | 0.8420205 | 0.1579706 | 0.0000089 |
| 3416 | 0.7592986 | 0.2406864 | 0.0000151 |
| 3418 | 0.7724333 | 0.2275527 | 0.0000140 |
| 3419 | 0.7863366 | 0.2136504 | 0.0000129 |
| 3423 | 0.6444912 | 0.3554825 | 0.0000262 |
| 3425 | 0.8332706 | 0.1667199 | 0.0000095 |
| 3426 | 0.9267270 | 0.0732692 | 0.0000038 |
| 3427 | 0.9322047 | 0.0677919 | 0.0000035 |
| 3429 | 0.9191755 | 0.0808203 | 0.0000042 |
| 3430 | 0.9202722 | 0.0797237 | 0.0000041 |
| 3431 | 0.9191979 | 0.0807979 | 0.0000042 |
| 3435 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3438 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3439 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3442 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3443 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3448 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3449 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3450 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3453 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3454 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3455 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3456 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3457 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3466 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3471 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3475 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3479 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3486 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3492 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3494 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3495 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3496 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3498 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3499 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3500 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3502 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3509 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3512 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3514 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3515 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3516 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3517 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3525 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3527 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3530 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3531 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3536 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3542 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3544 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3547 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3556 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3557 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3561 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3562 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3564 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3565 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3570 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3574 | 1.0000000 | 0.0000000 | 0.0000000 |
| 3577 | 0.9905326 | 0.0094669 | 0.0000005 |
| 3581 | 0.9979009 | 0.0020990 | 0.0000001 |
| 3583 | 0.9979183 | 0.0020816 | 0.0000001 |
| 3597 | 0.9970295 | 0.0029704 | 0.0000001 |
| 3598 | 0.9969936 | 0.0030062 | 0.0000001 |
| 3600 | 0.9969167 | 0.0030831 | 0.0000001 |
| 3601 | 0.9969292 | 0.0030706 | 0.0000001 |
| 3603 | 0.9929403 | 0.0070593 | 0.0000003 |
| 3613 | 0.9988952 | 0.0011047 | 0.0000001 |
| 3614 | 0.9989027 | 0.0010972 | 0.0000001 |
| 3620 | 0.9518954 | 0.0481022 | 0.0000024 |
| 3621 | 0.9521374 | 0.0478602 | 0.0000024 |
| 3622 | 0.9520260 | 0.0479716 | 0.0000024 |
| 3626 | 0.9998868 | 0.0001132 | 0.0000000 |
| 3628 | 0.9966850 | 0.0033149 | 0.0000002 |
| 3633 | 0.9985021 | 0.0014979 | 0.0000001 |
| 3640 | 0.9984588 | 0.0015412 | 0.0000001 |
| 3645 | 0.9969416 | 0.0030583 | 0.0000001 |
| 3649 | 0.9978885 | 0.0021114 | 0.0000001 |
| 3650 | 0.9977611 | 0.0022388 | 0.0000001 |
| 3653 | 0.9978458 | 0.0021541 | 0.0000001 |
| 3654 | 0.9949343 | 0.0050655 | 0.0000002 |
| 3660 | 0.9991490 | 0.0008509 | 0.0000000 |
| 3665 | 0.9988378 | 0.0011621 | 0.0000001 |
| 3671 | 0.9326343 | 0.0673623 | 0.0000034 |
| 3672 | 0.9308034 | 0.0691931 | 0.0000035 |
| 3677 | 0.9998297 | 0.0001703 | 0.0000000 |
| 3682 | 0.9954293 | 0.0045704 | 0.0000002 |
| 3688 | 0.9977004 | 0.0022995 | 0.0000001 |
| 3690 | 0.9972646 | 0.0027353 | 0.0000001 |
| 3692 | 0.9972062 | 0.0027937 | 0.0000001 |
| 3698 | 0.9934069 | 0.0065928 | 0.0000003 |
| 3700 | 0.9926563 | 0.0073433 | 0.0000004 |
| 3702 | 0.9956289 | 0.0043709 | 0.0000002 |
| 3703 | 0.9956888 | 0.0043110 | 0.0000002 |
| 3704 | 0.9958875 | 0.0041123 | 0.0000002 |
| 3705 | 0.9962155 | 0.0037843 | 0.0000002 |
| 3725 | 0.0121250 | 0.9840166 | 0.0038584 |
| 3729 | 0.0097210 | 0.9854593 | 0.0048196 |
| 3732 | 0.0122631 | 0.9839223 | 0.0038146 |
| 3734 | 0.0120240 | 0.9840849 | 0.0038911 |
| 3739 | 0.0046776 | 0.9853077 | 0.0100147 |
| 3743 | 0.0082168 | 0.9860777 | 0.0057055 |
| 3749 | 0.0217380 | 0.9761272 | 0.0021349 |
| 3750 | 0.0084341 | 0.9860078 | 0.0055581 |
| 3752 | 0.0211648 | 0.9766413 | 0.0021939 |
| 3754 | 0.0200094 | 0.9776676 | 0.0023230 |
| 3755 | 0.0216458 | 0.9762100 | 0.0021442 |
| 3762 | 0.0004700 | 0.9077025 | 0.0918276 |
| 3763 | 0.0004999 | 0.9126942 | 0.0868059 |
| 3775 | 0.0152146 | 0.9817177 | 0.0030677 |
| 3779 | 0.0132331 | 0.9832344 | 0.0035325 |
| 3780 | 0.0139445 | 0.9827050 | 0.0033505 |
| 3781 | 0.0147370 | 0.9820947 | 0.0031683 |
| 3783 | 0.0160642 | 0.9810324 | 0.0029034 |
| 3789 | 0.0074834 | 0.9862508 | 0.0062658 |
| 3792 | 0.0114489 | 0.9844630 | 0.0040881 |
| 3797 | 0.0048400 | 0.9854797 | 0.0096802 |
| 3800 | 0.0042585 | 0.9847475 | 0.0109939 |
| 3804 | 0.0272591 | 0.9710472 | 0.0016936 |
| 3807 | 0.0208491 | 0.9769232 | 0.0022277 |
| 3812 | 0.0010677 | 0.9563482 | 0.0425840 |
| 3821 | 0.1308390 | 0.8688453 | 0.0003157 |
| 3825 | 0.0055976 | 0.9860276 | 0.0083748 |
| 3826 | 0.0057192 | 0.9860836 | 0.0081972 |
| 3830 | 0.0108407 | 0.9848402 | 0.0043191 |
| 3843 | 0.0032326 | 0.9823202 | 0.0144472 |
| 3844 | 0.0030669 | 0.9817144 | 0.0152187 |
| 3850 | 0.0028820 | 0.9809360 | 0.0161820 |
| 3856 | 0.0234453 | 0.9745784 | 0.0019763 |
| 3858 | 0.0194710 | 0.9781406 | 0.0023884 |
| 3859 | 0.0197572 | 0.9778896 | 0.0023532 |
| 3861 | 0.0184852 | 0.9789968 | 0.0025179 |
| 3862 | 0.6498096 | 0.3501648 | 0.0000256 |
| 3866 | 0.7685568 | 0.2314288 | 0.0000143 |
| 3871 | 0.7400531 | 0.2599302 | 0.0000167 |
| 3873 | 0.7378753 | 0.2621078 | 0.0000169 |
| 3874 | 0.7499333 | 0.2500509 | 0.0000159 |
| 3878 | 0.7828715 | 0.2171153 | 0.0000132 |
| 3880 | 0.6015434 | 0.3984251 | 0.0000315 |
| 3883 | 0.7600430 | 0.2399420 | 0.0000150 |
| 3885 | 0.7579712 | 0.2420136 | 0.0000152 |
| 3887 | 0.7470634 | 0.2529205 | 0.0000161 |
| 3889 | 0.5905522 | 0.4094149 | 0.0000330 |
| 3893 | 0.7753095 | 0.2246767 | 0.0000138 |
| 3896 | 0.8808477 | 0.1191459 | 0.0000064 |
| 3900 | 0.8784354 | 0.1215580 | 0.0000066 |
| 3902 | 0.2841561 | 0.7157241 | 0.0001198 |
| 3904 | 0.1355149 | 0.8641819 | 0.0003032 |
| 3908 | 0.1234886 | 0.8761741 | 0.0003373 |
| 3913 | 0.9837511 | 0.0162481 | 0.0000008 |
| 3915 | 0.4484070 | 0.5515345 | 0.0000585 |
| 3919 | 0.8309372 | 0.1690531 | 0.0000097 |
| 3923 | 0.8081416 | 0.1918471 | 0.0000113 |
| 3927 | 0.8516872 | 0.1483046 | 0.0000083 |
| 3928 | 0.8516689 | 0.1483228 | 0.0000083 |
| 3930 | 0.8393836 | 0.1606073 | 0.0000091 |
| 3938 | 0.7707587 | 0.2292271 | 0.0000141 |
| 3945 | 0.8037705 | 0.1962179 | 0.0000116 |
| 3946 | 0.9119931 | 0.0880023 | 0.0000046 |
| 3951 | 0.8905167 | 0.1094775 | 0.0000058 |
| 3952 | 0.8802903 | 0.1197032 | 0.0000065 |
| 3953 | 0.2889970 | 0.7108861 | 0.0001169 |
| 3955 | 0.2855749 | 0.7143062 | 0.0001189 |
| 3956 | 0.1173645 | 0.8822781 | 0.0003574 |
| 3957 | 0.1124243 | 0.8872005 | 0.0003752 |
| 3958 | 0.1074669 | 0.8921384 | 0.0003947 |
| 3964 | 0.9801495 | 0.0198495 | 0.0000010 |
| 3966 | 0.6372215 | 0.3627514 | 0.0000271 |
| 3969 | 0.6772077 | 0.3227697 | 0.0000227 |
| 3971 | 0.8248447 | 0.1751452 | 0.0000101 |
| 3972 | 0.8255329 | 0.1744571 | 0.0000100 |
| 3981 | 0.7881039 | 0.2118833 | 0.0000128 |
| 3983 | 0.6673332 | 0.3326431 | 0.0000237 |
| 3984 | 0.6362061 | 0.3637667 | 0.0000272 |
| 3989 | 0.7069794 | 0.2930009 | 0.0000197 |
| 3992 | 0.5141197 | 0.4858353 | 0.0000449 |
| 3993 | 0.5242514 | 0.4757054 | 0.0000431 |
| 3998 | 0.9046068 | 0.0953882 | 0.0000050 |
| 4001 | 0.8780331 | 0.1219603 | 0.0000066 |
| 4002 | 0.9167887 | 0.0832069 | 0.0000043 |
| 4003 | 0.9149640 | 0.0850316 | 0.0000044 |
| 4005 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4006 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4012 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4013 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4014 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4016 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4022 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4024 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4029 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4031 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4032 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4039 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4053 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4061 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4064 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4067 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4068 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4076 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4079 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4081 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4084 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4086 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4096 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4099 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4100 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4102 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4105 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4110 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4115 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4118 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4119 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4123 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4131 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4133 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4136 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4137 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4140 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4142 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4147 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4155 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4156 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4158 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4163 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4167 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4169 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4170 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4173 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4181 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4188 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4189 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4196 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4202 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4204 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4208 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4209 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4213 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4218 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4219 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4220 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4221 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4224 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4228 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4234 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4236 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4240 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4242 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4245 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4247 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4248 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4250 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4254 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4255 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4258 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4259 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4261 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4262 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4269 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4270 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4272 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4278 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4280 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4283 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4287 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4295 | 0.8887304 | 0.1112636 | 0.0000060 |
| 4296 | 0.8917249 | 0.1082693 | 0.0000058 |
| 4298 | 0.9027475 | 0.0972474 | 0.0000051 |
| 4308 | 0.7923442 | 0.2076434 | 0.0000125 |
| 4310 | 0.7741498 | 0.2258363 | 0.0000139 |
| 4311 | 0.7800410 | 0.2199456 | 0.0000134 |
| 4314 | 0.8691948 | 0.1307980 | 0.0000072 |
| 4320 | 0.7234474 | 0.2765344 | 0.0000182 |
| 4328 | 0.9427184 | 0.0572787 | 0.0000029 |
| 4329 | 0.9418422 | 0.0581548 | 0.0000029 |
| 4330 | 0.4434709 | 0.5564694 | 0.0000597 |
| 4331 | 0.4496824 | 0.5502594 | 0.0000582 |
| 4332 | 0.4638432 | 0.5361018 | 0.0000549 |
| 4335 | 0.2576909 | 0.7421722 | 0.0001369 |
| 4336 | 0.2640518 | 0.7358157 | 0.0001325 |
| 4337 | 0.2668961 | 0.7329733 | 0.0001306 |
| 4338 | 0.1305254 | 0.8691580 | 0.0003166 |
| 4341 | 0.9939655 | 0.0060342 | 0.0000003 |
| 4347 | 0.9012129 | 0.0987819 | 0.0000052 |
| 4354 | 0.8937810 | 0.1062133 | 0.0000056 |
| 4360 | 0.8130440 | 0.1869451 | 0.0000109 |
| 4361 | 0.8125352 | 0.1874538 | 0.0000110 |
| 4364 | 0.8751203 | 0.1248730 | 0.0000068 |
| 4365 | 0.8690754 | 0.1309175 | 0.0000072 |
| 4366 | 0.8764918 | 0.1235015 | 0.0000067 |
| 4371 | 0.7389490 | 0.2610342 | 0.0000168 |
| 4374 | 0.8786558 | 0.1213377 | 0.0000066 |
| 4375 | 0.9461235 | 0.0538738 | 0.0000027 |
| 4376 | 0.9402503 | 0.0597467 | 0.0000030 |
| 4377 | 0.9309096 | 0.0690869 | 0.0000035 |
| 4380 | 0.9123242 | 0.0876712 | 0.0000046 |
| 4381 | 0.9113606 | 0.0886348 | 0.0000046 |
| 4384 | 0.3098986 | 0.6899955 | 0.0001059 |
| 4392 | 0.9800124 | 0.0199866 | 0.0000010 |
| 4397 | 0.6575766 | 0.3423986 | 0.0000248 |
| 4400 | 0.7793621 | 0.2206244 | 0.0000135 |
| 4403 | 0.7957355 | 0.2042523 | 0.0000122 |
| 4404 | 0.7591309 | 0.2408540 | 0.0000151 |
| 4407 | 0.7406944 | 0.2592890 | 0.0000166 |
| 4410 | 0.7417591 | 0.2582243 | 0.0000166 |
| 4411 | 0.7301547 | 0.2698277 | 0.0000176 |
| 4413 | 0.5288213 | 0.4711363 | 0.0000424 |
| 4414 | 0.5155893 | 0.4843660 | 0.0000447 |
| 4416 | 0.4890613 | 0.5108891 | 0.0000497 |
| 4419 | 0.6396456 | 0.3603277 | 0.0000268 |
| 4425 | 0.4856991 | 0.5142505 | 0.0000503 |
| 4430 | 0.8278307 | 0.1721594 | 0.0000099 |
| 4433 | 0.8066788 | 0.1933098 | 0.0000114 |
| 4434 | 0.9882175 | 0.0117819 | 0.0000006 |
| 4435 | 0.9699088 | 0.0300898 | 0.0000015 |
| 4438 | 0.9932896 | 0.0067101 | 0.0000003 |
| 4441 | 0.9937683 | 0.0062314 | 0.0000003 |
| 4445 | 0.9926236 | 0.0073761 | 0.0000004 |
| 4450 | 0.9938487 | 0.0061510 | 0.0000003 |
| 4452 | 0.9861005 | 0.0138988 | 0.0000007 |
| 4456 | 0.9924239 | 0.0075757 | 0.0000004 |
| 4457 | 0.9922250 | 0.0077746 | 0.0000004 |
| 4463 | 0.9802301 | 0.0197689 | 0.0000010 |
| 4475 | 0.9323001 | 0.0676964 | 0.0000035 |
| 4478 | 0.8259606 | 0.1740294 | 0.0000100 |
| 4479 | 0.8306565 | 0.1693338 | 0.0000097 |
| 4482 | 0.9995462 | 0.0004538 | 0.0000000 |
| 4484 | 0.9995648 | 0.0004351 | 0.0000000 |
| 4489 | 0.9881133 | 0.0118862 | 0.0000006 |
| 4490 | 0.9939955 | 0.0060042 | 0.0000003 |
| 4492 | 0.9947219 | 0.0052779 | 0.0000003 |
| 4495 | 0.9937590 | 0.0062407 | 0.0000003 |
| 4497 | 0.9941043 | 0.0058955 | 0.0000003 |
| 4502 | 0.9954792 | 0.0045205 | 0.0000002 |
| 4505 | 0.9891540 | 0.0108455 | 0.0000005 |
| 4506 | 0.9886302 | 0.0113692 | 0.0000005 |
| 4509 | 0.9926870 | 0.0073126 | 0.0000004 |
| 4522 | 0.9960357 | 0.0039642 | 0.0000002 |
| 4527 | 0.9178554 | 0.0821404 | 0.0000043 |
| 4530 | 0.7701630 | 0.2298228 | 0.0000142 |
| 4531 | 0.7565679 | 0.2434168 | 0.0000153 |
| 4532 | 0.7351581 | 0.2648248 | 0.0000171 |
| 4534 | 0.9990568 | 0.0009432 | 0.0000000 |
| 4536 | 0.9989827 | 0.0010173 | 0.0000000 |
| 4537 | 0.9989592 | 0.0010408 | 0.0000000 |
| 4538 | 0.9704782 | 0.0295204 | 0.0000014 |
| 4540 | 0.9720958 | 0.0279029 | 0.0000014 |
| 4553 | 0.9900141 | 0.0099854 | 0.0000005 |
| 4555 | 0.9767197 | 0.0232792 | 0.0000011 |
| 4556 | 0.9761293 | 0.0238695 | 0.0000012 |
| 4564 | 0.9618461 | 0.0381521 | 0.0000019 |
| 4565 | 0.9609106 | 0.0390874 | 0.0000019 |
| 4566 | 0.9619233 | 0.0380748 | 0.0000019 |
| 4567 | 0.9623411 | 0.0376570 | 0.0000019 |
| 4569 | 0.9859930 | 0.0140064 | 0.0000007 |
| 4576 | 0.9929857 | 0.0070140 | 0.0000003 |
| 4577 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4578 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4579 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4580 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4581 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4582 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4588 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4589 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4592 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4597 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4600 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4601 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4605 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4607 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4610 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4613 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4615 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4617 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4621 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4623 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4626 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4628 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4630 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4631 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4632 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4634 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4638 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4642 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4648 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4652 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4653 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4655 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4664 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4666 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4671 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4673 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4674 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4678 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4682 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4689 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4691 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4703 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4706 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4708 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4711 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4716 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4718 | 1.0000000 | 0.0000000 | 0.0000000 |
| 4720 | 0.9918850 | 0.0081146 | 0.0000004 |
| 4721 | 0.9789584 | 0.0210406 | 0.0000010 |
| 4723 | 0.9916701 | 0.0083295 | 0.0000004 |
| 4730 | 0.9950978 | 0.0049020 | 0.0000002 |
| 4734 | 0.9962840 | 0.0037159 | 0.0000002 |
| 4737 | 0.9909419 | 0.0090577 | 0.0000004 |
| 4740 | 0.9905877 | 0.0094118 | 0.0000005 |
| 4741 | 0.9949227 | 0.0050771 | 0.0000002 |
| 4743 | 0.9947047 | 0.0052950 | 0.0000003 |
| 4744 | 0.9946839 | 0.0053158 | 0.0000003 |
| 4747 | 0.9886889 | 0.0113105 | 0.0000005 |
| 4749 | 0.9878712 | 0.0121283 | 0.0000006 |
| 4752 | 0.9981333 | 0.0018666 | 0.0000001 |
| 4756 | 0.9980800 | 0.0019199 | 0.0000001 |
| 4764 | 0.9047539 | 0.0952411 | 0.0000050 |
| 4772 | 0.9927685 | 0.0072311 | 0.0000003 |
| 4775 | 0.9928090 | 0.0071907 | 0.0000003 |
| 4780 | 0.9960991 | 0.0039007 | 0.0000002 |
| 4783 | 0.9967455 | 0.0032544 | 0.0000002 |
| 4790 | 0.9932355 | 0.0067642 | 0.0000003 |
| 4791 | 0.9930982 | 0.0069015 | 0.0000003 |
| 4794 | 0.9956817 | 0.0043181 | 0.0000002 |
| 4799 | 0.9910369 | 0.0089627 | 0.0000004 |
| 4807 | 0.9978616 | 0.0021383 | 0.0000001 |
| 4809 | 0.9979404 | 0.0020595 | 0.0000001 |
| 4812 | 0.9582118 | 0.0417861 | 0.0000021 |
| 4815 | 0.8790160 | 0.1209774 | 0.0000065 |
| 4820 | 0.9996613 | 0.0003387 | 0.0000000 |
| 4822 | 0.9996865 | 0.0003135 | 0.0000000 |
| 4823 | 0.9996891 | 0.0003109 | 0.0000000 |
| 4825 | 0.9796211 | 0.0203779 | 0.0000010 |
| 4826 | 0.9923521 | 0.0076475 | 0.0000004 |
| 4827 | 0.9925347 | 0.0074649 | 0.0000004 |
| 4836 | 0.9953469 | 0.0046529 | 0.0000002 |
| 4839 | 0.9954721 | 0.0045277 | 0.0000002 |
| 4843 | 0.9883637 | 0.0116357 | 0.0000006 |
| 4846 | 0.9927118 | 0.0072878 | 0.0000003 |
| 4848 | 0.9931914 | 0.0068083 | 0.0000003 |
| 4862 | 0.9976832 | 0.0023167 | 0.0000001 |
| 4865 | 0.9848695 | 0.0151297 | 0.0000007 |
| 4868 | 0.9917936 | 0.0082060 | 0.0000004 |
| 4872 | 0.9897697 | 0.0102298 | 0.0000005 |
| 4875 | 0.9899846 | 0.0100149 | 0.0000005 |
| 4885 | 0.9880012 | 0.0119982 | 0.0000006 |
| 4887 | 0.9876884 | 0.0123110 | 0.0000006 |
| 4888 | 0.9877525 | 0.0122469 | 0.0000006 |
| 4898 | 0.9950274 | 0.0049723 | 0.0000002 |
| 4911 | 0.9995458 | 0.0004542 | 0.0000000 |
| 4914 | 0.9995439 | 0.0004561 | 0.0000000 |
| 4916 | 0.9667491 | 0.0332492 | 0.0000016 |
| 4917 | 0.9864780 | 0.0135213 | 0.0000007 |
| 4926 | 0.9934124 | 0.0065873 | 0.0000003 |
| 4931 | 0.9945430 | 0.0054568 | 0.0000003 |
| 4935 | 0.9848595 | 0.0151398 | 0.0000007 |
| 4937 | 0.9904652 | 0.0095344 | 0.0000005 |
| 4939 | 0.9908469 | 0.0091527 | 0.0000004 |
| 4940 | 0.9908327 | 0.0091668 | 0.0000004 |
| 4941 | 0.9787660 | 0.0212330 | 0.0000010 |
| 4943 | 0.9764419 | 0.0235570 | 0.0000011 |
| 4945 | 0.9962770 | 0.0037228 | 0.0000002 |
| 4949 | 0.9959587 | 0.0040411 | 0.0000002 |
| 4951 | 0.9949626 | 0.0050372 | 0.0000002 |
| 4954 | 0.9107747 | 0.0892207 | 0.0000047 |
| 4956 | 0.9095187 | 0.0904766 | 0.0000047 |
| 4959 | 0.7603436 | 0.2396414 | 0.0000150 |
| 4963 | 0.9992552 | 0.0007448 | 0.0000000 |
| 4968 | 0.9530474 | 0.0469503 | 0.0000023 |
| 4969 | 0.9815851 | 0.0184140 | 0.0000009 |
| 4974 | 0.9906570 | 0.0093425 | 0.0000004 |
| 4983 | 0.9883335 | 0.0116659 | 0.0000006 |
| 4985 | 0.9722928 | 0.0277059 | 0.0000014 |
| 4986 | 0.9705823 | 0.0294163 | 0.0000014 |
| 4995 | 0.9679267 | 0.0320718 | 0.0000016 |
| 4996 | 0.9681258 | 0.0318727 | 0.0000016 |
| 4998 | 0.9881819 | 0.0118175 | 0.0000006 |
| 5000 | 0.9956727 | 0.0043271 | 0.0000002 |
| 5001 | 0.9954500 | 0.0045498 | 0.0000002 |
| 5008 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5011 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5013 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5017 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5018 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5019 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5021 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5022 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5023 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5025 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5027 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5028 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5032 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5033 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5038 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5042 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5043 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5048 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5049 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5051 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5072 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5074 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5083 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5084 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5087 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5089 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5091 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5092 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5094 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5097 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5098 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5100 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5101 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5107 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5111 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5112 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5114 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5115 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5123 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5129 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5133 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5137 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5140 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5144 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5152 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5154 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5155 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5167 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5168 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5177 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5183 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5186 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5187 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5188 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5190 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5194 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5201 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5209 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5210 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5211 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5213 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5219 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5224 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5226 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5227 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5229 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5231 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5234 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5235 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5241 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5243 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5244 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5248 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5249 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5252 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5253 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5258 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5259 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5261 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5263 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5264 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5268 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5272 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5276 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5277 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5278 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5280 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5287 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5289 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5291 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5292 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5301 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5302 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5303 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5304 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5307 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5311 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5313 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5316 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5321 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5323 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5325 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5331 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5339 | 0.9999999 | 0.0000001 | 0.0000000 |
| 5341 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5347 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5348 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5349 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5352 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5356 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5361 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5363 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5366 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5371 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5372 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5376 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5381 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5386 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5394 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5402 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5404 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5408 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5411 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5416 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5419 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5421 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5422 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5426 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5428 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5429 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5435 | 0.4732920 | 0.5266551 | 0.0000529 |
| 5436 | 0.2520200 | 0.7478389 | 0.0001411 |
| 5438 | 0.4610742 | 0.5388702 | 0.0000556 |
| 5440 | 0.6244060 | 0.3755654 | 0.0000286 |
| 5443 | 0.6014440 | 0.3985245 | 0.0000315 |
| 5446 | 0.6324819 | 0.3674905 | 0.0000276 |
| 5448 | 0.6857439 | 0.3142344 | 0.0000218 |
| 5449 | 0.6893667 | 0.3106118 | 0.0000214 |
| 5450 | 0.6736439 | 0.3263331 | 0.0000230 |
| 5452 | 0.4349956 | 0.5649427 | 0.0000617 |
| 5454 | 0.4090647 | 0.5908666 | 0.0000687 |
| 5456 | 0.5772568 | 0.4227084 | 0.0000348 |
| 5457 | 0.5764832 | 0.4234819 | 0.0000349 |
| 5462 | 0.3571944 | 0.6427201 | 0.0000855 |
| 5466 | 0.5759990 | 0.4239660 | 0.0000350 |
| 5468 | 0.7813970 | 0.2185897 | 0.0000133 |
| 5469 | 0.7554619 | 0.2445228 | 0.0000154 |
| 5470 | 0.7577999 | 0.2421849 | 0.0000152 |
| 5471 | 0.7691850 | 0.2308007 | 0.0000143 |
| 5477 | 0.0637514 | 0.9355509 | 0.0006977 |
| 5478 | 0.0573085 | 0.9419101 | 0.0007814 |
| 5480 | 0.0674185 | 0.9319243 | 0.0006572 |
| 5481 | 0.0683220 | 0.9310301 | 0.0006479 |
| 5483 | 0.9718438 | 0.0281548 | 0.0000014 |
| 5484 | 0.9717483 | 0.0282503 | 0.0000014 |
| 5488 | 0.2726246 | 0.7272486 | 0.0001268 |
| 5490 | 0.4714490 | 0.5284977 | 0.0000533 |
| 5491 | 0.6482812 | 0.3516930 | 0.0000258 |
| 5494 | 0.6535754 | 0.3463994 | 0.0000252 |
| 5497 | 0.6243087 | 0.3756627 | 0.0000286 |
| 5498 | 0.6303075 | 0.3696646 | 0.0000279 |
| 5499 | 0.6240519 | 0.3759195 | 0.0000286 |
| 5501 | 0.6704565 | 0.3295201 | 0.0000234 |
| 5502 | 0.6806626 | 0.3193151 | 0.0000223 |
| 5503 | 0.6665330 | 0.3334432 | 0.0000238 |
| 5506 | 0.4665871 | 0.5333586 | 0.0000543 |
| 5507 | 0.4533646 | 0.5465781 | 0.0000573 |
| 5511 | 0.6023269 | 0.3976417 | 0.0000314 |
| 5515 | 0.3637346 | 0.6361823 | 0.0000832 |
| 5516 | 0.3550044 | 0.6449093 | 0.0000864 |
| 5517 | 0.7883628 | 0.2116244 | 0.0000128 |
| 5521 | 0.7316060 | 0.2683765 | 0.0000174 |
| 5527 | 0.0857863 | 0.9137073 | 0.0005064 |
| 5531 | 0.0240819 | 0.9739952 | 0.0019229 |
| 5532 | 0.0232300 | 0.9747750 | 0.0019950 |
| 5538 | 0.9083651 | 0.0916301 | 0.0000048 |
| 5543 | 0.4195730 | 0.5803612 | 0.0000658 |
| 5545 | 0.4257845 | 0.5741514 | 0.0000641 |
| 5546 | 0.4336987 | 0.5662392 | 0.0000621 |
| 5553 | 0.3818540 | 0.6180690 | 0.0000770 |
| 5556 | 0.1927585 | 0.8070424 | 0.0001991 |
| 5560 | 0.1633064 | 0.8364501 | 0.0002435 |
| 5570 | 0.3517909 | 0.6481215 | 0.0000876 |
| 5571 | 0.5713600 | 0.4286043 | 0.0000357 |
| 5574 | 0.4954694 | 0.5044822 | 0.0000484 |
| 5576 | 0.4798530 | 0.5200955 | 0.0000515 |
| 5578 | 0.9932095 | 0.0067901 | 0.0000003 |
| 5579 | 0.9824602 | 0.0175389 | 0.0000008 |
| 5580 | 0.9928318 | 0.0071678 | 0.0000003 |
| 5581 | 0.9928068 | 0.0071928 | 0.0000003 |
| 5584 | 0.9961550 | 0.0038448 | 0.0000002 |
| 5587 | 0.9950881 | 0.0049117 | 0.0000002 |
| 5592 | 0.9962214 | 0.0037785 | 0.0000002 |
| 5593 | 0.9961012 | 0.0038987 | 0.0000002 |
| 5596 | 0.9901223 | 0.0098772 | 0.0000005 |
| 5598 | 0.9898435 | 0.0101560 | 0.0000005 |
| 5604 | 0.9867288 | 0.0132706 | 0.0000006 |
| 5611 | 0.9978368 | 0.0021631 | 0.0000001 |
| 5614 | 0.9978848 | 0.0021151 | 0.0000001 |
| 5616 | 0.9979524 | 0.0020475 | 0.0000001 |
| 5621 | 0.9079216 | 0.0920736 | 0.0000048 |
| 5623 | 0.9141641 | 0.0858314 | 0.0000045 |
| 5627 | 0.9997884 | 0.0002116 | 0.0000000 |
| 5628 | 0.9997886 | 0.0002114 | 0.0000000 |
| 5629 | 0.9997877 | 0.0002123 | 0.0000000 |
| 5635 | 0.9972057 | 0.0027942 | 0.0000001 |
| 5636 | 0.9972313 | 0.0027686 | 0.0000001 |
| 5637 | 0.9971530 | 0.0028469 | 0.0000001 |
| 5638 | 0.9963634 | 0.0036365 | 0.0000002 |
| 5639 | 0.9965439 | 0.0034559 | 0.0000002 |
| 5643 | 0.9977575 | 0.0022424 | 0.0000001 |
| 5649 | 0.9935402 | 0.0064595 | 0.0000003 |
| 5663 | 0.9983252 | 0.0016748 | 0.0000001 |
| 5668 | 0.9978104 | 0.0021895 | 0.0000001 |
| 5670 | 0.9575940 | 0.0424039 | 0.0000021 |
| 5682 | 0.9912771 | 0.0087225 | 0.0000004 |
| 5686 | 0.9955948 | 0.0044049 | 0.0000002 |
| 5687 | 0.9957137 | 0.0042861 | 0.0000002 |
| 5688 | 0.9956211 | 0.0043787 | 0.0000002 |
| 5689 | 0.9956488 | 0.0043510 | 0.0000002 |
| 5691 | 0.9946646 | 0.0053352 | 0.0000003 |
| 5692 | 0.9949027 | 0.0050971 | 0.0000002 |
| 5696 | 0.9952914 | 0.0047084 | 0.0000002 |
| 5697 | 0.9950782 | 0.0049215 | 0.0000002 |
| 5700 | 0.9877549 | 0.0122445 | 0.0000006 |
| 5702 | 0.9863698 | 0.0136296 | 0.0000007 |
| 5703 | 0.9856728 | 0.0143265 | 0.0000007 |
| 5706 | 0.9923456 | 0.0076540 | 0.0000004 |
| 5712 | 0.9856339 | 0.0143654 | 0.0000007 |
| 5713 | 0.9946395 | 0.0053603 | 0.0000003 |
| 5716 | 0.9979633 | 0.0020366 | 0.0000001 |
| 5726 | 0.9621021 | 0.0378961 | 0.0000019 |
| 5729 | 0.9542142 | 0.0457835 | 0.0000023 |
| 5735 | 0.9649265 | 0.0350718 | 0.0000017 |
| 5738 | 0.9216879 | 0.0783081 | 0.0000040 |
| 5742 | 0.9564687 | 0.0435292 | 0.0000022 |
| 5744 | 0.9544742 | 0.0455236 | 0.0000023 |
| 5746 | 0.9515621 | 0.0484354 | 0.0000024 |
| 5747 | 0.8911754 | 0.1088188 | 0.0000058 |
| 5748 | 0.8911456 | 0.1088486 | 0.0000058 |
| 5756 | 0.9787618 | 0.0212372 | 0.0000010 |
| 5757 | 0.9787495 | 0.0212495 | 0.0000010 |
| 5766 | 0.4462407 | 0.5537003 | 0.0000590 |
| 5774 | 0.8379920 | 0.1619988 | 0.0000092 |
| 5776 | 0.9317708 | 0.0682257 | 0.0000035 |
| 5781 | 0.9614333 | 0.0385648 | 0.0000019 |
| 5783 | 0.9650345 | 0.0349638 | 0.0000017 |
| 5784 | 0.9651575 | 0.0348408 | 0.0000017 |
| 5785 | 0.9653376 | 0.0346607 | 0.0000017 |
| 5786 | 0.9722538 | 0.0277449 | 0.0000014 |
| 5787 | 0.9725133 | 0.0274853 | 0.0000013 |
| 5798 | 0.9546517 | 0.0453460 | 0.0000023 |
| 5803 | 0.9809896 | 0.0190094 | 0.0000009 |
| 5806 | 0.9811194 | 0.0188796 | 0.0000009 |
| 5807 | 0.9801907 | 0.0198084 | 0.0000010 |
| 5809 | 0.9763459 | 0.0236529 | 0.0000012 |
| 5811 | 0.9762683 | 0.0237306 | 0.0000012 |
| 5812 | 0.6659551 | 0.3340211 | 0.0000238 |
| 5814 | 0.6473473 | 0.3526268 | 0.0000259 |
| 5817 | 0.3550470 | 0.6448666 | 0.0000864 |
| 5818 | 0.3380032 | 0.6619037 | 0.0000931 |
| 5819 | 0.3131988 | 0.6866970 | 0.0001042 |
| 5824 | 0.9936978 | 0.0063019 | 0.0000003 |
| 5825 | 0.8437632 | 0.1562280 | 0.0000088 |
| 5828 | 0.8528451 | 0.1471467 | 0.0000082 |
| 5829 | 0.9163509 | 0.0836448 | 0.0000043 |
| 5830 | 0.9223149 | 0.0776811 | 0.0000040 |
| 5831 | 0.9328601 | 0.0671365 | 0.0000034 |
| 5832 | 0.9400223 | 0.0599747 | 0.0000030 |
| 5834 | 0.9316264 | 0.0683701 | 0.0000035 |
| 5837 | 0.9347926 | 0.0652041 | 0.0000033 |
| 5844 | 0.8679278 | 0.1320650 | 0.0000072 |
| 5848 | 0.9142812 | 0.0857144 | 0.0000045 |
| 5856 | 0.9204100 | 0.0795859 | 0.0000041 |
| 5862 | 0.9613653 | 0.0386328 | 0.0000019 |
| 5864 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5865 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5867 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5870 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5873 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5874 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5880 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5888 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5890 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5891 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5893 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5897 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5900 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5902 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5903 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5906 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5913 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5917 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5924 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5929 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5931 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5933 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5934 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5936 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5940 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5941 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5942 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5944 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5945 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5946 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5960 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5961 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5966 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5970 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5971 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5973 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5974 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5975 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5978 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5980 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5984 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5985 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5990 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5991 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5992 | 1.0000000 | 0.0000000 | 0.0000000 |
| 5994 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6004 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6005 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6006 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6007 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6009 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6012 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6013 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6014 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6022 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6025 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6029 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6034 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6036 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6041 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6043 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6046 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6053 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6057 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6059 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6060 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6061 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6065 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6067 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6068 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6072 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6076 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6077 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6082 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6083 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6086 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6088 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6092 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6097 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6098 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6099 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6101 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6105 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6109 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6110 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6111 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6116 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6118 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6123 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6128 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6130 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6132 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6135 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6137 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6143 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6151 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6153 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6155 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6157 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6165 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6170 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6171 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6176 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6177 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6179 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6180 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6185 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6188 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6191 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6193 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6201 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6202 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6203 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6204 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6207 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6209 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6210 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6211 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6212 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6221 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6223 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6224 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6228 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6230 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6232 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6233 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6236 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6239 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6240 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6243 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6245 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6246 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6249 | 0.9999999 | 0.0000001 | 0.0000000 |
| 6253 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6260 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6266 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6267 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6270 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6272 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6283 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6284 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6287 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6291 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6292 | 1.0000000 | 0.0000000 | 0.0000000 |
| 6293 | 0.9941205 | 0.0058792 | 0.0000003 |
| 6296 | 0.9937453 | 0.0062544 | 0.0000003 |
| 6298 | 0.9966406 | 0.0033592 | 0.0000002 |
| 6309 | 0.9967641 | 0.0032358 | 0.0000002 |
| 6313 | 0.9918977 | 0.0081019 | 0.0000004 |
| 6315 | 0.9956284 | 0.0043714 | 0.0000002 |
| 6323 | 0.9982880 | 0.0017119 | 0.0000001 |
| 6325 | 0.9982691 | 0.0017308 | 0.0000001 |
| 6338 | 0.9311364 | 0.0688600 | 0.0000035 |
| 6340 | 0.8446766 | 0.1553146 | 0.0000087 |
| 6341 | 0.9998356 | 0.0001644 | 0.0000000 |
| 6342 | 0.9998355 | 0.0001644 | 0.0000000 |
| 6350 | 0.9973111 | 0.0026888 | 0.0000001 |
| 6356 | 0.9968510 | 0.0031488 | 0.0000002 |
| 6357 | 0.9969632 | 0.0030367 | 0.0000001 |
| 6358 | 0.9975954 | 0.0024045 | 0.0000001 |
| 6359 | 0.9975795 | 0.0024203 | 0.0000001 |
| 6363 | 0.9942441 | 0.0057556 | 0.0000003 |
| 6365 | 0.9936962 | 0.0063035 | 0.0000003 |
| 6372 | 0.9911291 | 0.0088705 | 0.0000004 |
| 6375 | 0.9985103 | 0.0014897 | 0.0000001 |
| 6377 | 0.9985119 | 0.0014881 | 0.0000001 |
| 6379 | 0.9982477 | 0.0017522 | 0.0000001 |
| 6381 | 0.9976805 | 0.0023194 | 0.0000001 |
| 6382 | 0.9977001 | 0.0022998 | 0.0000001 |
| 6385 | 0.9529692 | 0.0470284 | 0.0000023 |
| 6390 | 0.8492539 | 0.1507377 | 0.0000084 |
| 6404 | 0.9941893 | 0.0058105 | 0.0000003 |
| 6410 | 0.9937271 | 0.0062726 | 0.0000003 |
| 6411 | 0.9933229 | 0.0066768 | 0.0000003 |
| 6413 | 0.9927503 | 0.0072493 | 0.0000003 |
| 6426 | 0.9795671 | 0.0204319 | 0.0000010 |
| 6427 | 0.9797223 | 0.0202768 | 0.0000010 |
library(caret)
# Asignar niveles de categorías
niveles <- levels(prueba$Weekly_Sales)
# Convertir probabilidades en categorías predichas
categorias_predichas <- apply(probabilidades, 1, function(x) {
niveles[which.max(x)]
})
# Obtener las categorías verdaderas
verdaderas_categorias <- prueba$Weekly_Sales
# Crear la matriz de confusión
matriz_confusion <- confusionMatrix(factor(categorias_predichas, levels = niveles),
factor(verdaderas_categorias, levels = niveles))
# Imprimir la matriz de confusión
print(matriz_confusion)Confusion Matrix and Statistics
Reference
Prediction Ventas Bajas Ventas Medias Ventas Altas
Ventas Bajas 1413 67 0
Ventas Medias 48 391 9
Ventas Altas 0 3 0
Overall Statistics
Accuracy : 0.9342
95% CI : (0.9222, 0.9449)
No Information Rate : 0.7566
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.8197
Mcnemar's Test P-Value : NA
Statistics by Class:
Class: Ventas Bajas Class: Ventas Medias
Sensitivity 0.9671 0.8482
Specificity 0.8574 0.9612
Pos Pred Value 0.9547 0.8728
Neg Pred Value 0.8936 0.9528
Prevalence 0.7566 0.2387
Detection Rate 0.7317 0.2025
Detection Prevalence 0.7664 0.2320
Balanced Accuracy 0.9123 0.9047
Class: Ventas Altas
Sensitivity 0.000000
Specificity 0.998439
Pos Pred Value 0.000000
Neg Pred Value 0.995332
Prevalence 0.004661
Detection Rate 0.000000
Detection Prevalence 0.001554
Balanced Accuracy 0.499220
Interpretación
Estadísticas Generales
Accuracy (Precisión): 0.9342. Este resultado significa que el modelo tiene una precisión del 93.42% en la clasificación correcta de las ventas.
Kappa: 0.8197. El índice Kappa indica un buen acuerdo entre las predicciones del modelo y las categorías verdaderas, ajustado por la posibilidad de coincidencias aleatorias.
Ventas Altas
Sensibilidad: 0.0000. El modelo no ha sido capaz de identificar ninguna “Ventas Altas”.
Especificidad: 0.9984. Capacidad del modelo para identificar correctamente las no “Ventas Altas”.
Valor Predictivo Positivo (PPV): 0.0000. No se han predicho correctamente las “Ventas Altas”.
Valor Predictivo Negativo (NPV): 0.9953. Proporción de verdaderos negativos entre todas las predicciones no “Ventas Altas”.
Otra Forma De Evaluar La Precisión Del Modelo.
pred1 <- predict(modelo_3, prueba)
tabla_conf <- table(pred1, prueba$Weekly_Sales)
tabla_conf | Ventas Bajas | Ventas Medias | Ventas Altas | |
|---|---|---|---|
| Ventas Bajas | 1413 | 67 | 0 |
| Ventas Medias | 48 | 391 | 9 |
| Ventas Altas | 0 | 3 | 0 |
sum(diag(tabla_conf)) / sum(tabla_conf)[1] 0.934231
Este resultado confirma que el modelo tiene una precisión del 93.42% en el total de las predicciones. Sin embargo, hay que tener en cuenta que este modelo tiene una alta precisión general, pero tiene dificultades significativas para identificar las “Ventas Altas”. Esto podría ser una indicación de que el modelo está sesgado hacia la predicción de “Ventas Bajas” y “Ventas Medias”, o que hay una desproporción en los datos de entrenamiento y los datos de prueba.
conteo_categorias <- table(walmart_Sales$Weekly_Sales)
conteo_categorias| Var1 | Freq |
|---|---|
| Ventas Bajas | 4793 |
| Ventas Medias | 1602 |
| Ventas Altas | 40 |
Se puede observar como efectivamente hay una proporción menor de Ventas Altas.
Respuesta A la Interrogante Planteada
¿Pueden factores como la temperatura del aire y el costo del combustible influir en el éxito de una gran empresa junto con el índice de poder adquisitivo y los descuentos estacionales?
Si, los factores como la temperatura del aire, el costo del combustible, el índice de poder adquisitivo y los descuentos estacionales pueden influir significativamente en el éxito de una gran empresa como lo es Walmart y por lo tanto, estas variables se pueden utilizar para poder predecir las ventas de dicha empresa.