library(tidyverse)
library(DT)
library(trendyy)              
library(lubridate)               
Psychologist <- trendy("Psychologist")

Psychologist %>% 
  get_interest() %>% 
  glimpse()
Rows: 262
Columns: 7
$ date     <dttm> 2019-08-11, 2019-08-18, 2019-08-25, 2019…
$ hits     <int> 68, 73, 75, 70, 82, 77, 72, 72, 72, 70, 7…
$ keyword  <chr> "Psychologist", "Psychologist", "Psycholo…
$ geo      <chr> "world", "world", "world", "world", "worl…
$ time     <chr> "today+5-y", "today+5-y", "today+5-y", "t…
$ gprop    <chr> "web", "web", "web", "web", "web", "web",…
$ category <chr> "All categories", "All categories", "All …
Psychologist %>%
  get_interest() %>% 
  ggplot(aes(x = date, y = hits)) +
  geom_line()

The shows the searches for psychologist over a span of years.

Psychologist %>%
  get_interest() %>% 
  mutate(month = month(date)) %>%            
  group_by(month) %>%                        
  summarize(hits_per_month = mean(hits)) %>%      
  ggplot(aes(x = month, y = hits_per_month)) +    
  geom_line() +
  scale_x_discrete(limits = factor(1:12))

This graph shows the searches for psychologist by month over a year.

Psychologist %>%
  get_interest_dma() %>% 
  datatable() %>%

suppressWarnings()

This table shows the searches for psychologist by geographical location.

Psychologist_countries <- trendy("Psychologist", geo = c("US", "CA"), from = "2015-01-01", to = "2020-01-01")

Psychologist %>% 
  get_interest() %>% 
  glimpse()
Rows: 262
Columns: 7
$ date     <dttm> 2019-08-11, 2019-08-18, 2019-08-25, 2019…
$ hits     <int> 68, 73, 75, 70, 82, 77, 72, 72, 72, 70, 7…
$ keyword  <chr> "Psychologist", "Psychologist", "Psycholo…
$ geo      <chr> "world", "world", "world", "world", "worl…
$ time     <chr> "today+5-y", "today+5-y", "today+5-y", "t…
$ gprop    <chr> "web", "web", "web", "web", "web", "web",…
$ category <chr> "All categories", "All categories", "All …
Psychologist_countries %>%
  get_interest() %>% 
  mutate(month = month(date)) %>%          
  group_by(month, geo) %>%                              
  summarize(hits_per_month = mean(hits)) %>%           
  ggplot(aes(x = month, y = hits_per_month, color = geo)) +       
  geom_line() +
  scale_x_discrete(limits = factor(1:12)) +
  theme_minimal() +
  labs(title = "Internet searches for 'Psychologist' over time, by Canada and US")

This shows a comparison between searches for psychologist in Canada and the US by month, over a year.

Psychologist_Psychiatrist %>%
  get_interest() %>%
  ggplot(aes(x = date, y = hits, color = keyword)) +
  geom_line()

This shows a comparison of the number of searches for psychologist and the number of searches for psychiatrist over the span of years.

Psychologist_Psychiatrist_images <- trendy(c("Psychologist", "Psychiatrist"), geo = "US", gprop = "images")
Psychologist_Psychiatrist_images %>%
  get_interest() %>%
  ggplot(aes(x = date, y = hits, color = keyword, gprop = "images")) +
  geom_line()

This shows a comparison between the number of image searches for psychologist and psychiatrist.

LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KERUKQpsaWJyYXJ5KHRyZW5keXkpICAgICAgICAgICAgICAKbGlicmFyeShsdWJyaWRhdGUpICAgICAgICAgICAgICAgCmBgYAoKCgpgYGB7cn0KUHN5Y2hvbG9naXN0IDwtIHRyZW5keSgiUHN5Y2hvbG9naXN0IikKClBzeWNob2xvZ2lzdCAlPiUgCiAgZ2V0X2ludGVyZXN0KCkgJT4lIAogIGdsaW1wc2UoKQpgYGAKCgoKYGBge3J9ClBzeWNob2xvZ2lzdCAlPiUKICBnZXRfaW50ZXJlc3QoKSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gZGF0ZSwgeSA9IGhpdHMpKSArCiAgZ2VvbV9saW5lKCkKYGBgCgpUaGUgc2hvd3MgdGhlIHNlYXJjaGVzIGZvciBwc3ljaG9sb2dpc3Qgb3ZlciBhIHNwYW4gb2YgeWVhcnMuCgoKYGBge3Igd2FybmluZz1GQUxTRX0KUHN5Y2hvbG9naXN0ICU+JQogIGdldF9pbnRlcmVzdCgpICU+JSAKICBtdXRhdGUobW9udGggPSBtb250aChkYXRlKSkgJT4lICAgICAgICAgICAgCiAgZ3JvdXBfYnkobW9udGgpICU+JSAgICAgICAgICAgICAgICAgICAgICAgIAogIHN1bW1hcml6ZShoaXRzX3Blcl9tb250aCA9IG1lYW4oaGl0cykpICU+JSAgICAgIAogIGdncGxvdChhZXMoeCA9IG1vbnRoLCB5ID0gaGl0c19wZXJfbW9udGgpKSArICAgIAogIGdlb21fbGluZSgpICsKICBzY2FsZV94X2Rpc2NyZXRlKGxpbWl0cyA9IGZhY3RvcigxOjEyKSkKCmBgYAoKVGhpcyBncmFwaCBzaG93cyB0aGUgc2VhcmNoZXMgZm9yIHBzeWNob2xvZ2lzdCBieSBtb250aCBvdmVyIGEgeWVhci4KCgpgYGB7ciB3YXJuaW5nPVRSVUV9ClBzeWNob2xvZ2lzdCAlPiUKICBnZXRfaW50ZXJlc3RfZG1hKCkgJT4lIAogIGRhdGF0YWJsZSgpICU+JQoKc3VwcHJlc3NXYXJuaW5ncygpCmBgYAoKVGhpcyB0YWJsZSBzaG93cyB0aGUgc2VhcmNoZXMgZm9yIHBzeWNob2xvZ2lzdCBieSBnZW9ncmFwaGljYWwgbG9jYXRpb24uCgoKYGBge3J9ClBzeWNob2xvZ2lzdF9jb3VudHJpZXMgPC0gdHJlbmR5KCJQc3ljaG9sb2dpc3QiLCBnZW8gPSBjKCJVUyIsICJDQSIpLCBmcm9tID0gIjIwMTUtMDEtMDEiLCB0byA9ICIyMDIwLTAxLTAxIikKClBzeWNob2xvZ2lzdCAlPiUgCiAgZ2V0X2ludGVyZXN0KCkgJT4lIAogIGdsaW1wc2UoKQpgYGAKCgoKCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0UsIHBhZ2VkLnByaW50PUZBTFNFfQpQc3ljaG9sb2dpc3RfY291bnRyaWVzICU+JQogIGdldF9pbnRlcmVzdCgpICU+JSAKICBtdXRhdGUobW9udGggPSBtb250aChkYXRlKSkgJT4lICAgICAgICAgIAogIGdyb3VwX2J5KG1vbnRoLCBnZW8pICU+JSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogIHN1bW1hcml6ZShoaXRzX3Blcl9tb250aCA9IG1lYW4oaGl0cykpICU+JSAgICAgICAgICAgCiAgZ2dwbG90KGFlcyh4ID0gbW9udGgsIHkgPSBoaXRzX3Blcl9tb250aCwgY29sb3IgPSBnZW8pKSArICAgICAgIAogIGdlb21fbGluZSgpICsKICBzY2FsZV94X2Rpc2NyZXRlKGxpbWl0cyA9IGZhY3RvcigxOjEyKSkgKwogIHRoZW1lX21pbmltYWwoKSArCiAgbGFicyh0aXRsZSA9ICJJbnRlcm5ldCBzZWFyY2hlcyBmb3IgJ1BzeWNob2xvZ2lzdCcgb3ZlciB0aW1lLCBieSBDYW5hZGEgYW5kIFVTIikKYGBgCgpUaGlzIHNob3dzIGEgY29tcGFyaXNvbiBiZXR3ZWVuIHNlYXJjaGVzIGZvciBwc3ljaG9sb2dpc3QgaW4gQ2FuYWRhIGFuZCB0aGUgVVMgYnkgbW9udGgsIG92ZXIgYSB5ZWFyLgoKCmBgYHtyfQpQc3ljaG9sb2dpc3RfUHN5Y2hpYXRyaXN0IDwtIHRyZW5keShjKCJQc3ljaG9sb2dpc3QiLCAiUHN5Y2hpYXRyaXN0IiksIGdlbyA9ICJVUyIpCmBgYAoKCgoKYGBge3J9ClBzeWNob2xvZ2lzdF9Qc3ljaGlhdHJpc3QgJT4lCiAgZ2V0X2ludGVyZXN0KCkgJT4lCiAgZ2dwbG90KGFlcyh4ID0gZGF0ZSwgeSA9IGhpdHMsIGNvbG9yID0ga2V5d29yZCkpICsKICBnZW9tX2xpbmUoKQpgYGAKClRoaXMgc2hvd3MgYSBjb21wYXJpc29uIG9mIHRoZSBudW1iZXIgb2Ygc2VhcmNoZXMgZm9yIHBzeWNob2xvZ2lzdCBhbmQgdGhlIG51bWJlciBvZiBzZWFyY2hlcyBmb3IgcHN5Y2hpYXRyaXN0IG92ZXIgdGhlIHNwYW4gb2YgeWVhcnMuCgoKYGBge3J9ClBzeWNob2xvZ2lzdF9Qc3ljaGlhdHJpc3RfaW1hZ2VzIDwtIHRyZW5keShjKCJQc3ljaG9sb2dpc3QiLCAiUHN5Y2hpYXRyaXN0IiksIGdlbyA9ICJVUyIsIGdwcm9wID0gImltYWdlcyIpCmBgYAoKCgoKYGBge3J9ClBzeWNob2xvZ2lzdF9Qc3ljaGlhdHJpc3RfaW1hZ2VzICU+JQogIGdldF9pbnRlcmVzdCgpICU+JQogIGdncGxvdChhZXMoeCA9IGRhdGUsIHkgPSBoaXRzLCBjb2xvciA9IGtleXdvcmQsIGdwcm9wID0gImltYWdlcyIpKSArCiAgZ2VvbV9saW5lKCkKYGBgCgpUaGlzIHNob3dzIGEgY29tcGFyaXNvbiBiZXR3ZWVuIHRoZSBudW1iZXIgb2YgaW1hZ2Ugc2VhcmNoZXMgZm9yIHBzeWNob2xvZ2lzdCBhbmQgcHN5Y2hpYXRyaXN0LgoKCgoKCg==