Abas

1- Operações Iniciais

#Filtrando os dados com o mes igual a agosto
database = subset(airquality,
                  Month == 8)

#Ordenando pela temperatura
database = database %>% arrange(desc(Temp))

database
##    Ozone Solar.R Wind Temp Month Day
## 1     76     203  9.7   97     8  28
## 2     84     237  6.3   96     8  30
## 3    118     225  2.3   94     8  29
## 4     85     188  6.3   94     8  31
## 5     NA     222  8.6   92     8  10
## 6     89     229 10.3   90     8   8
## 7    110     207  8.0   90     8   9
## 8    122     255  4.0   89     8   7
## 9     NA     153  5.7   88     8  27
## 10    66      NA  4.6   87     8   6
## 11    78      NA  6.9   86     8   4
## 12    NA     137 11.5   86     8  11
## 13    44     192 11.5   86     8  12
## 14    73     215  8.0   86     8  26
## 15    35      NA  7.4   85     8   5
## 16    16      77  7.4   82     8   3
## 17    28     273 11.5   82     8  13
## 18    39      83  6.9   81     8   1
## 19     9      24 13.8   81     8   2
## 20   168     238  3.4   81     8  25
## 21    65     157  9.7   80     8  14
## 22    NA      64 11.5   79     8  15
## 23    59      51  6.3   79     8  17
## 24    45     212  9.7   79     8  24
## 25    31     244 10.9   78     8  19
## 26    44     190 10.3   78     8  20
## 27    22      71 10.3   77     8  16
## 28    21     259 15.5   77     8  21
## 29    23     115  7.4   76     8  18
## 30    NA     255 12.6   75     8  23
## 31     9      36 14.3   72     8  22

2- Database

datatable(database)

Kaya et al. (2019)

3- Equações

1. Lei de Gauss para o Campo Elétrico

\[ \nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \]

2. Lei de Gauss para o Campo Magnético

\[ \nabla \cdot \mathbf{B} = 0 \]

3. Lei de Faraday da Indução

\[ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \]

4. Lei de Ampère-Maxwell

\[ \nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \] Huray (2009)

5. Equação de Clausius-Clapeyron

\[ \frac{dP}{dT} = \frac{L}{T \Delta V} \] Brown (1951)

4- Imagens

D, Okoh, and Okere (2021) Kabacoff (2022)

5- Referencias

Referências

Brown, Oliver LI. 1951. “The Clausius-Clapeyron Equation.” Journal of Chemical Education 28 (8): 428.
D, Onyeuwaoma, Daniel Okoh, and Bonaventure Okere. 2021. “A Neural Network-Based Method for Modeling PM 2.5 Measurements Obtained from the Surface Particulate Matter Network.” Environmental Monitoring and Assessment 193 (May). https://doi.org/10.1007/s10661-021-09049-3.
Huray, Paul G. 2009. Maxwell’s Equations. John Wiley & Sons.
Kabacoff, Robert. 2022. R in Action: Data Analysis and Graphics with r and Tidyverse. Simon; Schuster.
Kaya, Efdal, Muge Agca, Fatih Adiguzel, and Mehmet Cetin. 2019. “Spatial Data Analysis with r Programming for Environment.” Human and Ecological Risk Assessment: An International Journal 25 (6): 1521–30.