## 1. Instalar librerias
#install.packages("DataExplorer")
library("DataExplorer")
#install.packages("nycflights13")
library(nycflights13)
flights <- flights
weather <- weather
planes <- planes
airports <- airports
airlines <- airlines
#create_report(flights)
introduce(flights)
## # A tibble: 1 × 9
## rows columns discrete_columns continuous_columns all_missing_columns
## <int> <int> <int> <int> <int>
## 1 336776 19 5 14 0
## # ℹ 4 more variables: total_missing_values <int>, complete_rows <int>,
## # total_observations <int>, memory_usage <dbl>
plot_intro(flights)
#plot_boxplot(flights)
plot_missing(flights)
plot_histogram(flights)
plot_bar(flights)
## 3 columns ignored with more than 50 categories.
## tailnum: 4044 categories
## dest: 105 categories
## time_hour: 6936 categories
plot_correlation(flights)
## 3 features with more than 20 categories ignored!
## tailnum: 4044 categories
## dest: 105 categories
## time_hour: 6936 categories
## Warning in cor(x = structure(list(year = c(2013L, 2013L, 2013L, 2013L, 2013L, :
## the standard deviation is zero
This 3,000-flight figure is just the tip of the iceberg. Here’s a deeper dive into the daily departures from each airport: JFK: The king of international arrivals, JFK sees a constant stream of long-haul flights whisking passengers across continents.