rm(list=ls())
library(data.table)
library(fst)
library(RSQLite)
library(DBI)  
library(dplyr)
library(tidyr)
library(lfe)
library(stargazer)
library(stringr)
library(ggplot2)
library(readxl)
library(reshape2)
library(stringi)
library(zoo)
source('C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/functions.R')
fit_felm <- function(formula, data, sample_frac,drop_dv_outliers=TRUE) {
  dep_var_name <- as.character(formula[[2]])
  if(drop_dv_outliers==TRUE) {
    quantiles <- quantile(data[[dep_var_name]], c(0.01, 0.99), na.rm = TRUE)
    subset_data <- data[data[[dep_var_name]] > quantiles[1] & data[[dep_var_name]] < quantiles[2], ]
  } else {
    subset_data = data
  }
  subset_data <- subset_data[sample(nrow(subset_data), size = nrow(subset_data)*sample_frac), ]
  felm(formula, data = subset_data)
}
hmda_link_entity <- fread("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/HMDA lender/hmdapan2017.csv",select=c("code","hmprid",paste0("RSSD",12:17)))#,paste0("ENTITY",15:16)
hmda_link_entity[,hmda_id:=paste0(code,"-",hmprid)]
hmda_link_entity[,c("code","hmprid"):=list(NULL)]
hmda_link_entity <- melt(hmda_link_entity,id.vars = c("hmda_id"))
hmda_link_entity <- data.table(hmda_link_entity)
hmda_link_entity <- hmda_link_entity[!is.na(value)]
hmda_link_entity[,year:=as.character(variable)]
hmda_link_entity[,year:=substr(year,5,6)]
setnames(hmda_link_entity,"value","RSSD")
hmda_link_entity[,variable:=NULL]
hmda_link_entity[,year:=as.numeric(year)]
hmda_link_entity[,year:=ifelse(year>85,1900+year,2000+year)]


hmda_link_2021 <- fread("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/HMDA lender/hmdapan2021.csv",select=c("LEI","RSSD21","CODE21","HMPRID"))

hmda_link_2021[,hmda_id:=paste0(CODE21,"-",HMPRID)]
hmda_link_2021 <- hmda_link_2021[,c("LEI","RSSD21","hmda_id")]
gse_limit_files <- list.files("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/GSE Limits",full.names = T,pattern = ".xls")
gse_limits <- list()
i=1
for(fl in gse_limit_files) {
  yr <- substr(fl,117,120)
  if(yr<=2014) {
    temp <- read_xls(fl,sheet = 1,skip=2,col_names = F)  
  } else{
    temp <- read_xlsx(fl,sheet = 1,skip=2,col_names = F)  
  }
  
  names(temp) <- c("statefips","countyfips","countyname","cbsa","statecode","gse_limit","gse_limit_2","gse_limit_3","gse_limit_4")
  temp <- data.table(temp)
  temp[,year:=yr]
  gse_limits[[i]] <- temp
  i=i+1
}

gse_limits <- rbindlist(gse_limits)
gse_limits[,gse_limit:=floor(gse_limit/1000)]
gse_limits[,year:=as.numeric(year)]



gse_limits[,county:=paste0(statefips,countyfips)]

gse_limits <- gse_limits[,c("county","year","gse_limit")]

setorder(gse_limits,county,year)
gse_limits[,gse_limit_1:=lag(gse_limit),by=county]
gse_limits[,gse_limit_2:=lead(gse_limit),by=county]

gse_limits[,limit_change:=gse_limit-gse_limit_1]
zrd <- fread("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Zillow Research Data/County_zhvi_uc_sfrcondo_tier_0.67_1.0_sm_sa_month.csv")


zrd[,fips:=paste0(str_pad(StateCodeFIPS,2,pad="0"),str_pad(MunicipalCodeFIPS,3,pad="0"))]
zrd[,c("RegionID","RegionName","SizeRank","StateName","RegionType","State","Metro","StateCodeFIPS","MunicipalCodeFIPS")] <- NULL
zrd <- melt(zrd,id.vars = c("fips"))
zrd$month <- as.Date(as.character(zrd$variable),origin = "1970-01-01")
zrd$variable <- NULL
names(zrd) <- c("county","zhvi","month")
zrd <- data.table(zrd)
zrd[,asofdate:=year(month)]

zrd <- zrd[,.(zhvi=mean(zhvi,na.rm=T)),by=.(county,asofdate)]

zrd <- merge(zrd,gse_limits,by.x=c("county","asofdate"),by.y=c("county","year"))
zrd[,zhvi:=zhvi/1000]
zrd[,above_conforming_limit:=ifelse(zhvi>gse_limit,1,0)]

above_conforming_limit <- zrd[,.(above_conforming_limit=sum(above_conforming_limit,na.rm=T)),by=asofdate]
gse_limits_yr <- gse_limits[,.(
  gse_limit=median(gse_limit,na.rm=T),
  limit_change=median(limit_change,na.rm=T)),
  by=year]


gse_limits_yr <- merge(gse_limits_yr,above_conforming_limit,by.x="year",by.y="asofdate")

setnames(gse_limits_yr,"gse_limit","gse_limit_year")
data <- gse_limits[year %in% c(2016:2023),.(.N),by=.(gse_limit,year)]

years <- unique(data$year)

# Initialize an empty list to store the data.tables
data_tables_list <- list()

# Loop through each year, filter the data, and store in the list
for (yr in years) {
  # Filter data for the current year
  dt_year <- data[year == yr, .(gse_limit, N)]
  
  # Add an 'id' column that is simply the row number
  # Rearrange columns to have 'id' as the first column
  
  setorder(dt_year,gse_limit)
  
  other <- dt_year[N==1]
  dt_year <- dt_year[N>1]
  new_row <- setNames(as.list(rep(NA, ncol(dt_year))), names(dt_year))
  new_row[["gse_limit"]] <- -1
  new_row[["N"]] <- nrow(other)

# Convert the list to a data.table and append
  dt_year <- rbind(dt_year, as.data.table((new_row)))
  dt_year[, id := .I]
  
  setnames(dt_year, "gse_limit", paste0("gse_limit_", yr))
  setnames(dt_year, "N", paste0("N_", yr))
  
  
  # Add the data.table to the list, with the name being the year
  data_tables_list[[as.character(yr)]] <- dt_year
}

merged_data <- Reduce(function(x, y) merge(x, y, by = "id", all = TRUE), data_tables_list)

print(merged_data)
##     id gse_limit_2016 N_2016 gse_limit_2017 N_2017 gse_limit_2018 N_2018
##  1:  1            417   3000            424   2996            453   3014
##  2:  2            426      6            426      6            458     17
##  3:  3            437     20            433      3            483      2
##  4:  4            458     27            437      6            494     14
##  5:  5            474      5            458     17            517     11
##  6:  6            483      2            466     14            529     13
##  7:  7            517      7            483      2            535     20
##  8:  8            523      7            488      4            600      2
##  9:  9            529      4            493     10            603      7
## 10: 10            535     20            517      7            615      2
## 11: 11            540      3            529      4            625     11
## 12: 12            600      3            535     20            667      3
## 13: 13            625    112            592      3            679    103
## 14: 14            657      2            598      7             -1     15
## 15: 15             -1     16            600      2             NA     NA
## 16: 16             NA     NA            625     11             NA     NA
## 17: 17             NA     NA            636    103             NA     NA
## 18: 18             NA     NA            657      2             NA     NA
## 19: 19             NA     NA             -1     17             NA     NA
##     gse_limit_2019 N_2019 gse_limit_2020 N_2020 gse_limit_2021 N_2021
##  1:            484   3035            510   3030            548   3062
##  2:            517      7            520      7            586     13
##  3:            529      3            529      2            596     10
##  4:            534     14            535     20            598      4
##  5:            535     20            563     13            600      2
##  6:            552      4            569      4            625      7
##  7:            561     10            575     10            646      4
##  8:            600      2            600      2            724      7
##  9:            625     11            625     10            726      2
## 10:            688      7            646      4            739      2
## 11:            718      2            690      8            765      2
## 12:            726    106            726      2            776      3
## 13:             -1     13            741      3            817      2
## 14:             NA     NA            762      2            822    102
## 15:             NA     NA            765    102             -1     11
## 16:             NA     NA             -1     14             NA     NA
## 17:             NA     NA             NA     NA             NA     NA
## 18:             NA     NA             NA     NA             NA     NA
## 19:             NA     NA             NA     NA             NA     NA
##     gse_limit_2022 N_2022 gse_limit_2023 N_2023
##  1:            647   3074            726   3073
##  2:            648      2            740      2
##  3:            675      4            744      4
##  4:            684     10            763      4
##  5:            694     13            787     10
##  6:            726      2            828      7
##  7:            770      7            890     13
##  8:            856      2            948      3
##  9:            891      3            977      4
## 10:            970    102           1089    103
## 11:             -1     14             -1     11
## 12:             NA     NA             NA     NA
## 13:             NA     NA             NA     NA
## 14:             NA     NA             NA     NA
## 15:             NA     NA             NA     NA
## 16:             NA     NA             NA     NA
## 17:             NA     NA             NA     NA
## 18:             NA     NA             NA     NA
## 19:             NA     NA             NA     NA
stargazer(merged_data,summary = F,type="text")
## 
## =====================================================================================================================================================================================
##    id gse_limit_2016 N_2016 gse_limit_2017 N_2017 gse_limit_2018 N_2018 gse_limit_2019 N_2019 gse_limit_2020 N_2020 gse_limit_2021 N_2021 gse_limit_2022 N_2022 gse_limit_2023 N_2023
## -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
## 1  1       417       3,000       424       2,996       453       3,014       484       3,035       510       3,030       548       3,062       647       3,074       726       3,073 
## 2  2       426         6         426         6         458         17        517         7         520         7         586         13        648         2         740         2   
## 3  3       437         20        433         3         483         2         529         3         529         2         596         10        675         4         744         4   
## 4  4       458         27        437         6         494         14        534         14        535         20        598         4         684         10        763         4   
## 5  5       474         5         458         17        517         11        535         20        563         13        600         2         694         13        787         10  
## 6  6       483         2         466         14        529         13        552         4         569         4         625         7         726         2         828         7   
## 7  7       517         7         483         2         535         20        561         10        575         10        646         4         770         7         890         13  
## 8  8       523         7         488         4         600         2         600         2         600         2         724         7         856         2         948         3   
## 9  9       529         4         493         10        603         7         625         11        625         10        726         2         891         3         977         4   
## 10 10      535         20        517         7         615         2         688         7         646         4         739         2         970        102       1,089       103  
## 11 11      540         3         529         4         625         11        718         2         690         8         765         2          -1         14         -1         11  
## 12 12      600         3         535         20        667         3         726        106        726         2         776         3                                               
## 13 13      625        112        592         3         679        103         -1         13        741         3         817         2                                               
## 14 14      657         2         598         7          -1         15                              762         2         822        102                                              
## 15 15       -1         16        600         2                                                     765        102         -1         11                                              
## 16 16                            625         11                                                     -1         14                                                                    
## 17 17                            636        103                                                                                                                                      
## 18 18                            657         2                                                                                                                                       
## 19 19                             -1         17                                                                                                                                      
## -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
ggplot(gse_limits_yr, aes(x=year)) +
  geom_col(aes(y=gse_limit_year),fill="dodgerblue",alpha=0.5) +
  scale_x_continuous(breaks = unique(gse_limits_yr$year))+
  labs(x="",y="GSE limit ($'000)")+
  theme_minimal()

ggplot(gse_limits_yr, aes(x=year)) +
  geom_col(aes(y=above_conforming_limit),fill="dodgerblue",alpha=0.5) +
  scale_x_continuous(breaks = unique(gse_limits_yr$year))+
  labs(x="",y="Number of counties")+
  theme_minimal()

ggplot(gse_limits_yr, aes(x=year, y=limit_change)) +
  geom_col(filll="dodgerblue",size=2) +
  # geom_point(size=3,color="dodgerblue4")+
  scale_x_continuous(breaks = unique(gse_limits_yr$year))+
  labs(x="",y="GSE limit Change ($'000)")+
  theme_minimal()

hmda_con <- dbConnect(RSQLite::SQLite(), "C:/Users/dratnadiwakara2/Downloads/HMDA/hmda.db")

yrs <- as.character(2012:2017)
hmda <- list()
i=1
for(yr in yrs) {
  print(yr)
  hmda[[i]] <- data.table(dbGetQuery(hmda_con,
                                     paste0("select
                                                agencycode,
                                                respondentid,
                                                asofdate,
                                                purposeofloan,
                                                typeofpurchaser,
                                                amountofloan,
                                                censustract,
                                                applicantincome,
                                                typeofloan,
                                                actiontaken,
                                                denialreason1,
                                                denialreason2,
                                                denialreason3
                                            from lar_",yr," 
                                            where 
                                            actiontaken in (1,3,6) and
                                            propertytype==1")))
  i=i+1
}
## [1] "2012"
## [1] "2013"
## [1] "2014"
## [1] "2015"
## [1] "2016"
## [1] "2017"
hmda <- rbindlist(hmda)
hmda <- data.table(hmda)
hmda[,county:=substr(censustract,1,5)]


hmda <- merge(hmda,gse_limits,by.x=c("asofdate","county"),by.y=c("year","county"),all.x=T)
hmda <- merge(hmda,gse_limits_yr,by.x="asofdate",by.y="year")
hmda[,gse_limit:=ifelse(is.na(gse_limit),gse_limit_year,gse_limit)]

hmda[,amountofloan:=as.numeric(amountofloan)]
hmda[,dist_gse_limit:=amountofloan-gse_limit]

hmda[,jumbo_this_year:=ifelse(amountofloan>gse_limit,1,0)]
hmda[,jumbo_last_year:=ifelse(amountofloan>gse_limit_1,1,0)]
hmda[,jumbo_next_year:=ifelse(amountofloan>gse_limit_2,1,0)]

hmda[,hmda_id:=paste0(agencycode,"-",respondentid)]

hmda <- merge(hmda,hmda_link_entity,by.x=c("asofdate","hmda_id"),by.y=c("year","hmda_id"),all.x=T)
# hmda <- hmda[RSSD>0 & !is.na(RSSD)]
gc()
##              used    (Mb) gc trigger    (Mb)   max used    (Mb)
## Ncells    2725020   145.6    4749042   253.7    4749042   253.7
## Vcells 1935613623 14767.6 4822978522 36796.5 4014010836 30624.5
yrs <- 2018:2022
hmda_post <- list()
i=1
for(yr in yrs) {
  print(yr)
  hmda_post[[i]] <- data.table(dbGetQuery(hmda_con,
                                     paste0("select
                                                lei,
                                                asofdate,
                                                purposeofloan,
                                                typeofpurchaser,
                                                amountofloan,
                                                censustract,
                                                actiontaken,
                                                conforming_loan_limit,
                                                combined_loan_to_value_ratio,
                                                interest_rate,
                                                rate_spread,
                                                total_loan_costs,
                                                debt_to_income_ratio,
                                                typeofloan,
                                                applicant_age,
                                                applicantincome,
                                                denialreason1,
                                                denialreason2,
                                                denialreason3
                                            from lar_",yr," 
                                            where 
                                            actiontaken in (1,3,6) and
                                            derived_dwelling_category='Single Family (1-4 Units):Site-Built'")))
  i=i+1
}
## [1] 2018
## [1] 2019
## [1] 2020
## [1] 2021
## [1] 2022
hmda_post <- rbindlist(hmda_post)
hmda_post <- data.table(hmda_post)
hmda_post[,county:=substr(censustract,1,5)]


hmda_post <- merge(hmda_post,gse_limits,by.x=c("asofdate","county"),by.y=c("year","county"),all.x=T)
hmda_post <- merge(hmda_post,gse_limits_yr,by.x="asofdate",by.y="year")
hmda_post[,gse_limit:=ifelse(is.na(gse_limit),gse_limit_year,gse_limit)]

hmda_post[,amountofloan:=as.numeric(amountofloan)]
hmda_post[,dist_gse_limit:=amountofloan-gse_limit]

hmda_post[,jumbo_this_year:=ifelse(amountofloan>gse_limit,1,0)]
hmda_post[,jumbo_last_year:=ifelse(amountofloan>gse_limit_1,1,0)]
hmda_post[,jumbo_next_year:=ifelse(amountofloan>gse_limit_2,1,0)]

hmda_post <- merge(hmda_post,hmda_link_2021,by.x=c("lei"),by.y=c("LEI"),all.x=T)

# hmda_post <- hmda_post[RSSD21>0 & !is.na(RSSD21)]

hmda_post[,purposeofloan:=ifelse(purposeofloan>10,3,purposeofloan)]
setnames(hmda_post,"RSSD21","RSSD")
gc()
##              used    (Mb) gc trigger    (Mb)   max used    (Mb)
## Ncells    2969956   158.7    4749042   253.7    4749042   253.7
## Vcells 4132029407 31524.9 6945265071 52988.2 6944420612 52981.8
# hmda_1_summary <- hmda[actiontaken==1,.(no_loans=.N,total_loan_amt=sum(amountofloan)),
#                              by=.(RSSD,asofdate)]
# 
# hmda_2_summary <- hmda_post[actiontaken==1,.(no_loans=.N,total_loan_amt=sum(amountofloan)),
#                              by=.(RSSD,asofdate)]


jumbo_100k_by_lender <- hmda[  actiontaken==1 & typeofloan==1 & 
                               dist_gse_limit>10 & typeofpurchaser==0 &
                               asofdate %in% 2012:2016,
                             .(no_of_jumbo_loans=.N,
                               total_jumbo_loan_amt=sum(amountofloan)),
                             by=.(asofdate,RSSD)]

# all_by_lender <- hmda[asofdate %in% 2012:2016 & actiontaken==1 & typeofloan==1  ,
#                              .(all_no_of_loans=.N,
#                                all_total_loan_amt=sum(amountofloan)),
#                              by=RSSD]

# jumbo_100k_by_lender <- merge(jumbo_100k_by_lender,all_by_lender,by="RSSD")

# jumbo_100k_by_lender[,no_of_jumbo_loans_pct:=no_of_jumbo_loans*100/all_no_of_loans]
# jumbo_100k_by_lender[,total_jumbo_loan_amt_pct:=total_jumbo_loan_amt*100/all_total_loan_amt]



# HHI <- hmda[  actiontaken==1 & typeofloan==1 & 
#                                asofdate %in% 2012:2016,.(amountofloan=sum(amountofloan,na.rm=T)),
#                     by=.(RSSD,county)]
# 
# HHI[, total_loan_by_rssd_asofdate := sum(amountofloan), by = .(RSSD)]
# HHI[, market_share := amountofloan / total_loan_by_rssd_asofdate]
# HHI[, squared_market_share := market_share^2, by = .(RSSD, county)]
# 
# 
# HHI <- HHI[market_share>0, .(HHI = sum(squared_market_share),.N), by = .(RSSD)]
# 
# jumbo_100k_by_lender <- merge(jumbo_100k_by_lender,HHI,by="RSSD",all.x=T)
con_call <- dbConnect(RSQLite::SQLite(), "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Call Reports/call_reports.db")

con_ubpr <- dbConnect(RSQLite::SQLite(),  "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Call Reports/ubpr.db")


data_periods <- apply(expand.grid(c("0331","0630","0930","1231"), 2012:2023), 1, paste, collapse="")
# data_periods <- c(data_periods,"03312023")
# data_periods <- apply(expand.grid(c("1231"), 2022), 1, paste, collapse="")

upbr <- list()

i=1
for (dp in data_periods) {
  ubpr_dp <- as.Date(dp,"%m%d%Y")
  ubpr_yr <- year(ubpr_dp)
    
  ubpr_data <- dbGetQuery(con_ubpr,paste0("select 
                                        UBPRD387 net_income_current_q,
                                        UBPR3368 assets_quarterly_avg,
                                        UBPRK434 core_deposits,
                                        UBPRE566 htm_assets_ubpr,
                                        UBPRE630 roe,
                                        UBPRKX40 nii_assets,
                                        UBPRE002 interest_expense_assets_1,
                                        UBPRE678 interest_income_assets,
                                        UBPRE023 nii_earnings_assets,
                                        UBPRE565 afs_assets_upbr,
                                        UBPR7316 asset_growth_yearly,
                                        UBPRE153 asset_growth_quarterly,
                                        UBPR2122 total_loans,
                                        UBPRE141 loan_growth_quarterly,
                                        UBPR1766 commercial_industrial_loans,
                                        UBPRD214 re_loans_sfr,
                                        UBPR1410-UBPRD214 re_loans_other,
                                        UBPRD175 individual_loans,
                                        UBPR2170 total_assets,
                                        UBPR2746 cre_construction_land_dev_loans,
                                        UBPRE006 provisions_to_assets,
                                        UBPRE397 re_loans_net_loss,
                                        UBPR3210 total_equity,
                                        UBPR3792 tier_1_capital,
                                        UBPRD488 total_capital_ratio,
                                        UBPR0081+UBPR0071 cash,
                                        UBPRD588 total_securities,
                                        UBPR2200 total_deposits,
                                        UBPRE679 interest_expense_assets_2,
                                        UBPR7400 personnel_expense_to_assets,
                                        UBPRE090 assets_per_employee,
                                        UBPRD667+UBPRD669 pastdue_nonaccrual_loans,
                                        UBPRE485+UBPRE486 mtg_delinq_pct,
                                        UBPRE487+UBPRE488 mtg_delinq_pct_2,
                                        UBPR2365 brokered_deposits,
                                        UBPRE390 gross_loss_pct_of_avg_loans,
                                        UBPRE544 gross_loans_30_89_past_due_pct,
                                        UBPR7414 gross_loans_90_past_due_pct,
                                        UBPRE595 brokers_deposits_pct_of_total_deposits,
                                        UBPRE559 lns_securities_over_15_pct_of_assets,
                                        UBPR3200 subordinated_debt,
                                        IDRSSD
                                      from ubpr_",ubpr_yr," 
                                      where 
                                      data_period=",as.numeric(ubpr_dp),""))
  
  call_1 <- dbGetQuery(con_call,paste0("select 
                                    RCON5597 uninsured_deposits,
                                    RCON6631 noninterest_deposits,
                                    RCON2200 deposits_domestic,
                                    RCONF049 deposits_domestic_insured,
                                    RCONF051 deposits_domestic_uninsured,
                                    RCON6631 deposits_domestic_non_interest,
                                    RCON2210 demand_deposits,
                                    RCONF160+RCONF161 cre_mortgages,
                                    RCONF159 cre_construction,
                                    RCONF165 cre_commitments,
                                    IDRSSD 
                                 from call_1_",dp," "))


  call_2 <- dbGetQuery(con_call,paste0("select 
                                        FDIC_Certificate_Number,
                                        Financial_Institution_Name,
                                        Financial_Institution_State,
                                        data_period,
                                        RIADC017 data_processing_expenses,
                                        RIAD4135 salaries_employee_benefits,
                                        RIAD4150 no_of_full_time_employees,
                                        IDRSSD 
                                     from call_2_",dp," "))
  
  
  ubpr_data <- merge(ubpr_data,call_2,by="IDRSSD")
  ubpr_data <- merge(ubpr_data,call_1,by="IDRSSD")
  ubpr_data <- data.table(ubpr_data)

  upbr[[i]] <- ubpr_data

  i=i+1
}

upbr <- rbindlist(upbr,fill=T)

dbDisconnect(con_call)
dbDisconnect(con_ubpr)
summary_stats <- function(x) {
  return(c(
    p25 = quantile(x, 0.25,na.rm=T),
    median = median(x,na.rm=T),
    mean = mean(x,na.rm=T),
    p75 = quantile(x, 0.75,na.rm=T)
  ))
}

1 Assets

upbr[,total_loans_assets:=total_loans*100/total_assets]
upbr[,re_loans_sfr_assets:=re_loans_sfr*100/total_assets]
upbr[,individual_loans_assets:=individual_loans*100/total_assets]
upbr[,ci_assets:=commercial_industrial_loans*100/total_assets]
upbr[,cre_assets:=(cre_construction+cre_mortgages)*100/total_assets]
upbr[,re_loans_other_assets:=(re_loans_other-cre_construction-cre_mortgages)*100/total_assets]
upbr[,total_securities_assets:=total_securities*100/total_assets]
upbr[,cash_assets:=cash*100/total_assets]

selected_vars <- c("total_loans_assets","total_securities_assets","cash_assets",
                   "re_loans_sfr_assets","re_loans_other_assets",
                   "individual_loans_assets","ci_assets","cre_assets",
                   "lns_securities_over_15_pct_of_assets")
summary_table <- upbr[data_period=="12312016", lapply(.SD, summary_stats), .SDcols = selected_vars]
summary_table <- t(summary_table)
colnames(summary_table) <- c("p25", "Median", "Mean", "p75")


print(summary_table)
##                                             p25    Median      Mean       p75
## total_loans_assets                   54.2037033 67.470314 63.788662 77.073627
## total_securities_assets               8.9196590 17.884995 20.965163 29.547528
## cash_assets                           3.4662511  6.568186  9.617156 12.133087
## re_loans_sfr_assets                   8.8814929 16.498242 19.630517 26.287325
## re_loans_other_assets                 3.5092542  6.920259  8.877155 12.324487
## individual_loans_assets               0.6565521  1.795101  3.361293  3.771453
## ci_assets                             3.5379536  6.541537  8.023301 10.685372
## cre_assets                            6.9759628 16.180601 18.248613 27.173007
## lns_securities_over_15_pct_of_assets  1.7100000  5.595000  9.643334 13.447500

2 Liabilities

upbr[,deposits_assets:=total_deposits*100/total_assets]
upbr[,core_deposits_assets:=core_deposits*100/total_assets]
upbr[,noncore_deposits_assets:=deposits_assets-core_deposits_assets]
upbr[,brokered_deposits_assets:=brokered_deposits*100/total_assets]
upbr[,subordinated_debt_assets:=subordinated_debt*100/total_assets]


selected_vars <- c("deposits_assets","core_deposits_assets","noncore_deposits_assets","brokered_deposits_assets","subordinated_debt_assets")
summary_table <- upbr[data_period=="12312016", lapply(.SD, summary_stats), .SDcols = selected_vars]
summary_table <- t(summary_table)
colnames(summary_table) <- c("p25", "Median", "Mean", "p75")


print(summary_table)
##                                p25    Median        Mean       p75
## deposits_assets          80.432638 85.170426 82.53593935 88.309289
## core_deposits_assets     71.883036 78.849222 75.80722415 83.927673
## noncore_deposits_assets   2.111248  4.601868  6.72871520  8.796528
## brokered_deposits_assets  0.000000  0.000000  2.67725274  2.768671
## subordinated_debt_assets  0.000000  0.000000  0.01720113  0.000000

3 Capital

upbr[,equity_assets:=total_equity*100/total_assets]
upbr[,tier_1_assets:=tier_1_capital*100/total_assets]

selected_vars <- c("equity_assets","tier_1_assets","total_capital_ratio")
summary_table <- upbr[data_period=="12312016", lapply(.SD, summary_stats), .SDcols = selected_vars]
summary_table <- t(summary_table)
colnames(summary_table) <- c("p25", "Median", "Mean", "p75")


print(summary_table)
##                           p25   Median     Mean      p75
## equity_assets        9.348856 10.69248 12.50207 12.62727
## tier_1_assets        9.934104 11.20698 12.99992 13.14708
## total_capital_ratio 13.491425 16.18925 29.29905 20.74730

4 Asset Quality

selected_vars <- c("gross_loans_30_89_past_due_pct","gross_loans_90_past_due_pct","provisions_to_assets","mtg_delinq_pct_2")
summary_table <- upbr[data_period=="12312016", lapply(.SD, summary_stats), .SDcols = selected_vars]
summary_table <- t(summary_table)
colnames(summary_table) <- c("p25", "Median", "Mean", "p75")


print(summary_table)
##                                 p25 Median      Mean  p75
## gross_loans_30_89_past_due_pct 0.16   0.46 0.8638441 1.12
## gross_loans_90_past_due_pct    0.21   0.64 1.1190449 1.39
## provisions_to_assets           0.00   0.07 0.1399782 0.17
## mtg_delinq_pct_2               0.51   1.53 2.5327390 3.20

5 Profitability

upbr[,roa:=net_income_current_q*400/assets_quarterly_avg]

selected_vars <- c("roa","roe","nii_assets","interest_expense_assets_1","interest_income_assets")
summary_table <- upbr[data_period=="12312016", lapply(.SD, summary_stats), .SDcols = selected_vars]
summary_table <- t(summary_table)
colnames(summary_table) <- c("p25", "Median", "Mean", "p75")


print(summary_table)
##                                 p25    Median     Mean       p75
## roa                       0.4994433 0.8474808 1.049686  1.213127
## roe                       4.9600000 7.9500000 8.275409 11.290000
## nii_assets                2.9700000 3.3500000 3.379330  3.750000
## interest_expense_assets_1 0.2400000 0.3700000 0.408121  0.530000
## interest_income_assets    3.6700000 4.1200000 4.154072  4.560000

6 Scale

selected_vars <- c("asset_growth_quarterly","asset_growth_yearly","no_of_full_time_employees","assets_per_employee")
summary_table <- upbr[data_period=="12312016", lapply(.SD, summary_stats), .SDcols = selected_vars]
summary_table <- t(summary_table)
colnames(summary_table) <- c("p25", "Median", "Mean", "p75")


print(summary_table)
##                             p25 Median       Mean   p75
## asset_growth_quarterly    -0.13   1.21   1.775089  2.79
## asset_growth_yearly       -0.17   3.50   5.854573  8.11
## no_of_full_time_employees 21.00  44.00 344.898424 99.00
## assets_per_employee        3.71   4.59   6.106662  6.00
upbr_2016 <- upbr[data_period %in% c("12312012","12312013","12312014","12312015","12312016"),
                  c("IDRSSD","data_period","total_assets")]
upbr_2016[,asofdate:=as.numeric(substr(data_period,5,8))]
upbr_2016[,c("data_period"):=list(NULL)]


upbr_2016 <- merge(upbr_2016,jumbo_100k_by_lender,
                   by.x=c("IDRSSD","asofdate"),
                   by.y=c("RSSD","asofdate"))

# upbr_2016[,re_loan_frac_assets:=sfr_first_lein_ma*100/total_assets]
upbr_2016[,jumbo_frac_assets:=total_jumbo_loan_amt*100/(total_assets)]

upbr_2016 <- upbr_2016[,.(jumbo_frac_assets=mean(jumbo_frac_assets,na.rm=T),
                          total_assets = mean(total_assets)
                          ),
                       by=IDRSSD]

# upbr_2016[,re_loan_dependance:=ntile(re_loan_frac_assets,100)]
upbr_2016[,jumbo_dependance:=ntile(jumbo_frac_assets,4)]

upbr_2016[,jumbo_7590:=ntile(jumbo_frac_assets,100)]
upbr_2016[,jumbo_7590:=ifelse(jumbo_7590<75,1,ifelse(jumbo_7590<90,2,3))]



# ggplot(upbr_2016,aes(x=jumbo_frac_assets,fill=factor(jumbo_7590)))+geom_histogram(alpha=0.5,bins=60) #[jumbo_frac_assets<50]
ggplot(upbr_2016[jumbo_frac_assets < 20], aes(x = jumbo_frac_assets, fill = factor(jumbo_7590))) +
  geom_histogram(alpha = 0.75, bins = 60) +
  scale_fill_manual(values = c("skyblue", "dodgerblue", "dodgerblue4"), 
                    labels = c("Less than 75th %tile", "75-90th %tile", "Greater than 90th %tile"),
                    name = "")+
  labs(x="Jumbo loans 2012-2016/Assets",y="Number of banks")+
   theme_minimal()+
  theme(legend.position = "bottom")

upbr_2016_desc <- merge(upbr_2016, 
                   upbr[data_period %in% c("12312016"), c('Financial_Institution_Name',"total_loans_assets","total_securities_assets","cash_assets",
                   "re_loans_sfr_assets","re_loans_other_assets",
                   "individual_loans_assets","ci_assets","cre_assets",
                   "lns_securities_over_15_pct_of_assets","deposits_assets","core_deposits_assets","noncore_deposits_assets","brokered_deposits_assets","subordinated_debt_assets","equity_assets","tier_1_assets","total_capital_ratio","gross_loans_30_89_past_due_pct","gross_loans_90_past_due_pct","provisions_to_assets","mtg_delinq_pct_2","roa","roe","nii_assets","interest_expense_assets_1","interest_income_assets","no_of_full_time_employees","assets_per_employee",'IDRSSD')],by="IDRSSD")
bank_list <- upbr_2016_desc[,c("IDRSSD","total_assets","jumbo_frac_assets","Financial_Institution_Name")]
setorder(bank_list,-jumbo_frac_assets)
# write.csv(bank_list,"C:/Users/dratnadiwakara2/Downloads/bank_list_2.csv")
library(DescTools)

round_values <- function(x) {
  ifelse(x > 100, round(x, 0), ifelse(x > 10, round(x, 1), round(x, 2)))
}

upbr_2016_desc[!is.na(jumbo_7590) ,.N,by=jumbo_7590]
##    jumbo_7590    N
## 1:          1 2686
## 2:          2  521
## 3:          3  398
columns_to_include <- c('total_assets',"total_loans_assets","total_securities_assets","cash_assets",
                   "re_loans_sfr_assets","re_loans_other_assets",
                   "individual_loans_assets","ci_assets","cre_assets",
                   "lns_securities_over_15_pct_of_assets","deposits_assets","core_deposits_assets","noncore_deposits_assets","brokered_deposits_assets","subordinated_debt_assets","equity_assets","tier_1_assets","total_capital_ratio","gross_loans_30_89_past_due_pct","gross_loans_90_past_due_pct","provisions_to_assets","mtg_delinq_pct_2","roa","roe","nii_assets","interest_expense_assets_1","interest_income_assets","no_of_full_time_employees","assets_per_employee") #,'deposits_state_hhi','deposits_college_hhi','deposits_income_hhi'

# result_table <- bank_wa_mean_data[!is.na(bank_size), lapply(.SD, function(x) list(Mean = mean(x, na.rm = TRUE))), by = bank_size, .SDcols = columns_to_include]
result_table <- upbr_2016_desc[!is.na(jumbo_7590) , lapply(.SD, function(x) {
  x_winsorized <- Winsorize(x, probs = c(0.05, 0.95), na.rm = TRUE)
  list(Winsorized_Mean = mean(x_winsorized, na.rm = TRUE))
}), by = jumbo_7590, .SDcols = columns_to_include]

setorder(result_table,jumbo_7590)

transposed_result_table <- t(result_table)

colnames(transposed_result_table) <- unlist(transposed_result_table[1,])

transposed_result_table <- transposed_result_table[-1,]

transposed_result_table <- cbind(rownames(transposed_result_table), transposed_result_table)

transposed_result_table <- as.data.table(transposed_result_table)

transposed_result_table <- data.frame(lapply(transposed_result_table, function(x) unlist(x, use.names = FALSE)))

transposed_result_table <- data.table(transposed_result_table)

numeric_cols <- names(transposed_result_table)[sapply(transposed_result_table, is.numeric)]

transposed_result_table[, (numeric_cols) := lapply(.SD, round_values), .SDcols = numeric_cols]

# print(transposed_result_table)

stargazer(transposed_result_table,summary=F,type="text",rownames = F)
## 
## ============================================================
## V1                                     X1      X2      X3   
## ------------------------------------------------------------
## total_assets                         680,822 559,815 858,454
## total_loans_assets                   66.700  73.300  76.400 
## total_securities_assets                20    13.600  11.100 
## cash_assets                           7.430   7.400   7.590 
## re_loans_sfr_assets                  19.200  23.700  32.400 
## re_loans_other_assets                 7.770   9.080   9.570 
## individual_loans_assets               2.530   1.720   1.200 
## ci_assets                             8.500   8.610   6.960 
## cre_assets                           22.600  25.200  21.200 
## lns_securities_over_15_pct_of_assets  9.670   9.310  12.600 
## deposits_assets                        84    83.800  81.900 
## core_deposits_assets                 77.200  76.600  72.900 
## noncore_deposits_assets               6.440   7.020   8.720 
## brokered_deposits_assets              2.380   2.760   3.510 
## subordinated_debt_assets                0       0       0   
## equity_assets                        10.900  10.800  10.900 
## tier_1_assets                        11.300  11.300  11.300 
## total_capital_ratio                  16.600  15.700  16.200 
## gross_loans_30_89_past_due_pct        0.670   0.490   0.400 
## gross_loans_90_past_due_pct           0.960   0.810   0.660 
## provisions_to_assets                  0.110   0.110   0.090 
## mtg_delinq_pct_2                      2.060   1.550   1.230 
## roa                                   0.880   0.880   0.840 
## roe                                   8.480   8.450   8.540 
## nii_assets                            3.380   3.470   3.350 
## interest_expense_assets_1             0.400   0.450   0.520 
## interest_income_assets                4.130   4.250   4.130 
## no_of_full_time_employees              148     119     144  
## assets_per_employee                   5.110   5.190   6.550 
## ------------------------------------------------------------
correlation_data <- upbr_2016_desc

correlation_data[,log_jumbo_frac_assets:=log(jumbo_frac_assets)]

selected_columns <- correlation_data[, c("log_jumbo_frac_assets", "total_loans_assets","total_securities_assets","cash_assets",
                   "re_loans_sfr_assets","re_loans_other_assets",
                   "individual_loans_assets","ci_assets","cre_assets",
                   "lns_securities_over_15_pct_of_assets","deposits_assets","core_deposits_assets","noncore_deposits_assets","brokered_deposits_assets","subordinated_debt_assets","equity_assets","tier_1_assets","total_capital_ratio","gross_loans_30_89_past_due_pct","gross_loans_90_past_due_pct","provisions_to_assets","mtg_delinq_pct_2","roa","roe","nii_assets","interest_expense_assets_1","interest_income_assets","no_of_full_time_employees","assets_per_employee")]

# Compute the correlation matrix
correlation_matrix <- cor(selected_columns,use="complete.obs")

print(correlation_matrix)
##                                      log_jumbo_frac_assets total_loans_assets
## log_jumbo_frac_assets                          1.000000000         0.32823969
## total_loans_assets                             0.328239694         1.00000000
## total_securities_assets                       -0.335275694        -0.85533362
## cash_assets                                    0.010398912        -0.31570645
## re_loans_sfr_assets                            0.303663795         0.25960095
## re_loans_other_assets                          0.125201468         0.28656075
## individual_loans_assets                       -0.151015255         0.03631946
## ci_assets                                     -0.053380737         0.29560933
## cre_assets                                     0.060844318         0.43374529
## lns_securities_over_15_pct_of_assets           0.041236667        -0.03043938
## deposits_assets                               -0.025599340        -0.10202783
## core_deposits_assets                          -0.082246415        -0.22094482
## noncore_deposits_assets                        0.091245917         0.21509771
## brokered_deposits_assets                       0.036678945         0.20246256
## subordinated_debt_assets                       0.008269786         0.02217238
## equity_assets                                 -0.041789832        -0.07938580
## tier_1_assets                                 -0.023871472        -0.06004252
## total_capital_ratio                           -0.084697123        -0.45984847
## gross_loans_30_89_past_due_pct                -0.099926599        -0.13933256
## gross_loans_90_past_due_pct                   -0.073616191        -0.06238488
## provisions_to_assets                          -0.039559981         0.12810216
## mtg_delinq_pct_2                              -0.129090086        -0.11003189
## roa                                            0.004133838         0.03374172
## roe                                           -0.003398685         0.08130056
## nii_assets                                     0.085917827         0.47048763
## interest_expense_assets_1                      0.178635678         0.32937455
## interest_income_assets                         0.089170234         0.46371923
## no_of_full_time_employees                     -0.002341440        -0.05272674
## assets_per_employee                            0.035622652        -0.07048383
##                                      total_securities_assets  cash_assets
## log_jumbo_frac_assets                           -0.335275694  0.010398912
## total_loans_assets                              -0.855333616 -0.315706447
## total_securities_assets                          1.000000000 -0.166420941
## cash_assets                                     -0.166420941  1.000000000
## re_loans_sfr_assets                             -0.225336010 -0.084723717
## re_loans_other_assets                           -0.220289335 -0.117373413
## individual_loans_assets                         -0.025318641 -0.020957769
## ci_assets                                       -0.249583451 -0.099672709
## cre_assets                                      -0.397612549 -0.091136457
## lns_securities_over_15_pct_of_assets             0.094582020 -0.125562185
## deposits_assets                                  0.021329863  0.207015782
## core_deposits_assets                             0.140505369  0.187471148
## noncore_deposits_assets                         -0.176103094 -0.073780796
## brokered_deposits_assets                        -0.155969112 -0.086762964
## subordinated_debt_assets                        -0.039254518 -0.008351437
## equity_assets                                    0.039943604  0.054620546
## tier_1_assets                                    0.039766697  0.081054446
## total_capital_ratio                              0.364136147  0.255635200
## gross_loans_30_89_past_due_pct                   0.090522429  0.063880169
## gross_loans_90_past_due_pct                      0.001651902  0.050226366
## provisions_to_assets                            -0.103376712 -0.039968294
## mtg_delinq_pct_2                                 0.047631279  0.053630023
## roa                                             -0.001521614 -0.039660834
## roe                                             -0.015005550 -0.075953046
## nii_assets                                      -0.412059378 -0.111611409
## interest_expense_assets_1                       -0.257293347 -0.146573336
## interest_income_assets                          -0.396608565 -0.174874823
## no_of_full_time_employees                        0.011078899  0.012589841
## assets_per_employee                              0.055574363  0.049528862
##                                      re_loans_sfr_assets re_loans_other_assets
## log_jumbo_frac_assets                         0.30366379          0.1252014684
## total_loans_assets                            0.25960095          0.2865607482
## total_securities_assets                      -0.22533601         -0.2202893353
## cash_assets                                  -0.08472372         -0.1173734134
## re_loans_sfr_assets                           1.00000000         -0.1886809717
## re_loans_other_assets                        -0.18868097          1.0000000000
## individual_loans_assets                      -0.07434206         -0.1204190335
## ci_assets                                    -0.40935790         -0.0676447171
## cre_assets                                   -0.35704158         -0.1035056189
## lns_securities_over_15_pct_of_assets          0.52559636         -0.1650784532
## deposits_assets                              -0.20262308         -0.0240082878
## core_deposits_assets                         -0.06447163         -0.0412082527
## noncore_deposits_assets                      -0.09327183          0.0356229051
## brokered_deposits_assets                     -0.10059714          0.0376433878
## subordinated_debt_assets                     -0.06257577         -0.0294474519
## equity_assets                                 0.07549835         -0.0117908578
## tier_1_assets                                 0.09409469          0.0019946711
## total_capital_ratio                           0.21173582         -0.1703724425
## gross_loans_30_89_past_due_pct                0.12055471         -0.1062783960
## gross_loans_90_past_due_pct                   0.05210543         -0.0896012886
## provisions_to_assets                         -0.10348965          0.0008886754
## mtg_delinq_pct_2                              0.02350269         -0.0729107705
## roa                                          -0.05058138          0.0763077889
## roe                                          -0.08556764          0.1214285392
## nii_assets                                   -0.11517709          0.1972217888
## interest_expense_assets_1                     0.27614828          0.1342490506
## interest_income_assets                       -0.05797704          0.2019216592
## no_of_full_time_employees                    -0.02698704         -0.0491564870
## assets_per_employee                          -0.04444001         -0.0403158261
##                                      individual_loans_assets    ci_assets
## log_jumbo_frac_assets                          -0.1510152549 -0.053380737
## total_loans_assets                              0.0363194622  0.295609334
## total_securities_assets                        -0.0253186406 -0.249583451
## cash_assets                                    -0.0209577688 -0.099672709
## re_loans_sfr_assets                            -0.0743420579 -0.409357899
## re_loans_other_assets                          -0.1204190335 -0.067644717
## individual_loans_assets                         1.0000000000  0.007567894
## ci_assets                                       0.0075678935  1.000000000
## cre_assets                                     -0.2018797690  0.239414717
## lns_securities_over_15_pct_of_assets           -0.0467309752 -0.308425365
## deposits_assets                                 0.0500464927  0.091056599
## core_deposits_assets                           -0.0088059185 -0.108736762
## noncore_deposits_assets                         0.0574219347  0.233386223
## brokered_deposits_assets                        0.0704768382  0.242831335
## subordinated_debt_assets                        0.0370448081  0.124397495
## equity_assets                                  -0.0325735577 -0.121658401
## tier_1_assets                                  -0.0376009379 -0.144526941
## total_capital_ratio                            -0.0604618794 -0.350095945
## gross_loans_30_89_past_due_pct                  0.1710449147 -0.106195955
## gross_loans_90_past_due_pct                     0.0265039444 -0.011480962
## provisions_to_assets                            0.2523943489  0.190270865
## mtg_delinq_pct_2                                0.0481613540 -0.029099256
## roa                                            -0.0006128742  0.004259741
## roe                                             0.0276492880  0.063913672
## nii_assets                                      0.1977537916  0.224882700
## interest_expense_assets_1                      -0.0070363566 -0.042235731
## interest_income_assets                          0.1891709017  0.176618060
## no_of_full_time_employees                       0.0680112123  0.038032547
## assets_per_employee                             0.0467462520  0.057475743
##                                        cre_assets
## log_jumbo_frac_assets                 0.060844318
## total_loans_assets                    0.433745291
## total_securities_assets              -0.397612549
## cash_assets                          -0.091136457
## re_loans_sfr_assets                  -0.357041582
## re_loans_other_assets                -0.103505619
## individual_loans_assets              -0.201879769
## ci_assets                             0.239414717
## cre_assets                            1.000000000
## lns_securities_over_15_pct_of_assets -0.271431642
## deposits_assets                       0.056130555
## core_deposits_assets                 -0.074301149
## noncore_deposits_assets               0.153978473
## brokered_deposits_assets              0.125264864
## subordinated_debt_assets              0.014946516
## equity_assets                        -0.065312247
## tier_1_assets                        -0.051549928
## total_capital_ratio                  -0.365803071
## gross_loans_30_89_past_due_pct       -0.219635248
## gross_loans_90_past_due_pct          -0.060291045
## provisions_to_assets                  0.026970904
## mtg_delinq_pct_2                     -0.095167234
## roa                                   0.020356939
## roe                                   0.017324893
## nii_assets                            0.299351604
## interest_expense_assets_1             0.002731164
## interest_income_assets                0.253916175
## no_of_full_time_employees            -0.065668936
## assets_per_employee                  -0.055563249
##                                      lns_securities_over_15_pct_of_assets
## log_jumbo_frac_assets                                         0.041236667
## total_loans_assets                                           -0.030439375
## total_securities_assets                                       0.094582020
## cash_assets                                                  -0.125562185
## re_loans_sfr_assets                                           0.525596358
## re_loans_other_assets                                        -0.165078453
## individual_loans_assets                                      -0.046730975
## ci_assets                                                    -0.308425365
## cre_assets                                                   -0.271431642
## lns_securities_over_15_pct_of_assets                          1.000000000
## deposits_assets                                              -0.187021352
## core_deposits_assets                                         -0.081340350
## noncore_deposits_assets                                      -0.055733562
## brokered_deposits_assets                                     -0.063424593
## subordinated_debt_assets                                     -0.029178686
## equity_assets                                                 0.076777140
## tier_1_assets                                                 0.079595981
## total_capital_ratio                                           0.236969694
## gross_loans_30_89_past_due_pct                                0.084242573
## gross_loans_90_past_due_pct                                   0.036610325
## provisions_to_assets                                         -0.066027709
## mtg_delinq_pct_2                                              0.029712698
## roa                                                          -0.043134341
## roe                                                          -0.075322578
## nii_assets                                                   -0.173783061
## interest_expense_assets_1                                     0.198464537
## interest_income_assets                                       -0.097852327
## no_of_full_time_employees                                     0.017534818
## assets_per_employee                                          -0.009690563
##                                      deposits_assets core_deposits_assets
## log_jumbo_frac_assets                   -0.025599340         -0.082246415
## total_loans_assets                      -0.102027827         -0.220944820
## total_securities_assets                  0.021329863          0.140505369
## cash_assets                              0.207015782          0.187471148
## re_loans_sfr_assets                     -0.202623077         -0.064471627
## re_loans_other_assets                   -0.024008288         -0.041208253
## individual_loans_assets                  0.050046493         -0.008805918
## ci_assets                                0.091056599         -0.108736762
## cre_assets                               0.056130555         -0.074301149
## lns_securities_over_15_pct_of_assets    -0.187021352         -0.081340350
## deposits_assets                          1.000000000          0.696378925
## core_deposits_assets                     0.696378925          1.000000000
## noncore_deposits_assets                 -0.065517405         -0.761757259
## brokered_deposits_assets                -0.103157040         -0.637903088
## subordinated_debt_assets                -0.077687421         -0.129217190
## equity_assets                           -0.416008330         -0.243664199
## tier_1_assets                           -0.341970379         -0.195863861
## total_capital_ratio                     -0.225341610         -0.049299019
## gross_loans_30_89_past_due_pct           0.039468895          0.060907442
## gross_loans_90_past_due_pct             -0.015413318          0.014488441
## provisions_to_assets                     0.032195279         -0.039779523
## mtg_delinq_pct_2                        -0.037149984         -0.013542919
## roa                                     -0.036196239         -0.038607221
## roe                                      0.009719526         -0.039843877
## nii_assets                               0.142030239          0.056908732
## interest_expense_assets_1               -0.329418233         -0.461758121
## interest_income_assets                   0.035878288         -0.066328859
## no_of_full_time_employees               -0.073135777         -0.090054523
## assets_per_employee                     -0.070957307         -0.144943176
##                                      noncore_deposits_assets
## log_jumbo_frac_assets                             0.09124592
## total_loans_assets                                0.21509771
## total_securities_assets                          -0.17610309
## cash_assets                                      -0.07378080
## re_loans_sfr_assets                              -0.09327183
## re_loans_other_assets                             0.03562291
## individual_loans_assets                           0.05742193
## ci_assets                                         0.23338622
## cre_assets                                        0.15397847
## lns_securities_over_15_pct_of_assets             -0.05573356
## deposits_assets                                  -0.06551741
## core_deposits_assets                             -0.76175726
## noncore_deposits_assets                           1.00000000
## brokered_deposits_assets                          0.79381542
## subordinated_debt_assets                          0.10953268
## equity_assets                                    -0.03675142
## tier_1_assets                                    -0.03637690
## total_capital_ratio                              -0.13487636
## gross_loans_30_89_past_due_pct                   -0.04905590
## gross_loans_90_past_due_pct                      -0.03405866
## provisions_to_assets                              0.08437277
## mtg_delinq_pct_2                                 -0.01470620
## roa                                               0.02100407
## roe                                               0.06417282
## nii_assets                                        0.04908858
## interest_expense_assets_1                         0.34465253
## interest_income_assets                            0.12461161
## no_of_full_time_employees                         0.05918995
## assets_per_employee                               0.13747347
##                                      brokered_deposits_assets
## log_jumbo_frac_assets                             0.036678945
## total_loans_assets                                0.202462560
## total_securities_assets                          -0.155969112
## cash_assets                                      -0.086762964
## re_loans_sfr_assets                              -0.100597144
## re_loans_other_assets                             0.037643388
## individual_loans_assets                           0.070476838
## ci_assets                                         0.242831335
## cre_assets                                        0.125264864
## lns_securities_over_15_pct_of_assets             -0.063424593
## deposits_assets                                  -0.103157040
## core_deposits_assets                             -0.637903088
## noncore_deposits_assets                           0.793815423
## brokered_deposits_assets                          1.000000000
## subordinated_debt_assets                          0.080024120
## equity_assets                                    -0.052896581
## tier_1_assets                                    -0.064852351
## total_capital_ratio                              -0.155355736
## gross_loans_30_89_past_due_pct                   -0.063085058
## gross_loans_90_past_due_pct                      -0.016925039
## provisions_to_assets                              0.075785845
## mtg_delinq_pct_2                                 -0.008355164
## roa                                               0.027935969
## roe                                               0.050715431
## nii_assets                                        0.051573385
## interest_expense_assets_1                         0.226503178
## interest_income_assets                            0.094535903
## no_of_full_time_employees                         0.013615994
## assets_per_employee                               0.164897039
##                                      subordinated_debt_assets equity_assets
## log_jumbo_frac_assets                            0.0082697862  -0.041789832
## total_loans_assets                               0.0221723752  -0.079385802
## total_securities_assets                         -0.0392545180   0.039943604
## cash_assets                                     -0.0083514373   0.054620546
## re_loans_sfr_assets                             -0.0625757702   0.075498355
## re_loans_other_assets                           -0.0294474519  -0.011790858
## individual_loans_assets                          0.0370448081  -0.032573558
## ci_assets                                        0.1243974947  -0.121658401
## cre_assets                                       0.0149465157  -0.065312247
## lns_securities_over_15_pct_of_assets            -0.0291786856   0.076777140
## deposits_assets                                 -0.0776874214  -0.416008330
## core_deposits_assets                            -0.1292171903  -0.243664199
## noncore_deposits_assets                          0.1095326776  -0.036751416
## brokered_deposits_assets                         0.0800241202  -0.052896581
## subordinated_debt_assets                         1.0000000000  -0.037001598
## equity_assets                                   -0.0370015984   1.000000000
## tier_1_assets                                   -0.0840203821   0.920092952
## total_capital_ratio                             -0.0633103702   0.711706522
## gross_loans_30_89_past_due_pct                  -0.0240412849   0.047492123
## gross_loans_90_past_due_pct                      0.0003282945   0.034616193
## provisions_to_assets                             0.0241235397  -0.035904225
## mtg_delinq_pct_2                                 0.0178787318   0.077769144
## roa                                             -0.0191116323   0.123518637
## roe                                             -0.0073779255   0.042073947
## nii_assets                                      -0.0957602838   0.022689725
## interest_expense_assets_1                        0.0576187086  -0.001734922
## interest_income_assets                          -0.0635318678   0.028598682
## no_of_full_time_employees                        0.1876104676  -0.001894592
## assets_per_employee                              0.0987405115   0.023659741
##                                      tier_1_assets total_capital_ratio
## log_jumbo_frac_assets                 -0.023871472         -0.08469712
## total_loans_assets                    -0.060042523         -0.45984847
## total_securities_assets                0.039766697          0.36413615
## cash_assets                            0.081054446          0.25563520
## re_loans_sfr_assets                    0.094094692          0.21173582
## re_loans_other_assets                  0.001994671         -0.17037244
## individual_loans_assets               -0.037600938         -0.06046188
## ci_assets                             -0.144526941         -0.35009594
## cre_assets                            -0.051549928         -0.36580307
## lns_securities_over_15_pct_of_assets   0.079595981          0.23696969
## deposits_assets                       -0.341970379         -0.22534161
## core_deposits_assets                  -0.195863861         -0.04929902
## noncore_deposits_assets               -0.036376902         -0.13487636
## brokered_deposits_assets              -0.064852351         -0.15535574
## subordinated_debt_assets              -0.084020382         -0.06331037
## equity_assets                          0.920092952          0.71170652
## tier_1_assets                          1.000000000          0.75496367
## total_capital_ratio                    0.754963667          1.00000000
## gross_loans_30_89_past_due_pct         0.089408561          0.16975066
## gross_loans_90_past_due_pct            0.075654492          0.08370215
## provisions_to_assets                   0.009682098         -0.10384536
## mtg_delinq_pct_2                       0.100327201          0.11891955
## roa                                    0.069484591          0.01018571
## roe                                    0.020955621         -0.05371665
## nii_assets                             0.092994027         -0.24114418
## interest_expense_assets_1              0.041174448         -0.03056783
## interest_income_assets                 0.077109362         -0.23868331
## no_of_full_time_employees             -0.042648385         -0.02985175
## assets_per_employee                    0.001960020          0.06921024
##                                      gross_loans_30_89_past_due_pct
## log_jumbo_frac_assets                                  -0.099926599
## total_loans_assets                                     -0.139332564
## total_securities_assets                                 0.090522429
## cash_assets                                             0.063880169
## re_loans_sfr_assets                                     0.120554713
## re_loans_other_assets                                  -0.106278396
## individual_loans_assets                                 0.171044915
## ci_assets                                              -0.106195955
## cre_assets                                             -0.219635248
## lns_securities_over_15_pct_of_assets                    0.084242573
## deposits_assets                                         0.039468895
## core_deposits_assets                                    0.060907442
## noncore_deposits_assets                                -0.049055901
## brokered_deposits_assets                               -0.063085058
## subordinated_debt_assets                               -0.024041285
## equity_assets                                           0.047492123
## tier_1_assets                                           0.089408561
## total_capital_ratio                                     0.169750657
## gross_loans_30_89_past_due_pct                          1.000000000
## gross_loans_90_past_due_pct                             0.383436196
## provisions_to_assets                                    0.134016219
## mtg_delinq_pct_2                                        0.551049490
## roa                                                    -0.113108228
## roe                                                    -0.151238885
## nii_assets                                              0.087131515
## interest_expense_assets_1                               0.061544760
## interest_income_assets                                  0.116599666
## no_of_full_time_employees                               0.001817061
## assets_per_employee                                    -0.069176645
##                                      gross_loans_90_past_due_pct
## log_jumbo_frac_assets                              -0.0736161913
## total_loans_assets                                 -0.0623848753
## total_securities_assets                             0.0016519021
## cash_assets                                         0.0502263658
## re_loans_sfr_assets                                 0.0521054330
## re_loans_other_assets                              -0.0896012886
## individual_loans_assets                             0.0265039444
## ci_assets                                          -0.0114809625
## cre_assets                                         -0.0602910446
## lns_securities_over_15_pct_of_assets                0.0366103253
## deposits_assets                                    -0.0154133180
## core_deposits_assets                                0.0144884408
## noncore_deposits_assets                            -0.0340586571
## brokered_deposits_assets                           -0.0169250393
## subordinated_debt_assets                            0.0003282945
## equity_assets                                       0.0346161925
## tier_1_assets                                       0.0756544918
## total_capital_ratio                                 0.0837021467
## gross_loans_30_89_past_due_pct                      0.3834361964
## gross_loans_90_past_due_pct                         1.0000000000
## provisions_to_assets                                0.1860457520
## mtg_delinq_pct_2                                    0.6212072570
## roa                                                -0.2217034443
## roe                                                -0.2536611029
## nii_assets                                         -0.0073334322
## interest_expense_assets_1                           0.0821822317
## interest_income_assets                              0.0134460579
## no_of_full_time_employees                           0.0213685539
## assets_per_employee                                -0.0416490806
##                                      provisions_to_assets mtg_delinq_pct_2
## log_jumbo_frac_assets                       -0.0395599813     -0.129090086
## total_loans_assets                           0.1281021570     -0.110031891
## total_securities_assets                     -0.1033767121      0.047631279
## cash_assets                                 -0.0399682936      0.053630023
## re_loans_sfr_assets                         -0.1034896548      0.023502690
## re_loans_other_assets                        0.0008886754     -0.072910771
## individual_loans_assets                      0.2523943489      0.048161354
## ci_assets                                    0.1902708648     -0.029099256
## cre_assets                                   0.0269709038     -0.095167234
## lns_securities_over_15_pct_of_assets        -0.0660277087      0.029712698
## deposits_assets                              0.0321952793     -0.037149984
## core_deposits_assets                        -0.0397795230     -0.013542919
## noncore_deposits_assets                      0.0843727716     -0.014706200
## brokered_deposits_assets                     0.0757858451     -0.008355164
## subordinated_debt_assets                     0.0241235397      0.017878732
## equity_assets                               -0.0359042251      0.077769144
## tier_1_assets                                0.0096820979      0.100327201
## total_capital_ratio                         -0.1038453567      0.118919552
## gross_loans_30_89_past_due_pct               0.1340162194      0.551049490
## gross_loans_90_past_due_pct                  0.1860457520      0.621207257
## provisions_to_assets                         1.0000000000      0.070016621
## mtg_delinq_pct_2                             0.0700166208      1.000000000
## roa                                         -0.2579984699     -0.123707332
## roe                                         -0.1800933330     -0.161297889
## nii_assets                                   0.3612490680      0.029747255
## interest_expense_assets_1                    0.1017948815      0.050688771
## interest_income_assets                       0.3702444774      0.053637809
## no_of_full_time_employees                    0.0193650506      0.062286465
## assets_per_employee                         -0.0133956343     -0.046078307
##                                                roa          roe   nii_assets
## log_jumbo_frac_assets                 0.0041338380 -0.003398685  0.085917827
## total_loans_assets                    0.0337417198  0.081300563  0.470487633
## total_securities_assets              -0.0015216142 -0.015005550 -0.412059378
## cash_assets                          -0.0396608338 -0.075953046 -0.111611409
## re_loans_sfr_assets                  -0.0505813809 -0.085567641 -0.115177094
## re_loans_other_assets                 0.0763077889  0.121428539  0.197221789
## individual_loans_assets              -0.0006128742  0.027649288  0.197753792
## ci_assets                             0.0042597413  0.063913672  0.224882700
## cre_assets                            0.0203569392  0.017324893  0.299351604
## lns_securities_over_15_pct_of_assets -0.0431343406 -0.075322578 -0.173783061
## deposits_assets                      -0.0361962390  0.009719526  0.142030239
## core_deposits_assets                 -0.0386072207 -0.039843877  0.056908732
## noncore_deposits_assets               0.0210040722  0.064172824  0.049088580
## brokered_deposits_assets              0.0279359686  0.050715431  0.051573385
## subordinated_debt_assets             -0.0191116323 -0.007377926 -0.095760284
## equity_assets                         0.1235186368  0.042073947  0.022689725
## tier_1_assets                         0.0694845912  0.020955621  0.092994027
## total_capital_ratio                   0.0101857131 -0.053716653 -0.241144178
## gross_loans_30_89_past_due_pct       -0.1131082280 -0.151238885  0.087131515
## gross_loans_90_past_due_pct          -0.2217034443 -0.253661103 -0.007333432
## provisions_to_assets                 -0.2579984699 -0.180093333  0.361249068
## mtg_delinq_pct_2                     -0.1237073316 -0.161297889  0.029747255
## roa                                   1.0000000000  0.742199594  0.122317919
## roe                                   0.7421995940  1.000000000  0.214126675
## nii_assets                            0.1223179192  0.214126675  1.000000000
## interest_expense_assets_1            -0.0610375048 -0.060244844 -0.034885233
## interest_income_assets                0.0894742409  0.157026549  0.869899334
## no_of_full_time_employees             0.0063398608  0.008737317 -0.069189965
## assets_per_employee                   0.0189907596  0.026833473 -0.192370351
##                                      interest_expense_assets_1
## log_jumbo_frac_assets                              0.178635678
## total_loans_assets                                 0.329374549
## total_securities_assets                           -0.257293347
## cash_assets                                       -0.146573336
## re_loans_sfr_assets                                0.276148285
## re_loans_other_assets                              0.134249051
## individual_loans_assets                           -0.007036357
## ci_assets                                         -0.042235731
## cre_assets                                         0.002731164
## lns_securities_over_15_pct_of_assets               0.198464537
## deposits_assets                                   -0.329418233
## core_deposits_assets                              -0.461758121
## noncore_deposits_assets                            0.344652535
## brokered_deposits_assets                           0.226503178
## subordinated_debt_assets                           0.057618709
## equity_assets                                     -0.001734922
## tier_1_assets                                      0.041174448
## total_capital_ratio                               -0.030567830
## gross_loans_30_89_past_due_pct                     0.061544760
## gross_loans_90_past_due_pct                        0.082182232
## provisions_to_assets                               0.101794881
## mtg_delinq_pct_2                                   0.050688771
## roa                                               -0.061037505
## roe                                               -0.060244844
## nii_assets                                        -0.034885233
## interest_expense_assets_1                          1.000000000
## interest_income_assets                             0.226236970
## no_of_full_time_employees                         -0.036983071
## assets_per_employee                                0.055400290
##                                      interest_income_assets
## log_jumbo_frac_assets                            0.08917023
## total_loans_assets                               0.46371923
## total_securities_assets                         -0.39660857
## cash_assets                                     -0.17487482
## re_loans_sfr_assets                             -0.05797704
## re_loans_other_assets                            0.20192166
## individual_loans_assets                          0.18917090
## ci_assets                                        0.17661806
## cre_assets                                       0.25391618
## lns_securities_over_15_pct_of_assets            -0.09785233
## deposits_assets                                  0.03587829
## core_deposits_assets                            -0.06632886
## noncore_deposits_assets                          0.12461161
## brokered_deposits_assets                         0.09453590
## subordinated_debt_assets                        -0.06353187
## equity_assets                                    0.02859868
## tier_1_assets                                    0.07710936
## total_capital_ratio                             -0.23868331
## gross_loans_30_89_past_due_pct                   0.11659967
## gross_loans_90_past_due_pct                      0.01344606
## provisions_to_assets                             0.37024448
## mtg_delinq_pct_2                                 0.05363781
## roa                                              0.08947424
## roe                                              0.15702655
## nii_assets                                       0.86989933
## interest_expense_assets_1                        0.22623697
## interest_income_assets                           1.00000000
## no_of_full_time_employees                       -0.06696518
## assets_per_employee                             -0.18017269
##                                      no_of_full_time_employees
## log_jumbo_frac_assets                             -0.002341440
## total_loans_assets                                -0.052726738
## total_securities_assets                            0.011078899
## cash_assets                                        0.012589841
## re_loans_sfr_assets                               -0.026987038
## re_loans_other_assets                             -0.049156487
## individual_loans_assets                            0.068011212
## ci_assets                                          0.038032547
## cre_assets                                        -0.065668936
## lns_securities_over_15_pct_of_assets               0.017534818
## deposits_assets                                   -0.073135777
## core_deposits_assets                              -0.090054523
## noncore_deposits_assets                            0.059189947
## brokered_deposits_assets                           0.013615994
## subordinated_debt_assets                           0.187610468
## equity_assets                                     -0.001894592
## tier_1_assets                                     -0.042648385
## total_capital_ratio                               -0.029851745
## gross_loans_30_89_past_due_pct                     0.001817061
## gross_loans_90_past_due_pct                        0.021368554
## provisions_to_assets                               0.019365051
## mtg_delinq_pct_2                                   0.062286465
## roa                                                0.006339861
## roe                                                0.008737317
## nii_assets                                        -0.069189965
## interest_expense_assets_1                         -0.036983071
## interest_income_assets                            -0.066965176
## no_of_full_time_employees                          1.000000000
## assets_per_employee                                0.024414890
##                                      assets_per_employee
## log_jumbo_frac_assets                        0.035622652
## total_loans_assets                          -0.070483832
## total_securities_assets                      0.055574363
## cash_assets                                  0.049528862
## re_loans_sfr_assets                         -0.044440010
## re_loans_other_assets                       -0.040315826
## individual_loans_assets                      0.046746252
## ci_assets                                    0.057475743
## cre_assets                                  -0.055563249
## lns_securities_over_15_pct_of_assets        -0.009690563
## deposits_assets                             -0.070957307
## core_deposits_assets                        -0.144943176
## noncore_deposits_assets                      0.137473467
## brokered_deposits_assets                     0.164897039
## subordinated_debt_assets                     0.098740511
## equity_assets                                0.023659741
## tier_1_assets                                0.001960020
## total_capital_ratio                          0.069210242
## gross_loans_30_89_past_due_pct              -0.069176645
## gross_loans_90_past_due_pct                 -0.041649081
## provisions_to_assets                        -0.013395634
## mtg_delinq_pct_2                            -0.046078307
## roa                                          0.018990760
## roe                                          0.026833473
## nii_assets                                  -0.192370351
## interest_expense_assets_1                    0.055400290
## interest_income_assets                      -0.180172691
## no_of_full_time_employees                    0.024414890
## assets_per_employee                          1.000000000
melted_corr <- melt(correlation_matrix)
# melted_corr <- melted_corr[melted_corr$Var1 != melted_corr$Var2, ]
# melted_corr <- melted_corr[melted_corr$Var1 < melted_corr$Var2, ]



# Create a heatmap using ggplot2
ggplot(melted_corr, aes(x = Var1, y = Var2, fill = value)) +
    geom_tile(color = "white") +  # Adds the colored tiles
    geom_text(aes(label = sprintf("%.2f", value)), color = "black", size = 3) +  # Adds text labels
    scale_fill_gradient2(low = "dodgerblue4", high = "darkorange", mid = "white", midpoint = 0, limit = c(-1, 1)) +
    theme_minimal() +
    labs(x = "", y = "", fill = "Correlation") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))  # Adjust the x-axis text angle

hmda[,jumbo:=ifelse(dist_gse_limit>1,1,ifelse(dist_gse_limit< -1,0,NA))]
hmda_post[,jumbo:=ifelse(dist_gse_limit>1,1,ifelse(dist_gse_limit< -1,0,NA))]


hmda_1_summary <- hmda[actiontaken==1 & purposeofloan %in% c(1,3) & typeofloan==1 ,.(no_loans=.N,total_loan_amt=sum(amountofloan)),
                             by=.(RSSD,asofdate,jumbo)]

hmda_2_summary <- hmda_post[actiontaken==1 & purposeofloan %in% c(1,3) & typeofloan==1   ,.(no_loans=.N,total_loan_amt=sum(amountofloan)),
                             by=.(RSSD,asofdate,jumbo)]


hmda_summary <- rbind(hmda_1_summary,hmda_2_summary)

hmda_summary <- merge(hmda_summary,upbr_2016[,c("IDRSSD","jumbo_dependance","jumbo_frac_assets","total_assets","jumbo_7590")],
                      by.x="RSSD",by.y="IDRSSD",all.x=T)

hmda_summary[,new_loans_assets:=total_loan_amt/total_assets]

hmda_summary[,log_total_loan_amt:=log(1+total_loan_amt)]

hmda_summary[,high_jumbo_assets:=ifelse(jumbo_dependance %in% 4,1,0)]
r <- list()
r[[1]] <- felm(log_total_loan_amt~log(jumbo_frac_assets)*I(asofdate>=2018)|RSSD+asofdate|0|RSSD,data=hmda_summary[asofdate %in% 2012:2021 & jumbo==1 ])
r[[2]] <- felm(log_total_loan_amt~factor(jumbo_7590)*I(asofdate>=2018)|RSSD+asofdate|0|RSSD,data=hmda_summary[asofdate %in% 2012:2021 & jumbo==1 ])
r[[3]] <- felm(log_total_loan_amt~log(jumbo_frac_assets)*I(asofdate>=2018)|RSSD+asofdate|0|RSSD,data=hmda_summary[asofdate %in% 2012:2021 & jumbo==0 ])
r[[4]] <- felm(log_total_loan_amt~factor(jumbo_7590)*I(asofdate>=2018)|RSSD+asofdate|0|RSSD,data=hmda_summary[asofdate %in% 2012:2021 & jumbo==0 ])

stargazer(r,type="text",no.space = T,column.labels = c("Jumbo","Conforming","Jumbo-previous year"),column.separate = c(2,2,2),omit.stat = "ser",
          add.lines = list(c("Bank FE",rep("Y",6)),c("Year FE",rep("Y",6))))
## 
## ================================================================================
##                                                     Dependent variable:         
##                                             ------------------------------------
##                                                      log_total_loan_amt         
##                                                    Jumbo           Conforming   
##                                                (1)       (2)      (3)      (4)  
## --------------------------------------------------------------------------------
## log(jumbo_frac_assets)                                                          
##                                              (0.000)            (0.000)         
## factor(jumbo_7590)2                                                             
##                                                        (0.000)           (0.000)
## factor(jumbo_7590)3                                                             
##                                                        (0.000)           (0.000)
## I(asofdate > = 2018)                                                            
##                                              (0.000)   (0.000)  (0.000)  (0.000)
## log(jumbo_frac_assets):I(asofdate > = 2018) -0.193***           -0.045**        
##                                              (0.027)            (0.021)         
## factor(jumbo_7590)2:I(asofdate > = 2018)              -0.217***          -0.064 
##                                                        (0.060)           (0.054)
## factor(jumbo_7590)3:I(asofdate > = 2018)              -0.225***          -0.104*
##                                                        (0.062)           (0.054)
## --------------------------------------------------------------------------------
## Bank FE                                         Y         Y        Y        Y   
## Year FE                                         Y         Y        Y        Y   
## Observations                                 25,089    25,089    29,022  29,022 
## R2                                            0.852     0.851    0.913    0.913 
## Adjusted R2                                   0.823     0.821    0.899    0.899 
## ================================================================================
## Note:                                                *p<0.1; **p<0.05; ***p<0.01
library(gridExtra)
r <- list()

r[[1]] <- felm(log_total_loan_amt~high_jumbo_assets*factor(asofdate)|RSSD+asofdate|0|RSSD,data=hmda_summary[jumbo==1 & asofdate %in% 2014:2021])
r[[2]] <- felm(log_total_loan_amt~high_jumbo_assets*factor(asofdate)|RSSD+asofdate|0|RSSD,data=hmda_summary[jumbo==0 & asofdate %in% 2014:2021])
# r[[3]] <- felm(log_total_loan_amt~high_jumbo_assets*factor(asofdate)|RSSD+asofdate|0|RSSD,data=hmda_summary2[ asofdate %in% 2014:2021])


g1 <- coef_plot_1reg_10ci(r[[1]],"high_jumbo_assets:factor(asofdate)",2014)+ggtitle("log(Total loan volume), Jumbo")
g2 <- coef_plot_1reg_10ci(r[[2]],"high_jumbo_assets:factor(asofdate)",2014)+ggtitle("log(Total loan volume), Non-jumbo")
grid.arrange(g1,g2,nrow=1)

hmda_merged <- rbind(hmda[actiontaken %in% c(1,3) & asofdate %in% 2012:2022,
                          c("actiontaken","amountofloan","applicantincome","asofdate","purposeofloan","dist_gse_limit","RSSD","county","typeofloan")],
                     hmda_post[actiontaken %in% c(1,3) & asofdate %in% 2012:2022,
                               c("actiontaken","amountofloan","applicantincome","asofdate","purposeofloan","dist_gse_limit","RSSD","county","typeofloan")])

hmda_merged <- merge(hmda_merged,
                     upbr_2016[,c("IDRSSD","jumbo_dependance","jumbo_frac_assets","total_assets","jumbo_7590")],
                     by.x="RSSD",by.y="IDRSSD",all.x=T)

hmda_merged[,county_year:=paste(county,asofdate)]

# hmda_merged[,bank_county:=paste(county,RSSD)]

hmda_merged <- hmda_merged[applicantincome>0 & amountofloan>0]

hmda_merged[,loan_to_income:=amountofloan/applicantincome]

hmda_merged[,high_jumbo_assets:=ifelse(jumbo_dependance %in% 4,1,0)]
# hmda_merged[,high_jumbo_assets2:=ifelse(jumbo_dependance %in% 5:6,1,0)]

hmda_merged[,approved:=ifelse(actiontaken==1,1,ifelse(actiontaken==3,0,NA))]

# hmda_merged[,jumbo_dependance_cat:=ifelse(jumbo_dependance<4,1,jumbo_dependance)]
hmda_merged_jumbo <- hmda_merged[dist_gse_limit>10]  # & dist_gse_limit<750
hmda_merged_jumbo[,loan_amount_bin:=ntile(amountofloan,10),by=county_year]
hmda_merged_jumbo[,county_year_amt_bin:=paste(county_year,loan_amount_bin)]
hmda_merged_jumbo[,bank_county:=paste(county,RSSD)]
hmda_merged_conforming <- hmda_merged[dist_gse_limit< -10  & dist_gse_limit> -250]  # & dist_gse_limit> -150
hmda_merged_conforming[,loan_amount_bin:=ntile(amountofloan,10),by=county_year]
hmda_merged_conforming[,county_year_amt_bin:=paste(county_year,loan_amount_bin)]
r <- list()

r[[1]] <- felm(approved~log(jumbo_frac_assets)*I(asofdate>=2018)+log(applicantincome)+log(amountofloan)+I(purposeofloan==1)|county_year_amt_bin+RSSD|0|county,      data=hmda_merged_jumbo)

r[[2]] <- felm(approved~factor(jumbo_7590)*I(asofdate>=2018)+log(applicantincome)+log(amountofloan)+I(purposeofloan==1)|county_year_amt_bin+RSSD|0|county,      data=hmda_merged_jumbo)

r[[3]] <- felm(approved~log(jumbo_frac_assets)*I(asofdate>=2018)+log(applicantincome)+log(amountofloan)+I(purposeofloan==1)|county_year_amt_bin+RSSD|0|county,      data=hmda_merged_conforming)

r[[4]] <- felm(approved~factor(jumbo_7590)*I(asofdate>=2018)+log(applicantincome)+log(amountofloan)+I(purposeofloan==1)|county_year_amt_bin+RSSD|0|county,      data=hmda_merged_conforming)


stargazer(r,type="text",no.space = T,column.labels = c("Jumbo","Conforming"),column.separate = c(2,2),omit.stat = "ser",
          add.lines = list(c("Bank FE",rep("Y",4)),c("County-Yr-LoanAmt Decile FE",rep("Y",4))))
## 
## =====================================================================================
##                                                        Dependent variable:           
##                                             -----------------------------------------
##                                                             approved                 
##                                                    Jumbo             Conforming      
##                                                (1)       (2)       (3)        (4)    
## -------------------------------------------------------------------------------------
## log(jumbo_frac_assets)                                                               
##                                              (0.000)             (0.000)             
## factor(jumbo_7590)2                                                                  
##                                                        (0.000)              (0.000)  
## factor(jumbo_7590)3                                                                  
##                                                        (0.000)              (0.000)  
## I(asofdate > = 2018)                                                                 
##                                              (0.000)   (0.000)   (0.000)    (0.000)  
## log(applicantincome)                        0.121***  0.121***   0.103***   0.102*** 
##                                              (0.003)   (0.003)   (0.001)    (0.001)  
## log(amountofloan)                           -0.166*** -0.166*** -0.100***  -0.100*** 
##                                              (0.004)   (0.004)   (0.005)    (0.005)  
## I(purposeofloan == 1)                       0.104***  0.105***   0.106***   0.107*** 
##                                              (0.002)   (0.002)   (0.001)    (0.001)  
## log(jumbo_frac_assets):I(asofdate > = 2018) -0.018***           -0.017***            
##                                              (0.001)             (0.001)             
## factor(jumbo_7590)2:I(asofdate > = 2018)              -0.055***            -0.043*** 
##                                                        (0.002)              (0.002)  
## factor(jumbo_7590)3:I(asofdate > = 2018)              -0.033***            -0.027*** 
##                                                        (0.003)              (0.003)  
## -------------------------------------------------------------------------------------
## Bank FE                                         Y         Y         Y          Y     
## County-Yr-LoanAmt Decile FE                     Y         Y         Y          Y     
## Observations                                3,200,672 3,200,672 11,665,202 11,665,202
## R2                                            0.150     0.151     0.117      0.117   
## Adjusted R2                                   0.112     0.112     0.095      0.095   
## =====================================================================================
## Note:                                                     *p<0.1; **p<0.05; ***p<0.01
r <- list()

r[[1]] <- felm(approved~high_jumbo_assets*factor(asofdate)+log(applicantincome)+log(amountofloan)+I(purposeofloan == 1)|county_year_amt_bin+RSSD|0|county,             data=hmda_merged_jumbo[asofdate %in% 2014:2021])
r[[2]] <- felm(approved~high_jumbo_assets*factor(asofdate)+log(applicantincome)+log(amountofloan)+I(purposeofloan == 1)|county_year_amt_bin+RSSD|0|county,             data=hmda_merged_conforming[asofdate %in% 2014:2021])

g1 <- coef_plot_1reg_10ci(r[[1]],"high_jumbo_assets:factor(asofdate)",2014)+ggtitle("Jumbo")
g2 <- coef_plot_1reg_10ci(r[[2]],"high_jumbo_assets:factor(asofdate)",2014)+ggtitle("Conforming")

grid.arrange(g1,g2,nrow=1)

upbr_merged <- merge(upbr,upbr_2016[,c("IDRSSD","jumbo_dependance",
                                       "jumbo_frac_assets","jumbo_7590")],
                     by.x="IDRSSD",by.y="IDRSSD")

upbr_merged[,data_period:=as.Date(data_period,format="%m%d%Y")]

upbr_merged[,qtrs:=((year(data_period) - 2017) * 4) + quarter(data_period) -4 ]

upbr_merged[,high_jumbo_assets:=ifelse(jumbo_dependance %in% 4,1,0)]

upbr_merged[,log_no_of_full_time_employees:=log(no_of_full_time_employees)]

upbr_merged[,log_assets_per_employee:=log(assets_per_employee)]
upbr_merged[,roa_sd_4q := frollapply(roa, 4, sd, align = "right", fill = NA), by = IDRSSD]

upbr_merged[,zscore:=(roa+equity_assets)/roa_sd_4q]
lower_bound <- quantile(upbr_merged$mtg_delinq_pct, probs = 0.01, na.rm = TRUE)
upper_bound <- quantile(upbr_merged$mtg_delinq_pct, probs = 0.99, na.rm = TRUE)


r <- list()

r[[1]] <- felm(mtg_delinq_pct~high_jumbo_assets *I(qtrs %in% 1:8)+high_jumbo_assets *I(qtrs %in% 9:16) + log(total_assets) + equity_assets | IDRSSD + data_period | 0 | IDRSSD,      data=upbr_merged[(mtg_delinq_pct > lower_bound & mtg_delinq_pct < upper_bound) & qtrs <= 16 & qtrs>= -12])

r[[2]] <- felm(mtg_delinq_pct~high_jumbo_assets *I(qtrs %in% 1:8)+high_jumbo_assets *I(qtrs %in% 9:16) + log(total_assets) + equity_assets | IDRSSD + data_period | 0 | IDRSSD,      data=upbr_merged[(mtg_delinq_pct > lower_bound & mtg_delinq_pct < upper_bound) & qtrs <= 16 & qtrs>= -12 & total_assets<1e6 ])

r[[3]] <- felm(mtg_delinq_pct~high_jumbo_assets *I(qtrs %in% 1:8)+high_jumbo_assets *I(qtrs %in% 9:16) + log(total_assets) + equity_assets | IDRSSD + data_period | 0 | IDRSSD,      data=upbr_merged[(mtg_delinq_pct > lower_bound & mtg_delinq_pct < upper_bound) & qtrs <= 16 & qtrs>= -12 & total_assets>1e6 & total_assets<1e7])

r[[4]] <- felm(mtg_delinq_pct~high_jumbo_assets *I(qtrs %in% 1:8)+high_jumbo_assets *I(qtrs %in% 9:16) + log(total_assets) + equity_assets | IDRSSD + data_period | 0 | IDRSSD,      data=upbr_merged[(mtg_delinq_pct > lower_bound & mtg_delinq_pct < upper_bound) & qtrs <= 16 & qtrs>= -12 & total_assets>1e7])


stargazer(r,type="text",no.space = T,column.labels = c("All","<1b","1-10b",">10b"),omit.stat = "ser", add.lines = list(c("Bank FE",rep("Y",4)),c("Quarter",rep("Y",4))))
## 
## ================================================================
##                                       Dependent variable:       
##                                ---------------------------------
##                                         mtg_delinq_pct          
##                                  All      <1b    1-10b    >10b  
##                                  (1)      (2)     (3)      (4)  
## ----------------------------------------------------------------
## high_jumbo_assets                                               
##                                (0.000)  (0.000) (0.000)  (0.000)
## I(qtrs 1:8)                                                     
##                                (0.000)  (0.000) (0.000)  (0.000)
## I(qtrs 9:16)                                                    
##                                (0.000)  (0.000) (0.000)  (0.000)
## log(total_assets)               0.108    0.016   0.110    0.085 
##                                (0.069)  (0.120) (0.106)  (0.281)
## equity_assets                   0.011    0.002   0.013    0.054 
##                                (0.011)  (0.014) (0.014)  (0.046)
## high_jumbo_assets:I(qtrs 1:8)   0.078*   0.052  0.188*** -0.078 
##                                (0.041)  (0.052) (0.063)  (0.202)
## high_jumbo_assets:I(qtrs 9:16) 0.187*** 0.125*  0.367*** -0.012 
##                                (0.053)  (0.072) (0.079)  (0.261)
## ----------------------------------------------------------------
## Bank FE                           Y        Y       Y        Y   
## Quarter                           Y        Y       Y        Y   
## Observations                    77,620  57,640   16,792   3,188 
## R2                              0.638    0.615   0.740    0.792 
## Adjusted R2                     0.619    0.592   0.724    0.778 
## ================================================================
## Note:                                *p<0.1; **p<0.05; ***p<0.01
dep_var <- "mtg_delinq_pct"
formula <- as.formula(paste( dep_var,"~ high_jumbo_assets * factor(qtrs) + log(total_assets) + equity_assets | IDRSSD + data_period | 0 | IDRSSD"))
lower_bound <- quantile(upbr_merged$mtg_delinq_pct, probs = 0.01, na.rm = TRUE)
upper_bound <- quantile(upbr_merged$mtg_delinq_pct, probs = 0.99, na.rm = TRUE)
filtered_data <- upbr_merged %>%
      filter((mtg_delinq_pct > lower_bound & mtg_delinq_pct < upper_bound) & qtrs <= 16 & qtrs>= -12)
coef_plot_1reg_10ci(felm(formula, data = filtered_data[qtrs <= 16 & qtrs>= -12]),"high_jumbo_assets:factor(qtrs)",-12)+ggtitle(dep_var)

table_bank_fe_regression <- function(dep_vars, min_qt, max_qt) {
  results <- list()  # Initialize an empty list to store the results
  
  # Loop through each dependent variable
  for (dep_var in dep_vars) {
    # Construct the formula
    formula <- as.formula(paste(dep_var, "~ high_jumbo_assets * I(qtrs %in% 0:4) + high_jumbo_assets * I(qtrs >4 ) + log(total_assets) + equity_assets | IDRSSD + data_period | 0 | IDRSSD"))
    
     lower_bound <- quantile(upbr_merged[[dep_var]], probs = 0.01, na.rm = TRUE)
  upper_bound <- quantile(upbr_merged[[dep_var]], probs = 0.99, na.rm = TRUE)
  
  filtered_data <- upbr_merged %>%
    filter((.data[[dep_var]] > lower_bound & .data[[dep_var]] < upper_bound) & qtrs <= 8 & qtrs >= -12)
  
    # Run the regression
    reg_result <- felm(formula, data = filtered_data)
    
    # Store the result in the list
    results[[dep_var]] <- reg_result
  }
  
  # return(results)
  stargazer(results,type="text",no.space = T,omit.stat = "ser", add.lines = list(c("Bank FE",rep("Y",length(dep_vars))),c("Quarter",rep("Y",length(dep_vars)))))
}
library(gridExtra)
plot_bank_fe_regression  <- function(dep_vars,min_qt,max_qt,sample_frac) {
  g <- list()
  i=0
  for(dep_var_name in dep_vars) {
     i=i+1
     
    formula <- as.formula(paste(dep_var_name, "~ high_jumbo_assets * factor(qtrs) + log(total_assets) + equity_assets | IDRSSD + data_period | 0 | IDRSSD"))
    
    lower_bound <- quantile(upbr_merged[[dep_var_name]], probs = 0.05, na.rm = TRUE)
    upper_bound <- quantile(upbr_merged[[dep_var_name]], probs = 0.95, na.rm = TRUE)
    
    filtered_data <- upbr_merged %>%
      filter((.data[[dep_var_name]] > lower_bound & .data[[dep_var_name]] < upper_bound) & qtrs <= max_qt & qtrs >= min_qt)
    
    rssd_list <- unique(filtered_data$IDRSSD)
    rssd_sample <- sample(rssd_list,size=length(rssd_list)*sample_frac,replace = F)
    
     g[[i]] <- coef_plot_1reg_10ci(felm(formula, data = filtered_data[IDRSSD %in% rssd_sample]), "high_jumbo_assets:factor(qtrs)", min_qt) + ggtitle(dep_var_name)
  }
  return(do.call(grid.arrange,g))
}

7 Assets

dependent_vars <- c("total_loans_assets","total_securities_assets",
                   "re_loans_sfr_assets","re_loans_other_assets",
                   "individual_loans_assets","ci_assets","cre_assets")

# ,"cash_assets","lns_securities_over_15_pct_of_assets"
table_bank_fe_regression(dependent_vars,-12,8)
## 
## ===============================================================================================================================================================
##                                                                                      Dependent variable:                                                       
##                               ---------------------------------------------------------------------------------------------------------------------------------
##                               total_loans_assets total_securities_assets re_loans_sfr_assets re_loans_other_assets individual_loans_assets ci_assets cre_assets
##                                      (1)                   (2)                   (3)                  (4)                    (5)              (6)       (7)    
## ---------------------------------------------------------------------------------------------------------------------------------------------------------------
## high_jumbo_assets                                                                                                                                              
##                                    (0.000)               (0.000)               (0.000)              (0.000)                (0.000)          (0.000)   (0.000)  
## I(qtrs 0:4)                                                                                                                                                    
##                                    (0.000)               (0.000)               (0.000)              (0.000)                (0.000)          (0.000)   (0.000)  
## I(qtrs > 4)                                                                                                                                                    
##                                    (0.000)               (0.000)               (0.000)              (0.000)                (0.000)          (0.000)   (0.000)  
## log(total_assets)                 -5.133***             1.835***              -2.561***            -1.047***               -0.093          -0.580**  -1.236*** 
##                                    (0.506)               (0.598)               (0.393)              (0.193)                (0.126)          (0.261)   (0.422)  
## equity_assets                       -0.056               0.156**              -0.127**               0.005                 -0.017            0.004     0.062   
##                                    (0.072)               (0.065)               (0.053)              (0.020)                (0.014)          (0.025)   (0.046)  
## high_jumbo_assets:I(qtrs 0:4)       -0.160              0.502***               0.293*                0.071                -0.101**          -0.164*    -0.101  
##                                    (0.188)               (0.162)               (0.156)              (0.086)                (0.042)          (0.090)   (0.141)  
## high_jumbo_assets:I(qtrs > 4)     -0.935***             0.997***               -0.192               -0.082                -0.125**          -0.163     -0.248  
##                                    (0.249)               (0.219)               (0.206)              (0.114)                (0.057)          (0.121)   (0.191)  
## ---------------------------------------------------------------------------------------------------------------------------------------------------------------
## Bank FE                               Y                     Y                     Y                    Y                      Y                Y         Y     
## Quarter                               Y                     Y                     Y                    Y                      Y                Y         Y     
## Observations                        72,195               71,460                72,233               72,231                 71,988           71,256     72,174  
## R2                                  0.919                 0.934                 0.967                0.939                  0.934            0.931     0.957   
## Adjusted R2                         0.915                 0.930                 0.966                0.936                  0.930            0.927     0.954   
## ===============================================================================================================================================================
## Note:                                                                                                                               *p<0.1; **p<0.05; ***p<0.01
plot_bank_fe_regression(dependent_vars,-12,8,1)

8 Liabilities

dependent_vars <- c("deposits_assets","core_deposits_assets","noncore_deposits_assets","brokered_deposits_assets")
table_bank_fe_regression(dependent_vars,-12,8)
## 
## ===================================================================================================================
##                                                                Dependent variable:                                 
##                               -------------------------------------------------------------------------------------
##                               deposits_assets core_deposits_assets noncore_deposits_assets brokered_deposits_assets
##                                     (1)               (2)                    (3)                     (4)           
## -------------------------------------------------------------------------------------------------------------------
## high_jumbo_assets                                                                                                  
##                                   (0.000)           (0.000)                (0.000)                 (0.000)         
## I(qtrs 0:4)                                                                                                        
##                                   (0.000)           (0.000)                (0.000)                 (0.000)         
## I(qtrs > 4)                                                                                                        
##                                   (0.000)           (0.000)                (0.000)                 (0.000)         
## log(total_assets)                -1.070***         -2.915***              1.529***                 1.071***        
##                                   (0.237)           (0.437)                (0.367)                 (0.411)         
## equity_assets                    -0.708***         -0.501***              -0.208***               -0.295***        
##                                   (0.026)           (0.043)                (0.036)                 (0.047)         
## high_jumbo_assets:I(qtrs 0:4)     -0.169           -0.615***              0.393***                  0.290*         
##                                   (0.106)           (0.165)                (0.129)                 (0.168)         
## high_jumbo_assets:I(qtrs > 4)      0.120           -0.685***              0.775***                  0.422*         
##                                   (0.133)           (0.228)                (0.186)                 (0.255)         
## -------------------------------------------------------------------------------------------------------------------
## Bank FE                              Y                 Y                      Y                       Y            
## Quarter                              Y                 Y                      Y                       Y            
## Observations                      72,771             72,687                72,203                   36,461         
## R2                                 0.857             0.870                  0.822                   0.774          
## Adjusted R2                        0.849             0.863                  0.812                   0.757          
## ===================================================================================================================
## Note:                                                                                   *p<0.1; **p<0.05; ***p<0.01
plot_bank_fe_regression(dependent_vars,-12,8,1)

9 Capital

dependent_vars <- c("tier_1_assets","total_capital_ratio")
table_bank_fe_regression(dependent_vars,-12,8)
## 
## ===============================================================
##                                      Dependent variable:       
##                               ---------------------------------
##                               tier_1_assets total_capital_ratio
##                                    (1)              (2)        
## ---------------------------------------------------------------
## high_jumbo_assets                                              
##                                  (0.000)          (0.000)      
## I(qtrs 0:4)                                                    
##                                  (0.000)          (0.000)      
## I(qtrs > 4)                                                    
##                                  (0.000)          (0.000)      
## log(total_assets)               -1.452***        -0.895***     
##                                  (0.180)          (0.174)      
## equity_assets                   0.727***         1.021***      
##                                  (0.021)          (0.030)      
## high_jumbo_assets:I(qtrs 0:4)    -0.031            0.038       
##                                  (0.026)          (0.064)      
## high_jumbo_assets:I(qtrs > 4)   0.111***         0.251***      
##                                  (0.033)          (0.080)      
## ---------------------------------------------------------------
## Bank FE                             Y                Y         
## Quarter                             Y                Y         
## Observations                     72,407           72,497       
## R2                                0.963            0.948       
## Adjusted R2                       0.961            0.945       
## ===============================================================
## Note:                               *p<0.1; **p<0.05; ***p<0.01
plot_bank_fe_regression(dependent_vars,-12,8,1)

10 Asset Quality

dependent_vars <- c("gross_loans_30_89_past_due_pct","gross_loans_90_past_due_pct","provisions_to_assets","mtg_delinq_pct_2")
table_bank_fe_regression(dependent_vars,-12,8)
## 
## ==============================================================================================================================
##                                                                     Dependent variable:                                       
##                               ------------------------------------------------------------------------------------------------
##                               gross_loans_30_89_past_due_pct gross_loans_90_past_due_pct provisions_to_assets mtg_delinq_pct_2
##                                            (1)                           (2)                     (3)                (4)       
## ------------------------------------------------------------------------------------------------------------------------------
## high_jumbo_assets                                                                                                             
##                                          (0.000)                       (0.000)                 (0.000)            (0.000)     
## I(qtrs 0:4)                                                                                                                   
##                                          (0.000)                       (0.000)                 (0.000)            (0.000)     
## I(qtrs > 4)                                                                                                                   
##                                          (0.000)                       (0.000)                 (0.000)            (0.000)     
## log(total_assets)                        0.083***                      0.129**                 0.068***           0.250**     
##                                          (0.029)                       (0.065)                 (0.010)            (0.114)     
## equity_assets                            0.014***                      -0.011                   -0.001            0.027**     
##                                          (0.004)                       (0.010)                 (0.001)            (0.014)     
## high_jumbo_assets:I(qtrs 0:4)             0.021                        0.054*                   -0.003            0.101**     
##                                          (0.014)                       (0.031)                 (0.004)            (0.049)     
## high_jumbo_assets:I(qtrs > 4)            0.059***                     0.115***                 -0.013**           0.189***    
##                                          (0.018)                       (0.039)                 (0.006)            (0.059)     
## ------------------------------------------------------------------------------------------------------------------------------
## Bank FE                                     Y                             Y                       Y                  Y        
## Quarter                                     Y                             Y                       Y                  Y        
## Observations                              66,799                       68,054                   72,516             65,231     
## R2                                        0.604                         0.684                   0.489              0.708      
## Adjusted R2                               0.579                         0.664                   0.459              0.689      
## ==============================================================================================================================
## Note:                                                                                              *p<0.1; **p<0.05; ***p<0.01
plot_bank_fe_regression(dependent_vars,-12,8,1)

11 Profitability

dependent_vars <- c("roa","roe","nii_assets","interest_expense_assets_1","interest_income_assets")
table_bank_fe_regression(dependent_vars,-12,8)
## 
## =============================================================================================================
##                                                             Dependent variable:                              
##                               -------------------------------------------------------------------------------
##                                  roa       roe    nii_assets interest_expense_assets_1 interest_income_assets
##                                  (1)       (2)       (3)                (4)                     (5)          
## -------------------------------------------------------------------------------------------------------------
## high_jumbo_assets                                                                                            
##                                (0.000)   (0.000)   (0.000)            (0.000)                 (0.000)        
## I(qtrs 0:4)                                                                                                  
##                                (0.000)   (0.000)   (0.000)            (0.000)                 (0.000)        
## I(qtrs > 4)                                                                                                  
##                                (0.000)   (0.000)   (0.000)            (0.000)                 (0.000)        
## log(total_assets)              0.061**    0.370   -0.292***          0.220***                 0.060**        
##                                (0.030)   (0.284)   (0.028)            (0.019)                 (0.030)        
## equity_assets                 0.023***  -0.163***  0.020***          -0.011***                0.017***       
##                                (0.004)   (0.035)   (0.004)            (0.002)                 (0.004)        
## high_jumbo_assets:I(qtrs 0:4) -0.038*** -0.236**  -0.028***          0.031***                  0.007         
##                                (0.012)   (0.118)   (0.010)            (0.005)                 (0.010)        
## high_jumbo_assets:I(qtrs > 4) -0.052*** -0.534*** -0.086***          0.087***                  -0.005        
##                                (0.015)   (0.157)   (0.015)            (0.010)                 (0.014)        
## -------------------------------------------------------------------------------------------------------------
## Bank FE                           Y         Y         Y                  Y                       Y           
## Quarter                           Y         Y         Y                  Y                       Y           
## Observations                   72,530    72,844     72,563            72,923                   72,723        
## R2                              0.661     0.753     0.882              0.891                   0.884         
## Adjusted R2                     0.641     0.739     0.876              0.885                   0.877         
## =============================================================================================================
## Note:                                                                             *p<0.1; **p<0.05; ***p<0.01
plot_bank_fe_regression(dependent_vars,-12,7,1)

12 Scale

dependent_vars <-  c("asset_growth_quarterly","asset_growth_yearly","log_no_of_full_time_employees","log_assets_per_employee")
table_bank_fe_regression(dependent_vars,-12,8)
## 
## ==============================================================================================================================
##                                                                     Dependent variable:                                       
##                               ------------------------------------------------------------------------------------------------
##                               asset_growth_quarterly asset_growth_yearly log_no_of_full_time_employees log_assets_per_employee
##                                        (1)                   (2)                      (3)                        (4)          
## ------------------------------------------------------------------------------------------------------------------------------
## high_jumbo_assets                                                                                                             
##                                      (0.000)               (0.000)                  (0.000)                    (0.000)        
## I(qtrs 0:4)                                                                                                                   
##                                      (0.000)               (0.000)                  (0.000)                    (0.000)        
## I(qtrs > 4)                                                                                                                   
##                                      (0.000)               (0.000)                  (0.000)                    (0.000)        
## log(total_assets)                    2.005***             14.870***                0.716***                   0.258***        
##                                      (0.194)               (1.051)                  (0.030)                    (0.015)        
## equity_assets                       -0.256***             -0.686***                0.009***                   -0.009***       
##                                      (0.029)               (0.118)                  (0.002)                    (0.002)        
## high_jumbo_assets:I(qtrs 0:4)       -0.286***             -1.298***                 -0.005                     0.009**        
##                                      (0.070)               (0.309)                  (0.005)                    (0.005)        
## high_jumbo_assets:I(qtrs > 4)       -0.604***             -2.946***                -0.015**                   0.017***        
##                                      (0.088)               (0.401)                  (0.007)                    (0.006)        
## ------------------------------------------------------------------------------------------------------------------------------
## Bank FE                                 Y                     Y                        Y                          Y           
## Quarter                                 Y                     Y                        Y                          Y           
## Observations                          72,551               72,686                   72,294                     72,478         
## R2                                    0.241                 0.478                    0.994                      0.958         
## Adjusted R2                           0.197                 0.448                    0.994                      0.955         
## ==============================================================================================================================
## Note:                                                                                              *p<0.1; **p<0.05; ***p<0.01
plot_bank_fe_regression(dependent_vars,-12,8,1)