AJ’s Project

# READ the Data
data <- read.csv("CEO_salary.csv")
attach(data)
# Divide the Salary.
salary1 <- salary/1000
# Create data frame from age, height and Salary
data1 <- data.frame(age, height, salary1)

plot(salary1, age)

plot(salary1, height)

# Calculate the Correlation Coefficient
cor(data1)
##                 age      height   salary1
## age      1.00000000 -0.06286351 0.9291975
## height  -0.06286351  1.00000000 0.3104400
## salary1  0.92919747  0.31044002 1.0000000
# Plot it with scatter plot
pairs(data1)

# Fit a Multiple Linear Regression model into data.
lm(formula = salary1 ~ age + height)
## 
## Call:
## lm(formula = salary1 ~ age + height)
## 
## Coefficients:
## (Intercept)          age       height  
##     190.697        2.503        2.507
model <- lm(salary1~age+height)

# Summarize the model
summary(model)
## 
## Call:
## lm(formula = salary1 ~ age + height)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -0.0025475 -0.0005824 -0.0001572  0.0006634  0.0026843 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.907e+02  1.884e-03  101223   <2e-16 ***
## age         2.503e+00  9.862e-06  253808   <2e-16 ***
## height      2.507e+00  2.541e-05   98679   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.001153 on 97 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 3.564e+10 on 2 and 97 DF,  p-value: < 2.2e-16
# Calculate R squared and the P Value 

# Total Sum of Squared.
total_sum_of_squared <- sum((salary1 - mean(salary1))^2)

# Regression and Residual Sum of the Squared.
reggression <- sum((fitted(model) - mean(salary1))^2)
residual_sum_of_squared <- sum((salary1-fitted(model))^2)

# Calculate the F Value.
fstatistic <- (reggression/2)/(residual_sum_of_squared/97)

# The P-Value for F-Statistic.
pvalue <- 1-pf(fstatistic, df1=2, df2=97)

# Calculate the R squared.
R2 <- reggression/total_sum_of_squared
# Residual Plots
resid(model)
##             1             2             3             4             5 
##  0.0005665957 -0.0014026842 -0.0003260399  0.0019161955  0.0004113886 
##             6             7             8             9            10 
##  0.0014437155 -0.0001951258  0.0004592313 -0.0021496332 -0.0002581727 
##            11            12            13            14            15 
## -0.0001979076 -0.0006680376  0.0004568812  0.0005885386  0.0008635325 
##            16            17            18            19            20 
## -0.0003950821 -0.0004122047 -0.0005447256  0.0026843441 -0.0005036216 
##            21            22            23            24            25 
## -0.0022861109 -0.0003080538  0.0008487600  0.0018723097  0.0014723970 
##            26            27            28            29            30 
##  0.0006296426  0.0006612261 -0.0005886114 -0.0004225886  0.0003100195 
##            31            32            33            34            35 
##  0.0006815622  0.0007841064 -0.0002498272 -0.0015020148 -0.0015802659 
##            36            37            38            39            40 
##  0.0016268608  0.0005259234 -0.0001101360 -0.0004246271  0.0006420650 
##            41            42            43            44            45 
##  0.0004568812 -0.0006504832  0.0015123260 -0.0012997084  0.0008004856 
##            46            47            48            49            50 
##  0.0015829750  0.0016531923  0.0006963348  0.0019118069 -0.0012653431 
##            51            52            53            54            55 
##  0.0005347006 -0.0005359484 -0.0011292971 -0.0004788969 -0.0012777655 
##            56            57            58            59            60 
##  0.0006360697  0.0004053933  0.0007138891 -0.0001189131  0.0007933153 
##            61            62            63            64            65 
## -0.0002394433  0.0006700033 -0.0003863050  0.0014437155 -0.0003140492 
##            66            67            68            69            70 
## -0.0001292971 -0.0006592604  0.0006596193  0.0004640516 -0.0002888927 
##            71            72            73            74            75 
## -0.0005802659 -0.0021276903  0.0015211031 -0.0005276030  0.0026580126 
##            76            77            78            79            80 
## -0.0022039029 -0.0023024902 -0.0006548718  0.0005933589 -0.0002613862 
##            81            82            83            84            85 
##  0.0005151078 -0.0014186318 -0.0013228263 -0.0002071165  0.0013056310 
##            86            87            88            89            90 
## -0.0001851736  0.0004963784  0.0014772173 -0.0003068788 -0.0025475074 
##            91            92            93            94            95 
## -0.0015638867  0.0015785864 -0.0015156123 -0.0024992330 -0.0012027279 
##            96            97            98            99           100 
## -0.0011939507  0.0006444151 -0.0002066847  0.0005642456  0.0003934026
par(mfrow=c(2,2))


plot(age, resid(model), axes=TRUE, frame.plot=TRUE, xlab='age', ylab='residue')
plot(height, resid(model), axes=TRUE, frame.plot=TRUE, xlab='height', ylab='residue')

plot(fitted(model), resid(model), axes=TRUE, frame.plot=TRUE, xlab='fitted values', ylab='residue')

hist(resid(model))

# influence function 
influence(model)
## $hat
##          1          2          3          4          5          6          7 
## 0.02566420 0.04160169 0.01331072 0.05200382 0.03678001 0.03355961 0.02628633 
##          8          9         10         11         12         13         14 
## 0.05814680 0.03237010 0.02598707 0.03888080 0.04449630 0.02723060 0.03631704 
##         15         16         17         18         19         20         21 
## 0.03366497 0.01313441 0.04297304 0.02103765 0.01164763 0.01613921 0.02055159 
##         22         23         24         25         26         27         28 
## 0.02754226 0.03157044 0.03525930 0.06657725 0.03852292 0.04347023 0.03678001 
##         29         30         31         32         33         34         35 
## 0.02803151 0.05457105 0.01721591 0.02274559 0.03086409 0.02137396 0.04075108 
##         36         37         38         39         40         41         42 
## 0.01916401 0.02169436 0.04020252 0.02948669 0.03221787 0.02723060 0.03906838 
##         43         44         45         46         47         48         49 
## 0.02243175 0.02157802 0.02656210 0.01076018 0.03122463 0.02585170 0.04967140 
##         50         51         52         53         54         55         56 
## 0.04824449 0.01840382 0.01964377 0.03969556 0.02483945 0.03248835 0.01846432 
##         57         58         59         60         61         62         63 
## 0.02991290 0.02055159 0.03743848 0.04196536 0.02274226 0.03818830 0.01510760 
##         64         65         66         67         68         69         70 
## 0.03355961 0.01628011 0.03969556 0.04148991 0.02408818 0.01964377 0.03798677 
##         71         72         73         74         75         76         77 
## 0.04075108 0.03525930 0.02483945 0.06657725 0.01317260 0.02698409 0.01285905 
##         78         79         80         81         82         83         84 
## 0.04020604 0.01144801 0.01645518 0.04049660 0.01695549 0.01829794 0.02565171 
##         85         86         87         88         89         90         91 
## 0.05702464 0.03547578 0.01613921 0.01864954 0.01230903 0.02919406 0.02366479 
##         92         93         94         95         96         97         98 
## 0.01072398 0.02832161 0.01563791 0.02732410 0.03110751 0.02661956 0.04196536 
##         99        100 
## 0.03552196 0.03573362 
## 
## $coefficients
##       (Intercept)           age        height
## 1   -8.744512e-05  5.132007e-07  9.880666e-07
## 2    2.627091e-04 -2.040612e-06 -2.608067e-06
## 3   -3.289247e-06 -1.551802e-07  9.943211e-08
## 4    3.506401e-04  2.431160e-06 -6.229489e-06
## 5   -2.936430e-05 -4.922959e-07  7.913270e-07
## 6   -5.060000e-05 -1.739579e-06  2.042983e-06
## 7   -4.278083e-05  2.030629e-08  5.630683e-07
## 8   -1.514924e-04  6.316208e-07  1.803632e-06
## 9   -5.240245e-04 -2.358186e-07  7.241127e-06
## 10  -5.506071e-05  1.593665e-07  6.381307e-07
## 11  -5.799584e-05  1.437344e-07  6.979934e-07
## 12   1.328652e-04  5.765906e-07 -2.346182e-06
## 13  -2.177135e-05 -4.439197e-07  6.590026e-07
## 14  -1.045410e-04  7.622090e-07  1.073831e-06
## 15   1.996344e-04  2.908482e-07 -2.881002e-06
## 16   2.227772e-05 -1.682195e-07 -2.632883e-07
## 17  -6.769767e-05  6.530154e-07  4.762783e-07
## 18   6.140820e-05  2.345804e-07 -1.096838e-06
## 19   1.782739e-04  2.505271e-07 -2.295855e-06
## 20   4.289646e-05  1.470151e-07 -7.727766e-07
## 21  -3.937286e-04  1.205080e-06  4.459126e-06
## 22  -6.002658e-05  2.793466e-07  6.239403e-07
## 23   1.506378e-04  5.519254e-07 -2.358837e-06
## 24   4.174124e-04  9.154240e-07 -6.210951e-06
## 25  -5.097948e-04  2.389369e-06  5.891100e-06
## 26  -9.470582e-05  9.053114e-07  8.492246e-07
## 27   1.511239e-04 -9.633542e-07 -1.418858e-06
## 28   4.201420e-05  7.043728e-07 -1.132224e-06
## 29  -4.412577e-05  4.950997e-07  2.440765e-07
## 30  -5.549465e-05 -3.902977e-07  1.080995e-06
## 31   9.279460e-05 -3.498425e-07 -9.884042e-07
## 32   8.193246e-05  5.242779e-07 -1.380861e-06
## 33  -8.320219e-07 -3.064672e-07  1.721266e-07
## 34   3.038187e-05  1.244427e-06 -1.445172e-06
## 35   4.501587e-04 -1.050126e-06 -5.918402e-06
## 36  -1.268048e-04  1.303247e-06  1.189018e-06
## 37   1.034672e-05 -4.815396e-07  2.389815e-07
## 38  -2.277038e-05 -8.768198e-08  3.617977e-07
## 39   6.943352e-05 -4.500991e-07 -7.537695e-07
## 40   1.136158e-04 -7.711994e-07 -1.016254e-06
## 41  -2.177135e-05 -4.439197e-07  6.590026e-07
## 42   1.399093e-04  3.603133e-07 -2.303685e-06
## 43  -2.544097e-04  8.180967e-07  3.287617e-06
## 44   1.993931e-05 -1.206513e-06  3.053546e-07
## 45   1.789757e-04 -1.434467e-07 -2.320327e-06
## 46  -5.575582e-05  8.745639e-08  9.576555e-07
## 47  -1.730627e-04  2.089366e-06  1.344530e-06
## 48   1.324764e-04 -5.780900e-07 -1.399464e-06
## 49   3.573488e-04  2.272566e-06 -6.223786e-06
## 50  -3.723302e-04  1.689843e-06  3.987454e-06
## 51   5.951197e-06 -4.082878e-07  2.550542e-07
## 52   6.488209e-05  1.505385e-07 -1.090576e-06
## 53  -1.776585e-04 -1.170429e-06  3.095432e-06
## 54   8.484757e-05 -3.315057e-07 -1.055264e-06
## 55   4.729869e-05 -1.682275e-06  2.254025e-07
## 56   7.219581e-05 -4.613628e-07 -6.321915e-07
## 57  -5.374058e-05 -2.934325e-07  1.006725e-06
## 58   1.229505e-04 -3.763132e-07 -1.392461e-06
## 59  -2.554247e-05 -7.633469e-08  3.924343e-07
## 60   2.401164e-04 -6.990918e-07 -2.826533e-06
## 61  -1.443443e-05 -1.988246e-07  2.969886e-07
## 62   1.464922e-04 -8.689270e-07 -1.413301e-06
## 63   2.509039e-05 -2.221619e-07 -2.672427e-07
## 64  -5.060000e-05 -1.739579e-06  2.042983e-06
## 65  -4.138877e-05  1.377072e-07  4.512223e-07
## 66  -2.034072e-05 -1.340064e-07  3.544065e-07
## 67   1.364318e-04  4.666639e-07 -2.324381e-06
## 68   1.045008e-04 -5.880306e-07 -1.003331e-06
## 69  -5.617824e-05 -1.303439e-07  9.442762e-07
## 70  -7.112725e-05  3.342334e-07  7.478573e-07
## 71   1.652961e-04 -3.856012e-07 -2.173208e-06
## 72  -4.743470e-04 -1.040287e-06  7.058116e-06
## 73  -2.694983e-04  1.052950e-06  3.351798e-06
## 74   1.826744e-04 -8.561810e-07 -2.110954e-06
## 75   2.440398e-04 -9.330348e-07 -2.468189e-06
## 76  -5.023950e-04  5.607000e-07  6.417928e-06
## 77  -1.239870e-04 -7.267192e-07  1.888833e-06
## 78   1.381812e-04  4.130557e-07 -2.313897e-06
## 79   1.250973e-05 -1.937086e-07  3.244743e-08
## 80  -2.118530e-05 -1.185127e-07  3.378653e-07
## 81  -1.248803e-04  6.042325e-07  1.452196e-06
## 82   1.426496e-04 -8.344671e-07 -1.683443e-06
## 83  -1.859077e-04  7.782596e-07  1.936436e-06
## 84  -1.993757e-05 -1.699784e-07  3.607995e-07
## 85  -2.285600e-04 -1.749219e-06  4.548006e-06
## 86  -1.401284e-05 -2.236955e-07  3.144950e-07
## 87  -4.227952e-05 -1.449007e-07  7.616624e-07
## 88  -1.974407e-04 -8.435976e-08  3.056340e-06
## 89  -1.780871e-05 -7.408936e-08  2.552845e-07
## 90   1.107213e-04  2.672085e-06 -3.650872e-06
## 91   2.526411e-04  3.050094e-07 -3.991547e-06
## 92  -4.895990e-05 -2.944686e-08  9.360730e-07
## 93   3.174048e-04 -9.573439e-07 -4.090017e-06
## 94   2.233301e-04  5.435787e-07 -3.863028e-06
## 95  -1.108319e-04 -1.079162e-06  2.084130e-06
## 96  -1.001983e-04 -1.255649e-06  2.047819e-06
## 97  -6.163162e-05  7.137826e-07  5.059421e-07
## 98  -6.255822e-05  1.821364e-07  7.364049e-07
## 99   6.667731e-05 -7.945069e-07 -3.492046e-07
## 100 -1.012975e-04  8.110653e-08  1.436720e-06
## 
## $sigma
##           1           2           3           4           5           6 
## 0.001157892 0.001150114 0.001158889 0.001141841 0.001158584 0.001149644 
##           7           8           9          10          11          12 
## 0.001159198 0.001158367 0.001137718 0.001159066 0.001159190 0.001157273 
##          13          14          15          16          17          18 
## 0.001158409 0.001157758 0.001155902 0.001158663 0.001158576 0.001158011 
##          19          20          21          22          23          24 
## 0.001126145 0.001158215 0.001135149 0.001158935 0.001156027 0.001142933 
##          25          26          27          28          29          30 
## 0.001148892 0.001157520 0.001157318 0.001157757 0.001158548 0.001158917 
##          31          32          33          34          35          36 
## 0.001157248 0.001156544 0.001159084 0.001148970 0.001147619 0.001147187 
##          37          38          39          40          41          42 
## 0.001158103 0.001159317 0.001158539 0.001157458 0.001158409 0.001157394 
##          43          44          45          46          47          48 
## 0.001148815 0.001151591 0.001156413 0.001147938 0.001146630 0.001157135 
##          49          50          51          52          53          54 
## 0.001141965 0.001151791 0.001158064 0.001158057 0.001153392 0.001158317 
##          55          56          57          58          59          60 
## 0.001151768 0.001157520 0.001158612 0.001157034 0.001159308 0.001156419 
##          61          62          63          64          65          66 
## 0.001159110 0.001157275 0.001158693 0.001149644 0.001158923 0.001159295 
##          67          68          69          70          71          72 
## 0.001157335 0.001157369 0.001158386 0.001158984 0.001157796 0.001138098 
##          73          74          75          76          77          78 
## 0.001148665 0.001158033 0.001126752 0.001136727 0.001134991 0.001157364 
##          79          80          81          82          83          84 
## 0.001157772 0.001159061 0.001158131 0.001150140 0.001151338 0.001159176 
##          85          86          87          88          89          90 
## 0.001151224 0.001159214 0.001158248 0.001149341 0.001158945 0.001128943 
##          91          92          93          94          95          96 
## 0.001148065 0.001148002 0.001148704 0.001130508 0.001152673 0.001152745 
##          97          98          99         100 
## 0.001157455 0.001159173 0.001157890 0.001158652 
## 
## $wt.res
##             1             2             3             4             5 
##  0.0005665957 -0.0014026842 -0.0003260399  0.0019161955  0.0004113886 
##             6             7             8             9            10 
##  0.0014437155 -0.0001951258  0.0004592313 -0.0021496332 -0.0002581727 
##            11            12            13            14            15 
## -0.0001979076 -0.0006680376  0.0004568812  0.0005885386  0.0008635325 
##            16            17            18            19            20 
## -0.0003950821 -0.0004122047 -0.0005447256  0.0026843441 -0.0005036216 
##            21            22            23            24            25 
## -0.0022861109 -0.0003080538  0.0008487600  0.0018723097  0.0014723970 
##            26            27            28            29            30 
##  0.0006296426  0.0006612261 -0.0005886114 -0.0004225886  0.0003100195 
##            31            32            33            34            35 
##  0.0006815622  0.0007841064 -0.0002498272 -0.0015020148 -0.0015802659 
##            36            37            38            39            40 
##  0.0016268608  0.0005259234 -0.0001101360 -0.0004246271  0.0006420650 
##            41            42            43            44            45 
##  0.0004568812 -0.0006504832  0.0015123260 -0.0012997084  0.0008004856 
##            46            47            48            49            50 
##  0.0015829750  0.0016531923  0.0006963348  0.0019118069 -0.0012653431 
##            51            52            53            54            55 
##  0.0005347006 -0.0005359484 -0.0011292971 -0.0004788969 -0.0012777655 
##            56            57            58            59            60 
##  0.0006360697  0.0004053933  0.0007138891 -0.0001189131  0.0007933153 
##            61            62            63            64            65 
## -0.0002394433  0.0006700033 -0.0003863050  0.0014437155 -0.0003140492 
##            66            67            68            69            70 
## -0.0001292971 -0.0006592604  0.0006596193  0.0004640516 -0.0002888927 
##            71            72            73            74            75 
## -0.0005802659 -0.0021276903  0.0015211031 -0.0005276030  0.0026580126 
##            76            77            78            79            80 
## -0.0022039029 -0.0023024902 -0.0006548718  0.0005933589 -0.0002613862 
##            81            82            83            84            85 
##  0.0005151078 -0.0014186318 -0.0013228263 -0.0002071165  0.0013056310 
##            86            87            88            89            90 
## -0.0001851736  0.0004963784  0.0014772173 -0.0003068788 -0.0025475074 
##            91            92            93            94            95 
## -0.0015638867  0.0015785864 -0.0015156123 -0.0024992330 -0.0012027279 
##            96            97            98            99           100 
## -0.0011939507  0.0006444151 -0.0002066847  0.0005642456  0.0003934026
# Cooks distance
cooks.dist <- cooks.distance(model)

which(cooks.dist > (4/(nrow(data1)-2-1)))
##  4 25 49 72 90 
##  4 25 49 72 90