Техническая информация и библиотеки

rm(list = ls())
date()
## [1] "Fri Aug  9 14:43:27 2024"
sessionInfo()
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-apple-darwin20
## Running under: macOS Ventura 13.6.8
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib 
## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## time zone: Europe/Moscow
## tzcode source: internal
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## loaded via a namespace (and not attached):
##  [1] digest_0.6.36     R6_2.5.1          fastmap_1.2.0     xfun_0.46        
##  [5] cachem_1.1.0      knitr_1.48        htmltools_0.5.8.1 rmarkdown_2.27   
##  [9] lifecycle_1.0.4   cli_3.6.3         sass_0.4.9        jquerylib_0.1.4  
## [13] compiler_4.4.1    rstudioapi_0.16.0 tools_4.4.1       evaluate_0.24.0  
## [17] bslib_0.7.0       yaml_2.3.9        rlang_1.1.4       jsonlite_1.8.8

library(ggplot2)
library(dplyr)
library(tidyr)

library(psych)

Описание переменных

Общие данные
subject_id номер
School школа
Class класс
Gender пол (1-м,2-д)
Age возраст

Шкала психологического благополучия Рифф (W)
W_PositiveRel Позитивные отношения
W_Autonomy Автономия
W_EnvMastery Управление средой
W_PersGrowth Личностный рост
W_PurposeLife Цели в жизни
W_SelfAcceptance Самопринятие
WellBeing Психологическое благополучие

Субъективное благополучие (SW)
SW_NapriCHuvstv Напр.иЧувств.
SW_PsiEmSim ПсиЭмСим
SW_Nastroenie Настроение
SW_SocOkr Соц.Окр.
SW_SamoocZdorov Самооц.Здоров.
SW_StUdovl Ст.Удовл.
SubWellBeing Субъективное благополучие

Психологическая безопасность (PB)
PB_1 1
PB_2 2
PB_3 3
PB_4a 4а
PB_4b 4б
PB_5 5
PB_6 6
PB_7a 07а
PB_b 07б
PB_c 07в
PB_d 07г
PB_e 07д
PB_f 07.е
PB_g 07ж
PB_h 07з
PB_8 8
PB_9-1a 9.1а
PB_9-1b 9.1б
PB_9-2a 9.2а
PB_9-2b 9.2б
PB_9-3a 9.3а
PB_9-3b 9.3б
PB_4a 9.4а
PB_4b 9.4б
PB_5a 9.5а
PB_5b 9.5б
PB_10 10
PB_O O
PB_U У
PB_Z З

Опросник самоотношения (SO)
SO_S-GlobSamootnoshenie Шкала S (глобальное самоотношение)
SO_I-Samouvazhenie Шкала самоуважения (I)
SO_II-Autosimpatiya Шкала аутосимпатии (II)
SO_III-OzhidOtnoshenie Шкала ожидаемого отношения от других (III)
SO_IV-Samointeres Шкала самоинтересов (IV)
SO_1-Samouverennost Шкала самоуверенности
SO_2-OtnoshenieDrugih Шкала отношения других
SO_3-Samoprinyatie Шкала самопринятия
SO_4-Samorukovodstvo Шкала саморуководства
SO_5-Samoobvinenie Шкала самообвинения
SO_6-Samointeres Шкала самоинтереса
SO_7-Samoponimanie Шкала самопонимания

Способы совладающего поведения (SP)
SP_Konfrontaciya Конфронтация
SP_Distancirovanie Дистанцирование
SP_Samokontrol Самоконтроль
SP_PoiskCocPodderzhki Поиск социальной поддержки
SP_PrinyatieOtvetstv Принятие ответственности
SP_BegstvoIzbeganie Бегство-избегание
SP_Planirovanie Планирование решения проблемы
SP_PolPereocenka Положительная переоценка

Тест жизнестойкости (ZhS)
ZhS_Vovlechennost Вовлеченность
ZhS_Kontrol Контроль
ZhS_PrinyatieRiska Принятие риска
ZhS_ZHiznestojkost Жизнестойкость

Стили познания (P)
P_AK АК
P_AE АЭ
P_KO КО
P_RN РН

Импорт данных и первичная проверка

Data <- read.delim2("../Data/SpecSchool.tsv", na.strings = c("", "-"))

Data$Gender <- factor(Data$Gender, levels = c(1,2), labels = c("М", "Ж"))

str(Data)
## 'data.frame':    286 obs. of  77 variables:
##  $ subject_id             : chr  "137" "140" "115" "116" ...
##  $ School                 : chr  "225" "225" "225" "225" ...
##  $ Class                  : chr  "10Б" "10Б" "8Б" "8Б" ...
##  $ Gender                 : Factor w/ 2 levels "М","Ж": 1 2 2 1 1 2 1 1 1 2 ...
##  $ Age                    : int  17 16 14 14 15 14 14 15 15 14 ...
##  $ W_PositiveRel          : int  47 76 57 34 45 66 62 61 62 51 ...
##  $ W_Autonomy             : int  73 56 48 26 45 43 61 77 43 50 ...
##  $ W_EnvMastery           : int  40 66 43 40 40 54 39 73 46 51 ...
##  $ W_PersGrowth           : int  73 71 70 37 56 79 52 59 57 75 ...
##  $ W_PurposeLife          : int  42 72 66 27 47 67 57 80 54 57 ...
##  $ W_SelfAcceptance       : int  36 72 58 14 31 60 54 72 29 40 ...
##  $ WellBeing              : int  311 413 342 178 264 369 325 422 291 324 ...
##  $ SW_NapriCHuvstv        : int  9 17 11 11 13 14 8 10 13 9 ...
##  $ SW_PsiEmSim            : int  7 25 16 7 9 18 12 20 11 12 ...
##  $ SW_Nastroenie          : int  5 14 12 5 5 11 8 13 7 9 ...
##  $ SW_SocOkr              : int  12 21 21 10 12 16 11 18 16 9 ...
##  $ SW_SamoocZdorov        : int  5 14 13 4 4 6 13 10 3 6 ...
##  $ SW_StUdovl             : int  13 20 17 3 5 13 3 20 9 13 ...
##  $ SubWellBeing           : int  51 111 90 40 48 78 55 91 59 58 ...
##  $ PB_1                   : int  2 0 2 2 2 2 2 2 2 2 ...
##  $ PB_2                   : int  2 2 2 2 2 2 0 2 2 0 ...
##  $ PB_3                   : int  2 2 2 2 2 2 0 0 2 2 ...
##  $ PB_4a                  : int  2 2 2 2 2 2 2 2 2 2 ...
##  $ PB_4b                  : int  2 2 2 2 0 0 1 1 0 2 ...
##  $ PB_5                   : int  2 2 0 2 2 2 0 2 2 1 ...
##  $ PB_6                   : int  0 2 2 1 1 2 1 2 2 2 ...
##  $ PB_7a                  : int  4 5 3 5 3 5 3 5 4 3 ...
##  $ PB_b                   : int  4 5 5 4 3 5 3 5 5 3 ...
##  $ PB_c                   : int  5 4 4 2 4 4 3 5 3 NA ...
##  $ PB_d                   : int  4 5 4 4 4 4 2 5 3 2 ...
##  $ PB_e                   : int  5 5 3 5 4 4 1 5 4 NA ...
##  $ PB_f                   : int  4 5 5 2 3 4 4 5 4 NA ...
##  $ PB_g                   : int  5 5 5 5 4 4 3 5 4 3 ...
##  $ PB_h                   : int  3 5 5 3 3 3 3 5 5 4 ...
##  $ PB_8                   : int  2 2 2 0 2 2 0 2 2 2 ...
##  $ PB_9.1a                : int  5 5 4 3 4 4 3 4 4 4 ...
##  $ PB_9.1b                : int  5 5 5 5 4 5 3 5 5 4 ...
##  $ PB_9.2a                : int  5 5 3 4 4 5 4 4 4 3 ...
##  $ PB_9.2b                : int  4 5 2 1 3 4 1 4 5 4 ...
##  $ PB_9.3a                : int  5 5 3 2 4 5 3 2 5 4 ...
##  $ PB_9.3b                : int  5 5 4 3 4 5 3 4 3 2 ...
##  $ PB_4a.1                : int  5 5 5 5 4 5 3 5 3 5 ...
##  $ PB_4b.1                : int  5 5 5 4 4 5 1 4 3 5 ...
##  $ PB_5a                  : int  5 5 5 1 3 5 3 4 3 2 ...
##  $ PB_5b                  : int  5 5 4 2 4 5 4 2 3 4 ...
##  $ PB_10                  : int  2 5 1 2 2 2 2 0 1 0 ...
##  $ PB_O                   : int  8 8 6 6 5 8 1 5 7 5 ...
##  $ PB_U                   : num  4.25 4.9 4.3 3.8 3.5 4.3 2.8 5 4 2.6 ...
##  $ PB_Z                   : num  4.9 5 3.7 3 3.8 4.8 2.8 3.8 3.8 3.7 ...
##  $ SO_S.GlobSamootnoshenie: int  14 27 19 15 10 15 16 20 11 19 ...
##  $ SO_I.Samouvazhenie     : int  9 13 9 8 5 9 6 13 4 11 ...
##  $ SO_II.Autosimpatiya    : int  0 14 8 8 2 9 9 7 2 9 ...
##  $ SO_III.OzhidOtnoshenie : int  4 11 7 7 3 8 9 8 5 7 ...
##  $ SO_IV.Samointeres      : int  5 8 7 4 4 4 6 8 5 6 ...
##  $ SO_1.Samouverennost    : int  4 7 4 6 3 5 6 5 1 3 ...
##  $ SO_2.OtnoshenieDrugih  : int  2 6 5 3 2 6 4 4 4 4 ...
##  $ SO_3.Samoprinyatie     : int  2 7 4 2 0 7 6 5 1 5 ...
##  $ SO_4.Samorukovodstvo   : int  6 5 5 4 2 5 1 5 4 4 ...
##  $ SO_5.Samoobvinenie     : int  7 1 4 4 6 4 6 5 8 2 ...
##  $ SO_6.Samointeres       : int  3 7 7 5 2 5 7 7 5 5 ...
##  $ SO_7.Samoponimanie     : int  2 3 3 1 2 1 1 3 2 6 ...
##  $ SP_Konfrontaciya       : num  27.8 33.3 50 61.1 77.8 33.3 61.1 50 44.4 61.1 ...
##  $ SP_Distancirovanie     : num  11.1 27.8 72.2 38.9 66.7 38.9 55.6 27.8 61.1 66.7 ...
##  $ SP_Samokontrol         : num  57.1 52.4 61.9 57.1 81 61.9 47.6 76.2 90.5 81 ...
##  $ SP_PoiskCocPodderzhki  : num  50 72.2 66.7 27.8 66.7 66.7 38.9 27.8 66.7 44.4 ...
##  $ SP_PrinyatieOtvetstv   : num  41.7 50 58.3 91.7 91.7 83.3 50 75 100 41.7 ...
##  $ SP_BegstvoIzbeganie    : num  29.2 16.7 54.2 75 62.5 25 54.2 29.2 37.5 45.8 ...
##  $ SP_Planirovanie        : num  66.7 88.9 88.9 50 44.4 55.6 44.4 77.8 77.8 66.7 ...
##  $ SP_PolPereocenka       : num  47.6 52.4 90.5 23.8 66.7 61.9 42.9 76.2 61.9 57.1 ...
##  $ ZhS_Vovlechennost      : int  23 45 37 13 15 33 22 37 26 37 ...
##  $ ZhS_Kontrol            : int  58 37 34 14 15 24 18 55 26 38 ...
##  $ ZhS_PrinyatieRiska     : int  21 20 16 4 10 18 13 20 11 19 ...
##  $ ZhS_ZHiznestojkost     : int  102 102 87 31 40 75 53 112 63 94 ...
##  $ P_AK                   : int  38 37 32 32 32 31 25 34 36 23 ...
##  $ P_AE                   : int  27 28 29 27 24 27 30 33 26 37 ...
##  $ P_KO                   : int  26 21 29 21 23 27 30 28 27 26 ...
##  $ P_RN                   : int  28 36 32 38 37 37 31 26 29 33 ...
save(Data, file = "Data.RData")

Проверка всех переменных

summary(Data)
##   subject_id           School             Class           Gender 
##  Length:286         Length:286         Length:286         М:175  
##  Class :character   Class :character   Class :character   Ж:111  
##  Mode  :character   Mode  :character   Mode  :character          
##                                                                  
##                                                                  
##                                                                  
##                                                                  
##       Age        W_PositiveRel     W_Autonomy     W_EnvMastery  
##  Min.   :13.00   Min.   :19.00   Min.   : 19.0   Min.   :28.00  
##  1st Qu.:14.00   1st Qu.:52.00   1st Qu.: 50.0   1st Qu.:49.00  
##  Median :15.00   Median :60.00   Median : 57.5   Median :55.00  
##  Mean   :14.99   Mean   :59.80   Mean   : 57.6   Mean   :55.73  
##  3rd Qu.:16.00   3rd Qu.:68.75   3rd Qu.: 64.0   3rd Qu.:62.00  
##  Max.   :17.00   Max.   :84.00   Max.   :101.0   Max.   :83.00  
##                                                                 
##   W_PersGrowth   W_PurposeLife   W_SelfAcceptance   WellBeing    
##  Min.   :22.00   Min.   :19.00   Min.   :14.00    Min.   :124.0  
##  1st Qu.:59.00   1st Qu.:54.00   1st Qu.:48.00    1st Qu.:323.0  
##  Median :65.00   Median :61.00   Median :58.00    Median :357.0  
##  Mean   :64.55   Mean   :60.56   Mean   :56.48    Mean   :354.7  
##  3rd Qu.:71.00   3rd Qu.:68.00   3rd Qu.:66.75    3rd Qu.:385.8  
##  Max.   :83.00   Max.   :83.00   Max.   :82.00    Max.   :481.0  
##                                                                  
##  SW_NapriCHuvstv  SW_PsiEmSim   SW_Nastroenie      SW_SocOkr    
##  Min.   : 3.00   Min.   : 0.0   Min.   : 0.000   Min.   : 0.00  
##  1st Qu.:10.00   1st Qu.:13.0   1st Qu.: 8.000   1st Qu.:13.00  
##  Median :12.00   Median :17.0   Median :10.000   Median :16.00  
##  Mean   :12.11   Mean   :17.2   Mean   : 9.961   Mean   :15.64  
##  3rd Qu.:15.00   3rd Qu.:21.0   3rd Qu.:12.000   3rd Qu.:19.00  
##  Max.   :20.00   Max.   :28.0   Max.   :14.000   Max.   :21.00  
##  NA's   :3       NA's   :2      NA's   :2        NA's   :2      
##  SW_SamoocZdorov    SW_StUdovl     SubWellBeing         PB_1      
##  Min.   : 0.000   Min.   : 0.00   Min.   :  0.00   Min.   :0.000  
##  1st Qu.: 6.000   1st Qu.: 9.00   1st Qu.: 63.75   1st Qu.:2.000  
##  Median : 9.000   Median :13.00   Median : 77.00   Median :2.000  
##  Mean   : 8.898   Mean   :12.43   Mean   : 76.20   Mean   :1.682  
##  3rd Qu.:11.000   3rd Qu.:15.00   3rd Qu.: 90.00   3rd Qu.:2.000  
##  Max.   :14.000   Max.   :21.00   Max.   :115.00   Max.   :2.000  
##  NA's   :2        NA's   :2       NA's   :2        NA's   :6      
##       PB_2            PB_3           PB_4a           PB_4b      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.000   1st Qu.:0.750   1st Qu.:2.000   1st Qu.:1.000  
##  Median :2.000   Median :2.000   Median :2.000   Median :2.000  
##  Mean   :3.819   Mean   :1.354   Mean   :1.796   Mean   :1.354  
##  3rd Qu.:7.000   3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :9.000   Max.   :2.000   Max.   :2.000   Max.   :2.000  
##  NA's   :5       NA's   :6       NA's   :6       NA's   :6      
##       PB_5            PB_6           PB_7a            PB_b      
##  Min.   :0.000   Min.   :0.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:0.000   1st Qu.:1.000   1st Qu.:3.000   1st Qu.:4.000  
##  Median :2.000   Median :2.000   Median :4.000   Median :4.000  
##  Mean   :1.221   Mean   :1.364   Mean   :3.944   Mean   :4.029  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :3.000   Max.   :2.000   Max.   :5.000   Max.   :5.000  
##  NA's   :6       NA's   :6       NA's   :17      NA's   :10     
##       PB_c            PB_d            PB_e            PB_f      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :4.000  
##  Mean   :3.768   Mean   :3.929   Mean   :4.061   Mean   :3.813  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :6.000  
##  NA's   :19      NA's   :18      NA's   :24      NA's   :24     
##       PB_g            PB_h            PB_8          PB_9.1a     
##  Min.   :1.000   Min.   :1.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:3.000   1st Qu.:2.000   1st Qu.:1.000   1st Qu.:4.000  
##  Median :4.000   Median :3.000   Median :2.000   Median :4.000  
##  Mean   :3.931   Mean   :3.211   Mean   :1.468   Mean   :3.846  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:2.000   3rd Qu.:5.000  
##  Max.   :7.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##  NA's   :27      NA's   :30      NA's   :8       NA's   :6      
##     PB_9.1b         PB_9.2a         PB_9.2b         PB_9.3a     
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :4.000   Median :4.500   Median :4.000   Median :4.000  
##  Mean   :4.029   Mean   :4.193   Mean   :3.892   Mean   :3.775  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##  NA's   :9       NA's   :6       NA's   :9       NA's   :6      
##     PB_9.3b         PB_4a.1         PB_4b.1          PB_5a      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :4.000  
##  Mean   :3.783   Mean   :3.979   Mean   :3.621   Mean   :3.801  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##  NA's   :9       NA's   :6       NA's   :9       NA's   :9      
##      PB_5b           PB_10           PB_O             PB_U      
##  Min.   :1.000   Min.   :0.00   Min.   :-9.000   Min.   :0.000  
##  1st Qu.:3.000   1st Qu.:0.00   1st Qu.: 2.000   1st Qu.:3.375  
##  Median :4.000   Median :2.00   Median : 5.000   Median :3.875  
##  Mean   :3.808   Mean   :1.18   Mean   : 4.147   Mean   :3.756  
##  3rd Qu.:5.000   3rd Qu.:2.00   3rd Qu.: 8.000   3rd Qu.:4.250  
##  Max.   :5.000   Max.   :5.00   Max.   : 9.000   Max.   :5.400  
##  NA's   :10      NA's   :14     NA's   :1        NA's   :1      
##       PB_Z       SO_S.GlobSamootnoshenie SO_I.Samouvazhenie SO_II.Autosimpatiya
##  Min.   :0.000   Min.   : 4.00           Min.   : 0.000     Min.   : 0.000     
##  1st Qu.:3.400   1st Qu.:15.00           1st Qu.: 7.000     1st Qu.: 6.000     
##  Median :4.000   Median :20.00           Median : 9.000     Median : 8.000     
##  Mean   :3.837   Mean   :19.21           Mean   : 9.241     Mean   : 8.294     
##  3rd Qu.:4.600   3rd Qu.:23.00           3rd Qu.:11.000     3rd Qu.:10.750     
##  Max.   :5.000   Max.   :29.00           Max.   :15.000     Max.   :14.000     
##  NA's   :1                                                                     
##  SO_III.OzhidOtnoshenie SO_IV.Samointeres SO_1.Samouverennost
##  Min.   : 1.000         Min.   :1.000     Min.   :0.000      
##  1st Qu.: 7.000         1st Qu.:5.000     1st Qu.:3.000      
##  Median : 9.000         Median :6.000     Median :5.000      
##  Mean   : 8.374         Mean   :5.748     Mean   :4.462      
##  3rd Qu.:10.000         3rd Qu.:7.000     3rd Qu.:6.000      
##  Max.   :12.000         Max.   :8.000     Max.   :8.000      
##                                                              
##  SO_2.OtnoshenieDrugih SO_3.Samoprinyatie SO_4.Samorukovodstvo
##  Min.   :1.000         Min.   :0.000      Min.   :1.000       
##  1st Qu.:4.000         1st Qu.:3.000      1st Qu.:3.000       
##  Median :6.000         Median :5.000      Median :5.000       
##  Mean   :5.332         Mean   :4.563      Mean   :4.276       
##  3rd Qu.:7.000         3rd Qu.:6.000      3rd Qu.:5.000       
##  Max.   :8.000         Max.   :7.000      Max.   :7.000       
##                                                               
##  SO_5.Samoobvinenie SO_6.Samointeres SO_7.Samoponimanie SP_Konfrontaciya
##  Min.   :0.000      Min.   :0.000    Min.   :0.000      Min.   :  0.00  
##  1st Qu.:3.000      1st Qu.:4.000    1st Qu.:2.000      1st Qu.: 38.90  
##  Median :4.000      Median :5.000    Median :3.000      Median : 50.00  
##  Mean   :4.122      Mean   :5.315    Mean   :3.315      Mean   : 49.86  
##  3rd Qu.:6.000      3rd Qu.:7.000    3rd Qu.:5.000      3rd Qu.: 61.10  
##  Max.   :8.000      Max.   :7.000    Max.   :6.000      Max.   :100.00  
##                                                         NA's   :44      
##  SP_Distancirovanie SP_Samokontrol  SP_PoiskCocPodderzhki SP_PrinyatieOtvetstv
##  Min.   :  0.00     Min.   : 0.00   Min.   :  0.00        Min.   :  0.00      
##  1st Qu.: 33.33     1st Qu.:52.40   1st Qu.: 45.83        1st Qu.: 43.77      
##  Median : 50.00     Median :61.90   Median : 61.10        Median : 58.30      
##  Mean   : 48.69     Mean   :59.33   Mean   : 58.27        Mean   : 60.30      
##  3rd Qu.: 61.10     3rd Qu.:71.40   3rd Qu.: 72.20        3rd Qu.: 75.00      
##  Max.   :100.00     Max.   :95.20   Max.   :100.00        Max.   :100.00      
##  NA's   :44         NA's   :44      NA's   :44            NA's   :44          
##  SP_BegstvoIzbeganie SP_Planirovanie  SP_PolPereocenka ZhS_Vovlechennost
##  Min.   :  0.00      Min.   :  0.00   Min.   :  0.0    Min.   : 9.00    
##  1st Qu.: 33.30      1st Qu.: 55.60   1st Qu.: 47.6    1st Qu.:24.50    
##  Median : 45.80      Median : 66.70   Median : 57.1    Median :32.00    
##  Mean   : 45.65      Mean   : 66.62   Mean   : 56.9    Mean   :31.96    
##  3rd Qu.: 58.30      3rd Qu.: 81.92   3rd Qu.: 66.7    3rd Qu.:38.50    
##  Max.   :100.00      Max.   :100.00   Max.   :100.0    Max.   :51.00    
##  NA's   :44          NA's   :44       NA's   :44       NA's   :75       
##   ZhS_Kontrol    ZhS_PrinyatieRiska ZhS_ZHiznestojkost      P_AK      
##  Min.   : 5.00   Min.   : 0.00      Min.   : 23.00     Min.   : 0.00  
##  1st Qu.:23.00   1st Qu.:13.00      1st Qu.: 63.00     1st Qu.:27.00  
##  Median :28.00   Median :17.00      Median : 78.00     Median :31.00  
##  Mean   :30.62   Mean   :16.55      Mean   : 79.12     Mean   :28.98  
##  3rd Qu.:37.00   3rd Qu.:20.00      3rd Qu.: 96.00     3rd Qu.:35.00  
##  Max.   :64.00   Max.   :29.00      Max.   :134.00     Max.   :45.00  
##  NA's   :75      NA's   :75         NA's   :75         NA's   :58     
##       P_AE            P_KO            P_RN      
##  Min.   : 0.00   Min.   : 0.00   Min.   : 0.00  
##  1st Qu.:25.00   1st Qu.:22.00   1st Qu.:26.00  
##  Median :29.00   Median :26.00   Median :32.00  
##  Mean   :26.39   Mean   :24.68   Mean   :28.58  
##  3rd Qu.:32.00   3rd Qu.:30.00   3rd Qu.:35.00  
##  Max.   :39.00   Max.   :41.00   Max.   :42.00  
##  NA's   :58      NA's   :58      NA's   :58

Пропущенные значения

Data |>
        is.na() |>
        colSums() |>
        as.data.frame()
##                         colSums(is.na(Data))
## subject_id                                 0
## School                                     0
## Class                                      0
## Gender                                     0
## Age                                        0
## W_PositiveRel                              0
## W_Autonomy                                 0
## W_EnvMastery                               0
## W_PersGrowth                               0
## W_PurposeLife                              0
## W_SelfAcceptance                           0
## WellBeing                                  0
## SW_NapriCHuvstv                            3
## SW_PsiEmSim                                2
## SW_Nastroenie                              2
## SW_SocOkr                                  2
## SW_SamoocZdorov                            2
## SW_StUdovl                                 2
## SubWellBeing                               2
## PB_1                                       6
## PB_2                                       5
## PB_3                                       6
## PB_4a                                      6
## PB_4b                                      6
## PB_5                                       6
## PB_6                                       6
## PB_7a                                     17
## PB_b                                      10
## PB_c                                      19
## PB_d                                      18
## PB_e                                      24
## PB_f                                      24
## PB_g                                      27
## PB_h                                      30
## PB_8                                       8
## PB_9.1a                                    6
## PB_9.1b                                    9
## PB_9.2a                                    6
## PB_9.2b                                    9
## PB_9.3a                                    6
## PB_9.3b                                    9
## PB_4a.1                                    6
## PB_4b.1                                    9
## PB_5a                                      9
## PB_5b                                     10
## PB_10                                     14
## PB_O                                       1
## PB_U                                       1
## PB_Z                                       1
## SO_S.GlobSamootnoshenie                    0
## SO_I.Samouvazhenie                         0
## SO_II.Autosimpatiya                        0
## SO_III.OzhidOtnoshenie                     0
## SO_IV.Samointeres                          0
## SO_1.Samouverennost                        0
## SO_2.OtnoshenieDrugih                      0
## SO_3.Samoprinyatie                         0
## SO_4.Samorukovodstvo                       0
## SO_5.Samoobvinenie                         0
## SO_6.Samointeres                           0
## SO_7.Samoponimanie                         0
## SP_Konfrontaciya                          44
## SP_Distancirovanie                        44
## SP_Samokontrol                            44
## SP_PoiskCocPodderzhki                     44
## SP_PrinyatieOtvetstv                      44
## SP_BegstvoIzbeganie                       44
## SP_Planirovanie                           44
## SP_PolPereocenka                          44
## ZhS_Vovlechennost                         75
## ZhS_Kontrol                               75
## ZhS_PrinyatieRiska                        75
## ZhS_ZHiznestojkost                        75
## P_AK                                      58
## P_AE                                      58
## P_KO                                      58
## P_RN                                      58

Испытуемые

Data %>%
  count(School, Class) %>%
  arrange(School, Class)
##     School Class  n
## 1      225   10Б  2
## 2      225    8Б 22
## 3      241    8А 17
## 4      564   10м 10
## 5      564     8 21
## 6      625   10а 59
## 7      625   10б 40
## 8      625    8а 21
## 9      625    8б 21
## 10     625    8в 11
## 11 А лицей   10а 16
## 12 А лицей    8А 27
## 13 А лицей    9А 19

В исходнике были ошибки: 10м и 10М (разное написание) И 8а с пробелом - поправил в numbers

library(ggplot2)

# Распределение возраста
ggplot(Data, aes(x = Age)) +
        geom_histogram(binwidth = 1, fill = "blue", color = "black") +
        labs(title = "Распределение возраста", x = "Возраст", y = "Количество")

# Распределение по полу
ggplot(Data, aes(x = as.factor(Gender))) +
        geom_bar(fill = "pink", color = "black") +
        labs(title = "Распределение по полу", x = "Пол", y = "Количество")

Шкала психологического благополучия (Рифф)

Data |>
        select(starts_with("W_"), WellBeing) |>
        describe()
##                  vars   n   mean    sd median trimmed   mad min max range  skew
## W_PositiveRel       1 286  59.80 11.76   60.0   60.10 11.86  19  84    65 -0.29
## W_Autonomy          2 286  57.60 10.58   57.5   57.59  9.64  19 101    82  0.02
## W_EnvMastery        3 286  55.73 10.96   55.0   55.47 10.38  28  83    55  0.18
## W_PersGrowth        4 286  64.55  9.53   65.0   65.08  8.90  22  83    61 -0.73
## W_PurposeLife       5 286  60.56 11.26   61.0   60.87 10.38  19  83    64 -0.37
## W_SelfAcceptance    6 286  56.48 13.20   58.0   57.20 13.34  14  82    68 -0.55
## WellBeing           7 286 354.71 52.50  357.0  355.61 48.93 124 481   357 -0.37
##                  kurtosis   se
## W_PositiveRel       -0.05 0.70
## W_Autonomy           0.95 0.63
## W_EnvMastery        -0.17 0.65
## W_PersGrowth         1.26 0.56
## W_PurposeLife        0.33 0.67
## W_SelfAcceptance     0.12 0.78
## WellBeing            1.04 3.10

Графики

Data |> 
        ggplot(aes(x = WellBeing)) +
        geom_histogram(binwidth = 20, fill = "lightblue", color = "black") +
        labs(title = "Психологическог благополучие (Рифф)",
             x = "Баллы", y = "Частота") +
        theme_minimal()

Data |> 
        select(starts_with("W_")) |>
        pivot_longer(everything(), names_to = "variable", values_to = "value") |>
        ggplot(aes(x = value)) +
        geom_histogram(binwidth = 5, fill = "lightblue", color = "black") +
        facet_wrap(~ variable, scales = "free_x") +
        labs(title = "Гистограммы для шкалы психологического благополучия Рифф",
             x = "Значения", y = "Частота") +
        theme_minimal()

Data |> 
    select(starts_with("W_"), Gender) |> 
    pivot_longer(cols = -Gender, names_to = "variable", values_to = "value") |>
    ggplot(aes(x = variable, y = value, fill = Gender)) +
    geom_boxplot(color = "black") +
    labs(title = "Шкалы психологического благополучия Рифф",
         x = "Шкала", y = "Баллы") +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

Субъективное благополучие

Data |>
  select(starts_with("SW_"), SubWellBeing) |>
  describe()
##                 vars   n  mean    sd median trimmed   mad min max range  skew
## SW_NapriCHuvstv    1 283 12.11  3.51     12   12.15  4.45   3  20    17 -0.11
## SW_PsiEmSim        2 284 17.20  5.50     17   17.28  5.93   0  28    28 -0.15
## SW_Nastroenie      3 284  9.96  2.90     10   10.18  2.97   0  14    14 -0.68
## SW_SocOkr          4 284 15.64  4.03     16   15.96  4.45   0  21    21 -0.68
## SW_SamoocZdorov    5 284  8.90  3.35      9    9.01  4.45   0  14    14 -0.28
## SW_StUdovl         6 284 12.43  4.18     13   12.50  4.45   0  21    21 -0.21
## SubWellBeing       7 284 76.20 18.45     77   76.45 19.27   0 115   115 -0.26
##                 kurtosis   se
## SW_NapriCHuvstv    -0.60 0.21
## SW_PsiEmSim        -0.48 0.33
## SW_Nastroenie       0.13 0.17
## SW_SocOkr           0.17 0.24
## SW_SamoocZdorov    -0.74 0.20
## SW_StUdovl         -0.38 0.25
## SubWellBeing        0.22 1.09

Графики

Data |> 
  ggplot(aes(x = SubWellBeing)) +
  geom_histogram(binwidth = 20, fill = "lightblue", color = "black") +
  labs(title = "Субъективное благополучие",
       x = "Баллы", y = "Частота") +
  theme_minimal()

Шкалы субъектвного благополучия

Data |> 
  select(starts_with("SW_")) |>
  pivot_longer(everything(), names_to = "variable", values_to = "value") |>
  ggplot(aes(x = value)) +
  geom_histogram(binwidth = 5, fill = "lightblue", color = "black") +
  facet_wrap(~ variable, scales = "free_x") +
  labs(title = "Гистограммы для шкал субъективного благополучия",
       x = "Значения", y = "Частота") +
  theme_minimal()

Data |> 
  select(starts_with("SW_"), Gender) |> 
  pivot_longer(cols = -Gender, names_to = "variable", values_to = "value") |>
  ggplot(aes(x = variable, y = value, fill = Gender)) +
  geom_boxplot(color = "black") +
  labs(title = "Шкалы субъективного благополучия",
       x = "Шкала", y = "Баллы") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

Психологическая безопасность (PB)

Data |>
  select(starts_with("PB_"), SubWellBeing) |>
  describe()
##              vars   n  mean    sd median trimmed   mad min   max range  skew
## PB_1            1 280  1.68  0.67   2.00    1.85  0.00   0   2.0   2.0 -1.83
## PB_2            2 281  3.82  3.35   2.00    3.65  2.97   0   9.0   9.0  0.27
## PB_3            3 280  1.35  0.86   2.00    1.44  0.00   0   2.0   2.0 -0.74
## PB_4a           4 280  1.80  0.54   2.00    1.95  0.00   0   2.0   2.0 -2.56
## PB_4b           5 280  1.35  0.78   2.00    1.44  0.00   0   2.0   2.0 -0.70
## PB_5            6 280  1.22  0.92   2.00    1.27  0.00   0   3.0   3.0 -0.42
## PB_6            7 280  1.36  0.84   2.00    1.46  0.00   0   2.0   2.0 -0.76
## PB_7a           8 269  3.94  0.88   4.00    4.01  1.48   1   5.0   4.0 -0.58
## PB_b            9 276  4.03  0.87   4.00    4.10  1.48   1   5.0   4.0 -0.68
## PB_c           10 267  3.77  1.01   4.00    3.87  1.48   1   5.0   4.0 -0.65
## PB_d           11 268  3.93  0.90   4.00    4.00  1.48   1   5.0   4.0 -0.53
## PB_e           12 262  4.06  0.89   4.00    4.14  1.48   1   5.0   4.0 -0.66
## PB_f           13 262  3.81  1.03   4.00    3.91  1.48   1   6.0   5.0 -0.50
## PB_g           14 259  3.93  1.01   4.00    4.03  1.48   1   7.0   6.0 -0.51
## PB_h           15 256  3.21  1.14   3.00    3.24  1.48   1   5.0   4.0 -0.12
## PB_8           16 278  1.47  0.89   2.00    1.54  0.00   0   5.0   5.0 -0.24
## PB_9.1a        17 280  3.85  1.09   4.00    4.00  1.48   0   5.0   5.0 -1.11
## PB_9.1b        18 277  4.03  1.19   4.00    4.23  1.48   1   5.0   4.0 -1.16
## PB_9.2a        19 280  4.19  1.04   4.50    4.38  0.74   1   5.0   4.0 -1.39
## PB_9.2b        20 277  3.89  1.28   4.00    4.08  1.48   1   5.0   4.0 -0.98
## PB_9.3a        21 280  3.78  1.20   4.00    3.92  1.48   1   5.0   4.0 -0.75
## PB_9.3b        22 277  3.78  1.19   4.00    3.93  1.48   1   5.0   4.0 -0.79
## PB_4a.1        23 280  3.98  1.14   4.00    4.17  1.48   1   5.0   4.0 -1.07
## PB_4b.1        24 277  3.62  1.29   4.00    3.77  1.48   1   5.0   4.0 -0.67
## PB_5a          25 277  3.80  1.19   4.00    3.96  1.48   1   5.0   4.0 -0.91
## PB_5b          26 276  3.81  1.18   4.00    3.96  1.48   1   5.0   4.0 -0.87
## PB_10          27 272  1.18  0.98   2.00    1.21  0.00   0   5.0   5.0 -0.13
## PB_O           28 285  4.15  4.31   5.00    4.72  4.45  -9   9.0  18.0 -1.13
## PB_U           29 285  3.76  0.79   3.88    3.81  0.63   0   5.4   5.4 -1.29
## PB_Z           30 285  3.84  0.93   4.00    3.94  0.89   0   5.0   5.0 -1.26
## SubWellBeing   31 284 76.20 18.45  77.00   76.45 19.27   0 115.0 115.0 -0.26
##              kurtosis   se
## PB_1             1.70 0.04
## PB_2            -1.53 0.20
## PB_3            -1.23 0.05
## PB_4a            5.24 0.03
## PB_4b           -1.01 0.05
## PB_5            -1.64 0.05
## PB_6            -1.15 0.05
## PB_7a           -0.03 0.05
## PB_b             0.16 0.05
## PB_c            -0.08 0.06
## PB_d            -0.36 0.06
## PB_e            -0.10 0.06
## PB_f            -0.41 0.06
## PB_g            -0.21 0.06
## PB_h            -0.70 0.07
## PB_8             0.77 0.05
## PB_9.1a          0.79 0.07
## PB_9.1b          0.39 0.07
## PB_9.2a          1.46 0.06
## PB_9.2b         -0.22 0.08
## PB_9.3a         -0.44 0.07
## PB_9.3b         -0.29 0.07
## PB_4a.1          0.42 0.07
## PB_4b.1         -0.63 0.08
## PB_5a           -0.07 0.07
## PB_5b           -0.13 0.07
## PB_10           -1.08 0.06
## PB_O             1.01 0.26
## PB_U             3.92 0.05
## PB_Z             2.40 0.05
## SubWellBeing     0.22 1.09

Графики

Data |> 
  select(PB_O, PB_U, PB_Z) |>
  pivot_longer(everything(), names_to = "variable", values_to = "value") |>
  ggplot(aes(x = value)) +
  geom_histogram(bins = 10, fill = "lightblue", color = "black") +
  facet_wrap(~ variable, scales = "free_x") +
  labs(title = "Гистограммы для шкал психологической безопасности",
       x = "Значения", y = "Частота") +
  theme_minimal()

#Опросник самоотношения (SO)

Data |>
  select(starts_with("SO_")) |>
  describe()
##                         vars   n  mean   sd median trimmed  mad min max range
## SO_S.GlobSamootnoshenie    1 286 19.21 5.20     20   19.42 5.93   4  29    25
## SO_I.Samouvazhenie         2 286  9.24 3.13      9    9.33 2.97   0  15    15
## SO_II.Autosimpatiya        3 286  8.29 3.06      8    8.46 2.97   0  14    14
## SO_III.OzhidOtnoshenie     4 286  8.37 2.30      9    8.52 2.97   1  12    11
## SO_IV.Samointeres          5 286  5.75 1.88      6    5.93 1.48   1   8     7
## SO_1.Samouverennost        6 286  4.46 1.64      5    4.50 1.48   0   8     8
## SO_2.OtnoshenieDrugih      7 286  5.33 1.71      6    5.39 1.48   1   8     7
## SO_3.Samoprinyatie         8 286  4.56 2.00      5    4.71 1.48   0   7     7
## SO_4.Samorukovodstvo       9 286  4.28 1.19      5    4.33 1.48   1   7     6
## SO_5.Samoobvinenie        10 286  4.12 2.15      4    4.22 2.97   0   8     8
## SO_6.Samointeres          11 286  5.31 1.44      5    5.45 1.48   0   7     7
## SO_7.Samoponimanie        12 286  3.31 1.62      3    3.30 1.48   0   6     6
##                          skew kurtosis   se
## SO_S.GlobSamootnoshenie -0.36    -0.50 0.31
## SO_I.Samouvazhenie      -0.30    -0.40 0.19
## SO_II.Autosimpatiya     -0.43    -0.27 0.18
## SO_III.OzhidOtnoshenie  -0.47    -0.32 0.14
## SO_IV.Samointeres       -0.69    -0.52 0.11
## SO_1.Samouverennost     -0.15    -0.70 0.10
## SO_2.OtnoshenieDrugih   -0.39    -0.76 0.10
## SO_3.Samoprinyatie      -0.53    -0.88 0.12
## SO_4.Samorukovodstvo    -0.54    -0.09 0.07
## SO_5.Samoobvinenie      -0.24    -0.75 0.13
## SO_6.Samointeres        -0.64    -0.02 0.09
## SO_7.Samoponimanie       0.05    -0.89 0.10

Графики

Data |> 
  select(SO_S.GlobSamootnoshenie
         , SO_I.Samouvazhenie
         , SO_II.Autosimpatiya
         , SO_III.OzhidOtnoshenie
         , SO_IV.Samointeres) |>
  pivot_longer(everything(), names_to = "variable", values_to = "value") |>
  ggplot(aes(x = value)) +
  geom_histogram(bins = 10, fill = "lightblue", color = "black") +
  facet_wrap(~ variable, scales = "free_x") +
  labs(title = "Гистограммы для шкал субъективного благополучия",
       x = "Значения", y = "Частота") +
  theme_minimal()

Data |> 
  select(SO_1.Samouverennost
         , SO_2.OtnoshenieDrugih
         , SO_3.Samoprinyatie
         , SO_4.Samorukovodstvo
         , SO_5.Samoobvinenie
         , SO_6.Samointeres
         , SO_7.Samoponimanie) |>
  pivot_longer(everything(), names_to = "variable", values_to = "value") |>
  ggplot(aes(x = value)) +
  geom_histogram(bins = 7, fill = "lightblue", color = "black") +
  facet_wrap(~ variable, scales = "free_x") +
  labs(title = "Гистограммы для шкал субъективного благополучия",
       x = "Значения", y = "Частота") +
  theme_minimal()

Data |> 
  select(SO_S.GlobSamootnoshenie,
         SO_I.Samouvazhenie,
         SO_II.Autosimpatiya,
         SO_III.OzhidOtnoshenie,
         SO_IV.Samointeres,
         Gender) |> 
  pivot_longer(cols = -Gender, names_to = "variable", values_to = "value") |>
  ggplot(aes(x = variable, y = value, fill = Gender)) +
  geom_boxplot(color = "black") +
  labs(title = "Опросник самоотношения",
       x = "Шкала", y = "Баллы") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

Data |> 
  select(SO_1.Samouverennost
         , SO_2.OtnoshenieDrugih
         , SO_3.Samoprinyatie
         , SO_4.Samorukovodstvo
         , SO_5.Samoobvinenie
         , SO_6.Samointeres
         , SO_7.Samoponimanie) |> 
  pivot_longer(everything(), names_to = "variable", values_to = "value") |>
  ggplot(aes(x = variable, y = value)) +
  geom_boxplot(fill = "lightblue", color = "black") +
  labs(title = "Опросник самоотношения",
       x = "Шкала", y = "Баллы") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

Способы совладающего поведения (SP)

Data |>
  select(starts_with("SP_")) |>
  describe()
##                       vars   n  mean    sd median trimmed   mad min   max range
## SP_Konfrontaciya         1 242 49.86 16.74   50.0   50.31 16.46   0 100.0 100.0
## SP_Distancirovanie       2 242 48.69 18.60   50.0   48.74 16.46   0 100.0 100.0
## SP_Samokontrol           3 242 59.33 16.85   61.9   60.23 14.08   0  95.2  95.2
## SP_PoiskCocPodderzhki    4 242 58.27 19.73   61.1   59.63 16.46   0 100.0 100.0
## SP_PrinyatieOtvetstv     5 242 60.30 20.73   58.3   60.74 24.61   0 100.0 100.0
## SP_BegstvoIzbeganie      6 242 45.65 18.78   45.8   45.66 18.53   0 100.0 100.0
## SP_Planirovanie          7 242 66.62 19.09   66.7   67.24 16.46   0 100.0 100.0
## SP_PolPereocenka         8 242 56.90 17.83   57.1   57.38 14.23   0 100.0 100.0
##                        skew kurtosis   se
## SP_Konfrontaciya      -0.24     0.36 1.08
## SP_Distancirovanie    -0.01     0.04 1.20
## SP_Samokontrol        -0.77     1.56 1.08
## SP_PoiskCocPodderzhki -0.65     0.30 1.27
## SP_PrinyatieOtvetstv  -0.32     0.05 1.33
## SP_BegstvoIzbeganie    0.00    -0.04 1.21
## SP_Planirovanie       -0.58     0.99 1.23
## SP_PolPereocenka      -0.40     0.87 1.15

Графики

Data |> 
  select(starts_with("SP_")) |>
  pivot_longer(everything(), names_to = "variable", values_to = "value") |>
  ggplot(aes(x = value)) +
  geom_histogram(binwidth = 5, fill = "lightblue", color = "black") +
  facet_wrap(~ variable, scales = "free_x") +
  labs(title = "Гистограммы для способов совладающего поведения",
       x = "Значения", y = "Частота") +
  theme_minimal()

Data |> 
  select(starts_with("SP_"), Gender) |> 
  pivot_longer(cols = -Gender, names_to = "variable", values_to = "value") |>
  ggplot(aes(x = variable, y = value, fill = Gender)) +
  geom_boxplot(color = "black") +
  labs(title = "Шкалы способов совладающего поведения",
       x = "Шкала", y = "Баллы") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

Тест жизнестойкости (ZhS)

Data |>
  select(starts_with("ZhS_")) |>
  describe()
##                    vars   n  mean    sd median trimmed   mad min max range
## ZhS_Vovlechennost     1 211 31.96  9.80     32   31.98 10.38   9  51    42
## ZhS_Kontrol           2 211 30.62 11.02     28   29.88 10.38   5  64    59
## ZhS_PrinyatieRiska    3 211 16.55  5.08     17   16.62  5.93   0  29    29
## ZhS_ZHiznestojkost    4 211 79.12 22.71     78   78.95 23.72  23 134   111
##                     skew kurtosis   se
## ZhS_Vovlechennost  -0.02    -0.73 0.67
## ZhS_Kontrol         0.63     0.15 0.76
## ZhS_PrinyatieRiska -0.18    -0.14 0.35
## ZhS_ZHiznestojkost  0.06    -0.47 1.56

Графики

Data |> 
  select(starts_with("ZhS_")) |>
  pivot_longer(everything(), names_to = "variable", values_to = "value") |>
  ggplot(aes(x = value)) +
  geom_histogram(binwidth = 5, fill = "lightblue", color = "black") +
  facet_wrap(~ variable, scales = "free_x") +
  labs(title = "Тест жизнестойкости",
       x = "Значения", y = "Частота") +
  theme_minimal()

Data |> 
  select(starts_with("ZhS_"), Gender) |> 
  pivot_longer(cols = -Gender, names_to = "variable", values_to = "value") |>
  ggplot(aes(x = variable, y = value, fill = Gender)) +
  geom_boxplot(color = "black") +
  labs(title = "Тест жизнестойкости",
       x = "Шкала", y = "Баллы") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

Стили познания (P)

Data |>
  select(starts_with("P_")) |>
  describe()
##      vars   n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## P_AK    1 228 28.98 10.66     31   30.97 5.93   0  45    45 -1.71     2.54 0.71
## P_AE    2 228 26.39  9.42     29   28.45 4.45   0  39    39 -1.97     3.11 0.62
## P_KO    3 228 24.68  9.58     26   26.10 5.93   0  41    41 -1.33     1.69 0.63
## P_RN    4 228 28.58 10.45     32   30.74 5.93   0  42    42 -1.81     2.58 0.69

Графики

Data |> 
  select(starts_with("P_")) |>
  pivot_longer(everything(), names_to = "variable", values_to = "value") |>
  ggplot(aes(x = value)) +
  geom_histogram(binwidth = 5, fill = "lightblue", color = "black") +
  facet_wrap(~ variable, scales = "free_x") +
  labs(title = "Стили познания",
       x = "Значения", y = "Частота") +
  theme_minimal()

Data |> 
  select(starts_with("P_"), Gender) |> 
  pivot_longer(cols = -Gender, names_to = "variable", values_to = "value") |>
  ggplot(aes(x = variable, y = value, fill = Gender)) +
  geom_boxplot(color = "black") +
  labs(title = "Стили познания",
       x = "Шкала", y = "Баллы") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

Сохранение объекта на диск.

saveRDS(Data, file = "DataRDS.RData")