The current aim is to simulate an existing data set by fitting a Vector Auto regression Moving Average (VARMA) model, extracting the parameters, and then simulating a new data set using the extracted parameters.

After the data has been simulated, we will run i-ARIMAX and i-BORTUA on both the raw existing data set and the simulated data set to compare how accurately the relationships in the exisisting data set have been simulated.

First, we are going to load in an existing data set used in the paper “Characterizing the momentary association between loneliness, depression, and social interactions: Insights from an ecological momentary assessment study” (Kuczynski et al., 2024).

library(readxl)
# Path to the local file
local_file <- "C:/Users/WillLi/Downloads/rawsimdata.xlsx"

# Read the data file using readxl
rawdata <- read_excel(local_file)

# Display the first few rows of the data
str(rawdata)
## tibble [700 × 32] (S3: tbl_df/tbl/data.frame)
##  $ imp                         : num [1:700] 1 1 1 1 1 1 1 1 1 1 ...
##  $ pid                         : num [1:700] 1070 1070 1070 1070 1070 1070 1070 1070 1070 1070 ...
##  $ dayNumber                   : num [1:700] 0 0 0 0 0 1 1 1 1 1 ...
##  $ pingNumber                  : num [1:700] 0 1 2 3 4 0 1 2 3 4 ...
##  $ pingTotal                   : num [1:700] 1 2 3 4 5 6 7 8 9 10 ...
##  $ weekend                     : num [1:700] 0 0 0 0 0 0 0 0 0 0 ...
##  $ gender_woman                : num [1:700] 1 1 1 1 1 1 1 1 1 1 ...
##  $ socintsatisfaction_state    : chr [1:700] "69" "60" "94" "21" ...
##  $ socintquantity_state        : num [1:700] 3 1 3 8 1 0 2 0 4 1 ...
##  $ alone                       : num [1:700] 1 0 0 0 1 1 1 1 1 1 ...
##  $ age                         : num [1:700] 28 28 28 28 28 28 28 28 28 28 ...
##  $ partnered                   : num [1:700] 1 1 1 1 1 1 1 1 1 1 ...
##  $ livealone                   : num [1:700] 1 1 1 1 1 1 1 1 1 1 ...
##  $ mhdx_mdd                    : num [1:700] 1 1 1 1 1 1 1 1 1 1 ...
##  $ mhdx_pdd                    : num [1:700] 0 0 0 0 0 0 0 0 0 0 ...
##  $ mhdx_gad                    : num [1:700] 1 1 1 1 1 1 1 1 1 1 ...
##  $ mhdx_sad                    : num [1:700] 0 0 0 0 0 0 0 0 0 0 ...
##  $ mhdx_ptsd                   : num [1:700] 0 0 0 0 0 0 0 0 0 0 ...
##  $ depressedmood_state         : num [1:700] 49.1 50.7 65.7 72.6 64.8 ...
##  $ loneliness_trait_gmc        : num [1:700] -3.11 -3.11 -3.11 -3.11 -3.11 ...
##  $ loneliness_state_pmc        : num [1:700] 23.3 -5.12 9.21 16.82 18.5 ...
##  $ socintsatisfaction_state_pmc: chr [1:700] "-16.460864999999998" "-25.460864999999998" "8.5391349999999999" "-64.460864999999998" ...
##  $ responsiveness_state_pmc    : chr [1:700] "-14.474012780000001" "-53.911396109999998" "0.18542055599999999" "-29.906929439999999" ...
##  $ selfdisclosure_state_pmc    : chr [1:700] "-12.907698330000001" "-43.135873330000003" "-33.151123329999997" "-36.868273330000001" ...
##  $ otherdisclosure_state_pmc   : chr [1:700] "2.3550749999999998" "-0.54100000000000004" "-7.0928000000000004" "-30.629300000000001" ...
##  $ socintquantity_state_pmc    : num [1:700] 0.974 -1.026 0.974 5.974 -1.026 ...
##  $ loneliness_state_ar1        : num [1:700] 0.515 0.515 0.515 0.515 0.515 ...
##  $ loneliness_state_mssd       : num [1:700] 182 182 182 182 182 ...
##  $ loneliness_state_pmc_l1     : chr [1:700] "NA" "23.295645830000002" "-5.1233624999999998" "9.2054624999999994" ...
##  $ loneliness_state_pmc_l2     : chr [1:700] "NA" "NA" "23.295645830000002" "-5.1233624999999998" ...
##  $ loneliness_state_pmc_l3     : chr [1:700] "NA" "NA" "NA" "23.295645830000002" ...
##  $ loneliness_state_pmc_l4     : chr [1:700] "NA" "NA" "NA" "NA" ...
# Create data frame with only variables that we need
rawdata <- rawdata[, c("pid", "pingTotal", "depressedmood_state", "loneliness_state_pmc", "socintsatisfaction_state_pmc", "responsiveness_state_pmc", "selfdisclosure_state_pmc", "otherdisclosure_state_pmc")]
str(rawdata)
## tibble [700 × 8] (S3: tbl_df/tbl/data.frame)
##  $ pid                         : num [1:700] 1070 1070 1070 1070 1070 1070 1070 1070 1070 1070 ...
##  $ pingTotal                   : num [1:700] 1 2 3 4 5 6 7 8 9 10 ...
##  $ depressedmood_state         : num [1:700] 49.1 50.7 65.7 72.6 64.8 ...
##  $ loneliness_state_pmc        : num [1:700] 23.3 -5.12 9.21 16.82 18.5 ...
##  $ socintsatisfaction_state_pmc: chr [1:700] "-16.460864999999998" "-25.460864999999998" "8.5391349999999999" "-64.460864999999998" ...
##  $ responsiveness_state_pmc    : chr [1:700] "-14.474012780000001" "-53.911396109999998" "0.18542055599999999" "-29.906929439999999" ...
##  $ selfdisclosure_state_pmc    : chr [1:700] "-12.907698330000001" "-43.135873330000003" "-33.151123329999997" "-36.868273330000001" ...
##  $ otherdisclosure_state_pmc   : chr [1:700] "2.3550749999999998" "-0.54100000000000004" "-7.0928000000000004" "-30.629300000000001" ...

Now that we have loaded and cleaned up the existing data set we will start fitting the data to a VARMA model, extracting the parameters, and then simulating a new data set using the extracted parameters. All this will be done using the MTS package.

First we need to ensure NA values are present for missing values so that we can use the idionomics package to impute missing data.

library(dplyr)
## Warning: package 'dplyr' was built under R version 4.3.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
# Convert columns to numeric and ensure NA values are present where needed
cols_of_interest <- c("socintsatisfaction_state_pmc", "responsiveness_state_pmc", "selfdisclosure_state_pmc", "otherdisclosure_state_pmc")
rawdata <- rawdata %>%
  mutate(across(all_of(cols_of_interest), ~ as.numeric(as.character(.))))
## Warning: There were 4 warnings in `mutate()`.
## The first warning was:
## ℹ In argument: `across(all_of(cols_of_interest),
##   ~as.numeric(as.character(.)))`.
## Caused by warning:
## ! NAs introduced by coercion
## ℹ Run `dplyr::last_dplyr_warnings()` to see the 3 remaining warnings.
# Fill missing values using idionomics package
library(idionomics)
imputed <- imputatron_2000(data = rawdata, id_col = "pid", time_col = "pingTotal", cols_of_interest = c("depressedmood_state", "loneliness_state_pmc", "socintsatisfaction_state_pmc", "responsiveness_state_pmc", "selfdisclosure_state_pmc", "otherdisclosure_state_pmc"))
## ~~ Beep Boop Beep Boop ~~ 
## Imputatron will try to impute your dataset 
## ... 
## Imputatron filtered your data 
## Imputatron transformed data to wide format 
## Imputatron extracted start and end indexes for each timeseries 
## Imputatron dynamically created a list of variables + indexes 
## ... 
## ###### Imputatron completed data preprocessing #### 
## Imputatron created longData3d object 
## Imputatron performed copyMeans on your data 
## ... 
## ###### Imputatron completed data imputation #### 
## Imputatron will start data extraction sequence... 
## Imputatron extracted a list of dataframes from longData3d object 
## Imputatron melted each dataframe back to long format 
## Imputatron added names to the list of dataframes 
## ... 
## ###### Imputatron completed data extraction #### 
## Imputatron will start tidy dataframe creation sequence... 
## Imputatron created tidy dataframe with all of your variables 
## ... 
## Imputatron finished the imputation process.
## You can access the following elements:
##    Imputed Dataframe: $imputed_df
##    Long Data Object: $long_data_obj 
##    Long Data Object with imputed data: $imputed_data 
##    Your original data, but filtered: $filtered_data 
##    Filtered data in wide format: $wide_data 
##    The list with variable names and indexes to create the Long Data Object: $timeInData_list
## ... 
## Imputatron turning off... 
## ~~ Beep Boop Beep Boop ~~ Bye!
imputed_rawdata <- imputed$imputed_df
str(imputed$imputed_df)
## 'data.frame':    700 obs. of  8 variables:
##  $ pid                         : chr  "1012" "1012" "1012" "1012" ...
##  $ pingTotal                   : num  1 2 3 4 5 6 7 8 9 10 ...
##  $ depressedmood_state         : num  29.2 27.1 59.7 34.8 40.5 ...
##  $ loneliness_state_pmc        : num  -6.15 -4.16 5.96 8.52 -3.27 ...
##  $ socintsatisfaction_state_pmc: num  -11.3 44.7 22.7 6.3 10.7 ...
##  $ responsiveness_state_pmc    : num  -9.31 7.097 13.019 4.089 0.487 ...
##  $ selfdisclosure_state_pmc    : num  26.51 29.88 19.99 20.91 6.44 ...
##  $ otherdisclosure_state_pmc   : num  6.11 6.44 20.82 31.55 13.13 ...

I had to remove the self-disclosure and other-disclosure variables because it causes an error when I try to fit a VARMA model and simulate data. I think it’s because the variables are too inter correlated resulting in matrix singularity during fitting process?

simulated_data_list <- lapply(rawdata_list, simulate_individual) Error in solve.default(xpx, xpy): System computationally singular: reciprocal condition number = 2.67632e-20 Additionally: Warning message: In log(det(sse)): NaNs produced

# Remove self and other disclosure variable
imputed_rawdata <- imputed_rawdata[, -c(7, 8)]

Simulating new data

Then we create a function that fits a VARMA model to each individual’s time series data, extracts the phi (AR), theta (MA), and sigma (Covariance of errors/residuals) matrices for each individual’s model, and then simulates new data with 150 time points using the extracted parameters.

# Split by individuals into a list
rawdata_list <- split(imputed_rawdata, imputed_rawdata$pid)

library(MTS)
## Warning: package 'MTS' was built under R version 4.3.3
# Function to fit VARMA model and simulate new data
simulate_individual <- function(rawdata_list) {
  # Remove ID and time columns for fitting
  individual_matrix <- as.matrix(rawdata_list[, -c(1, 2)])
  
  # Fit VARMA model
  fit <- VARMA(individual_matrix, p = 1, q = 1)
  
  # Extract AR and MA coefficients
  phi <- fit$Phi
  theta <- fit$Theta
  
  # Extract sigma matrix (covariance matrix of the residuals)
  sigma <- fit$Sigma
  
  # Simulate new data using extracted parameters
  set.seed(1234)
  sim_data <- VARMAsim(n = 150, arlags = c(1), malags = c(1), 
                       phi = phi, theta = theta, sigma = sigma)
  
  simulated_series <- sim_data$series
  
  # Return both the fit object and the noisy simulated series
  return(list(fit = fit, simulated_series = simulated_series))
}

# Loop through each individual's data and simulate new data
simulated_data_list <- lapply(rawdata_list, simulate_individual)
## Number of parameters:  36 
## initial estimates:  26.4635 1.4037 -9.4653 -0.0849 0.1204 -0.1545 0.0553 0.0615 -0.0467 -0.0759 -0.0617 -0.0452 0.2601 -0.2827 0.3923 0.0295 -0.0266 0.0094 0.0358 0.3638 -0.2366 -0.2029 -0.178 0.1695 -0.4377 -0.2626 -0.0493 0.0709 -1.4278 0.2911 0.3221 -0.7497 0.1768 0.2877 0.1727 -0.2908 
## Par. lower-bounds:  17.1288 -6.459 -27.1237 -9.7348 -0.1839 -0.4881 -0.0919 -0.2356 -0.3031 -0.3569 -0.1856 -0.2955 -0.3157 -0.9137 0.1139 -0.5324 -0.3412 -0.3354 -0.1163 0.0567 -0.8143 -0.9509 -0.5932 -0.4949 -0.9243 -0.8926 -0.3991 -0.4888 -2.5206 -1.1238 -0.4634 -2.0066 -0.4204 -0.4855 -0.2565 -0.9777 
## Par. upper-bounds:  35.7983 9.2664 8.193 9.565 0.4248 0.1791 0.2024 0.3585 0.2097 0.205 0.0623 0.205 0.8358 0.3483 0.6707 0.5914 0.288 0.3542 0.1879 0.6708 0.341 0.5451 0.2373 0.834 0.0488 0.3674 0.3005 0.6306 -0.3351 1.7061 1.1077 0.5073 0.774 1.0609 0.602 0.3961 
## Final   Estimates:  26.5607 1.183945 -9.563395 0.08235992 0.1585401 -0.3322324 0.2024204 -0.2355848 -0.01520929 -0.3565469 -0.1069631 0.204965 0.3065563 -0.581732 0.1139456 0.3874356 -0.02716672 0.3542467 0.1878854 0.06520558 0.01243323 0.095918 -0.09811832 0.4698075 -0.2172287 0.3202974 0.05708403 -0.1868315 -0.4304431 0.3908816 0.5213593 -0.6213385 0.06998246 -0.4850365 -0.1203666 0.2870453 
## 
## Coefficient(s):
##                               Estimate  Std. Error  t value Pr(>|t|)    
## depressedmood_state           26.56070     6.86517    3.869 0.000109 ***
## loneliness_state_pmc           1.18395     1.94715    0.608 0.543160    
## socintsatisfaction_state_pmc  -9.56339     3.90127   -2.451 0.014232 *  
## responsiveness_state_pmc       0.08236     6.15424    0.013 0.989323    
## depressedmood_state            0.15854     0.20310    0.781 0.435044    
## loneliness_state_pmc          -0.33223     0.61386   -0.541 0.588355    
## socintsatisfaction_state_pmc   0.20242     0.13399    1.511 0.130876    
## responsiveness_state_pmc      -0.23558     0.60608   -0.389 0.697497    
## depressedmood_state           -0.01521     0.05470   -0.278 0.780959    
## loneliness_state_pmc          -0.35655     0.35589   -1.002 0.316412    
## socintsatisfaction_state_pmc  -0.10696     0.13437   -0.796 0.426005    
## responsiveness_state_pmc       0.20496     0.37326    0.549 0.582926    
## depressedmood_state            0.30656     0.10084    3.040 0.002365 ** 
## loneliness_state_pmc          -0.58173     0.72757   -0.800 0.423968    
## socintsatisfaction_state_pmc   0.11395     0.24883    0.458 0.647004    
## responsiveness_state_pmc       0.38744     0.89380    0.433 0.664675    
## depressedmood_state           -0.02717     0.17903   -0.152 0.879387    
## loneliness_state_pmc           0.35425     0.60426    0.586 0.557709    
## socintsatisfaction_state_pmc   0.18789     0.14576    1.289 0.197381    
## responsiveness_state_pmc       0.06521     0.64844    0.101 0.919902    
##                                0.01243     0.19261    0.065 0.948531    
##                                0.09592     0.65778    0.146 0.884063    
##                               -0.09812     0.14918   -0.658 0.510711    
##                                0.46981     0.57171    0.822 0.411214    
##                               -0.21723     0.12797   -1.698 0.089590 .  
##                                0.32030     0.46816    0.684 0.493876    
##                                0.05708     0.15191    0.376 0.707088    
##                               -0.18683     0.29810   -0.627 0.530835    
##                               -0.43044     0.28565   -1.507 0.131845    
##                                0.39088     0.71559    0.546 0.584902    
##                                0.52136     0.34922    1.493 0.135462    
##                               -0.62134     1.03113   -0.603 0.546788    
##                                0.06998     0.16174    0.433 0.665242    
##                               -0.48504     0.64826   -0.748 0.454335    
##                               -0.12037     0.16820   -0.716 0.474215    
##                                0.28705     0.74057    0.388 0.698310    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## --- 
## Estimates in matrix form: 
## Constant term:  
## Estimates:  26.5607 1.183945 -9.563395 0.08235992 
## AR coefficient matrix 
## AR( 1 )-matrix 
##         [,1]   [,2]   [,3]    [,4]
## [1,]  0.1585 -0.332  0.202 -0.2356
## [2,] -0.0152 -0.357 -0.107  0.2050
## [3,]  0.3066 -0.582  0.114  0.3874
## [4,] -0.0272  0.354  0.188  0.0652
## MA coefficient matrix 
## MA( 1 )-matrix 
##         [,1]    [,2]    [,3]   [,4]
## [1,] -0.0124 -0.0959  0.0981 -0.470
## [2,]  0.2172 -0.3203 -0.0571  0.187
## [3,]  0.4304 -0.3909 -0.5214  0.621
## [4,] -0.0700  0.4850  0.1204 -0.287
##   
## Residuals cov-matrix: 
##            [,1]       [,2]        [,3]       [,4]
## [1,] 52.0449670  6.7430421  10.2565889  0.1678993
## [2,]  6.7430421 33.8567385   0.7133021  0.6146751
## [3,] 10.2565889  0.7133021 187.3559654 44.0466692
## [4,]  0.1678993  0.6146751  44.0466692 42.1643174
## ---- 
## aic=  17.15493 
## bic=  18.3113 
## Number of parameters:  36 
## initial estimates:  15.295 -2.2086 -3.7516 2.6902 0.1122 -0.0326 -0.09 0.0674 0.1532 0.0343 -0.071 0.0433 0.2529 -0.2098 0.1832 0.0708 -0.1296 0.2724 -0.042 0.5387 0.1193 -0.0746 0.1786 0.1049 -0.452 0.2333 0.0931 -0.3452 0.1301 0.359 -0.2913 -0.3359 1.2568 -0.8239 -0.2657 -0.0744 
## Par. lower-bounds:  10.0717 -8.0693 -12.3396 -6.329 -0.1826 -0.3682 -0.2697 -0.0771 -0.1775 -0.3423 -0.2726 -0.1188 -0.2319 -0.7616 -0.1122 -0.1668 -0.6386 -0.3071 -0.3522 0.2891 -0.6749 -0.6021 -0.3387 -0.2871 -1.3431 -0.3585 -0.4873 -0.785 -1.1757 -0.5083 -1.1419 -0.9805 -0.1146 -1.7347 -1.159 -0.7513 
## Par. upper-bounds:  20.5183 3.652 4.8365 11.7095 0.407 0.303 0.0896 0.2119 0.484 0.4109 0.1306 0.2055 0.7376 0.342 0.4786 0.3084 0.3795 0.8519 0.2682 0.7882 0.9135 0.4529 0.6959 0.497 0.4391 0.8251 0.6735 0.0947 1.4359 1.2262 0.5592 0.3086 2.6281 0.0869 0.6276 0.6025 
## Final   Estimates:  15.50768 -2.84069 -4.387188 1.33799 0.1050462 -0.08889168 -0.1013647 -0.02666177 0.1832148 -0.3422976 0.1305542 -0.06922326 0.2972035 -0.761647 0.05697506 -0.1072591 -0.0617663 0.8519363 0.2682457 0.7587011 0.1071 0.003815948 -0.01652415 0.1389612 -0.1695297 0.4741012 -0.2682368 0.06120512 -0.005826791 0.8739563 0.09178951 0.254393 0.03608224 -1.014254 -0.3411109 -0.3343996
## Warning in sqrt(diag(solve(Hessian))): NaNs produced
## 
## Coefficient(s):
##                               Estimate  Std. Error  t value Pr(>|t|)    
## depressedmood_state          15.507679    4.096821    3.785 0.000154 ***
## loneliness_state_pmc         -2.840690         NaN      NaN      NaN    
## socintsatisfaction_state_pmc -4.387188         NaN      NaN      NaN    
## responsiveness_state_pmc      1.337990         NaN      NaN      NaN    
## depressedmood_state           0.105046    0.230035    0.457 0.647921    
## loneliness_state_pmc         -0.088892    0.297501   -0.299 0.765097    
## socintsatisfaction_state_pmc -0.101365    0.173371   -0.585 0.558771    
## responsiveness_state_pmc     -0.026662    0.116272   -0.229 0.818632    
## depressedmood_state           0.183215    0.033966    5.394 6.89e-08 ***
## loneliness_state_pmc         -0.342298    0.302811   -1.130 0.258308    
## socintsatisfaction_state_pmc  0.130554    0.317645    0.411 0.681068    
## responsiveness_state_pmc     -0.069223    0.208315   -0.332 0.739662    
## depressedmood_state           0.297203         NaN      NaN      NaN    
## loneliness_state_pmc         -0.761647    0.995391   -0.765 0.444168    
## socintsatisfaction_state_pmc  0.056975    0.278667    0.204 0.837997    
## responsiveness_state_pmc     -0.107259    0.253161   -0.424 0.671800    
## depressedmood_state          -0.061766         NaN      NaN      NaN    
## loneliness_state_pmc          0.851936    0.926422    0.920 0.357783    
## socintsatisfaction_state_pmc  0.268246    0.938738    0.286 0.775069    
## responsiveness_state_pmc      0.758701    0.180419    4.205 2.61e-05 ***
##                               0.107100    0.241360    0.444 0.657234    
##                               0.003816    0.343817    0.011 0.991145    
##                              -0.016524    0.192446   -0.086 0.931575    
##                               0.138961    0.100094    1.388 0.165042    
##                              -0.169530    0.189533   -0.894 0.371077    
##                               0.474101    0.289619    1.637 0.101634    
##                              -0.268237    0.274792   -0.976 0.328993    
##                               0.061205    0.165243    0.370 0.711088    
##                              -0.005827         NaN      NaN      NaN    
##                               0.873956    0.955711    0.914 0.360477    
##                               0.091790    0.252792    0.363 0.716528    
##                               0.254393    0.328059    0.775 0.438075    
##                               0.036082         NaN      NaN      NaN    
##                              -1.014254    0.892208   -1.137 0.255625    
##                              -0.341111    1.088415   -0.313 0.753976    
##                              -0.334400    0.222760   -1.501 0.133313    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## --- 
## Estimates in matrix form: 
## Constant term:  
## Estimates:  15.50768 -2.84069 -4.387188 1.33799 
## AR coefficient matrix 
## AR( 1 )-matrix 
##         [,1]    [,2]   [,3]    [,4]
## [1,]  0.1050 -0.0889 -0.101 -0.0267
## [2,]  0.1832 -0.3423  0.131 -0.0692
## [3,]  0.2972 -0.7616  0.057 -0.1073
## [4,] -0.0618  0.8519  0.268  0.7587
## MA coefficient matrix 
## MA( 1 )-matrix 
##          [,1]     [,2]    [,3]    [,4]
## [1,] -0.10710 -0.00382  0.0165 -0.1390
## [2,]  0.16953 -0.47410  0.2682 -0.0612
## [3,]  0.00583 -0.87396 -0.0918 -0.2544
## [4,] -0.03608  1.01425  0.3411  0.3344
##   
## Residuals cov-matrix: 
##           [,1]       [,2]       [,3]      [,4]
## [1,] 35.269945  5.0656110  9.5820876 -9.099355
## [2,]  5.065611 33.3806858  0.9130151  8.264177
## [3,]  9.582088  0.9130151 66.8908204 12.645313
## [4,] -9.099355  8.2641765 12.6453131 74.770457
## ---- 
## aic=  16.43043 
## bic=  17.5868 
## Number of parameters:  36 
## initial estimates:  16.8801 2.2712 2.4754 2.3253 0.2056 0.078 -0.2278 -0.462 -0.0038 0.4111 -0.0511 -0.9831 -0.1947 -0.174 0.2858 0.6663 -0.0138 -0.1517 -0.0657 0.3946 -0.5498 0.0249 -0.1031 0.8495 -0.3189 0.0246 -0.1524 2.1445 0.2116 -0.098 0.1969 -1.5077 -0.1303 0.1555 -9e-04 -0.8934 
## Par. lower-bounds:  7.8778 -10.1908 -5.1573 -1.0907 -0.2215 -0.2135 -0.6317 -1.231 -0.5951 0.0075 -0.6103 -2.0477 -0.5568 -0.4212 -0.0566 0.0143 -0.1759 -0.2623 -0.219 0.1028 -1.3303 -0.5721 -0.8674 -0.8559 -1.3993 -0.8018 -1.2105 -0.2162 -0.4501 -0.6042 -0.4511 -2.9536 -0.4265 -0.071 -0.291 -1.5405 
## Par. upper-bounds:  25.8824 14.7332 10.1081 5.7414 0.6327 0.3695 0.1762 0.307 0.5875 0.8146 0.5081 0.0814 0.1675 0.0731 0.6283 1.3183 0.1482 -0.0411 0.0875 0.6864 0.2307 0.6219 0.6613 2.5548 0.7614 0.851 0.9057 4.5053 0.8734 0.4082 0.845 -0.0618 0.1658 0.382 0.2891 -0.2462 
## Final   Estimates:  16.77557 2.325582 2.527409 1.97274 0.1503915 -0.2134968 -0.6062959 -0.2674939 0.04664582 0.8124379 0.4016155 -1.503892 -0.256709 -0.04462195 0.2471596 1.116427 -0.06041166 -0.07656135 -0.1183524 0.6814259 -0.3111271 0.4806776 0.4848745 0.3635618 0.194406 -0.7274622 -0.5274944 1.324364 0.2922856 -0.1765584 0.2467009 -1.185015 0.1423489 -0.04911289 0.1859005 -0.5410203
## Warning in sqrt(diag(solve(Hessian))): NaNs produced
## 
## Coefficient(s):
##                               Estimate  Std. Error  t value Pr(>|t|)   
## depressedmood_state           16.77557    11.59436    1.447  0.14793   
## loneliness_state_pmc           2.32558    11.26829    0.206  0.83649   
## socintsatisfaction_state_pmc   2.52741     8.70273    0.290  0.77150   
## responsiveness_state_pmc       1.97274     1.56185    1.263  0.20656   
## depressedmood_state            0.15039     0.58718    0.256  0.79785   
## loneliness_state_pmc          -0.21350     0.25298   -0.844  0.39872   
## socintsatisfaction_state_pmc  -0.60630     0.54587   -1.111  0.26670   
## responsiveness_state_pmc      -0.26749     0.22533   -1.187  0.23518   
## depressedmood_state            0.04665     0.51675    0.090  0.92807   
## loneliness_state_pmc           0.81244     0.29382    2.765  0.00569 **
## socintsatisfaction_state_pmc   0.40162     0.59650    0.673  0.50076   
## responsiveness_state_pmc      -1.50389     0.86262   -1.743  0.08126 . 
## depressedmood_state           -0.25671     0.33722   -0.761  0.44650   
## loneliness_state_pmc          -0.04462     0.29901   -0.149  0.88137   
## socintsatisfaction_state_pmc   0.24716     0.41712    0.593  0.55349   
## responsiveness_state_pmc       1.11643     0.95137    1.173  0.24060   
## depressedmood_state           -0.06041     0.06322   -0.956  0.33926   
## loneliness_state_pmc          -0.07656         NaN      NaN      NaN   
## socintsatisfaction_state_pmc  -0.11835         NaN      NaN      NaN   
## responsiveness_state_pmc       0.68143         NaN      NaN      NaN   
##                               -0.31113     0.51583   -0.603  0.54640   
##                                0.48068     0.21977    2.187  0.02873 * 
##                                0.48487     0.75536    0.642  0.52093   
##                                0.36356     0.15056    2.415  0.01575 * 
##                                0.19441     0.52089    0.373  0.70898   
##                               -0.72746     0.26207   -2.776  0.00551 **
##                               -0.52749     0.79522   -0.663  0.50712   
##                                1.32436     0.80777    1.640  0.10110   
##                                0.29229     0.37295    0.784  0.43321   
##                               -0.17656     0.27497   -0.642  0.52081   
##                                0.24670     0.59795    0.413  0.67991   
##                               -1.18501     0.96699   -1.225  0.22040   
##                                0.14235         NaN      NaN      NaN   
##                               -0.04911         NaN      NaN      NaN   
##                                0.18590         NaN      NaN      NaN   
##                               -0.54102         NaN      NaN      NaN   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## --- 
## Estimates in matrix form: 
## Constant term:  
## Estimates:  16.77557 2.325582 2.527409 1.97274 
## AR coefficient matrix 
## AR( 1 )-matrix 
##         [,1]    [,2]   [,3]   [,4]
## [1,]  0.1504 -0.2135 -0.606 -0.267
## [2,]  0.0466  0.8124  0.402 -1.504
## [3,] -0.2567 -0.0446  0.247  1.116
## [4,] -0.0604 -0.0766 -0.118  0.681
## MA coefficient matrix 
## MA( 1 )-matrix 
##        [,1]    [,2]   [,3]   [,4]
## [1,]  0.311 -0.4807 -0.485 -0.364
## [2,] -0.194  0.7275  0.527 -1.324
## [3,] -0.292  0.1766 -0.247  1.185
## [4,] -0.142  0.0491 -0.186  0.541
##   
## Residuals cov-matrix: 
##            [,1]       [,2]       [,3]       [,4]
## [1,] 168.701740  190.96345  -67.81434  -4.372419
## [2,] 190.963447  325.66291 -103.21602 -17.313407
## [3,] -67.814339 -103.21602  102.77830  21.044162
## [4,]  -4.372419  -17.31341   21.04416  36.478382
## ---- 
## aic=  18.52662 
## bic=  19.68299 
## Number of parameters:  36 
## initial estimates:  31.2081 -22.4688 18.443 6.8525 0.5522 -0.0932 -0.0397 -0.1477 0.3323 0.2429 -0.0179 0.0913 -0.2696 0.7345 0.4486 0.3604 -0.1257 -0.1199 0.1668 0.1551 -0.8438 0.4644 -0.2349 0.0216 -0.6284 0.0084 -0.0685 0.058 0.9868 -1.2221 0.3211 0.0065 0.085 -0.4578 -0.2722 -0.0031 
## Par. lower-bounds:  8.7137 -47.7095 -24.3963 -20.0609 0.2284 -0.4657 -0.1955 -0.4491 -0.031 -0.1751 -0.1927 -0.2469 -0.8863 0.0251 0.1518 -0.2135 -0.5131 -0.5656 -0.0197 -0.2054 -1.52 -0.195 -0.7191 -0.594 -1.3872 -0.7315 -0.6117 -0.6328 -0.3011 -2.4779 -0.6009 -1.166 -0.7241 -1.2468 -0.8514 -0.7397 
## Par. upper-bounds:  53.7025 2.7718 61.2823 33.7659 0.876 0.2793 0.1161 0.1536 0.6957 0.6609 0.157 0.4294 0.3471 1.444 0.7453 0.9343 0.2618 0.3258 0.3532 0.5157 -0.1675 1.1239 0.2492 0.6372 0.1304 0.7484 0.4747 0.7488 2.2747 0.0338 1.2431 1.1789 0.8941 0.3312 0.3071 0.7335 
## Final   Estimates:  30.97354 -22.38152 18.41903 7.165229 0.536213 -0.1040728 0.1161211 -0.4490099 0.3393684 0.2448737 -0.05377215 -0.1576518 -0.3139847 1.248228 0.7182872 -0.1776403 -0.1333014 -0.1294185 0.1199841 0.5106019 -0.3209361 0.01695037 -0.2770166 0.3369397 -0.469675 -0.09562999 0.01400309 0.297889 0.6332756 -1.515773 -0.4580987 0.4286804 0.2148776 0.1376826 0.02766493 -0.3738548
## Warning in sqrt(diag(solve(Hessian))): NaNs produced
## 
## Coefficient(s):
##                                Estimate  Std. Error  t value Pr(>|t|)    
## depressedmood_state           30.973538   11.146987    2.779 0.005459 ** 
## loneliness_state_pmc         -22.381517    2.685886   -8.333  < 2e-16 ***
## socintsatisfaction_state_pmc  18.419026   34.563186    0.533 0.594097    
## responsiveness_state_pmc       7.165229   14.555079    0.492 0.622519    
## depressedmood_state            0.536213    0.169502    3.163 0.001559 ** 
## loneliness_state_pmc          -0.104073         NaN      NaN      NaN    
## socintsatisfaction_state_pmc   0.116121    0.009257   12.544  < 2e-16 ***
## responsiveness_state_pmc      -0.449010         NaN      NaN      NaN    
## depressedmood_state            0.339368    0.045029    7.537 4.82e-14 ***
## loneliness_state_pmc           0.244874    0.340003    0.720 0.471396    
## socintsatisfaction_state_pmc  -0.053772    0.066618   -0.807 0.419565    
## responsiveness_state_pmc      -0.157652    0.277717   -0.568 0.570258    
## depressedmood_state           -0.313985    0.529151   -0.593 0.552931    
## loneliness_state_pmc           1.248228    0.744289    1.677 0.093528 .  
## socintsatisfaction_state_pmc   0.718287    0.130832    5.490 4.02e-08 ***
## responsiveness_state_pmc      -0.177640         NaN      NaN      NaN    
## depressedmood_state           -0.133301    0.222535   -0.599 0.549164    
## loneliness_state_pmc          -0.129418    0.111933   -1.156 0.247592    
## socintsatisfaction_state_pmc   0.119984         NaN      NaN      NaN    
## responsiveness_state_pmc       0.510602         NaN      NaN      NaN    
##                               -0.320936    0.200429   -1.601 0.109323    
##                                0.016950         NaN      NaN      NaN    
##                               -0.277017    0.073882   -3.749 0.000177 ***
##                                0.336940         NaN      NaN      NaN    
##                               -0.469675         NaN      NaN      NaN    
##                               -0.095630    0.293439   -0.326 0.744504    
##                                0.014003    0.205002    0.068 0.945541    
##                                0.297889    0.246087    1.211 0.226087    
##                                0.633276    0.490339    1.292 0.196528    
##                               -1.515773    1.088134   -1.393 0.163619    
##                               -0.458099    0.038319  -11.955  < 2e-16 ***
##                                0.428680         NaN      NaN      NaN    
##                                0.214878    0.139399    1.541 0.123207    
##                                0.137683    0.203949    0.675 0.499623    
##                                0.027665    0.138652    0.200 0.841850    
##                               -0.373855         NaN      NaN      NaN    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## --- 
## Estimates in matrix form: 
## Constant term:  
## Estimates:  30.97354 -22.38152 18.41903 7.165229 
## AR coefficient matrix 
## AR( 1 )-matrix 
##        [,1]   [,2]    [,3]   [,4]
## [1,]  0.536 -0.104  0.1161 -0.449
## [2,]  0.339  0.245 -0.0538 -0.158
## [3,] -0.314  1.248  0.7183 -0.178
## [4,] -0.133 -0.129  0.1200  0.511
## MA coefficient matrix 
## MA( 1 )-matrix 
##        [,1]    [,2]    [,3]   [,4]
## [1,]  0.321 -0.0170  0.2770 -0.337
## [2,]  0.470  0.0956 -0.0140 -0.298
## [3,] -0.633  1.5158  0.4581 -0.429
## [4,] -0.215 -0.1377 -0.0277  0.374
##   
## Residuals cov-matrix: 
##           [,1]       [,2]      [,3]      [,4]
## [1,] 116.36179   59.84414  -85.9036 -14.86582
## [2,]  59.84414  161.18054 -132.1918 -65.57757
## [3,] -85.90360 -132.19177  432.8022 147.66671
## [4,] -14.86582  -65.57757  147.6667 181.98040
## ---- 
## aic=  21.20963 
## bic=  22.366 
## Number of parameters:  36 
## initial estimates:  7.1996 2.5364 0.4137 -0.9089 -0.1599 0.1271 -0.0852 -0.0366 -0.3311 0.5078 -0.1311 -0.1908 -0.0924 0.0025 0.1026 0.0892 0.186 -0.1819 -0.0778 0.4744 0.3011 -0.422 -0.0193 -0.1597 0.2368 -0.5454 -0.0919 0.2217 -0.1926 -0.0398 -0.162 -0.3351 0.1 0.2778 0.3685 -0.7461 
## Par. lower-bounds:  4.3287 -1.9725 -4.0147 -4.2047 -0.5292 -0.0825 -0.2879 -0.3147 -0.9112 0.1786 -0.4493 -0.6277 -0.6621 -0.3208 -0.2099 -0.3399 -0.238 -0.4225 -0.3104 0.155 -0.3598 -0.8865 -0.3999 -0.7095 -0.8013 -1.2749 -0.6896 -0.6419 -1.2121 -0.7563 -0.749 -1.1833 -0.6587 -0.2554 -0.0684 -1.3773 
## Par. upper-bounds:  10.0706 7.0454 4.8422 2.3868 0.2094 0.3367 0.1174 0.2416 0.2489 0.837 0.1872 0.2461 0.4773 0.3259 0.4152 0.5183 0.61 0.0588 0.1548 0.7937 0.9621 0.0425 0.3613 0.3902 1.2748 0.1842 0.5058 1.0853 0.8269 0.6767 0.4251 0.5131 0.8587 0.811 0.8054 -0.1149 
## Final   Estimates:  7.144682 2.473312 0.3699705 -0.9166265 -0.1821947 0.316578 0.01798744 -0.09666605 -0.428877 0.8339285 -0.3417162 -0.2673682 -0.1250625 0.06941488 0.4126679 0.2598238 0.1308287 -0.1181109 -0.08999148 0.7458227 0.01167531 -0.4992042 -0.2698725 0.1502054 0.0429577 -0.9356748 0.04983098 0.2959728 -0.280929 -0.07256936 -0.6082165 0.226605 0.2333871 0.08071241 0.221737 -0.5934498 
## 
## Coefficient(s):
##                               Estimate  Std. Error  t value Pr(>|t|)    
## depressedmood_state           7.144682    1.390358    5.139 2.77e-07 ***
## loneliness_state_pmc          2.473312    0.400403    6.177 6.53e-10 ***
## socintsatisfaction_state_pmc  0.369971    3.255531    0.114  0.90952    
## responsiveness_state_pmc     -0.916626    1.708961   -0.536  0.59171    
## depressedmood_state          -0.182195    0.182984   -0.996  0.31940    
## loneliness_state_pmc          0.316578    0.296531    1.068  0.28570    
## socintsatisfaction_state_pmc  0.017987    0.184551    0.097  0.92236    
## responsiveness_state_pmc     -0.096666    0.455568   -0.212  0.83196    
## depressedmood_state          -0.428877    0.057887   -7.409 1.27e-13 ***
## loneliness_state_pmc          0.833928    0.063630   13.106  < 2e-16 ***
## socintsatisfaction_state_pmc -0.341716    0.117168   -2.916  0.00354 ** 
## responsiveness_state_pmc     -0.267368    0.196128   -1.363  0.17281    
## depressedmood_state          -0.125062    0.535347   -0.234  0.81529    
## loneliness_state_pmc          0.069415    0.316176    0.220  0.82623    
## socintsatisfaction_state_pmc  0.412668    0.160052    2.578  0.00993 ** 
## responsiveness_state_pmc      0.259824    0.382607    0.679  0.49708    
## depressedmood_state           0.130829    0.273250    0.479  0.63209    
## loneliness_state_pmc         -0.118111    0.097931   -1.206  0.22779    
## socintsatisfaction_state_pmc -0.089991    0.162946   -0.552  0.58076    
## responsiveness_state_pmc      0.745823    0.300307    2.484  0.01301 *  
##                               0.011675    0.172028    0.068  0.94589    
##                              -0.499204    0.349273   -1.429  0.15293    
##                              -0.269872    0.176067   -1.533  0.12533    
##                               0.150205    0.469882    0.320  0.74922    
##                               0.042958    0.137792    0.312  0.75522    
##                              -0.935675    0.001545 -605.685  < 2e-16 ***
##                               0.049831    0.062036    0.803  0.42182    
##                               0.295973    0.176854    1.674  0.09422 .  
##                              -0.280929    0.560120   -0.502  0.61598    
##                              -0.072569    0.355338   -0.204  0.83818    
##                              -0.608217    0.289580   -2.100  0.03570 *  
##                               0.226605    0.405109    0.559  0.57591    
##                               0.233387    0.265235    0.880  0.37890    
##                               0.080712    0.040274    2.004  0.04506 *  
##                               0.221737    0.154545    1.435  0.15135    
##                              -0.593450    0.332826   -1.783  0.07458 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## --- 
## Estimates in matrix form: 
## Constant term:  
## Estimates:  7.144682 2.473312 0.3699705 -0.9166265 
## AR coefficient matrix 
## AR( 1 )-matrix 
##        [,1]    [,2]   [,3]    [,4]
## [1,] -0.182  0.3166  0.018 -0.0967
## [2,] -0.429  0.8339 -0.342 -0.2674
## [3,] -0.125  0.0694  0.413  0.2598
## [4,]  0.131 -0.1181 -0.090  0.7458
## MA coefficient matrix 
## MA( 1 )-matrix 
##         [,1]    [,2]    [,3]   [,4]
## [1,] -0.0117  0.4992  0.2699 -0.150
## [2,] -0.0430  0.9357 -0.0498 -0.296
## [3,]  0.2809  0.0726  0.6082 -0.227
## [4,] -0.2334 -0.0807 -0.2217  0.593
##   
## Residuals cov-matrix: 
##            [,1]      [,2]      [,3]       [,4]
## [1,]  39.708234  29.96309 -24.56602  -9.495311
## [2,]  29.963092 106.91894 -36.37989 -16.704844
## [3,] -24.566022 -36.37989 122.18233  53.070058
## [4,]  -9.495311 -16.70484  53.07006  68.581260
## ---- 
## aic=  17.59812 
## bic=  18.75449 
## Number of parameters:  36 
## initial estimates:  13.7806 -3.7168 1.0672 3.7158 0.4785 -0.0125 -0.0511 0.1276 0.1721 0.107 0.0775 -0.0087 -0.0385 -0.0215 0.2721 -0.1008 -0.1161 0.3036 0.2434 0.0628 0.3347 -1.1815 0.1797 -0.8487 0.7976 -1.4645 -0.1373 -0.0891 -0.4169 1.1145 -0.7172 1.0484 -0.751 0.7036 -0.1629 0.0376 
## Par. lower-bounds:  3.2796 -11.3794 -9.7284 -4.9666 0.0909 -0.536 -0.3963 -0.32 -0.1107 -0.2751 -0.1744 -0.3353 -0.4369 -0.5598 -0.0828 -0.561 -0.4365 -0.1293 -0.042 -0.3073 -0.5753 -2.4488 -0.6363 -1.872 0.1335 -2.3893 -0.7328 -0.8358 -1.3525 -0.1884 -1.5561 -0.0036 -1.5035 -0.3442 -0.8376 -0.8085 
## Par. upper-bounds:  24.2815 3.9458 11.8628 12.3982 0.866 0.5111 0.2941 0.5753 0.4549 0.4891 0.3294 0.318 0.3599 0.5168 0.627 0.3594 0.2043 0.7365 0.5289 0.4329 1.2447 0.0858 0.9957 0.1747 1.4616 -0.5397 0.4582 0.6577 0.5186 2.4174 0.1217 2.1005 0.0014 1.7515 0.5118 0.8838 
## Final   Estimates:  13.76511 -3.658342 1.031522 3.703772 0.4024891 0.4432519 0.2893357 0.512488 0.1237972 0.4453659 -0.06840467 0.317972 -0.02938443 -0.4223081 0.6269758 -0.5580941 -0.1045066 0.1415224 0.06081943 -0.2136291 0.05121923 -0.8652528 -0.2823286 -0.7037211 0.2007184 -0.815501 0.1358874 -0.2677997 -0.04757185 0.8241241 -0.7664619 0.7749712 -0.1789329 0.4485894 -0.02509364 0.5047331
## Warning in sqrt(diag(solve(Hessian))): NaNs produced
## 
## Coefficient(s):
##                               Estimate  Std. Error  t value Pr(>|t|)    
## depressedmood_state           13.76511    13.02113    1.057  0.29045    
## loneliness_state_pmc          -3.65834     0.21179  -17.273  < 2e-16 ***
## socintsatisfaction_state_pmc   1.03152    12.94902    0.080  0.93651    
## responsiveness_state_pmc       3.70377    17.64514    0.210  0.83374    
## depressedmood_state            0.40249     0.47027    0.856  0.39207    
## loneliness_state_pmc           0.44325     0.97328    0.455  0.64881    
## socintsatisfaction_state_pmc   0.28934         NaN      NaN      NaN    
## responsiveness_state_pmc       0.51249     0.82204    0.623  0.53300    
## depressedmood_state            0.12380     0.04171    2.968  0.00299 ** 
## loneliness_state_pmc           0.44537     0.36994    1.204  0.22863    
## socintsatisfaction_state_pmc  -0.06840     0.21611   -0.317  0.75160    
## responsiveness_state_pmc       0.31797     0.37915    0.839  0.40167    
## depressedmood_state           -0.02938     0.49044   -0.060  0.95222    
## loneliness_state_pmc          -0.42231     0.73646   -0.573  0.56635    
## socintsatisfaction_state_pmc   0.62698     0.21092    2.973  0.00295 ** 
## responsiveness_state_pmc      -0.55809     0.48055   -1.161  0.24549    
## depressedmood_state           -0.10451     0.70815   -0.148  0.88268    
## loneliness_state_pmc           0.14152     0.21440    0.660  0.50919    
## socintsatisfaction_state_pmc   0.06082     0.16234    0.375  0.70792    
## responsiveness_state_pmc      -0.21363     0.76980   -0.278  0.78139    
##                                0.05122     0.53284    0.096  0.92342    
##                               -0.86525     0.85289   -1.014  0.31035    
##                               -0.28233         NaN      NaN      NaN    
##                               -0.70372     0.89014   -0.791  0.42919    
##                                0.20072     0.14260    1.408  0.15926    
##                               -0.81550     0.35044   -2.327  0.01996 *  
##                                0.13589     0.14623    0.929  0.35275    
##                               -0.26780     0.44919   -0.596  0.55105    
##                               -0.04757     0.53222   -0.089  0.92878    
##                                0.82412     0.89140    0.925  0.35521    
##                               -0.76646     0.28830   -2.659  0.00785 ** 
##                                0.77497     0.47861    1.619  0.10540    
##                               -0.17893     0.79206   -0.226  0.82127    
##                                0.44859     0.33485    1.340  0.18036    
##                               -0.02509     0.22396   -0.112  0.91079    
##                                0.50473     0.90976    0.555  0.57903    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## --- 
## Estimates in matrix form: 
## Constant term:  
## Estimates:  13.76511 -3.658342 1.031522 3.703772 
## AR coefficient matrix 
## AR( 1 )-matrix 
##         [,1]   [,2]    [,3]   [,4]
## [1,]  0.4025  0.443  0.2893  0.512
## [2,]  0.1238  0.445 -0.0684  0.318
## [3,] -0.0294 -0.422  0.6270 -0.558
## [4,] -0.1045  0.142  0.0608 -0.214
## MA coefficient matrix 
## MA( 1 )-matrix 
##         [,1]   [,2]    [,3]   [,4]
## [1,] -0.0512  0.865  0.2823  0.704
## [2,] -0.2007  0.816 -0.1359  0.268
## [3,]  0.0476 -0.824  0.7665 -0.775
## [4,]  0.1789 -0.449  0.0251 -0.505
##   
## Residuals cov-matrix: 
##            [,1]      [,2]       [,3]      [,4]
## [1,]  210.51156 109.04899 -111.46717 -85.81668
## [2,]  109.04899 126.94399  -73.98434 -65.42262
## [3,] -111.46717 -73.98434  224.68838 105.67234
## [4,]  -85.81668 -65.42262  105.67234 141.53303
## ---- 
## aic=  20.11902 
## bic=  21.27539 
## Number of parameters:  36 
## initial estimates:  25.8437 -4.9757 -4.7346 -6.2618 0.2585 0.1447 0.2629 -0.3315 0.1006 0.4086 -0.0017 0.0258 0.1333 -0.5894 0.3224 -0.1629 0.1707 -0.6505 -0.0142 0.0847 -0.117 0.2894 -0.1093 0.4317 -0.084 0.4228 0.1681 -0.1508 -0.0739 0.5187 -1.283 0.8956 0.1957 0.4814 -0.7593 0.6378 
## Par. lower-bounds:  14.4191 -16.6027 -20.3323 -24.0283 -0.0442 -0.2039 -0.0513 -0.6524 -0.2075 0.0537 -0.3215 -0.3008 -0.28 -1.0654 -0.1066 -0.601 -0.3 -1.1927 -0.5029 -0.4143 -0.7365 -0.4782 -0.9757 -0.2701 -0.7145 -0.3585 -0.7137 -0.865 -0.9197 -0.5294 -2.4659 -0.0626 -0.7677 -0.7124 -2.1066 -0.4536 
## Par. upper-bounds:  37.2683 6.6513 10.8632 11.5048 0.5612 0.4933 0.5772 -0.0106 0.4087 0.7634 0.3181 0.3523 0.5466 -0.1134 0.7514 0.2752 0.6415 -0.1083 0.4745 0.5837 0.5025 1.057 0.7571 1.1336 0.5465 1.204 1.0498 0.5634 0.7719 1.5667 -0.1001 1.8538 1.1591 1.6751 0.5881 1.7292 
## Final   Estimates:  25.83624 -4.98666 -4.714022 -6.266612 0.3197058 0.0004138998 0.2281808 -0.3937679 0.1049289 0.3295515 -0.1958658 0.1599344 0.1247017 -0.4393905 0.6913423 -0.1360302 0.1851714 -0.7191725 0.01495136 0.1383826 -0.0890716 0.3108588 -0.1688175 0.241248 -0.06902205 0.07149893 0.2955314 -0.2322249 -0.2877327 0.4450587 -1.358527 0.7197429 -0.1006029 0.4327174 -0.6294831 0.5184923
## Warning in sqrt(diag(solve(Hessian))): NaNs produced
## 
## Coefficient(s):
##                                Estimate  Std. Error   t value Pr(>|t|)    
## depressedmood_state          25.8362407   0.8951006    28.864  < 2e-16 ***
## loneliness_state_pmc         -4.9866601         NaN       NaN      NaN    
## socintsatisfaction_state_pmc -4.7140216   0.0682570   -69.063  < 2e-16 ***
## responsiveness_state_pmc     -6.2666118   0.5012378   -12.502  < 2e-16 ***
## depressedmood_state           0.3197058   0.0155965    20.499  < 2e-16 ***
## loneliness_state_pmc          0.0004139         NaN       NaN      NaN    
## socintsatisfaction_state_pmc  0.2281808   0.0955399     2.388   0.0169 *  
## responsiveness_state_pmc     -0.3937679   0.8496117    -0.463   0.6430    
## depressedmood_state           0.1049289   0.0181912     5.768 8.02e-09 ***
## loneliness_state_pmc          0.3295515   0.0370170     8.903  < 2e-16 ***
## socintsatisfaction_state_pmc -0.1958658   0.1323985    -1.479   0.1390    
## responsiveness_state_pmc      0.1599344   0.3821034     0.419   0.6755    
## depressedmood_state           0.1247017   0.0040405    30.863  < 2e-16 ***
## loneliness_state_pmc         -0.4393905   0.0271664   -16.174  < 2e-16 ***
## socintsatisfaction_state_pmc  0.6913423   0.0069521    99.444  < 2e-16 ***
## responsiveness_state_pmc     -0.1360302   0.0078629   -17.300  < 2e-16 ***
## depressedmood_state           0.1851714   0.0145268    12.747  < 2e-16 ***
## loneliness_state_pmc         -0.7191725   0.0102253   -70.333  < 2e-16 ***
## socintsatisfaction_state_pmc  0.0149514   0.3211919     0.047   0.9629    
## responsiveness_state_pmc      0.1383826   0.4836135     0.286   0.7748    
##                              -0.0890716   0.5572372    -0.160   0.8730    
##                               0.3108588   0.4527556     0.687   0.4923    
##                              -0.1688175   0.1224651    -1.378   0.1681    
##                               0.2412480   0.5774552     0.418   0.6761    
##                              -0.0690221   0.3706112    -0.186   0.8523    
##                               0.0714989   0.4411341     0.162   0.8712    
##                               0.2955314   0.0693278     4.263 2.02e-05 ***
##                              -0.2322249   0.6756926    -0.344   0.7311    
##                              -0.2877327   0.0043948   -65.471  < 2e-16 ***
##                               0.4450587   0.0150305    29.610  < 2e-16 ***
##                              -1.3585269   0.0008646 -1571.299  < 2e-16 ***
##                               0.7197429   0.0020905   344.287  < 2e-16 ***
##                              -0.1006029   0.0739880    -1.360   0.1739    
##                               0.4327174   0.0406530    10.644  < 2e-16 ***
##                              -0.6294831   0.0103754   -60.671  < 2e-16 ***
##                               0.5184923   0.1025023     5.058 4.23e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## --- 
## Estimates in matrix form: 
## Constant term:  
## Estimates:  25.83624 -4.98666 -4.714022 -6.266612 
## AR coefficient matrix 
## AR( 1 )-matrix 
##       [,1]      [,2]   [,3]   [,4]
## [1,] 0.320  0.000414  0.228 -0.394
## [2,] 0.105  0.329552 -0.196  0.160
## [3,] 0.125 -0.439390  0.691 -0.136
## [4,] 0.185 -0.719172  0.015  0.138
## MA coefficient matrix 
## MA( 1 )-matrix 
##        [,1]    [,2]   [,3]   [,4]
## [1,] 0.0891 -0.3109  0.169 -0.241
## [2,] 0.0690 -0.0715 -0.296  0.232
## [3,] 0.2877 -0.4451  1.359 -0.720
## [4,] 0.1006 -0.4327  0.629 -0.518
##   
## Residuals cov-matrix: 
##           [,1]      [,2]      [,3]      [,4]
## [1,] 156.87014  69.30893 -50.37591 -49.83805
## [2,]  69.30893 129.61706 -38.77261 -57.99923
## [3,] -50.37591 -38.77261 265.66340 236.72258
## [4,] -49.83805 -57.99923 236.72258 341.70611
## ---- 
## aic=  21.02317 
## bic=  22.17954 
## Number of parameters:  36 
## initial estimates:  23.4967 0.4382 5.3973 5.7201 0.2739 -0.3344 -0.0451 -0.2822 0.0849 -0.0863 0.2098 -0.5333 -0.2851 0.3759 0.4627 0.1773 -0.2659 0.2193 -0.0901 0.5658 0.0594 1.1895 0.5069 -0.1121 0.021 0.7433 0.1656 0.0315 0.0612 -1.089 -0.5545 -0.2493 0.0459 -0.6786 -0.0499 -0.5452 
## Par. lower-bounds:  13.2811 -8.3149 -5.0677 -3.6663 -0.0489 -0.7193 -0.4237 -0.7462 -0.1916 -0.4162 -0.1147 -0.9308 -0.6157 -0.0185 0.0748 -0.298 -0.5624 -0.1345 -0.438 0.1395 -0.6341 0.2771 -0.2096 -1.2019 -0.5732 -0.0385 -0.4482 -0.9023 -0.6493 -2.0238 -1.2885 -1.3656 -0.5913 -1.517 -0.7082 -1.5465 
## Par. upper-bounds:  33.7123 9.1912 15.8624 15.1065 0.5966 0.0506 0.3336 0.1817 0.3615 0.2436 0.5342 -0.1358 0.0455 0.7702 0.8506 0.6525 0.0307 0.573 0.2579 0.9921 0.7529 2.102 1.2233 0.9776 0.6152 1.5251 0.7795 0.9652 0.7716 -0.1543 0.1794 0.8671 0.6831 0.1598 0.6084 0.456 
## Final   Estimates:  23.47129 0.4617356 5.425038 5.704096 0.1859301 -0.278455 -0.1949036 -0.4666132 -0.008329246 0.1815017 0.2738327 -0.7949189 -0.1799857 0.7424762 0.7323663 0.3647884 -0.1479732 0.5730218 -0.08827172 0.5831397 -0.03448522 0.2770934 0.5047502 0.1077895 -0.0004658998 -0.02058402 -0.09403086 0.3799993 -0.02800139 -1.03212 -0.9943817 -0.1402917 -0.08127509 -0.8040835 0.001451659 -0.3231939
## Warning in sqrt(diag(solve(Hessian))): NaNs produced
## 
## Coefficient(s):
##                                Estimate  Std. Error  t value Pr(>|t|)    
## depressedmood_state          23.4712941         NaN      NaN      NaN    
## loneliness_state_pmc          0.4617356         NaN      NaN      NaN    
## socintsatisfaction_state_pmc  5.4250375   4.8863818    1.110  0.26690    
## responsiveness_state_pmc      5.7040963   1.8322235    3.113  0.00185 ** 
## depressedmood_state           0.1859301         NaN      NaN      NaN    
## loneliness_state_pmc         -0.2784550   0.3409275   -0.817  0.41407    
## socintsatisfaction_state_pmc -0.1949036         NaN      NaN      NaN    
## responsiveness_state_pmc     -0.4666132         NaN      NaN      NaN    
## depressedmood_state          -0.0083292   0.0454311   -0.183  0.85453    
## loneliness_state_pmc          0.1815017   0.2337412    0.777  0.43745    
## socintsatisfaction_state_pmc  0.2738327   0.1637086    1.673  0.09439 .  
## responsiveness_state_pmc     -0.7949189         NaN      NaN      NaN    
## depressedmood_state          -0.1799857   0.1919282   -0.938  0.34836    
## loneliness_state_pmc          0.7424762   0.1614204    4.600 4.23e-06 ***
## socintsatisfaction_state_pmc  0.7323663   0.1813149    4.039 5.36e-05 ***
## responsiveness_state_pmc      0.3647884   0.2154567    1.693  0.09044 .  
## depressedmood_state          -0.1479732   0.0942871   -1.569  0.11656    
## loneliness_state_pmc          0.5730218         NaN      NaN      NaN    
## socintsatisfaction_state_pmc -0.0882717         NaN      NaN      NaN    
## responsiveness_state_pmc      0.5831397         NaN      NaN      NaN    
##                              -0.0344852         NaN      NaN      NaN    
##                               0.2770934   0.3567887    0.777  0.43738    
##                               0.5047502         NaN      NaN      NaN    
##                               0.1077895         NaN      NaN      NaN    
##                              -0.0004659         NaN      NaN      NaN    
##                              -0.0205840   0.2373795   -0.087  0.93090    
##                              -0.0940309   0.1394140   -0.674  0.50001    
##                               0.3799993         NaN      NaN      NaN    
##                              -0.0280014   0.1559502   -0.180  0.85750    
##                              -1.0321203   0.1884515   -5.477 4.33e-08 ***
##                              -0.9943817   0.2192138   -4.536 5.73e-06 ***
##                              -0.1402917   0.1409221   -0.996  0.31948    
##                              -0.0812751   0.1057306   -0.769  0.44207    
##                              -0.8040835         NaN      NaN      NaN    
##                               0.0014517   0.1222545    0.012  0.99053    
##                              -0.3231939         NaN      NaN      NaN    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## --- 
## Estimates in matrix form: 
## Constant term:  
## Estimates:  23.47129 0.4617356 5.425038 5.704096 
## AR coefficient matrix 
## AR( 1 )-matrix 
##          [,1]   [,2]    [,3]   [,4]
## [1,]  0.18593 -0.278 -0.1949 -0.467
## [2,] -0.00833  0.182  0.2738 -0.795
## [3,] -0.17999  0.742  0.7324  0.365
## [4,] -0.14797  0.573 -0.0883  0.583
## MA coefficient matrix 
## MA( 1 )-matrix 
##          [,1]    [,2]     [,3]   [,4]
## [1,] 0.034485 -0.2771 -0.50475 -0.108
## [2,] 0.000466  0.0206  0.09403 -0.380
## [3,] 0.028001  1.0321  0.99438  0.140
## [4,] 0.081275  0.8041 -0.00145  0.323
##   
## Residuals cov-matrix: 
##           [,1]      [,2]      [,3]      [,4]
## [1,]  336.1885  147.1317 -134.7086 -125.1745
## [2,]  147.1317  234.6211 -135.5576 -113.9454
## [3,] -134.7086 -135.5576  300.9418  181.4561
## [4,] -125.1745 -113.9454  181.4561  223.6836
## ---- 
## aic=  21.99579 
## bic=  23.15216 
## Number of parameters:  36 
## initial estimates:  12.9621 -0.6483 5.9701 9.3576 0.383 -0.1034 -0.0244 -0.1125 0.0286 0.3899 0.0551 -0.157 -0.3727 0.224 0.2436 -0.123 -0.4445 0.2781 0.058 0.3217 -0.2791 -0.0785 -0.2222 0.2861 -0.0807 -0.4933 -0.6082 0.4602 0.0155 -0.0917 0.0759 0.544 1.1786 -1.0238 -0.2297 0.4985 
## Par. lower-bounds:  4.8153 -9.0925 -5.5516 0.3729 0.0236 -0.4569 -0.3078 -0.4119 -0.344 0.0235 -0.2387 -0.4673 -0.881 -0.276 -0.1572 -0.5464 -0.8409 -0.1118 -0.2546 -0.0085 -1.0551 -0.7777 -0.8517 -0.4472 -0.885 -1.218 -1.2607 -0.2999 -1.0819 -1.0806 -0.8144 -0.4931 0.3229 -1.795 -0.924 -0.3102 
## Par. upper-bounds:  21.1088 7.796 17.4917 18.3422 0.7424 0.2501 0.2591 0.1869 0.4011 0.7564 0.3489 0.1533 0.1357 0.7239 0.6445 0.3004 -0.0481 0.668 0.3706 0.6518 0.4968 0.6207 0.4074 1.0194 0.7236 0.2314 0.0443 1.2203 1.1129 0.8972 0.9662 1.5811 2.0343 -0.2527 0.4645 1.3073 
## Final   Estimates:  13.0184 -0.7247611 5.93097 9.393478 0.391674 -0.3328799 -0.02921222 -0.3563007 0.09015663 0.6585867 0.3488199 -0.05519466 -0.3544627 0.3479997 0.3056563 -0.5212425 -0.5306183 0.5936887 -0.2374884 0.4054889 -0.01859158 0.1975513 -0.1374974 0.4756468 -0.09817038 -0.7675787 -0.6298616 -0.09541755 0.4717822 -0.3497953 -0.007669438 0.9994048 0.7881963 -0.9309685 0.4147802 0.03514498 
## 
## Coefficient(s):
##                               Estimate  Std. Error  t value Pr(>|t|)    
## depressedmood_state          13.018400    4.119980    3.160 0.001579 ** 
## loneliness_state_pmc         -0.724761    2.854119   -0.254 0.799546    
## socintsatisfaction_state_pmc  5.930970    5.128399    1.156 0.247479    
## responsiveness_state_pmc      9.393478    4.419756    2.125 0.033558 *  
## depressedmood_state           0.391674    0.206746    1.894 0.058163 .  
## loneliness_state_pmc         -0.332880    0.233932   -1.423 0.154742    
## socintsatisfaction_state_pmc -0.029212    0.188247   -0.155 0.876679    
## responsiveness_state_pmc     -0.356301    0.117456   -3.033 0.002417 ** 
## depressedmood_state           0.090157    0.136342    0.661 0.508450    
## loneliness_state_pmc          0.658587    0.128593    5.121 3.03e-07 ***
## socintsatisfaction_state_pmc  0.348820    0.114984    3.034 0.002416 ** 
## responsiveness_state_pmc     -0.055195    0.102864   -0.537 0.591557    
## depressedmood_state          -0.354463    0.225231   -1.574 0.115540    
## loneliness_state_pmc          0.348000    0.199672    1.743 0.081358 .  
## socintsatisfaction_state_pmc  0.305656    0.140347    2.178 0.029416 *  
## responsiveness_state_pmc     -0.521242    0.123647   -4.216 2.49e-05 ***
## depressedmood_state          -0.530618    0.220616   -2.405 0.016165 *  
## loneliness_state_pmc          0.593689    0.144559    4.107 4.01e-05 ***
## socintsatisfaction_state_pmc -0.237488    0.105416   -2.253 0.024268 *  
## responsiveness_state_pmc      0.405489    0.109534    3.702 0.000214 ***
##                              -0.018592    0.255952   -0.073 0.942095    
##                               0.197551    0.159794    1.236 0.216353    
##                              -0.137497    0.159276   -0.863 0.387991    
##                               0.475647    0.171264    2.777 0.005482 ** 
##                              -0.098170    0.110743   -0.886 0.375366    
##                              -0.767579    0.102610   -7.481 7.39e-14 ***
##                              -0.629862    0.093602   -6.729 1.71e-11 ***
##                              -0.095418    0.147308   -0.648 0.517153    
##                               0.471782    0.199748    2.362 0.018182 *  
##                              -0.349795    0.161121   -2.171 0.029931 *  
##                              -0.007669    0.088136   -0.087 0.930657    
##                               0.999405    0.123252    8.109 4.44e-16 ***
##                               0.788196    0.139104    5.666 1.46e-08 ***
##                              -0.930969    0.106422   -8.748  < 2e-16 ***
##                               0.414780    0.066478    6.239 4.39e-10 ***
##                               0.035145    0.101244    0.347 0.728494    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## --- 
## Estimates in matrix form: 
## Constant term:  
## Estimates:  13.0184 -0.7247611 5.93097 9.393478 
## AR coefficient matrix 
## AR( 1 )-matrix 
##         [,1]   [,2]    [,3]    [,4]
## [1,]  0.3917 -0.333 -0.0292 -0.3563
## [2,]  0.0902  0.659  0.3488 -0.0552
## [3,] -0.3545  0.348  0.3057 -0.5212
## [4,] -0.5306  0.594 -0.2375  0.4055
## MA coefficient matrix 
## MA( 1 )-matrix 
##         [,1]   [,2]     [,3]    [,4]
## [1,]  0.0186 -0.198  0.13750 -0.4756
## [2,]  0.0982  0.768  0.62986  0.0954
## [3,] -0.4718  0.350  0.00767 -0.9994
## [4,] -0.7882  0.931 -0.41478 -0.0351
##   
## Residuals cov-matrix: 
##           [,1]      [,2]      [,3]      [,4]
## [1,] 127.59152  72.28125 -48.77543 -45.68038
## [2,]  72.28125 143.36900 -75.59050 -37.99892
## [3,] -48.77543 -75.59050 201.74311 102.52881
## [4,] -45.68038 -37.99892 102.52881 137.94930
## ---- 
## aic=  19.97919 
## bic=  21.13555 
## Number of parameters:  36 
## initial estimates:  6.1774 -4.6321 -4.0155 -0.6962 0.3887 0.2254 -0.2069 0.1753 0.265 0.2243 0.0207 -0.2162 0.2713 -0.1849 0.4052 0.2028 -0.0064 -0.0533 0.0813 0.489 0.2819 0.0687 0.2657 0.3623 -0.2439 -0.0352 0.31 -0.0058 0.0448 -0.3797 -1.1052 1.8031 0.5562 -0.1328 -0.1124 0.1426 
## Par. lower-bounds:  1.9817 -10.7785 -10.4185 -5.0595 0.1227 -0.0272 -0.4304 -0.1503 -0.1246 -0.1458 -0.3067 -0.6933 -0.1346 -0.5704 0.0642 -0.2941 -0.2829 -0.316 -0.1511 0.1503 -0.4134 -0.5018 -0.1961 -0.4458 -1.2624 -0.871 -0.3666 -1.1896 -1.0162 -1.2504 -1.8101 0.5699 -0.1668 -0.7262 -0.5927 -0.6977 
## Par. upper-bounds:  10.3732 1.5142 2.3874 3.6671 0.6546 0.478 0.0165 0.501 0.6546 0.5943 0.348 0.2608 0.6771 0.2006 0.7462 0.6998 0.2702 0.2094 0.3137 0.8276 0.9772 0.6392 0.7276 1.1704 0.7746 0.8005 0.9866 1.178 1.1058 0.4909 -0.4004 3.0363 1.2793 0.4605 0.3679 0.983 
## Final   Estimates:  6.280125 -4.5926 -3.843179 -0.7929591 0.3469397 0.126109 0.007475874 -0.03229595 0.3619164 0.2842107 -0.07923777 0.05294937 0.3272453 0.07224821 0.6481546 -0.2894105 0.03633556 0.04482576 -0.1417862 0.5152859 0.06313667 0.08686957 -0.1264512 0.1532734 -0.4162826 0.06786629 0.1817652 -0.4488725 -0.3758188 -0.06027331 -0.6867777 1.123654 0.1270691 -0.1397119 0.3546127 0.05571714
## Warning in sqrt(diag(solve(Hessian))): NaNs produced
## 
## Coefficient(s):
##                               Estimate  Std. Error  t value Pr(>|t|)    
## depressedmood_state           6.280125    1.833545    3.425 0.000615 ***
## loneliness_state_pmc         -4.592600         NaN      NaN      NaN    
## socintsatisfaction_state_pmc -3.843179    0.529176   -7.263 3.80e-13 ***
## responsiveness_state_pmc     -0.792959    0.953127   -0.832 0.405434    
## depressedmood_state           0.346940    0.135291    2.564 0.010335 *  
## loneliness_state_pmc          0.126109    0.141591    0.891 0.373112    
## socintsatisfaction_state_pmc  0.007476    0.155681    0.048 0.961700    
## responsiveness_state_pmc     -0.032296    0.267515   -0.121 0.903908    
## depressedmood_state           0.361916         NaN      NaN      NaN    
## loneliness_state_pmc          0.284211         NaN      NaN      NaN    
## socintsatisfaction_state_pmc -0.079238         NaN      NaN      NaN    
## responsiveness_state_pmc      0.052949         NaN      NaN      NaN    
## depressedmood_state           0.327245    0.012112   27.019  < 2e-16 ***
## loneliness_state_pmc          0.072248         NaN      NaN      NaN    
## socintsatisfaction_state_pmc  0.648155    0.117635    5.510 3.59e-08 ***
## responsiveness_state_pmc     -0.289411    0.070972   -4.078 4.55e-05 ***
## depressedmood_state           0.036336    0.083436    0.435 0.663205    
## loneliness_state_pmc          0.044826         NaN      NaN      NaN    
## socintsatisfaction_state_pmc -0.141786    0.120799   -1.174 0.240502    
## responsiveness_state_pmc      0.515286    0.116457    4.425 9.66e-06 ***
##                               0.063137    0.163281    0.387 0.698997    
##                               0.086870    0.125381    0.693 0.488405    
##                              -0.126451    0.175926   -0.719 0.472281    
##                               0.153273    0.311254    0.492 0.622409    
##                              -0.416283         NaN      NaN      NaN    
##                               0.067866         NaN      NaN      NaN    
##                               0.181765         NaN      NaN      NaN    
##                              -0.448873         NaN      NaN      NaN    
##                              -0.375819    0.150227   -2.502 0.012361 *  
##                              -0.060273         NaN      NaN      NaN    
##                              -0.686778    0.131550   -5.221 1.78e-07 ***
##                               1.123654         NaN      NaN      NaN    
##                               0.127069    0.124392    1.022 0.307007    
##                              -0.139712         NaN      NaN      NaN    
##                               0.354613    0.131056    2.706 0.006814 ** 
##                               0.055717         NaN      NaN      NaN    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## --- 
## Estimates in matrix form: 
## Constant term:  
## Estimates:  6.280125 -4.5926 -3.843179 -0.7929591 
## AR coefficient matrix 
## AR( 1 )-matrix 
##        [,1]   [,2]     [,3]    [,4]
## [1,] 0.3469 0.1261  0.00748 -0.0323
## [2,] 0.3619 0.2842 -0.07924  0.0529
## [3,] 0.3272 0.0722  0.64815 -0.2894
## [4,] 0.0363 0.0448 -0.14179  0.5153
## MA coefficient matrix 
## MA( 1 )-matrix 
##         [,1]    [,2]   [,3]    [,4]
## [1,] -0.0631 -0.0869  0.126 -0.1533
## [2,]  0.4163 -0.0679 -0.182  0.4489
## [3,]  0.3758  0.0603  0.687 -1.1237
## [4,] -0.1271  0.1397 -0.355 -0.0557
##   
## Residuals cov-matrix: 
##           [,1]      [,2]      [,3]      [,4]
## [1,] 141.85556 113.92993 -13.47653 -12.28112
## [2,] 113.92993 254.11587  13.47445 -16.57970
## [3,] -13.47653  13.47445 256.33408 114.41773
## [4,] -12.28112 -16.57970 114.41773 132.70107
## ---- 
## aic=  20.9769 
## bic=  22.13326
# Extract fit results and noisy simulated series into separate lists
fit_results_list <- lapply(simulated_data_list, function(x) x$fit)
simulated_data_list5 <- lapply(simulated_data_list, function(x) x$simulated_series)

# Combine into one large data frame for further analysis
combined_simulated_data_list5 <- do.call(rbind, lapply(1:length(simulated_data_list5), function(i) {
  individual_df <- as.data.frame(simulated_data_list5[[i]])
  individual_df$ID <- i
  individual_df$time <- 1:nrow(individual_df)
  return(individual_df)
}))

Running i-ARIMAX on data sets

Next we are going to run i-ARIMAX on both the original raw data set and the simulated data set using the idionomics package to see how they compare.

# i-ARIMAX on existing raw data set 
# Create list of independent variables
IV <- c("loneliness_state_pmc","socintsatisfaction_state_pmc","responsiveness_state_pmc")

# Initialize an empty list to store the results
hoard.iarimax1 <- list()

# Loop through each independent variable (IV)
for (i in seq_along(IV)) {
  # Create a unique model name for each IV
  model_name <- paste0("IV_", i)
  
  # Run the IARIMAXoid_Pro function and store the result in the list
  hoard.iarimax1[[model_name]] <- IARIMAXoid_Pro(
    imputed_rawdata,
    x_series = IV[[i]],  # Current independent variable
    y_series = "depressedmood_state",  # The single dependent variable
    id_var = "pid",
    hlm_compare = TRUE,
    timevar = "pingTotal",
    metaanalysis = TRUE
  )
}
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo

Then we are going to do the same thing and run i-ARIMAX on the simulated data

# i-ARIMAX on simulated data set
# Rename columns to same as raw data set
combined_simulated_data_list5 <- combined_simulated_data_list5 %>%
  rename(
    depressedmood_state = V1,
    loneliness_state_pmc = V2,
    socintsatisfaction_state_pmc = V3,
    responsiveness_state_pmc = V4
  )

# Initialize an empty list to store the results
hoard.iarimax1sim <- list()

# Loop through each independent variable (IV)
for (i in seq_along(IV)) {
  # Create a unique model name for each IV
  model_name <- paste0("IV_", i)
  
  # Run the IARIMAXoid_Pro function and store the result in the list
  hoard.iarimax1sim[[model_name]] <- IARIMAXoid_Pro(
    combined_simulated_data_list5,
    x_series = IV[[i]],  # Current independent variable
    y_series = "depressedmood_state",  # The single dependent variable
    id_var = "ID",
    hlm_compare = TRUE,
    timevar = "time",
    metaanalysis = TRUE
  )
}

Comparing results raw vs simualted (i-ARIMAX)

Now we can compare the results between the raw data and simualted data for variable of loneliness

# Compare loneliness_state_pmc (IV1) of raw data i-ARIMAX and simulated data i-ARIMAX
# Raw data i-ARIMAX loneliness results
print(hoard.iarimax1[[1]]$results_df)
##       pid nAR nI nMA intercept       AR1 stderr_AR1 AR2 stderr_AR2 AR3
## 1012 1012   0  1   1        NA        NA         NA  NA         NA  NA
## 1023 1023   0  0   0 17.160066        NA         NA  NA         NA  NA
## 1041 1041   0  1   1        NA        NA         NA  NA         NA  NA
## 1048 1048   0  1   1        NA        NA         NA  NA         NA  NA
## 1058 1058   0  0   0  6.137413        NA         NA  NA         NA  NA
## 1060 1060   1  0   0 25.779614 0.2880061 0.14121681  NA         NA  NA
## 1070 1070   0  0   2 38.052755        NA         NA  NA         NA  NA
## 1076 1076   1  0   1 31.144733 0.8771265 0.08700187  NA         NA  NA
## 1093 1093   0  0   1 21.037353        NA         NA  NA         NA  NA
## 1097 1097   1  0   0 10.568771 0.4284279 0.11847942  NA         NA  NA
##      stderr_AR3 AR4 stderr_AR4 AR5 stderr_AR5        MA1 stderr_MA1       MA2
## 1012         NA  NA         NA  NA         NA -0.8336191 0.06137501        NA
## 1023         NA  NA         NA  NA         NA         NA         NA        NA
## 1041         NA  NA         NA  NA         NA -0.7941422 0.08516961        NA
## 1048         NA  NA         NA  NA         NA -0.6656482 0.09593274        NA
## 1058         NA  NA         NA  NA         NA         NA         NA        NA
## 1060         NA  NA         NA  NA         NA         NA         NA        NA
## 1070         NA  NA         NA  NA         NA  0.3586989 0.13546284 0.2697739
## 1076         NA  NA         NA  NA         NA -0.6876706 0.12151965        NA
## 1093         NA  NA         NA  NA         NA  0.4001285 0.11024212        NA
## 1097         NA  NA         NA  NA         NA         NA         NA        NA
##      stderr_MA2 MA3 stderr_MA3 MA4 stderr_MA4 MA5 stderr_MA5 drift stderr_drift
## 1012         NA  NA         NA  NA         NA  NA         NA    NA           NA
## 1023         NA  NA         NA  NA         NA  NA         NA    NA           NA
## 1041         NA  NA         NA  NA         NA  NA         NA    NA           NA
## 1048         NA  NA         NA  NA         NA  NA         NA    NA           NA
## 1058         NA  NA         NA  NA         NA  NA         NA    NA           NA
## 1060         NA  NA         NA  NA         NA  NA         NA    NA           NA
## 1070  0.1256088  NA         NA  NA         NA  NA         NA    NA           NA
## 1076         NA  NA         NA  NA         NA  NA         NA    NA           NA
## 1093         NA  NA         NA  NA         NA  NA         NA    NA           NA
## 1097         NA  NA         NA  NA         NA  NA         NA    NA           NA
##           xreg stderr_xreg n_valid n_params raw_correlation
## 1012 0.1843948  0.13487993      70        2       0.1108527
## 1023 0.1533029  0.12198728      70        2       0.1485396
## 1041 0.5918273  0.05705052      70        2       0.7586024
## 1048 0.3264294  0.09651573      70        2       0.5225267
## 1058 0.2966953  0.05491100      70        2       0.5425106
## 1060 0.8722322  0.13543980      70        3       0.7202444
## 1070 0.5041537  0.11577913      70        4       0.5994497
## 1076 0.6281609  0.11584840      70        4       0.5449530
## 1093 0.5191113  0.08140474      70        3       0.5662955
## 1097 0.3716211  0.08453090      70        3       0.6248622
# Simulated data i-ARIMAX loneliness results
print(hoard.iarimax1sim[[1]]$results_df)
##    ID nAR nI nMA intercept       AR1 stderr_AR1        AR2 stderr_AR2
## 1   1   0  0   1        NA        NA         NA         NA         NA
## 2   2   2  0   0        NA 0.1277027 0.08172077 -0.1560868 0.08166360
## 3   3   0  1   1        NA        NA         NA         NA         NA
## 4   4   1  1   1        NA 0.2826311 0.08437276         NA         NA
## 5   5   0  0   0        NA        NA         NA         NA         NA
## 6   6   1  0   0        NA 0.1924682 0.08667701         NA         NA
## 7   7   3  0   0        NA 0.2081179 0.08162333 -0.1572192 0.08122486
## 8   8   0  1   1        NA        NA         NA         NA         NA
## 9   9   0  0   1        NA        NA         NA         NA         NA
## 10 10   1  0   2        NA 0.8394546 0.07764994         NA         NA
##           AR3 stderr_AR3 AR4 stderr_AR4 AR5 stderr_AR5        MA1 stderr_MA1
## 1          NA         NA  NA         NA  NA         NA  0.2016424 0.09703402
## 2          NA         NA  NA         NA  NA         NA         NA         NA
## 3          NA         NA  NA         NA  NA         NA -0.9266001 0.03571928
## 4          NA         NA  NA         NA  NA         NA -0.9687995 0.02159676
## 5          NA         NA  NA         NA  NA         NA         NA         NA
## 6          NA         NA  NA         NA  NA         NA         NA         NA
## 7  -0.1700205 0.08014395  NA         NA  NA         NA         NA         NA
## 8          NA         NA  NA         NA  NA         NA -0.9383770 0.02628301
## 9          NA         NA  NA         NA  NA         NA  0.4200544 0.08334024
## 10         NA         NA  NA         NA  NA         NA -0.4225577 0.09067395
##           MA2 stderr_MA2 MA3 stderr_MA3 MA4 stderr_MA4 MA5 stderr_MA5 drift
## 1          NA         NA  NA         NA  NA         NA  NA         NA    NA
## 2          NA         NA  NA         NA  NA         NA  NA         NA    NA
## 3          NA         NA  NA         NA  NA         NA  NA         NA    NA
## 4          NA         NA  NA         NA  NA         NA  NA         NA    NA
## 5          NA         NA  NA         NA  NA         NA  NA         NA    NA
## 6          NA         NA  NA         NA  NA         NA  NA         NA    NA
## 7          NA         NA  NA         NA  NA         NA  NA         NA    NA
## 8          NA         NA  NA         NA  NA         NA  NA         NA    NA
## 9          NA         NA  NA         NA  NA         NA  NA         NA    NA
## 10 -0.4866193  0.0699588  NA         NA  NA         NA  NA         NA    NA
##    stderr_drift      xreg stderr_xreg n_valid n_params raw_correlation
## 1            NA 0.2184942  0.12622981     150        2      0.05652008
## 2            NA 0.2513318  0.10283622     150        3      0.15534117
## 3            NA 0.6630795  0.04490643     150        2      0.76424538
## 4            NA 0.4063217  0.08299780     150        3      0.45361753
## 5            NA 0.3791468  0.04459513     150        1      0.56350922
## 6            NA 0.8702662  0.10259265     150        2      0.61987843
## 7            NA 0.6811561  0.09692781     150        4      0.48267672
## 8            NA 0.6713186  0.09238796     150        2      0.48328372
## 9            NA 0.5391537  0.07305204     150        2      0.46348199
## 10           NA 0.4807411  0.05572113     150        4      0.55785967
# Compare meta-analysis results (loneliness)
# Raw data
print(hoard.iarimax1[[1]]$meta_analysis)
## 
## Random-Effects Model (k = 10; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0303 (SE = 0.0189)
## tau (square root of estimated tau^2 value):      0.1742
## I^2 (total heterogeneity / total variability):   79.59%
## H^2 (total variability / sampling variability):  4.90
## 
## Test for Heterogeneity:
## Q(df = 9) = 39.1191, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.4429  0.0635  6.9707  <.0001  0.3184  0.5674  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Simulated data
print(hoard.iarimax1sim[[1]]$meta_analysis)
## 
## Random-Effects Model (k = 10; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0302 (SE = 0.0175)
## tau (square root of estimated tau^2 value):      0.1738
## I^2 (total heterogeneity / total variability):   85.79%
## H^2 (total variability / sampling variability):  7.04
## 
## Test for Heterogeneity:
## Q(df = 9) = 52.2017, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.5193  0.0610  8.5169  <.0001  0.3998  0.6388  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Next, compare results for variable 2 - social interaction satisfaction

# Compare socintsatisfaction_state_pmc (IV2) of raw data i-ARIMAX and simulated data i-ARIMAX
# Raw data i-ARIMAX social interaction satisfaction results
print(hoard.iarimax1[[2]]$results_df)
##       pid nAR nI nMA intercept       AR1 stderr_AR1 AR2 stderr_AR2 AR3
## 1012 1012   0  1   2        NA        NA         NA  NA         NA  NA
## 1023 1023   0  0   0 17.165273        NA         NA  NA         NA  NA
## 1041 1041   0  0   0 18.331301        NA         NA  NA         NA  NA
## 1048 1048   0  1   1        NA        NA         NA  NA         NA  NA
## 1058 1058   0  0   0  6.128974        NA         NA  NA         NA  NA
## 1060 1060   1  0   0 26.241405 0.4500693  0.1142518  NA         NA  NA
## 1070 1070   0  1   4        NA        NA         NA  NA         NA  NA
## 1076 1076   1  0   0 29.803251 0.2083407  0.1233264  NA         NA  NA
## 1093 1093   1  0   0 21.007332 0.2898558  0.1172817  NA         NA  NA
## 1097 1097   1  1   1        NA 0.5697388  0.1137639  NA         NA  NA
##      stderr_AR3 AR4 stderr_AR4 AR5 stderr_AR5        MA1 stderr_MA1         MA2
## 1012         NA  NA         NA  NA         NA -1.0278012 0.12238830  0.26269534
## 1023         NA  NA         NA  NA         NA         NA         NA          NA
## 1041         NA  NA         NA  NA         NA         NA         NA          NA
## 1048         NA  NA         NA  NA         NA -0.6536890 0.08721836          NA
## 1058         NA  NA         NA  NA         NA         NA         NA          NA
## 1060         NA  NA         NA  NA         NA         NA         NA          NA
## 1070         NA  NA         NA  NA         NA -0.6302328 0.11436411 -0.05377235
## 1076         NA  NA         NA  NA         NA         NA         NA          NA
## 1093         NA  NA         NA  NA         NA         NA         NA          NA
## 1097         NA  NA         NA  NA         NA -0.9707820 0.05606114          NA
##      stderr_MA2        MA3 stderr_MA3       MA4 stderr_MA4 MA5 stderr_MA5 drift
## 1012  0.1481011         NA         NA        NA         NA  NA         NA    NA
## 1023         NA         NA         NA        NA         NA  NA         NA    NA
## 1041         NA         NA         NA        NA         NA  NA         NA    NA
## 1048         NA         NA         NA        NA         NA  NA         NA    NA
## 1058         NA         NA         NA        NA         NA  NA         NA    NA
## 1060         NA         NA         NA        NA         NA  NA         NA    NA
## 1070  0.1297701 -0.3809498  0.2020064 0.2822914  0.1572439  NA         NA    NA
## 1076         NA         NA         NA        NA         NA  NA         NA    NA
## 1093         NA         NA         NA        NA         NA  NA         NA    NA
## 1097         NA         NA         NA        NA         NA  NA         NA    NA
##      stderr_drift        xreg stderr_xreg n_valid n_params raw_correlation
## 1012           NA  0.05894468  0.04973171      70        3      0.21187002
## 1023           NA  0.13187203  0.08259387      70        2      0.18745163
## 1041           NA -0.60925428  0.09027732      70        2     -0.62783418
## 1048           NA -0.13757289  0.05433243      70        2     -0.27199439
## 1058           NA -0.16170736  0.06649622      70        2     -0.27910875
## 1060           NA -0.44480388  0.09600838      70        3     -0.51307492
## 1070           NA -0.14518134  0.06752348      70        5     -0.35234403
## 1076           NA -0.38341317  0.09927548      70        3     -0.47329802
## 1093           NA -0.20592604  0.08158762      70        3     -0.32940401
## 1097           NA -0.02650023  0.08015096      70        3     -0.03138651
# Simulated data i-ARIMAX social interaction satisfaction results
print(hoard.iarimax1sim[[2]]$results_df)
##    ID nAR nI nMA intercept        AR1 stderr_AR1        AR2 stderr_AR2 AR3
## 1   1   2  0   2        NA -0.3088206 0.13939484 -0.8002944 0.07092024  NA
## 2   2   2  0   1        NA  0.9922580 0.09668066 -0.1676611 0.08253587  NA
## 3   3   1  0   1        NA  0.7577864 0.08297926         NA         NA  NA
## 4   4   1  1   1        NA  0.3255965 0.08235976         NA         NA  NA
## 5   5   0  1   2        NA         NA         NA         NA         NA  NA
## 6   6   1  0   0        NA  0.2895447 0.07830511         NA         NA  NA
## 7   7   0  0   1        NA         NA         NA         NA         NA  NA
## 8   8   0  0   0        NA         NA         NA         NA         NA  NA
## 9   9   2  0   3        NA  1.8655274 0.05778961 -0.9194098 0.05122990  NA
## 10 10   1  0   0        NA  0.4631270 0.07262189         NA         NA  NA
##    stderr_AR3 AR4 stderr_AR4 AR5 stderr_AR5        MA1 stderr_MA1       MA2
## 1          NA  NA         NA  NA         NA  0.3928743 0.09561500 0.9698380
## 2          NA  NA         NA  NA         NA -0.9278255 0.06603365        NA
## 3          NA  NA         NA  NA         NA -0.9415509 0.04764788        NA
## 4          NA  NA         NA  NA         NA -0.9633702 0.02418054        NA
## 5          NA  NA         NA  NA         NA -1.2064903 0.09960127 0.2277685
## 6          NA  NA         NA  NA         NA         NA         NA        NA
## 7          NA  NA         NA  NA         NA  0.3173546 0.07529490        NA
## 8          NA  NA         NA  NA         NA         NA         NA        NA
## 9          NA  NA         NA  NA         NA -1.6411199 0.10112167 0.4758058
## 10         NA  NA         NA  NA         NA         NA         NA        NA
##    stderr_MA2       MA3 stderr_MA3 MA4 stderr_MA4 MA5 stderr_MA5 drift
## 1  0.07538947        NA         NA  NA         NA  NA         NA    NA
## 2          NA        NA         NA  NA         NA  NA         NA    NA
## 3          NA        NA         NA  NA         NA  NA         NA    NA
## 4          NA        NA         NA  NA         NA  NA         NA    NA
## 5  0.09709366        NA         NA  NA         NA  NA         NA    NA
## 6          NA        NA         NA  NA         NA  NA         NA    NA
## 7          NA        NA         NA  NA         NA  NA         NA    NA
## 8          NA        NA         NA  NA         NA  NA         NA    NA
## 9  0.16313274 0.2008249 0.09233108  NA         NA  NA         NA    NA
## 10         NA        NA         NA  NA         NA  NA         NA    NA
##    stderr_drift        xreg stderr_xreg n_valid n_params raw_correlation
## 1            NA  0.09075473  0.04393552     150        5    0.1667643496
## 2            NA  0.12534486  0.07435696     150        4    0.2172082999
## 3            NA -0.72076435  0.03486830     150        3   -0.6485506678
## 4            NA -0.17527510  0.05005882     150        3   -0.2993871733
## 5            NA -0.21665018  0.06399133     150        3   -0.2129631956
## 6            NA -0.39762614  0.07961836     150        2   -0.3655055854
## 7            NA -0.03662189  0.07218586     150        2   -0.1108398172
## 8            NA -0.42783646  0.04870286     150        1   -0.4714058980
## 9            NA -0.11091313  0.06764693     150        6   -0.2000601155
## 10           NA  0.04803466  0.06735318     150        2    0.0003699997
# Compare meta-analysis results (social interaction satisfaction)
# Raw data
print(hoard.iarimax1[[2]]$meta_analysis)
## 
## Random-Effects Model (k = 10; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0446 (SE = 0.0239)
## tau (square root of estimated tau^2 value):      0.2113
## I^2 (total heterogeneity / total variability):   89.56%
## H^2 (total variability / sampling variability):  9.58
## 
## Test for Heterogeneity:
## Q(df = 9) = 72.6915, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb    ci.ub     
##  -0.1860  0.0712  -2.6121  0.0090  -0.3255  -0.0464  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Simulated data
print(hoard.iarimax1sim[[2]]$meta_analysis)
## 
## Random-Effects Model (k = 10; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0701 (SE = 0.0348)
## tau (square root of estimated tau^2 value):      0.2647
## I^2 (total heterogeneity / total variability):   95.79%
## H^2 (total variability / sampling variability):  23.74
## 
## Test for Heterogeneity:
## Q(df = 9) = 318.4398, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb    ci.ub    
##  -0.1844  0.0859  -2.1460  0.0319  -0.3529  -0.0160  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Last, compare results for responsiveness

# Compare responsiveness_state_pmc (IV2) of raw data i-ARIMAX and simulated data i-ARIMAX
# Raw data i-ARIMAX responsiveness results
print(hoard.iarimax1[[3]]$results_df)
##       pid nAR nI nMA intercept       AR1 stderr_AR1       AR2 stderr_AR2 AR3
## 1012 1012   0  1   2        NA        NA         NA        NA         NA  NA
## 1023 1023   0  0   0 17.254333        NA         NA        NA         NA  NA
## 1041 1041   2  0   0 18.791328 0.2694910 0.12495211 0.1949281  0.1233648  NA
## 1048 1048   0  1   1        NA        NA         NA        NA         NA  NA
## 1058 1058   0  0   0  6.122635        NA         NA        NA         NA  NA
## 1060 1060   1  0   0 26.622604 0.4206131 0.12281064        NA         NA  NA
## 1070 1070   1  1   1        NA 0.2357464 0.14217201        NA         NA  NA
## 1076 1076   1  0   4 30.737502 0.7905816 0.09467278        NA         NA  NA
## 1093 1093   0  0   4 21.132680        NA         NA        NA         NA  NA
## 1097 1097   1  1   1        NA 0.5800271 0.11335164        NA         NA  NA
##      stderr_AR3 AR4 stderr_AR4 AR5 stderr_AR5        MA1 stderr_MA1        MA2
## 1012         NA  NA         NA  NA         NA -1.0468059 0.12042046  0.2635505
## 1023         NA  NA         NA  NA         NA         NA         NA         NA
## 1041         NA  NA         NA  NA         NA         NA         NA         NA
## 1048         NA  NA         NA  NA         NA -0.6262371 0.09846216         NA
## 1058         NA  NA         NA  NA         NA         NA         NA         NA
## 1060         NA  NA         NA  NA         NA         NA         NA         NA
## 1070         NA  NA         NA  NA         NA -0.8559760 0.06944188         NA
## 1076         NA  NA         NA  NA         NA -0.7628503 0.13326724 -0.0957419
## 1093         NA  NA         NA  NA         NA  0.2281863 0.11520453  0.1623510
## 1097         NA  NA         NA  NA         NA -0.9734330 0.05945987         NA
##      stderr_MA2         MA3 stderr_MA3       MA4 stderr_MA4 MA5 stderr_MA5
## 1012  0.1348974          NA         NA        NA         NA  NA         NA
## 1023         NA          NA         NA        NA         NA  NA         NA
## 1041         NA          NA         NA        NA         NA  NA         NA
## 1048         NA          NA         NA        NA         NA  NA         NA
## 1058         NA          NA         NA        NA         NA  NA         NA
## 1060         NA          NA         NA        NA         NA  NA         NA
## 1070         NA          NA         NA        NA         NA  NA         NA
## 1076  0.1409719 -0.09517184  0.1561063 0.5565507  0.1878615  NA         NA
## 1093  0.1523849 -0.11836350  0.2074843 0.4224770  0.1871531  NA         NA
## 1097         NA          NA         NA        NA         NA  NA         NA
##      drift stderr_drift        xreg stderr_xreg n_valid n_params
## 1012    NA           NA  0.12065437  0.09956313      70        3
## 1023    NA           NA -0.07586349  0.06909986      70        2
## 1041    NA           NA -0.38913527  0.25994727      70        4
## 1048    NA           NA -0.04450127  0.09638572      70        2
## 1058    NA           NA -0.21370442  0.08344608      70        2
## 1060    NA           NA -0.60718198  0.12511763      70        3
## 1070    NA           NA -0.11478323  0.07394199      70        3
## 1076    NA           NA -0.31296938  0.13968190      70        7
## 1093    NA           NA -0.32692416  0.07358591      70        6
## 1097    NA           NA -0.14676851  0.12551572      70        3
##      raw_correlation
## 1012      0.14757968
## 1023     -0.13010690
## 1041     -0.25153892
## 1048     -0.32394239
## 1058     -0.29269216
## 1060     -0.56392109
## 1070     -0.30429110
## 1076     -0.50149472
## 1093     -0.45324015
## 1097     -0.09043521
# Simulated data i-ARIMAX responsiveness results results
print(hoard.iarimax1sim[[3]]$results_df)
##    ID nAR nI nMA intercept        AR1 stderr_AR1          AR2 stderr_AR2
## 1   1   0  0   0        NA         NA         NA           NA         NA
## 2   2   0  0   0        NA         NA         NA           NA         NA
## 3   3   2  0   0        NA  0.2370843 0.08258643  0.212002168 0.08026632
## 4   4   1  1   1        NA  0.3514425 0.08506797           NA         NA
## 5   5   0  0   0        NA         NA         NA           NA         NA
## 6   6   3  0   1        NA  1.0759260 0.08736158 -0.007943248 0.12194141
## 7   7   0  0   1        NA         NA         NA           NA         NA
## 8   8   1  1   1        NA -0.1436153 0.08646250           NA         NA
## 9   9   2  0   1        NA  1.2026635 0.07809906 -0.343084083 0.07716419
## 10 10   1  0   0        NA  0.4609646 0.07260343           NA         NA
##           AR3 stderr_AR3 AR4 stderr_AR4 AR5 stderr_AR5        MA1 stderr_MA1
## 1          NA         NA  NA         NA  NA         NA         NA         NA
## 2          NA         NA  NA         NA  NA         NA         NA         NA
## 3          NA         NA  NA         NA  NA         NA         NA         NA
## 4          NA         NA  NA         NA  NA         NA -0.9657084 0.02354659
## 5          NA         NA  NA         NA  NA         NA         NA         NA
## 6  -0.2280746  0.0818029  NA         NA  NA         NA -0.9191988 0.03991853
## 7          NA         NA  NA         NA  NA         NA  0.3189976 0.07433243
## 8          NA         NA  NA         NA  NA         NA -0.9559014 0.02219455
## 9          NA         NA  NA         NA  NA         NA -0.9893986 0.04555955
## 10         NA         NA  NA         NA  NA         NA         NA         NA
##    MA2 stderr_MA2 MA3 stderr_MA3 MA4 stderr_MA4 MA5 stderr_MA5 drift
## 1   NA         NA  NA         NA  NA         NA  NA         NA    NA
## 2   NA         NA  NA         NA  NA         NA  NA         NA    NA
## 3   NA         NA  NA         NA  NA         NA  NA         NA    NA
## 4   NA         NA  NA         NA  NA         NA  NA         NA    NA
## 5   NA         NA  NA         NA  NA         NA  NA         NA    NA
## 6   NA         NA  NA         NA  NA         NA  NA         NA    NA
## 7   NA         NA  NA         NA  NA         NA  NA         NA    NA
## 8   NA         NA  NA         NA  NA         NA  NA         NA    NA
## 9   NA         NA  NA         NA  NA         NA  NA         NA    NA
## 10  NA         NA  NA         NA  NA         NA  NA         NA    NA
##    stderr_drift         xreg stderr_xreg n_valid n_params raw_correlation
## 1            NA  0.246343193  0.11122892     150        1     0.172857652
## 2            NA -0.010243512  0.06814560     150        1    -0.011575102
## 3            NA -0.026117192  0.24087186     150        3    -0.086973965
## 4            NA  0.003517583  0.09732864     150        3    -0.164078894
## 5            NA -0.269805905  0.08094288     150        1    -0.251369658
## 6            NA -0.676458516  0.10679631     150        5    -0.430189133
## 7            NA -0.037385563  0.07258341     150        2    -0.082986609
## 8            NA -0.633124429  0.10171299     150        3    -0.436867133
## 9            NA -0.377710848  0.11374486     150        4    -0.278187222
## 10           NA -0.066911597  0.10701488     150        2     0.006911397
# Compare meta-analysis results (responsiveness results)
# Raw data
print(hoard.iarimax1[[3]]$meta_analysis)
## 
## Random-Effects Model (k = 10; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0275 (SE = 0.0183)
## tau (square root of estimated tau^2 value):      0.1657
## I^2 (total heterogeneity / total variability):   74.86%
## H^2 (total variability / sampling variability):  3.98
## 
## Test for Heterogeneity:
## Q(df = 9) = 31.4548, p-val = 0.0002
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb    ci.ub     
##  -0.1906  0.0629  -3.0311  0.0024  -0.3138  -0.0673  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Simulated data
print(hoard.iarimax1sim[[3]]$meta_analysis)
## 
## Random-Effects Model (k = 10; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0783 (SE = 0.0426)
## tau (square root of estimated tau^2 value):      0.2798
## I^2 (total heterogeneity / total variability):   89.41%
## H^2 (total variability / sampling variability):  9.45
## 
## Test for Heterogeneity:
## Q(df = 9) = 75.3787, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb    ci.ub    
##  -0.1885  0.0953  -1.9784  0.0479  -0.3753  -0.0018  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Seems like for the results, AR and MA coefficients are quite difference between raw and simulated data. xreg coefficients and correlations are similar but still can be quite a difference at times.

Meta-analysis results are somewhat similar.

Running BORUTA on raw and simulated data sets

First we run BORUTA on the raw data looping it for each individual. Results are stored in a dataframe (confirmed_results) with 1 representing it is confirmed as an important variable and 0 as unimportant or tentative.

#Running BORUTA on raw data first
library(Boruta)
## Warning: package 'Boruta' was built under R version 4.3.3
# Initialize a list to store the Boruta results for each individual
BORUTAraw <- vector("list", 10)

# Loop through each individual and apply the Boruta feature selection
for(i in 1:10) {
  BORUTAraw[[i]] <- Boruta(depressedmood_state ~ loneliness_state_pmc + 
                                socintsatisfaction_state_pmc + responsiveness_state_pmc, 
                              data = rawdata_list[[i]])
}

# Print which features are important for each individual
print(BORUTAraw)
## [[1]]
## Boruta performed 58 iterations in 0.7024071 secs.
##  1 attributes confirmed important: socintsatisfaction_state_pmc;
##  2 attributes confirmed unimportant: loneliness_state_pmc,
## responsiveness_state_pmc;
## 
## [[2]]
## Boruta performed 19 iterations in 0.2374229 secs.
##  No attributes deemed important.
##  3 attributes confirmed unimportant: loneliness_state_pmc,
## responsiveness_state_pmc, socintsatisfaction_state_pmc;
## 
## [[3]]
## Boruta performed 9 iterations in 0.108454 secs.
##  2 attributes confirmed important: loneliness_state_pmc,
## socintsatisfaction_state_pmc;
##  1 attributes confirmed unimportant: responsiveness_state_pmc;
## 
## [[4]]
## Boruta performed 99 iterations in 1.156376 secs.
##  2 attributes confirmed important: loneliness_state_pmc,
## socintsatisfaction_state_pmc;
##  No attributes deemed unimportant.
##  1 tentative attributes left: responsiveness_state_pmc;
## 
## [[5]]
## Boruta performed 99 iterations in 1.168491 secs.
##  2 attributes confirmed important: loneliness_state_pmc,
## socintsatisfaction_state_pmc;
##  No attributes deemed unimportant.
##  1 tentative attributes left: responsiveness_state_pmc;
## 
## [[6]]
## Boruta performed 9 iterations in 0.103497 secs.
##  3 attributes confirmed important: loneliness_state_pmc,
## responsiveness_state_pmc, socintsatisfaction_state_pmc;
##  No attributes deemed unimportant.
## 
## [[7]]
## Boruta performed 99 iterations in 1.164967 secs.
##  2 attributes confirmed important: loneliness_state_pmc,
## socintsatisfaction_state_pmc;
##  No attributes deemed unimportant.
##  1 tentative attributes left: responsiveness_state_pmc;
## 
## [[8]]
## Boruta performed 12 iterations in 0.1410499 secs.
##  3 attributes confirmed important: loneliness_state_pmc,
## responsiveness_state_pmc, socintsatisfaction_state_pmc;
##  No attributes deemed unimportant.
## 
## [[9]]
## Boruta performed 99 iterations in 1.203344 secs.
##  2 attributes confirmed important: loneliness_state_pmc,
## responsiveness_state_pmc;
##  No attributes deemed unimportant.
##  1 tentative attributes left: socintsatisfaction_state_pmc;
## 
## [[10]]
## Boruta performed 12 iterations in 0.144587 secs.
##  1 attributes confirmed important: loneliness_state_pmc;
##  2 attributes confirmed unimportant: responsiveness_state_pmc,
## socintsatisfaction_state_pmc;
# Initialize a data frame to store the results
Confirmed_results_raw <- data.frame(
  loneliness_state_pmc = numeric(10),
  socintsatisfaction_state_pmc = numeric(10),
  responsiveness_state_pmc = numeric(10)
)

# Loop through each individual's results and fill the data frame
for(i in 1:10) {
  # Access final decision for each predictor and check if it's confirmed
  Confirmed_results_raw$loneliness_state_pmc[i] <- ifelse(BORUTAraw[[i]]$finalDecision["loneliness_state_pmc"] == "Confirmed", 1, 0)
  Confirmed_results_raw$socintsatisfaction_state_pmc[i] <- ifelse(BORUTAraw[[i]]$finalDecision["socintsatisfaction_state_pmc"] == "Confirmed", 1, 0)
  Confirmed_results_raw$responsiveness_state_pmc[i] <- ifelse(BORUTAraw[[i]]$finalDecision["responsiveness_state_pmc"] == "Confirmed", 1, 0)
}

# Print the resulting data frame
print(Confirmed_results_raw)
##    loneliness_state_pmc socintsatisfaction_state_pmc responsiveness_state_pmc
## 1                     0                            1                        0
## 2                     0                            0                        0
## 3                     1                            1                        0
## 4                     1                            1                        0
## 5                     1                            1                        0
## 6                     1                            1                        1
## 7                     1                            1                        0
## 8                     1                            1                        1
## 9                     1                            0                        1
## 10                    1                            0                        0

Can also check for sensitivity and specificity. With higher numbers indicating better sensitivity and specificty.

# Calculate specificity and sensitivity
specificity_raw <- 1 - sum(Confirmed_results_raw == 0) / (10 * 3)
sensitivity_raw <- sum(Confirmed_results_raw == 1) / (10 * 3)  

# Print specificity and sensitivity
print(specificity_raw) # False positives make this lower
## [1] 0.6
print(sensitivity_raw) # False negatives make this lower 
## [1] 0.6

Next we do the same thing for the simulated data.

# Running BORUTA for simulated data
# Initialize a list to store the Boruta results for each individual
BORUTAsim <- vector("list", 10)

# Turning simulated data frame into a data_list that can be used with BORUTA
simulated_data_list5 <- split(combined_simulated_data_list5, combined_simulated_data_list5$ID)

# Loop through each individual and apply the Boruta feature selection
for(i in 1:10) {
  BORUTAsim[[i]] <- Boruta(depressedmood_state ~ loneliness_state_pmc + 
                             socintsatisfaction_state_pmc + responsiveness_state_pmc, 
                           data = simulated_data_list5[[i]])
}

# Print which features are important for each individual
print(BORUTAsim)
## [[1]]
## Boruta performed 45 iterations in 0.7248728 secs.
##  1 attributes confirmed important: socintsatisfaction_state_pmc;
##  2 attributes confirmed unimportant: loneliness_state_pmc,
## responsiveness_state_pmc;
## 
## [[2]]
## Boruta performed 99 iterations in 1.604369 secs.
##  No attributes deemed important.
##  2 attributes confirmed unimportant: responsiveness_state_pmc,
## socintsatisfaction_state_pmc;
##  1 tentative attributes left: loneliness_state_pmc;
## 
## [[3]]
## Boruta performed 16 iterations in 0.242008 secs.
##  3 attributes confirmed important: loneliness_state_pmc,
## responsiveness_state_pmc, socintsatisfaction_state_pmc;
##  No attributes deemed unimportant.
## 
## [[4]]
## Boruta performed 70 iterations in 1.135025 secs.
##  2 attributes confirmed important: loneliness_state_pmc,
## socintsatisfaction_state_pmc;
##  1 attributes confirmed unimportant: responsiveness_state_pmc;
## 
## [[5]]
## Boruta performed 12 iterations in 0.2146649 secs.
##  2 attributes confirmed important: loneliness_state_pmc,
## responsiveness_state_pmc;
##  1 attributes confirmed unimportant: socintsatisfaction_state_pmc;
## 
## [[6]]
## Boruta performed 96 iterations in 1.70665 secs.
##  3 attributes confirmed important: loneliness_state_pmc,
## responsiveness_state_pmc, socintsatisfaction_state_pmc;
##  No attributes deemed unimportant.
## 
## [[7]]
## Boruta performed 27 iterations in 0.4260869 secs.
##  1 attributes confirmed important: loneliness_state_pmc;
##  2 attributes confirmed unimportant: responsiveness_state_pmc,
## socintsatisfaction_state_pmc;
## 
## [[8]]
## Boruta performed 9 iterations in 0.145591 secs.
##  3 attributes confirmed important: loneliness_state_pmc,
## responsiveness_state_pmc, socintsatisfaction_state_pmc;
##  No attributes deemed unimportant.
## 
## [[9]]
## Boruta performed 79 iterations in 1.263106 secs.
##  3 attributes confirmed important: loneliness_state_pmc,
## responsiveness_state_pmc, socintsatisfaction_state_pmc;
##  No attributes deemed unimportant.
## 
## [[10]]
## Boruta performed 33 iterations in 0.5287709 secs.
##  1 attributes confirmed important: loneliness_state_pmc;
##  2 attributes confirmed unimportant: responsiveness_state_pmc,
## socintsatisfaction_state_pmc;
# Initialize a data frame to store the results
Confirmed_results_sim <- data.frame(
  loneliness_state_pmc = numeric(10),
  socintsatisfaction_state_pmc = numeric(10),
  responsiveness_state_pmc = numeric(10)
)

# Loop through each individual's results and fill the data frame
for(i in 1:10) {
  # Access final decision for each predictor and check if it's confirmed
  Confirmed_results_sim$loneliness_state_pmc[i] <- ifelse(BORUTAsim[[i]]$finalDecision["loneliness_state_pmc"] == "Confirmed", 1, 0)
  Confirmed_results_sim$socintsatisfaction_state_pmc[i] <- ifelse(BORUTAsim[[i]]$finalDecision["socintsatisfaction_state_pmc"] == "Confirmed", 1, 0)
  Confirmed_results_sim$responsiveness_state_pmc[i] <- ifelse(BORUTAsim[[i]]$finalDecision["responsiveness_state_pmc"] == "Confirmed", 1, 0)
}

# Print the resulting data frame
print(Confirmed_results_sim)
##    loneliness_state_pmc socintsatisfaction_state_pmc responsiveness_state_pmc
## 1                     0                            1                        0
## 2                     0                            0                        0
## 3                     1                            1                        1
## 4                     1                            1                        0
## 5                     1                            0                        1
## 6                     1                            1                        1
## 7                     1                            0                        0
## 8                     1                            1                        1
## 9                     1                            1                        1
## 10                    1                            0                        0
# Calculate specificity and sensitivity
specificity_sim <- 1 - sum(Confirmed_results_sim == 0) / (10 * 3)
sensitivity_sim <- sum(Confirmed_results_sim == 1) / (10 * 3)  

# Print specificity and sensitivity
print(specificity_sim) # False positives make this lower
## [1] 0.6333333
print(sensitivity_sim) # False negatives make this lower 
## [1] 0.6333333

Compare BORUTA results raw vs sim

Finally we can then combined the confirmed_results of the raw and simulated data into one data frame for easier comparison.

# Combine the confirmed results from raw and simulated data side by side
combined_results_BORUTA <- data.frame(loneliness_state_pmc_raw = Confirmed_results_raw$loneliness_state_pmc,
  socintsatisfaction_state_pmc_raw = Confirmed_results_raw$socintsatisfaction_state_pmc,
  responsiveness_state_pmc_raw = Confirmed_results_raw$responsiveness_state_pmc,
  
  loneliness_state_pmc_sim = Confirmed_results_sim$loneliness_state_pmc,
  socintsatisfaction_state_pmc_sim = Confirmed_results_sim$socintsatisfaction_state_pmc,
  responsiveness_state_pmc_sim = Confirmed_results_sim$responsiveness_state_pmc
)

# Print the combined results
print(combined_results_BORUTA)
##    loneliness_state_pmc_raw socintsatisfaction_state_pmc_raw
## 1                         0                                1
## 2                         0                                0
## 3                         1                                1
## 4                         1                                1
## 5                         1                                1
## 6                         1                                1
## 7                         1                                1
## 8                         1                                1
## 9                         1                                0
## 10                        1                                0
##    responsiveness_state_pmc_raw loneliness_state_pmc_sim
## 1                             0                        0
## 2                             0                        0
## 3                             0                        1
## 4                             0                        1
## 5                             0                        1
## 6                             1                        1
## 7                             0                        1
## 8                             1                        1
## 9                             1                        1
## 10                            0                        1
##    socintsatisfaction_state_pmc_sim responsiveness_state_pmc_sim
## 1                                 1                            0
## 2                                 0                            0
## 3                                 1                            1
## 4                                 1                            0
## 5                                 0                            1
## 6                                 1                            1
## 7                                 0                            0
## 8                                 1                            1
## 9                                 1                            1
## 10                                0                            0