Ievads
Biedrības “Latvijas SOS Bērnu ciemata asociācija” programmas ‘Bērnam drošs un draudzīgs bērnudārzs” ietvaros tika izstrādāta bērna novērojuma un riska izvērtējuma metodika e-vidē “Bērna labsajūtas mērījums” (turpmāk, instruments). Instrumenta mērķis veicināt preventīvu speciālistu piesaisti bērniem ar grūtībām attīstības procesā. Instrumenta izstrādē tika veikti vairāki pilotprojekti, piesaistot praktiķus, ekspertus un pētniekus laika posmā no 2016. gada līdz 2024. gadam, kad tika izveidota instrumenta gala versija un pamatota tā ticamība un validitāte. Instrumenta saturs sastāv no 4 skalām jeb apakštēmām – Bērna uzvedība, Bērns mācību procesā, Bērna psihoemeocionālā attīstība un Bērns saskarsmē un komunikācijā.
Instruments paredzēts, lai PII darbinieki bez īpašas sagatavošanās varētu ērti un ātri veikt sistemātiskus novērtējumus par bērniem ar mērķi identificēt gadījumus, kuros nepieciešams piesaistīt speciālistu. Novērtējumu parasti veic 2 pedagogi (vai pedagogs un auklīte) par vienu un to pašu bērnu. Kopējais bērna novērtējums tiek iegūts pēc šādiem principiem: 1. tiek saskaitīts aritmētiskais vidējais rezultāts skalu līmenī starp visiem vērtētājiem; 2. katrai skalai tiek noteikta kategorija no 3 iespējamām – zaļš, dzeltens un sarkans; 3. kopējā kategorija tiek noteikta pēc maksimālās kategorijas apakšskalā, piemēram, ja visās skalās bērnam ir zaļā kategorija, bet vienā dzeltenā, tad kopējā kategorija ir dzeltents. Izmantojot instrumentu plašākā mērogā, tam vajadzētu identificēt ~6% sarkanās kategorijas bērnus un ~20% dzeltenās kategorijas bērnus.
Šajā dokumentā kodolīgi izklāstīts instrumenta ticamības un validitātes pamatojums, balstoties uz analīzi, kas veikta, izmantojot pilotprojektos uzkrāto informāciju, kopā izmantojot 41012 novērojumus. Dokumenta nobeigumā ir atzinums, kurā tiek norādīts, ka instruments ir pielietojams tā paredzētajam mērķim.
Pamatdatu ielāde, atlase un sagatavošana
load("C:/privati/SOSinventory/SOSinventory/evans.RData")
#1 pamatatlase
nrow(evans) #sākumā
## [1] 68825
evans<-subset(evans,stype=='MAINSURVEY'&sstatus=='2')
nrow(evans) #beigās
## [1] 56739
#2 pildīšanas laiks
{
nrow(evans); evans<-subset(evans, is.na(eminutes)==FALSE,); nrow(evans)
nrow(evans);evans<-subset(evans,eminutes>quantile(evans$eminutes, probs = c(0.05)),);nrow(evans)
}
## [1] 49806
#izņemam testa gadījumus:
{
nrow(evans);evans<-subset(evans,gsch!='999999'&gsch!='999997'&gsch!='999998', );nrow(evans)
}
## [1] 49775
#Definējam skalas
{
B<-c('B1','B2','B3','B4','B5','B6','B7','B8','B9','B10','B11','B12','B13','B14')
EM<-c('EM1','EM2','EM3','EM4','EM5','EM6','EM7')
ED<-c('ED1','ED2','ED3','ED4','ED5','ED6','ED7','S1')
C<-c('C1','C2','C3','C4','C5','C6','C7','C8','C9','C10')
}
# aizstājam atbildes ar vērtību 5 un 3 ar NA
{
kolonas5miss<-c(B,EM,ED,C)
evans[, c(kolonas5miss)][evans[, kolonas5miss] == '5'] <- NA
}
evans$vecums<-(as.Date(evans$send)-as.Date(evans$kbd))/365.42
quantile(evans$vecums, c(0.01,0.99))
## Time differences in days
## 1% 99%
## 2.460183 7.733567
nrow(evans);evans<-subset(evans,vecums>2.4&vecums<=8.5);nrow(evans)
## [1] 49775
## [1] 49274
for (i in 1:length(B)){
evans[,B[i]]<-4-evans[,B[i]]
}
for (i in 1:length(ED)){
evans[,ED[i]]<-4-evans[,ED[i]]
}
for (i in 1:length(EM)){
evans[,EM[i]]<-4-evans[,EM[i]]
}
for (i in 1:length(C)){
evans[,C[i]]<-4-evans[,C[i]]
}
edx<-(evans[,c(B,EM,ED,C,"kid_id","id","group_id","user_id","kgend","gsch","survey_id","vecums")])
#noņemam gadījumus, kad izstrūkst dati
nrow(edx);edx <- edx[complete.cases(edx[, names(edx)[1:40]]), ]; nrow(edx)
## [1] 49274
## [1] 41012
edx$B <- Reduce(`+`, edx[B])
edx$C <- Reduce(`+`, edx[C])
edx$EM <-Reduce(`+`, edx[EM])
edx$ED <-Reduce(`+`, edx[ED])
edx$object_id<-paste(as.character(edx$survey_id),as.character(edx$group_id),as.character(edx$kid_id),sep='')
edx$evcase_id<-paste(as.character(edx$survey_id),as.character(edx$group_id),sep='')
edx$evaluator_id<-edx$user_id
edx$evaluation<-edx$B
edx <- edx %>% arrange(as.numeric(evcase_id))
#datu izskats
head(edx)
## B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 EM1 EM2 EM3 EM4 EM5 EM6 EM7
## 1 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0
## 2 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0
## ED1 ED2 ED3 ED4 ED5 ED6 ED7 S1 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 kid_id id
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61 6
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 1741
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61 1745
## 4 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 65 1747
## 5 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 69 1748
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 72 1749
## group_id user_id kgend gsch survey_id vecums B C EM ED object_id
## 1 12 39 1 32 2 3.324941 days 5 0 0 0 21261
## 2 12 32 2 32 2 2.720158 days 3 0 0 0 21254
## 3 12 32 1 32 2 3.324941 days 2 0 0 0 21261
## 4 12 32 2 32 2 2.681846 days 0 4 0 0 21265
## 5 12 32 1 32 2 3.751847 days 2 0 0 2 21269
## 6 12 32 1 32 2 3.916042 days 4 0 1 0 21272
## evcase_id evaluator_id evaluation
## 1 212 39 5
## 2 212 32 3
## 3 212 32 2
## 4 212 32 0
## 5 212 32 2
## 6 212 32 4
Skalu psihometriskās īpašības
Skalu saturs un iekšējā saskaņotība
sjt.itemanalysis(subset(edx,,.GlobalEnv$B),factor.groups.titles='Bērna uzvedība')
Bērna uzvedība
|
Row
|
Missings
|
Mean
|
SD
|
Skew
|
Item Difficulty
|
Item Discrimination
|
α if deleted
|
|
B1
|
0.00 %
|
0.71
|
1.06
|
1.2
|
0.24
|
0.64
|
0.91
|
|
B2
|
0.00 %
|
0.63
|
0.91
|
1.27
|
0.21
|
0.77
|
0.90
|
|
B3
|
0.00 %
|
0.57
|
0.95
|
1.5
|
0.19
|
0.70
|
0.91
|
|
B4
|
0.00 %
|
0.3
|
0.69
|
2.42
|
0.10
|
0.77
|
0.90
|
|
B5
|
0.00 %
|
0.28
|
0.64
|
2.45
|
0.09
|
0.74
|
0.90
|
|
B6
|
0.00 %
|
0.3
|
0.66
|
2.36
|
0.10
|
0.74
|
0.90
|
|
B7
|
0.00 %
|
0.18
|
0.49
|
3.05
|
0.06
|
0.57
|
0.91
|
|
B8
|
0.00 %
|
0.07
|
0.34
|
5.39
|
0.02
|
0.44
|
0.91
|
|
B9
|
0.00 %
|
0.09
|
0.38
|
4.89
|
0.03
|
0.56
|
0.91
|
|
B10
|
0.00 %
|
0.25
|
0.57
|
2.53
|
0.08
|
0.58
|
0.91
|
|
B11
|
0.00 %
|
0.21
|
0.56
|
3.05
|
0.07
|
0.71
|
0.90
|
|
B12
|
0.00 %
|
0.4
|
0.72
|
1.85
|
0.13
|
0.57
|
0.91
|
|
B13
|
0.00 %
|
0.24
|
0.58
|
2.57
|
0.08
|
0.66
|
0.91
|
|
B14
|
0.00 %
|
0.53
|
0.77
|
1.41
|
0.18
|
0.57
|
0.91
|
|
Mean inter-item-correlation=0.456 · Cronbach’s α=0.914
|
sjt.itemanalysis(subset(edx,,.GlobalEnv$ED),factor.groups.titles='Bērns mācību procesā')
Bērns mācību procesā
|
Row
|
Missings
|
Mean
|
SD
|
Skew
|
Item Difficulty
|
Item Discrimination
|
α if deleted
|
|
ED1
|
0.00 %
|
0.68
|
0.93
|
1.2
|
0.23
|
0.68
|
0.85
|
|
ED2
|
0.00 %
|
0.43
|
0.77
|
1.78
|
0.14
|
0.73
|
0.84
|
|
ED3
|
0.00 %
|
0.43
|
0.77
|
1.8
|
0.14
|
0.69
|
0.85
|
|
ED4
|
0.00 %
|
0.45
|
0.78
|
1.76
|
0.15
|
0.77
|
0.84
|
|
ED5
|
0.00 %
|
0.15
|
0.5
|
3.63
|
0.05
|
0.59
|
0.86
|
|
ED6
|
0.00 %
|
0.19
|
0.54
|
3.23
|
0.06
|
0.69
|
0.85
|
|
ED7
|
0.00 %
|
0.14
|
0.46
|
3.78
|
0.05
|
0.45
|
0.87
|
|
S1
|
0.00 %
|
0.23
|
0.58
|
2.8
|
0.08
|
0.48
|
0.87
|
|
Mean inter-item-correlation=0.462 · Cronbach’s α=0.870
|
sjt.itemanalysis(subset(edx,,.GlobalEnv$EM),factor.groups.titles='Bērna psihoemocionālā attīstība')
Bērna psihoemocionālā attīstība
|
Row
|
Missings
|
Mean
|
SD
|
Skew
|
Item Difficulty
|
Item Discrimination
|
α if deleted
|
|
EM1
|
0.00 %
|
0.36
|
0.69
|
2.04
|
0.12
|
0.54
|
0.74
|
|
EM2
|
0.00 %
|
0.15
|
0.46
|
3.44
|
0.05
|
0.56
|
0.73
|
|
EM3
|
0.00 %
|
0.28
|
0.61
|
2.38
|
0.09
|
0.57
|
0.73
|
|
EM4
|
0.00 %
|
0.2
|
0.53
|
3.1
|
0.07
|
0.45
|
0.75
|
|
EM5
|
0.00 %
|
0.16
|
0.5
|
3.68
|
0.05
|
0.40
|
0.76
|
|
EM6
|
0.00 %
|
0.17
|
0.49
|
3.33
|
0.06
|
0.64
|
0.72
|
|
EM7
|
0.00 %
|
0.11
|
0.45
|
4.8
|
0.04
|
0.34
|
0.77
|
|
Mean inter-item-correlation=0.329 · Cronbach’s α=0.772
|
sjt.itemanalysis(subset(edx,,.GlobalEnv$C),factor.groups.titles='Bērns saskarsmē un komunikācijā')
Bērns saskarsmē un komunikācijā
|
Row
|
Missings
|
Mean
|
SD
|
Skew
|
Item Difficulty
|
Item Discrimination
|
α if deleted
|
|
C1
|
0.00 %
|
0.32
|
0.71
|
2.42
|
0.11
|
0.65
|
0.88
|
|
C2
|
0.00 %
|
0.23
|
0.64
|
3.07
|
0.08
|
0.72
|
0.88
|
|
C3
|
0.00 %
|
0.18
|
0.57
|
3.51
|
0.06
|
0.74
|
0.87
|
|
C4
|
0.00 %
|
0.14
|
0.47
|
3.93
|
0.05
|
0.68
|
0.88
|
|
C5
|
0.00 %
|
0.17
|
0.52
|
3.49
|
0.06
|
0.64
|
0.88
|
|
C6
|
0.00 %
|
0.22
|
0.61
|
3.21
|
0.07
|
0.64
|
0.88
|
|
C7
|
0.00 %
|
0.2
|
0.56
|
3.11
|
0.07
|
0.70
|
0.88
|
|
C8
|
0.00 %
|
0.1
|
0.42
|
4.68
|
0.03
|
0.50
|
0.89
|
|
C9
|
0.00 %
|
0.07
|
0.33
|
5.94
|
0.02
|
0.44
|
0.89
|
|
C10
|
0.00 %
|
0.12
|
0.43
|
4.41
|
0.04
|
0.66
|
0.88
|
|
Mean inter-item-correlation=0.458 · Cronbach’s α=0.892
|
Skalu svērtais rezultāts
describe(subset(edx,,c("B","ED","EM","C")))
## vars n mean sd median trimmed mad min max range skew kurtosis se
## B 1 41012 4.76 6.67 2 3.32 2.97 0 42 42 2.05 4.48 0.03
## ED 2 41012 2.71 3.96 1 1.83 1.48 0 24 24 2.09 4.71 0.02
## EM 3 41012 1.41 2.45 0 0.84 0.00 0 21 21 2.77 9.87 0.01
## C 4 41012 1.74 3.84 0 0.75 0.00 0 30 30 3.37 13.35 0.02
edx$BS<-edx$B/14
edx$EDS<-edx$ED/8
edx$EMS<-edx$EM/7
edx$CS<-edx$C/10
describe(subset(edx,,c("BS","EDS","EMS","CS")))
## vars n mean sd median trimmed mad min max range skew kurtosis se
## BS 1 41012 0.34 0.48 0.14 0.24 0.21 0 3 3 2.05 4.48 0
## EDS 2 41012 0.34 0.50 0.12 0.23 0.19 0 3 3 2.09 4.71 0
## EMS 3 41012 0.20 0.35 0.00 0.12 0.00 0 3 3 2.77 9.87 0
## CS 4 41012 0.17 0.38 0.00 0.07 0.00 0 3 3 3.37 13.35 0
plot(density(na.omit(edx$BS),bw=0.1), main="Uzvedības skalas blīvuma grafiks", xlab="Rezultāts", ylab="Blīvums")

plot(density(na.omit(edx$EDS),bw=0.1), main="Izglītības skalas blīvuma grafiks", xlab="Rezultāts", ylab="Blīvums")

plot(density(na.omit(edx$EMS),bw=0.1), main="Emocionalitātes skalas blīvuma grafiks", xlab="Rezultāts", ylab="Blīvums")

plot(density(na.omit(edx$CS),bw=0.1), main="Komunikācijas skalas blīvuma grafiks", xlab="Rezultāts", ylab="Blīvums")

Detalizētā pantu un sadalītās skalas ticamības analīze
Bērna uzvedība
Ss<-na.omit(subset(edx,,.GlobalEnv$B)); nrow(Ss)
## [1] 41012
Ss[] <- lapply(Ss, as.numeric); alpha(Ss)
##
## Reliability analysis
## Call: alpha(x = Ss)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.91 0.92 0.93 0.46 12 0.00057 0.34 0.48 0.45
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.91 0.91 0.91
## Duhachek 0.91 0.91 0.91
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## B1 0.91 0.92 0.92 0.46 11 0.00059 0.0112 0.45
## B2 0.90 0.91 0.92 0.45 10 0.00066 0.0108 0.44
## B3 0.91 0.91 0.92 0.45 11 0.00063 0.0119 0.44
## B4 0.90 0.91 0.92 0.44 10 0.00064 0.0108 0.44
## B5 0.90 0.91 0.92 0.44 10 0.00063 0.0112 0.44
## B6 0.90 0.91 0.92 0.44 10 0.00063 0.0113 0.44
## B7 0.91 0.92 0.93 0.46 11 0.00059 0.0126 0.46
## B8 0.91 0.92 0.93 0.48 12 0.00058 0.0093 0.46
## B9 0.91 0.92 0.92 0.46 11 0.00059 0.0123 0.45
## B10 0.91 0.92 0.93 0.46 11 0.00059 0.0124 0.45
## B11 0.91 0.91 0.92 0.45 11 0.00062 0.0120 0.44
## B12 0.91 0.92 0.92 0.46 11 0.00059 0.0118 0.46
## B13 0.91 0.92 0.92 0.45 11 0.00061 0.0124 0.44
## B14 0.91 0.92 0.93 0.47 11 0.00058 0.0125 0.46
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## B1 41012 0.73 0.67 0.65 0.64 0.711 1.06
## B2 41012 0.82 0.79 0.78 0.77 0.628 0.91
## B3 41012 0.77 0.74 0.71 0.71 0.574 0.95
## B4 41012 0.81 0.82 0.81 0.77 0.299 0.69
## B5 41012 0.78 0.79 0.79 0.74 0.281 0.64
## B6 41012 0.78 0.79 0.79 0.74 0.298 0.66
## B7 41012 0.62 0.65 0.61 0.57 0.178 0.49
## B8 41012 0.48 0.54 0.49 0.44 0.073 0.34
## B9 41012 0.60 0.66 0.62 0.56 0.090 0.38
## B10 41012 0.64 0.65 0.61 0.58 0.249 0.57
## B11 41012 0.75 0.76 0.75 0.71 0.206 0.56
## B12 41012 0.64 0.64 0.61 0.57 0.400 0.72
## B13 41012 0.71 0.72 0.70 0.66 0.244 0.58
## B14 41012 0.65 0.63 0.59 0.57 0.525 0.77
##
## Non missing response frequency for each item
## 0 1 2 3 miss
## B1 0.63 0.15 0.10 0.12 0
## B2 0.61 0.21 0.12 0.06 0
## B3 0.68 0.15 0.09 0.08 0
## B4 0.81 0.11 0.06 0.02 0
## B5 0.81 0.13 0.05 0.02 0
## B6 0.79 0.13 0.05 0.02 0
## B7 0.86 0.11 0.03 0.01 0
## B8 0.95 0.04 0.01 0.00 0
## B9 0.93 0.05 0.01 0.01 0
## B10 0.81 0.14 0.04 0.01 0
## B11 0.86 0.10 0.04 0.01 0
## B12 0.71 0.20 0.07 0.02 0
## B13 0.82 0.13 0.04 0.01 0
## B14 0.62 0.26 0.09 0.03 0
plot(reliability(Ss))
## keys not specified, all items will be scored

Bērns mācību procesā
Ss<-na.omit(subset(edx,,.GlobalEnv$ED)); nrow(Ss)
## [1] 41012
Ss[] <- lapply(Ss, as.numeric); alpha(Ss)
##
## Reliability analysis
## Call: alpha(x = Ss)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.87 0.87 0.87 0.46 6.9 0.00087 0.34 0.5 0.44
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.87 0.87 0.87
## Duhachek 0.87 0.87 0.87
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## ED1 0.85 0.85 0.85 0.45 5.8 0.00103 0.015 0.43
## ED2 0.84 0.85 0.85 0.45 5.6 0.00108 0.013 0.44
## ED3 0.85 0.85 0.85 0.45 5.8 0.00104 0.016 0.44
## ED4 0.84 0.84 0.84 0.43 5.4 0.00113 0.013 0.40
## ED5 0.86 0.86 0.85 0.47 6.2 0.00094 0.016 0.46
## ED6 0.85 0.85 0.84 0.45 5.6 0.00099 0.016 0.40
## ED7 0.87 0.88 0.87 0.50 7.0 0.00089 0.013 0.50
## S1 0.87 0.87 0.87 0.50 6.9 0.00089 0.015 0.50
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## ED1 41012 0.80 0.76 0.72 0.68 0.68 0.93
## ED2 41012 0.81 0.78 0.76 0.73 0.43 0.77
## ED3 41012 0.79 0.76 0.73 0.69 0.43 0.77
## ED4 41012 0.85 0.83 0.81 0.77 0.45 0.78
## ED5 41012 0.67 0.70 0.66 0.59 0.15 0.50
## ED6 41012 0.75 0.79 0.76 0.69 0.19 0.54
## ED7 41012 0.54 0.59 0.49 0.45 0.14 0.46
## S1 41012 0.59 0.61 0.51 0.48 0.23 0.58
##
## Non missing response frequency for each item
## 0 1 2 3 miss
## ED1 0.58 0.24 0.12 0.07 0
## ED2 0.71 0.18 0.08 0.03 0
## ED3 0.71 0.18 0.08 0.03 0
## ED4 0.70 0.19 0.08 0.04 0
## ED5 0.90 0.07 0.03 0.01 0
## ED6 0.87 0.09 0.03 0.01 0
## ED7 0.90 0.07 0.02 0.01 0
## S1 0.83 0.12 0.04 0.01 0
plot(reliability(Ss))
## keys not specified, all items will be scored

Bērna psihoemocionālā attīstība
Ss<-na.omit(subset(edx,,.GlobalEnv$EM)); nrow(Ss)
## [1] 41012
Ss[] <- lapply(Ss, as.numeric); alpha(Ss)
##
## Reliability analysis
## Call: alpha(x = Ss)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.77 0.77 0.77 0.33 3.4 0.0017 0.2 0.35 0.31
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.77 0.77 0.78
## Duhachek 0.77 0.77 0.78
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## EM1 0.74 0.74 0.72 0.32 2.8 0.0020 0.0107 0.31
## EM2 0.73 0.74 0.72 0.32 2.8 0.0020 0.0110 0.31
## EM3 0.73 0.73 0.71 0.31 2.7 0.0020 0.0129 0.28
## EM4 0.75 0.76 0.74 0.34 3.1 0.0018 0.0129 0.35
## EM5 0.76 0.77 0.75 0.35 3.3 0.0018 0.0138 0.36
## EM6 0.72 0.72 0.70 0.30 2.5 0.0021 0.0116 0.27
## EM7 0.77 0.78 0.76 0.37 3.5 0.0017 0.0096 0.35
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## EM1 41012 0.72 0.69 0.63 0.54 0.36 0.69
## EM2 41012 0.68 0.69 0.63 0.56 0.15 0.46
## EM3 41012 0.73 0.71 0.65 0.57 0.28 0.61
## EM4 41012 0.62 0.61 0.51 0.45 0.20 0.53
## EM5 41012 0.56 0.57 0.45 0.40 0.16 0.50
## EM6 41012 0.75 0.76 0.72 0.64 0.17 0.49
## EM7 41012 0.49 0.53 0.39 0.34 0.11 0.45
##
## Non missing response frequency for each item
## 0 1 2 3 miss
## EM1 0.74 0.18 0.06 0.02 0
## EM2 0.88 0.09 0.02 0.01 0
## EM3 0.79 0.15 0.05 0.01 0
## EM4 0.86 0.10 0.03 0.01 0
## EM5 0.89 0.07 0.03 0.01 0
## EM6 0.87 0.09 0.03 0.01 0
## EM7 0.94 0.04 0.02 0.01 0
plot(reliability(Ss))
## keys not specified, all items will be scored

Bērns saskarsmē un komunikācijā
Ss<-na.omit(subset(edx,,.GlobalEnv$C)); nrow(Ss)
## [1] 41012
Ss[] <- lapply(Ss, as.numeric); alpha(Ss)
##
## Reliability analysis
## Call: alpha(x = Ss)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.89 0.89 0.91 0.46 8.5 0.00074 0.17 0.38 0.44
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.89 0.89 0.89
## Duhachek 0.89 0.89 0.89
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## C1 0.88 0.88 0.89 0.46 7.6 0.00082 0.013 0.45
## C2 0.88 0.88 0.89 0.45 7.2 0.00087 0.013 0.43
## C3 0.87 0.88 0.89 0.44 7.2 0.00087 0.012 0.43
## C4 0.88 0.88 0.89 0.45 7.4 0.00083 0.012 0.44
## C5 0.88 0.88 0.89 0.46 7.6 0.00082 0.014 0.46
## C6 0.88 0.88 0.89 0.46 7.6 0.00081 0.014 0.44
## C7 0.88 0.88 0.89 0.45 7.3 0.00085 0.013 0.44
## C8 0.89 0.89 0.90 0.48 8.3 0.00077 0.014 0.48
## C9 0.89 0.90 0.91 0.49 8.6 0.00076 0.011 0.48
## C10 0.88 0.88 0.90 0.46 7.5 0.00082 0.015 0.44
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## C1 41012 0.75 0.72 0.69 0.65 0.317 0.71
## C2 41012 0.80 0.78 0.77 0.73 0.227 0.64
## C3 41012 0.80 0.79 0.78 0.74 0.182 0.57
## C4 41012 0.75 0.75 0.73 0.68 0.137 0.47
## C5 41012 0.72 0.72 0.68 0.64 0.171 0.52
## C6 41012 0.73 0.72 0.69 0.64 0.216 0.61
## C7 41012 0.77 0.77 0.75 0.70 0.204 0.56
## C8 41012 0.58 0.62 0.55 0.50 0.103 0.42
## C9 41012 0.51 0.56 0.49 0.44 0.067 0.33
## C10 41012 0.72 0.73 0.69 0.66 0.116 0.43
##
## Non missing response frequency for each item
## 0 1 2 3 miss
## C1 0.80 0.13 0.05 0.03 0
## C2 0.86 0.08 0.03 0.03 0
## C3 0.89 0.07 0.03 0.02 0
## C4 0.91 0.06 0.02 0.01 0
## C5 0.88 0.08 0.02 0.01 0
## C6 0.86 0.09 0.02 0.03 0
## C7 0.86 0.09 0.03 0.02 0
## C8 0.93 0.04 0.02 0.01 0
## C9 0.95 0.03 0.01 0.00 0
## C10 0.92 0.06 0.02 0.01 0
plot(reliability(Ss))
## keys not specified, all items will be scored

Vērtētāju savstarpējā ticamība
ratings<-as.data.frame(names(table(edx$evcase_id)));colnames(ratings)<-'evcase_id'
#uzvedības
RRB<-as.data.frame(names(table(edx$evcase_id)));colnames(RRB)<-'evcase_id'
RRB$rater1<-NA;RRB$rater2<-NA;RRB<-subset(RRB,evcase_id<0)
for (i in 1:nrow(ratings)){
data<-subset(edx,evcase_id==ratings[i,"evcase_id"],c('evaluator_id','object_id','B'))
data <- data %>%distinct(evaluator_id, object_id, .keep_all = TRUE)
transformed_data <- data %>%
pivot_wider(names_from = evaluator_id, values_from = B) %>%
setNames(c("object_id", paste0("rater", seq_along(.[-1]))))
#transformed_data_cleaned <- transformed_data %>% select_if(~ !any(is.na(.)))
transformed_data<-na.omit(transformed_data)
if(ncol(transformed_data)>=3&nrow(transformed_data)>0){
RRB<-rbind(RRB,transformed_data[,1:3])
}
}
RRBi <- RRB %>%select(contains("rater")); icc(RRB, model="t",type='a',unit='a')
## Average Score Intraclass Correlation
##
## Model: twoway
## Type : agreement
##
## Subjects = 15207
## Raters = 3
## ICC(A,3) = NA
##
## F-Test, H0: r0 = 0 ; H1: r0 > 0
## F(15206,NA) = NA , p = NA
##
## 95%-Confidence Interval for ICC Population Values:
## NA < ICC < NA
icc(RRBi,model="t",type='a',unit='a')
## Average Score Intraclass Correlation
##
## Model: twoway
## Type : agreement
##
## Subjects = 15207
## Raters = 2
## ICC(A,2) = 0.78
##
## F-Test, H0: r0 = 0 ; H1: r0 > 0
## F(15206,14654) = 4.56 , p = 0
##
## 95%-Confidence Interval for ICC Population Values:
## 0.773 < ICC < 0.787
#izglītība
{
RRED<-as.data.frame(names(table(edx$evcase_id)));colnames(RRED)<-'evcase_id'
RRED$rater1<-NA;RRED$rater2<-NA;RRED<-subset(RRED,evcase_id<0)
for (i in 1:nrow(ratings)){
data<-subset(edx,evcase_id==ratings[i,"evcase_id"],c('evaluator_id','object_id','ED'))
data <- data %>%distinct(evaluator_id, object_id, .keep_all = TRUE)
transformed_data <- data %>%
pivot_wider(names_from = evaluator_id, values_from = ED) %>%
setNames(c("object_id", paste0("rater", seq_along(.[-1]))))
#transformed_data_cleaned <- transformed_data %>% select_if(~ !any(is.na(.)))
transformed_data<-na.omit(transformed_data)
if(ncol(transformed_data)>=3&nrow(transformed_data)>0){
RRED<-rbind(RRED,transformed_data[,1:3])
}
}
RREDi <- RRED %>%select(contains("rater"));
icc(RREDi, model="t",type='a',unit='a')
}
## Average Score Intraclass Correlation
##
## Model: twoway
## Type : agreement
##
## Subjects = 15207
## Raters = 2
## ICC(A,2) = 0.75
##
## F-Test, H0: r0 = 0 ; H1: r0 > 0
## F(15206,15088) = 4 , p = 0
##
## 95%-Confidence Interval for ICC Population Values:
## 0.742 < ICC < 0.758
#emocijas
{
RREM<-as.data.frame(names(table(edx$evcase_id)));colnames(RREM)<-'evcase_id'
RREM$rater1<-NA;RREM$rater2<-NA;RREM<-subset(RREM,evcase_id<0)
for (i in 1:nrow(ratings)){
data<-subset(edx,evcase_id==ratings[i,"evcase_id"],c('evaluator_id','object_id','EM'))
data <- data %>%distinct(evaluator_id, object_id, .keep_all = TRUE)
transformed_data <- data %>%
pivot_wider(names_from = evaluator_id, values_from = EM) %>%
setNames(c("object_id", paste0("rater", seq_along(.[-1]))))
#transformed_data_cleaned <- transformed_data %>% select_if(~ !any(is.na(.)))
transformed_data<-na.omit(transformed_data)
if(ncol(transformed_data)>=3&nrow(transformed_data)>0){
RREM<-rbind(RREM,transformed_data[,1:3])
}
}
RREMi <- RREM %>%select(contains("rater"));
icc(RREMi, model="t",type='a',unit='a')
}
## Average Score Intraclass Correlation
##
## Model: twoway
## Type : agreement
##
## Subjects = 15207
## Raters = 2
## ICC(A,2) = 0.654
##
## F-Test, H0: r0 = 0 ; H1: r0 > 0
## F(15206,15034) = 2.89 , p = 0
##
## 95%-Confidence Interval for ICC Population Values:
## 0.643 < ICC < 0.665
#komunikācija
{
RRC<-as.data.frame(names(table(edx$evcase_id)));colnames(RRC)<-'evcase_id'
RRC$rater1<-NA;RRC$rater2<-NA;RRC<-subset(RRC,evcase_id<0)
for (i in 1:nrow(ratings)){
data<-subset(edx,evcase_id==ratings[i,"evcase_id"],c('evaluator_id','object_id','C'))
data <- data %>%distinct(evaluator_id, object_id, .keep_all = TRUE)
transformed_data <- data %>%
pivot_wider(names_from = evaluator_id, values_from = C) %>%
setNames(c("object_id", paste0("rater", seq_along(.[-1]))))
#transformed_data_cleaned <- transformed_data %>% select_if(~ !any(is.na(.)))
transformed_data<-na.omit(transformed_data)
if(ncol(transformed_data)>=3&nrow(transformed_data)>0){
RRC<-rbind(RRC,transformed_data[,1:3])
}
}
RRCi <- RRC %>%select(contains("rater"));
icc(RRCi, model="t",type='a',unit='a')
}
## Average Score Intraclass Correlation
##
## Model: twoway
## Type : agreement
##
## Subjects = 15207
## Raters = 2
## ICC(A,2) = 0.704
##
## F-Test, H0: r0 = 0 ; H1: r0 > 0
## F(15206,15080) = 3.38 , p = 0
##
## 95%-Confidence Interval for ICC Population Values:
## 0.695 < ICC < 0.714
Faktoru analīze
fp<-fa.poly(edx[,1:39],nfactors=4,rotate="oblimin",fm='wls')
print(fp, cut = 0.2)
## Factor Analysis using method = wls
## Call: fa.poly(x = edx[, 1:39], nfactors = 4, rotate = "oblimin", fm = "wls")
## Standardized loadings (pattern matrix) based upon correlation matrix
## WLS1 WLS2 WLS4 WLS3 h2 u2 com
## B1 0.61 0.27 0.61 0.39 1.5
## B2 0.68 0.35 0.82 0.18 1.5
## B3 0.64 -0.21 0.31 0.72 0.28 1.9
## B4 0.82 0.82 0.18 1.1
## B5 0.90 0.82 0.18 1.0
## B6 0.88 0.81 0.19 1.0
## B7 0.71 0.57 0.43 1.1
## B8 0.73 0.56 0.44 1.1
## B9 0.90 0.75 0.25 1.1
## B10 0.63 0.56 0.44 1.2
## B11 0.75 0.79 0.21 1.1
## B12 0.58 0.43 0.60 0.40 1.8
## B13 0.74 0.21 0.68 0.32 1.2
## B14 0.59 -0.20 0.31 0.51 0.49 1.8
## EM1 -0.32 0.43 0.50 0.72 0.28 2.9
## EM2 0.33 0.54 0.61 0.39 1.8
## EM3 0.76 0.68 0.32 1.1
## EM4 0.57 0.41 0.59 1.1
## EM5 0.62 0.47 0.53 1.1
## EM6 0.21 0.70 0.71 0.29 1.2
## EM7 0.23 0.26 0.29 0.40 0.60 3.2
## ED1 0.80 0.77 0.23 1.1
## ED2 0.87 0.76 0.24 1.0
## ED3 0.81 0.72 0.28 1.1
## ED4 0.93 0.82 0.18 1.0
## ED5 0.28 0.51 0.66 0.34 1.8
## ED6 0.21 0.68 0.76 0.24 1.3
## ED7 0.27 0.41 0.52 0.48 2.3
## S1 0.50 0.32 0.50 0.50 1.7
## C1 -0.30 0.81 0.80 0.20 1.3
## C2 0.87 0.79 0.21 1.0
## C3 0.82 0.79 0.21 1.0
## C4 0.75 0.73 0.27 1.1
## C5 0.81 0.68 0.32 1.1
## C6 0.78 0.67 0.33 1.1
## C7 0.76 0.73 0.27 1.1
## C8 0.22 0.67 0.62 0.38 1.3
## C9 0.29 0.66 0.59 0.41 1.4
## C10 0.84 0.81 0.19 1.1
##
## WLS1 WLS2 WLS4 WLS3
## SS loadings 9.08 7.72 5.57 3.96
## Proportion Var 0.23 0.20 0.14 0.10
## Cumulative Var 0.23 0.43 0.57 0.68
## Proportion Explained 0.34 0.29 0.21 0.15
## Cumulative Proportion 0.34 0.64 0.85 1.00
##
## With factor correlations of
## WLS1 WLS2 WLS4 WLS3
## WLS1 1.00 0.10 0.58 0.21
## WLS2 0.10 1.00 0.43 0.51
## WLS4 0.58 0.43 1.00 0.31
## WLS3 0.21 0.51 0.31 1.00
##
## Mean item complexity = 1.4
## Test of the hypothesis that 4 factors are sufficient.
##
## df null model = 741 with the objective function = 42.76 with Chi Square = 1752897
## df of the model are 591 and the objective function was 7.42
##
## The root mean square of the residuals (RMSR) is 0.03
## The df corrected root mean square of the residuals is 0.04
##
## The harmonic n.obs is 41012 with the empirical chi square 68038.41 with prob < 0
## The total n.obs was 41012 with Likelihood Chi Square = 304257.3 with prob < 0
##
## Tucker Lewis Index of factoring reliability = 0.783
## RMSEA index = 0.112 and the 90 % confidence intervals are 0.112 0.112
## BIC = 297979.9
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy
## WLS1 WLS2 WLS4 WLS3
## Correlation of (regression) scores with factors 0.99 0.98 0.98 0.95
## Multiple R square of scores with factors 0.97 0.96 0.95 0.90
## Minimum correlation of possible factor scores 0.94 0.92 0.90 0.80
Apstiprinošā faktoru analīze
model <- '
Beh =~ B5 + B2 + B3 + B4 + B1 + B6 + B7 + B8 + B9 + B10 + B11 + B12 + B13+ B14
Ed =~ ED4 + ED2 + ED3 + ED1 + ED5 + ED6 + ED7 + S1
Em =~ EM3 + EM2 + EM1 + EM4 + EM5 + EM6 + EM7
Com =~ C2 + C1 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + C10
'
fit <- cfa(model, data = edx,estimator='WLSMV')
## Warning: lavaan->lav_options_est_dwls():
## estimator "DWLS" is not recommended for continuous data. Did you forget to
## set the ordered= argument?
summary(fit, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-18 ended normally after 64 iterations
##
## Estimator DWLS
## Optimization method NLMINB
## Number of model parameters 84
##
## Number of observations 41012
##
## Model Test User Model:
## Standard Scaled
## Test Statistic 56611.409 57725.103
## Degrees of freedom 696 696
## P-value (Chi-square) 0.000 0.000
## Scaling correction factor 0.987
## Shift parameter 387.432
## simple second-order correction
##
## Model Test Baseline Model:
##
## Test statistic 753135.545 125874.243
## Degrees of freedom 741 741
## P-value 0.000 0.000
## Scaling correction factor 6.013
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.926 0.544
## Tucker-Lewis Index (TLI) 0.921 0.515
##
## Robust Comparative Fit Index (CFI) 0.925
## Robust Tucker-Lewis Index (TLI) 0.920
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.044 0.045
## 90 Percent confidence interval - lower 0.044 0.044
## 90 Percent confidence interval - upper 0.045 0.045
## P-value H_0: RMSEA <= 0.050 1.000 1.000
## P-value H_0: RMSEA >= 0.080 0.000 0.000
##
## Robust RMSEA 0.044
## 90 Percent confidence interval - lower 0.044
## 90 Percent confidence interval - upper 0.045
## P-value H_0: Robust RMSEA <= 0.050 1.000
## P-value H_0: Robust RMSEA >= 0.080 0.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.072 0.072
##
## Parameter Estimates:
##
## Standard errors Robust.sem
## Information Expected
## Information saturated (h1) model Unstructured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Beh =~
## B5 1.000 0.457 0.713
## B2 1.651 0.018 90.580 0.000 0.754 0.829
## B3 1.565 0.018 85.764 0.000 0.715 0.749
## B4 1.215 0.012 98.821 0.000 0.555 0.810
## B1 1.509 0.019 81.245 0.000 0.689 0.653
## B6 1.010 0.009 110.516 0.000 0.462 0.702
## B7 0.639 0.010 65.299 0.000 0.292 0.600
## B8 0.301 0.009 35.001 0.000 0.138 0.410
## B9 0.438 0.009 49.015 0.000 0.200 0.531
## B10 0.807 0.012 67.825 0.000 0.369 0.646
## B11 0.930 0.011 81.067 0.000 0.425 0.757
## B12 0.993 0.015 66.267 0.000 0.454 0.633
## B13 0.882 0.012 73.516 0.000 0.403 0.700
## B14 0.967 0.014 68.371 0.000 0.442 0.573
## Ed =~
## ED4 1.000 0.597 0.761
## ED2 0.950 0.008 122.715 0.000 0.567 0.735
## ED3 0.903 0.008 110.859 0.000 0.539 0.698
## ED1 1.185 0.011 112.333 0.000 0.707 0.762
## ED5 0.576 0.009 65.553 0.000 0.344 0.689
## ED6 0.661 0.008 78.947 0.000 0.395 0.736
## ED7 0.407 0.008 48.769 0.000 0.243 0.522
## S1 0.536 0.009 58.061 0.000 0.320 0.553
## Em =~
## EM3 1.000 0.426 0.694
## EM2 0.608 0.015 39.978 0.000 0.259 0.567
## EM1 0.856 0.020 42.807 0.000 0.364 0.530
## EM4 0.598 0.014 42.504 0.000 0.255 0.478
## EM5 0.568 0.015 37.532 0.000 0.242 0.481
## EM6 0.798 0.015 52.023 0.000 0.340 0.692
## EM7 0.564 0.016 34.890 0.000 0.240 0.538
## Com =~
## C2 1.000 0.469 0.736
## C1 0.727 0.014 51.502 0.000 0.341 0.477
## C3 0.981 0.011 87.502 0.000 0.460 0.803
## C4 0.755 0.014 54.706 0.000 0.354 0.751
## C5 0.789 0.013 59.273 0.000 0.370 0.712
## C6 0.960 0.016 60.270 0.000 0.450 0.734
## C7 0.878 0.016 56.526 0.000 0.412 0.731
## C8 0.573 0.013 43.380 0.000 0.269 0.646
## C9 0.402 0.012 33.546 0.000 0.188 0.563
## C10 0.477 0.012 38.573 0.000 0.224 0.514
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Beh ~~
## Ed 0.180 0.003 52.266 0.000 0.660 0.660
## Em 0.055 0.002 29.294 0.000 0.282 0.282
## Com 0.037 0.002 22.290 0.000 0.173 0.173
## Ed ~~
## Em 0.116 0.003 40.042 0.000 0.458 0.458
## Com 0.133 0.003 38.319 0.000 0.477 0.477
## Em ~~
## Com 0.125 0.003 40.116 0.000 0.627 0.627
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .B5 0.202 0.003 72.814 0.000 0.202 0.492
## .B2 0.259 0.004 62.205 0.000 0.259 0.313
## .B3 0.399 0.005 72.589 0.000 0.399 0.438
## .B4 0.162 0.003 64.401 0.000 0.162 0.344
## .B1 0.639 0.007 87.468 0.000 0.639 0.573
## .B6 0.219 0.003 73.246 0.000 0.219 0.507
## .B7 0.151 0.002 66.539 0.000 0.151 0.640
## .B8 0.094 0.002 39.674 0.000 0.094 0.832
## .B9 0.102 0.002 45.060 0.000 0.102 0.718
## .B10 0.190 0.003 73.429 0.000 0.190 0.583
## .B11 0.134 0.002 60.586 0.000 0.134 0.426
## .B12 0.308 0.004 82.076 0.000 0.308 0.599
## .B13 0.169 0.002 72.177 0.000 0.169 0.510
## .B14 0.398 0.004 91.975 0.000 0.398 0.671
## .ED4 0.258 0.004 68.848 0.000 0.258 0.420
## .ED2 0.273 0.004 71.591 0.000 0.273 0.459
## .ED3 0.305 0.004 73.350 0.000 0.305 0.512
## .ED1 0.362 0.005 71.306 0.000 0.362 0.420
## .ED5 0.131 0.002 59.899 0.000 0.131 0.525
## .ED6 0.132 0.002 59.112 0.000 0.132 0.458
## .ED7 0.157 0.003 54.620 0.000 0.157 0.727
## .S1 0.233 0.003 69.779 0.000 0.233 0.694
## .EM3 0.195 0.004 51.453 0.000 0.195 0.518
## .EM2 0.142 0.003 53.391 0.000 0.142 0.679
## .EM1 0.340 0.005 73.213 0.000 0.340 0.719
## .EM4 0.219 0.004 57.721 0.000 0.219 0.772
## .EM5 0.194 0.004 50.494 0.000 0.194 0.768
## .EM6 0.126 0.003 48.623 0.000 0.126 0.522
## .EM7 0.141 0.003 41.472 0.000 0.141 0.710
## .C2 0.186 0.004 43.368 0.000 0.186 0.458
## .C1 0.395 0.006 71.214 0.000 0.395 0.773
## .C3 0.116 0.003 33.910 0.000 0.116 0.355
## .C4 0.097 0.002 40.830 0.000 0.097 0.436
## .C5 0.133 0.003 43.683 0.000 0.133 0.493
## .C6 0.173 0.004 39.945 0.000 0.173 0.461
## .C7 0.147 0.003 46.180 0.000 0.147 0.465
## .C8 0.101 0.002 42.457 0.000 0.101 0.583
## .C9 0.076 0.002 35.262 0.000 0.076 0.683
## .C10 0.139 0.003 46.816 0.000 0.139 0.735
## Beh 0.209 0.005 42.242 0.000 1.000 1.000
## Ed 0.356 0.006 59.455 0.000 1.000 1.000
## Em 0.181 0.005 34.658 0.000 1.000 1.000
## Com 0.220 0.006 35.946 0.000 1.000 1.000
semPaths(fit,
what = "std",
layout = "circle2",
style = "ram",
edge.label.cex = 0.7,
sizeMan = 2,
sizeLat = 3,
residuals = TRUE,
exoCov = TRUE,
normalize=FALSE,
nCharNodes=0)

Normu aprēķini
#1.
#aprēķinām kopējo rezultātu katram bērnam
edx$BSI<-NA;edx$EDSI<-NA;edx$EMSI<-NA;edx$CSI<-NA;
for (i in 1: length(unique(edx$object_id ))){
temp<-NULL
temp<-subset(edx,object_id ==unique(edx$object_id )[i],c('BS','EDS','EMS','CS'))
if (nrow(temp)>1){
edx$BSI[edx$object_id == unique(edx$object_id )[i]] <- mean(temp$BS)
edx$EDSI[edx$object_id == unique(edx$object_id )[i]] <- mean(temp$EDS)
edx$EMSI[edx$object_id == unique(edx$object_id )[i]] <- mean(temp$EMS)
edx$CSI[edx$object_id == unique(edx$object_id )[i]] <- mean(temp$CS)
}
}
#save(edx, file = "edxA.RData")
load("C:/privati/SOSinventory/SOSinventory/edxA.RData")
head(edx)
## B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 EM1 EM2 EM3 EM4 EM5 EM6 EM7 S1
## 1 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
## 2 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0
## ED1 ED2 ED3 ED4 ED5 ED6 ED7 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 kid_id id
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61 6
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 1741
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61 1745
## 4 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 65 1747
## 5 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 69 1748
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 72 1749
## group_id user_id kgend gsch survey_id vecums B C EM ED object_id
## 1 12 39 1 32 2 3.324941 days 5 0 0 0 21261
## 2 12 32 2 32 2 2.720158 days 3 0 0 0 21254
## 3 12 32 1 32 2 3.324941 days 2 0 0 0 21261
## 4 12 32 2 32 2 2.681846 days 0 4 0 0 21265
## 5 12 32 1 32 2 3.751847 days 2 0 0 2 21269
## 6 12 32 1 32 2 3.916042 days 4 0 1 0 21272
## evcase_id evaluator_id evaluation BS EDS EMS CS
## 1 212 39 5 0.3571429 0.0000000 0.000 0.0000000
## 2 212 32 3 0.2142857 0.0000000 0.000 0.0000000
## 3 212 32 2 0.1428571 0.0000000 0.000 0.0000000
## 4 212 32 0 0.0000000 0.0000000 0.000 0.3636364
## 5 212 32 2 0.1428571 0.2857143 0.000 0.0000000
## 6 212 32 4 0.2857143 0.0000000 0.125 0.0000000
## BSI EDSI EMSI CSI
## 1 0.2500000 0.0000000 0.0000 0.00000000
## 2 0.2857143 0.2142857 0.0000 0.04545455
## 3 0.2500000 0.0000000 0.0000 0.00000000
## 4 0.0000000 0.0000000 0.0625 0.45454545
## 5 0.1785714 0.3571429 0.0625 0.04545455
## 6 0.2500000 0.0000000 0.0625 0.00000000
#2.
#aprēķinām vecumu normas
edx0<-subset(edx,vecums<2.5)
BF<-as.data.frame(quantile(na.omit(edx0$BSI), probs = seq(1, 100, by = 1) / 100))
BF$nos<-rownames(BF)
names(BF)<-c('Uzvedība', 'Procentile')
rownames(BF)<-1:nrow(BF)
BF<-(subset(BF,,c('Procentile','Uzvedība')))
BF$Izglītība<-quantile(na.omit(edx0$EDSI), probs = seq(1, 100, by = 1) / 100)
BF$Emocionalitāte<-quantile(na.omit(edx0$EMSI), probs = seq(1, 100, by = 1) / 100)
BF$Komunikācija<-quantile(na.omit(edx0$CSI), probs = seq(1, 100, by = 1) / 100)
tab_df(BF,title=paste('2.5 g. līdz 3.5 g.v. bērni. n=',nrow(edx0),sep=''))
2.5 g. līdz 3.5 g.v. bērni. n=82
|
Procentile
|
Uzvedība
|
Izglītība
|
Emocionalitāte
|
Komunikācija
|
|
1%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
2%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
3%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
4%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
5%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
6%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
7%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
8%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
9%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
10%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
11%
|
0.01
|
0.00
|
0.00
|
0.00
|
|
12%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
13%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
14%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
15%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
16%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
17%
|
0.05
|
0.00
|
0.00
|
0.00
|
|
18%
|
0.07
|
0.00
|
0.00
|
0.00
|
|
19%
|
0.07
|
0.00
|
0.00
|
0.00
|
|
20%
|
0.07
|
0.00
|
0.00
|
0.00
|
|
21%
|
0.07
|
0.00
|
0.00
|
0.00
|
|
22%
|
0.07
|
0.00
|
0.00
|
0.00
|
|
23%
|
0.07
|
0.03
|
0.00
|
0.00
|
|
24%
|
0.07
|
0.07
|
0.00
|
0.00
|
|
25%
|
0.07
|
0.07
|
0.00
|
0.00
|
|
26%
|
0.09
|
0.10
|
0.00
|
0.00
|
|
27%
|
0.11
|
0.14
|
0.00
|
0.00
|
|
28%
|
0.11
|
0.14
|
0.00
|
0.00
|
|
29%
|
0.12
|
0.14
|
0.00
|
0.00
|
|
30%
|
0.14
|
0.14
|
0.00
|
0.00
|
|
31%
|
0.14
|
0.14
|
0.00
|
0.03
|
|
32%
|
0.14
|
0.14
|
0.03
|
0.05
|
|
33%
|
0.14
|
0.14
|
0.06
|
0.05
|
|
34%
|
0.14
|
0.14
|
0.06
|
0.05
|
|
35%
|
0.16
|
0.14
|
0.06
|
0.05
|
|
36%
|
0.18
|
0.14
|
0.06
|
0.05
|
|
37%
|
0.18
|
0.14
|
0.06
|
0.05
|
|
38%
|
0.18
|
0.14
|
0.06
|
0.05
|
|
39%
|
0.18
|
0.14
|
0.06
|
0.05
|
|
40%
|
0.18
|
0.14
|
0.06
|
0.05
|
|
41%
|
0.20
|
0.18
|
0.07
|
0.05
|
|
42%
|
0.21
|
0.21
|
0.08
|
0.05
|
|
43%
|
0.21
|
0.21
|
0.08
|
0.08
|
|
44%
|
0.23
|
0.25
|
0.08
|
0.09
|
|
45%
|
0.25
|
0.29
|
0.09
|
0.09
|
|
46%
|
0.25
|
0.29
|
0.12
|
0.09
|
|
47%
|
0.25
|
0.29
|
0.12
|
0.09
|
|
48%
|
0.25
|
0.29
|
0.12
|
0.09
|
|
49%
|
0.25
|
0.29
|
0.12
|
0.09
|
|
50%
|
0.25
|
0.29
|
0.12
|
0.09
|
|
51%
|
0.25
|
0.30
|
0.12
|
0.09
|
|
52%
|
0.25
|
0.35
|
0.12
|
0.09
|
|
53%
|
0.25
|
0.36
|
0.12
|
0.09
|
|
54%
|
0.25
|
0.38
|
0.14
|
0.09
|
|
55%
|
0.25
|
0.48
|
0.18
|
0.09
|
|
56%
|
0.27
|
0.50
|
0.19
|
0.09
|
|
57%
|
0.29
|
0.50
|
0.19
|
0.09
|
|
58%
|
0.29
|
0.50
|
0.19
|
0.09
|
|
59%
|
0.29
|
0.50
|
0.19
|
0.12
|
|
60%
|
0.29
|
0.50
|
0.19
|
0.14
|
|
61%
|
0.29
|
0.50
|
0.19
|
0.14
|
|
62%
|
0.29
|
0.50
|
0.19
|
0.21
|
|
63%
|
0.29
|
0.52
|
0.19
|
0.27
|
|
64%
|
0.32
|
0.56
|
0.19
|
0.27
|
|
65%
|
0.32
|
0.57
|
0.19
|
0.27
|
|
66%
|
0.32
|
0.59
|
0.19
|
0.27
|
|
67%
|
0.32
|
0.63
|
0.19
|
0.27
|
|
68%
|
0.32
|
0.64
|
0.19
|
0.27
|
|
69%
|
0.33
|
0.64
|
0.20
|
0.27
|
|
70%
|
0.35
|
0.64
|
0.24
|
0.27
|
|
71%
|
0.36
|
0.64
|
0.25
|
0.38
|
|
72%
|
0.37
|
0.66
|
0.25
|
0.45
|
|
73%
|
0.39
|
0.71
|
0.25
|
0.45
|
|
74%
|
0.39
|
0.71
|
0.25
|
0.45
|
|
75%
|
0.39
|
0.71
|
0.25
|
0.45
|
|
76%
|
0.39
|
0.71
|
0.25
|
0.45
|
|
77%
|
0.39
|
0.71
|
0.29
|
0.48
|
|
78%
|
0.40
|
0.73
|
0.31
|
0.50
|
|
79%
|
0.43
|
0.78
|
0.31
|
0.50
|
|
80%
|
0.43
|
0.79
|
0.35
|
0.50
|
|
81%
|
0.43
|
0.79
|
0.38
|
0.50
|
|
82%
|
0.43
|
0.79
|
0.38
|
0.50
|
|
83%
|
0.43
|
0.79
|
0.38
|
0.53
|
|
84%
|
0.45
|
0.81
|
0.38
|
0.55
|
|
85%
|
0.50
|
0.85
|
0.38
|
0.55
|
|
86%
|
0.50
|
0.86
|
0.38
|
0.57
|
|
87%
|
0.57
|
0.87
|
0.38
|
0.59
|
|
88%
|
0.74
|
0.90
|
0.38
|
0.59
|
|
89%
|
0.75
|
0.90
|
0.53
|
0.71
|
|
90%
|
0.77
|
0.90
|
0.62
|
0.77
|
|
91%
|
0.81
|
0.90
|
0.62
|
0.77
|
|
92%
|
0.81
|
0.97
|
0.91
|
0.86
|
|
93%
|
0.81
|
1.00
|
1.06
|
0.91
|
|
94%
|
0.81
|
1.00
|
1.06
|
0.91
|
|
95%
|
0.84
|
1.14
|
1.14
|
1.03
|
|
96%
|
0.86
|
1.21
|
1.19
|
1.09
|
|
97%
|
0.86
|
1.21
|
1.19
|
1.09
|
|
98%
|
1.66
|
1.73
|
1.68
|
1.78
|
|
99%
|
2.07
|
2.00
|
1.94
|
2.14
|
|
100%
|
2.07
|
2.00
|
1.94
|
2.14
|
edx30<-subset(edx,vecums<3.5&vecums>=2.5,)
BF<-as.data.frame(quantile(na.omit(edx30$BSI), probs = seq(1, 100, by = 1) / 100))
BF$nos<-rownames(BF)
names(BF)<-c('Uzvedība', 'Procentile')
rownames(BF)<-1:nrow(BF)
BF<-(subset(BF,,c('Procentile','Uzvedība')))
BF$Izglītība<-quantile(na.omit(edx30$EDSI), probs = seq(1, 100, by = 1) / 100)
BF$Emocionalitāte<-quantile(na.omit(edx30$EMSI), probs = seq(1, 100, by = 1) / 100)
BF$Komunikācija<-quantile(na.omit(edx30$CSI), probs = seq(1, 100, by = 1) / 100)
tab_df(BF,title=paste('2.5 g.v. un jaunāki bērni. n=',nrow(edx30),sep=''))
2.5 g.v. un jaunāki bērni. n=3360
|
Procentile
|
Uzvedība
|
Izglītība
|
Emocionalitāte
|
Komunikācija
|
|
1%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
2%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
3%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
4%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
5%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
6%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
7%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
8%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
9%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
10%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
11%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
12%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
13%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
14%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
15%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
16%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
17%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
18%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
19%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
20%
|
0.02
|
0.00
|
0.00
|
0.00
|
|
21%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
22%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
23%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
24%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
25%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
26%
|
0.04
|
0.00
|
0.04
|
0.00
|
|
27%
|
0.05
|
0.05
|
0.04
|
0.00
|
|
28%
|
0.07
|
0.06
|
0.06
|
0.00
|
|
29%
|
0.07
|
0.07
|
0.06
|
0.00
|
|
30%
|
0.07
|
0.07
|
0.06
|
0.00
|
|
31%
|
0.07
|
0.07
|
0.06
|
0.00
|
|
32%
|
0.07
|
0.07
|
0.06
|
0.00
|
|
33%
|
0.07
|
0.07
|
0.06
|
0.00
|
|
34%
|
0.07
|
0.07
|
0.06
|
0.00
|
|
35%
|
0.11
|
0.07
|
0.06
|
0.00
|
|
36%
|
0.11
|
0.10
|
0.06
|
0.00
|
|
37%
|
0.11
|
0.10
|
0.06
|
0.00
|
|
38%
|
0.11
|
0.14
|
0.06
|
0.00
|
|
39%
|
0.11
|
0.14
|
0.08
|
0.00
|
|
40%
|
0.12
|
0.14
|
0.12
|
0.00
|
|
41%
|
0.14
|
0.14
|
0.12
|
0.00
|
|
42%
|
0.14
|
0.14
|
0.12
|
0.03
|
|
43%
|
0.14
|
0.14
|
0.12
|
0.03
|
|
44%
|
0.14
|
0.14
|
0.12
|
0.05
|
|
45%
|
0.14
|
0.14
|
0.12
|
0.05
|
|
46%
|
0.14
|
0.14
|
0.12
|
0.05
|
|
47%
|
0.18
|
0.19
|
0.12
|
0.05
|
|
48%
|
0.18
|
0.21
|
0.12
|
0.05
|
|
49%
|
0.18
|
0.21
|
0.12
|
0.05
|
|
50%
|
0.18
|
0.21
|
0.12
|
0.05
|
|
51%
|
0.19
|
0.21
|
0.17
|
0.05
|
|
52%
|
0.21
|
0.21
|
0.19
|
0.06
|
|
53%
|
0.21
|
0.21
|
0.19
|
0.06
|
|
54%
|
0.21
|
0.21
|
0.19
|
0.09
|
|
55%
|
0.21
|
0.24
|
0.19
|
0.09
|
|
56%
|
0.24
|
0.29
|
0.19
|
0.09
|
|
57%
|
0.25
|
0.29
|
0.19
|
0.09
|
|
58%
|
0.25
|
0.29
|
0.19
|
0.09
|
|
59%
|
0.26
|
0.29
|
0.21
|
0.09
|
|
60%
|
0.29
|
0.29
|
0.25
|
0.09
|
|
61%
|
0.29
|
0.29
|
0.25
|
0.12
|
|
62%
|
0.29
|
0.33
|
0.25
|
0.14
|
|
63%
|
0.31
|
0.36
|
0.25
|
0.14
|
|
64%
|
0.32
|
0.36
|
0.25
|
0.14
|
|
65%
|
0.32
|
0.36
|
0.25
|
0.14
|
|
66%
|
0.33
|
0.36
|
0.25
|
0.18
|
|
67%
|
0.36
|
0.38
|
0.29
|
0.18
|
|
68%
|
0.36
|
0.43
|
0.31
|
0.18
|
|
69%
|
0.39
|
0.43
|
0.31
|
0.18
|
|
70%
|
0.39
|
0.43
|
0.31
|
0.21
|
|
71%
|
0.43
|
0.43
|
0.31
|
0.23
|
|
72%
|
0.43
|
0.43
|
0.33
|
0.23
|
|
73%
|
0.46
|
0.50
|
0.38
|
0.27
|
|
74%
|
0.50
|
0.50
|
0.38
|
0.27
|
|
75%
|
0.50
|
0.50
|
0.38
|
0.27
|
|
76%
|
0.50
|
0.57
|
0.38
|
0.30
|
|
77%
|
0.54
|
0.57
|
0.44
|
0.32
|
|
78%
|
0.54
|
0.62
|
0.44
|
0.32
|
|
79%
|
0.57
|
0.64
|
0.44
|
0.36
|
|
80%
|
0.60
|
0.64
|
0.46
|
0.36
|
|
81%
|
0.61
|
0.67
|
0.50
|
0.41
|
|
82%
|
0.64
|
0.71
|
0.50
|
0.41
|
|
83%
|
0.68
|
0.71
|
0.50
|
0.45
|
|
84%
|
0.71
|
0.79
|
0.56
|
0.48
|
|
85%
|
0.71
|
0.79
|
0.56
|
0.50
|
|
86%
|
0.77
|
0.86
|
0.56
|
0.55
|
|
87%
|
0.82
|
0.93
|
0.62
|
0.59
|
|
88%
|
0.86
|
0.93
|
0.62
|
0.64
|
|
89%
|
0.86
|
1.00
|
0.62
|
0.68
|
|
90%
|
0.93
|
1.00
|
0.69
|
0.73
|
|
91%
|
0.96
|
1.12
|
0.69
|
0.77
|
|
92%
|
1.00
|
1.14
|
0.75
|
0.82
|
|
93%
|
1.07
|
1.21
|
0.81
|
0.91
|
|
94%
|
1.16
|
1.36
|
0.85
|
0.97
|
|
95%
|
1.23
|
1.43
|
0.96
|
1.05
|
|
96%
|
1.32
|
1.50
|
1.07
|
1.14
|
|
97%
|
1.43
|
1.71
|
1.19
|
1.27
|
|
98%
|
1.57
|
1.79
|
1.28
|
1.41
|
|
99%
|
1.79
|
2.08
|
1.50
|
1.64
|
|
100%
|
2.39
|
2.86
|
2.25
|
2.50
|
edx42<-subset(edx,vecums<4.5&vecums>=3.5,)
BF<-as.data.frame(quantile(na.omit(edx42$BSI), probs = seq(1, 100, by = 1) / 100))
BF$nos<-rownames(BF)
names(BF)<-c('Uzvedība', 'Procentile')
rownames(BF)<-1:nrow(BF)
BF<-(subset(BF,,c('Procentile','Uzvedība')))
BF$Izglītība<-quantile(na.omit(edx42$EDSI), probs = seq(1, 100, by = 1) / 100)
BF$Emocionalitāte<-quantile(na.omit(edx42$EMSI), probs = seq(1, 100, by = 1) / 100)
BF$Komunikācija<-quantile(na.omit(edx42$CSI), probs = seq(1, 100, by = 1) / 100)
tab_df(BF,title=paste('3.5 g. līdz 4.5 g.v. bērni. n=',nrow(edx42),sep=''))
3.5 g. līdz 4.5 g.v. bērni. n=7967
|
Procentile
|
Uzvedība
|
Izglītība
|
Emocionalitāte
|
Komunikācija
|
|
1%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
2%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
3%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
4%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
5%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
6%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
7%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
8%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
9%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
10%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
11%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
12%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
13%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
14%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
15%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
16%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
17%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
18%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
19%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
20%
|
0.02
|
0.00
|
0.00
|
0.00
|
|
21%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
22%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
23%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
24%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
25%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
26%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
27%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
28%
|
0.05
|
0.00
|
0.00
|
0.00
|
|
29%
|
0.07
|
0.05
|
0.00
|
0.00
|
|
30%
|
0.07
|
0.06
|
0.04
|
0.00
|
|
31%
|
0.07
|
0.07
|
0.04
|
0.00
|
|
32%
|
0.07
|
0.07
|
0.04
|
0.00
|
|
33%
|
0.07
|
0.07
|
0.06
|
0.00
|
|
34%
|
0.07
|
0.07
|
0.06
|
0.00
|
|
35%
|
0.10
|
0.07
|
0.06
|
0.00
|
|
36%
|
0.11
|
0.07
|
0.06
|
0.00
|
|
37%
|
0.11
|
0.07
|
0.06
|
0.00
|
|
38%
|
0.11
|
0.07
|
0.06
|
0.00
|
|
39%
|
0.11
|
0.10
|
0.06
|
0.00
|
|
40%
|
0.11
|
0.14
|
0.06
|
0.00
|
|
41%
|
0.12
|
0.14
|
0.06
|
0.00
|
|
42%
|
0.14
|
0.14
|
0.06
|
0.00
|
|
43%
|
0.14
|
0.14
|
0.08
|
0.00
|
|
44%
|
0.14
|
0.14
|
0.08
|
0.00
|
|
45%
|
0.14
|
0.14
|
0.12
|
0.00
|
|
46%
|
0.14
|
0.14
|
0.12
|
0.03
|
|
47%
|
0.17
|
0.14
|
0.12
|
0.05
|
|
48%
|
0.18
|
0.14
|
0.12
|
0.05
|
|
49%
|
0.18
|
0.19
|
0.12
|
0.05
|
|
50%
|
0.18
|
0.21
|
0.12
|
0.05
|
|
51%
|
0.18
|
0.21
|
0.12
|
0.05
|
|
52%
|
0.19
|
0.21
|
0.12
|
0.05
|
|
53%
|
0.21
|
0.21
|
0.12
|
0.05
|
|
54%
|
0.21
|
0.21
|
0.12
|
0.05
|
|
55%
|
0.21
|
0.21
|
0.17
|
0.06
|
|
56%
|
0.21
|
0.21
|
0.19
|
0.09
|
|
57%
|
0.25
|
0.29
|
0.19
|
0.09
|
|
58%
|
0.25
|
0.29
|
0.19
|
0.09
|
|
59%
|
0.26
|
0.29
|
0.19
|
0.09
|
|
60%
|
0.29
|
0.29
|
0.19
|
0.09
|
|
61%
|
0.29
|
0.29
|
0.19
|
0.09
|
|
62%
|
0.29
|
0.29
|
0.19
|
0.09
|
|
63%
|
0.32
|
0.33
|
0.21
|
0.12
|
|
64%
|
0.32
|
0.36
|
0.25
|
0.14
|
|
65%
|
0.34
|
0.36
|
0.25
|
0.14
|
|
66%
|
0.36
|
0.36
|
0.25
|
0.14
|
|
67%
|
0.36
|
0.36
|
0.25
|
0.14
|
|
68%
|
0.39
|
0.38
|
0.25
|
0.15
|
|
69%
|
0.39
|
0.43
|
0.25
|
0.18
|
|
70%
|
0.43
|
0.43
|
0.29
|
0.18
|
|
71%
|
0.43
|
0.43
|
0.31
|
0.18
|
|
72%
|
0.43
|
0.43
|
0.31
|
0.18
|
|
73%
|
0.46
|
0.50
|
0.31
|
0.23
|
|
74%
|
0.46
|
0.50
|
0.31
|
0.23
|
|
75%
|
0.50
|
0.50
|
0.31
|
0.23
|
|
76%
|
0.50
|
0.50
|
0.38
|
0.24
|
|
77%
|
0.52
|
0.57
|
0.38
|
0.27
|
|
78%
|
0.54
|
0.57
|
0.38
|
0.27
|
|
79%
|
0.57
|
0.57
|
0.38
|
0.27
|
|
80%
|
0.57
|
0.64
|
0.38
|
0.32
|
|
81%
|
0.61
|
0.64
|
0.42
|
0.32
|
|
82%
|
0.64
|
0.71
|
0.44
|
0.36
|
|
83%
|
0.67
|
0.71
|
0.44
|
0.36
|
|
84%
|
0.68
|
0.79
|
0.44
|
0.41
|
|
85%
|
0.71
|
0.79
|
0.50
|
0.42
|
|
86%
|
0.75
|
0.86
|
0.50
|
0.45
|
|
87%
|
0.79
|
0.86
|
0.56
|
0.50
|
|
88%
|
0.82
|
0.93
|
0.56
|
0.55
|
|
89%
|
0.89
|
1.00
|
0.58
|
0.59
|
|
90%
|
0.93
|
1.05
|
0.62
|
0.64
|
|
91%
|
0.96
|
1.13
|
0.66
|
0.67
|
|
92%
|
1.04
|
1.19
|
0.69
|
0.73
|
|
93%
|
1.11
|
1.29
|
0.75
|
0.77
|
|
94%
|
1.18
|
1.36
|
0.81
|
0.82
|
|
95%
|
1.26
|
1.43
|
0.88
|
0.91
|
|
96%
|
1.36
|
1.52
|
0.94
|
1.05
|
|
97%
|
1.50
|
1.67
|
1.06
|
1.18
|
|
98%
|
1.68
|
1.86
|
1.21
|
1.36
|
|
99%
|
1.96
|
2.14
|
1.38
|
1.59
|
|
100%
|
2.68
|
3.00
|
2.42
|
2.64
|
edx54<-subset(edx,vecums<5.5&vecums>=4.5,)
BF<-as.data.frame(quantile(na.omit(edx54$BSI), probs = seq(1, 100, by = 1) / 100))
BF$nos<-rownames(BF)
names(BF)<-c('Uzvedība', 'Procentile')
rownames(BF)<-1:nrow(BF)
BF<-(subset(BF,,c('Procentile','Uzvedība')))
BF$Izglītība<-quantile(na.omit(edx54$EDSI), probs = seq(1, 100, by = 1) / 100)
BF$Emocionalitāte<-quantile(na.omit(edx54$EMSI), probs = seq(1, 100, by = 1) / 100)
BF$Komunikācija<-quantile(na.omit(edx54$CSI), probs = seq(1, 100, by = 1) / 100)
tab_df(BF,title=paste('4.5 g. līdz 5.5 g.v. bērni. n=',nrow(edx54),sep=''))
4.5 g. līdz 5.5 g.v. bērni. n=10103
|
Procentile
|
Uzvedība
|
Izglītība
|
Emocionalitāte
|
Komunikācija
|
|
1%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
2%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
3%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
4%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
5%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
6%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
7%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
8%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
9%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
10%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
11%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
12%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
13%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
14%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
15%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
16%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
17%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
18%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
19%
|
0.02
|
0.00
|
0.00
|
0.00
|
|
20%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
21%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
22%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
23%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
24%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
25%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
26%
|
0.05
|
0.00
|
0.00
|
0.00
|
|
27%
|
0.05
|
0.05
|
0.00
|
0.00
|
|
28%
|
0.07
|
0.05
|
0.00
|
0.00
|
|
29%
|
0.07
|
0.07
|
0.00
|
0.00
|
|
30%
|
0.07
|
0.07
|
0.00
|
0.00
|
|
31%
|
0.07
|
0.07
|
0.00
|
0.00
|
|
32%
|
0.07
|
0.07
|
0.00
|
0.00
|
|
33%
|
0.07
|
0.07
|
0.00
|
0.00
|
|
34%
|
0.07
|
0.07
|
0.04
|
0.00
|
|
35%
|
0.07
|
0.07
|
0.04
|
0.00
|
|
36%
|
0.10
|
0.07
|
0.06
|
0.00
|
|
37%
|
0.11
|
0.07
|
0.06
|
0.00
|
|
38%
|
0.11
|
0.07
|
0.06
|
0.00
|
|
39%
|
0.11
|
0.10
|
0.06
|
0.00
|
|
40%
|
0.11
|
0.14
|
0.06
|
0.00
|
|
41%
|
0.12
|
0.14
|
0.06
|
0.00
|
|
42%
|
0.14
|
0.14
|
0.06
|
0.00
|
|
43%
|
0.14
|
0.14
|
0.06
|
0.00
|
|
44%
|
0.14
|
0.14
|
0.06
|
0.00
|
|
45%
|
0.14
|
0.14
|
0.06
|
0.00
|
|
46%
|
0.14
|
0.14
|
0.06
|
0.00
|
|
47%
|
0.14
|
0.14
|
0.06
|
0.00
|
|
48%
|
0.17
|
0.14
|
0.08
|
0.00
|
|
49%
|
0.18
|
0.14
|
0.08
|
0.03
|
|
50%
|
0.18
|
0.19
|
0.12
|
0.03
|
|
51%
|
0.18
|
0.21
|
0.12
|
0.05
|
|
52%
|
0.18
|
0.21
|
0.12
|
0.05
|
|
53%
|
0.21
|
0.21
|
0.12
|
0.05
|
|
54%
|
0.21
|
0.21
|
0.12
|
0.05
|
|
55%
|
0.21
|
0.21
|
0.12
|
0.05
|
|
56%
|
0.21
|
0.21
|
0.12
|
0.05
|
|
57%
|
0.25
|
0.24
|
0.12
|
0.05
|
|
58%
|
0.25
|
0.29
|
0.12
|
0.05
|
|
59%
|
0.25
|
0.29
|
0.12
|
0.05
|
|
60%
|
0.25
|
0.29
|
0.12
|
0.06
|
|
61%
|
0.29
|
0.29
|
0.17
|
0.09
|
|
62%
|
0.29
|
0.29
|
0.19
|
0.09
|
|
63%
|
0.29
|
0.33
|
0.19
|
0.09
|
|
64%
|
0.31
|
0.36
|
0.19
|
0.09
|
|
65%
|
0.32
|
0.36
|
0.19
|
0.09
|
|
66%
|
0.33
|
0.36
|
0.19
|
0.09
|
|
67%
|
0.36
|
0.36
|
0.19
|
0.09
|
|
68%
|
0.36
|
0.39
|
0.19
|
0.09
|
|
69%
|
0.36
|
0.43
|
0.25
|
0.12
|
|
70%
|
0.39
|
0.43
|
0.25
|
0.14
|
|
71%
|
0.39
|
0.43
|
0.25
|
0.14
|
|
72%
|
0.43
|
0.43
|
0.25
|
0.14
|
|
73%
|
0.43
|
0.50
|
0.25
|
0.14
|
|
74%
|
0.46
|
0.50
|
0.25
|
0.15
|
|
75%
|
0.46
|
0.50
|
0.25
|
0.18
|
|
76%
|
0.50
|
0.50
|
0.31
|
0.18
|
|
77%
|
0.50
|
0.57
|
0.31
|
0.18
|
|
78%
|
0.54
|
0.57
|
0.31
|
0.18
|
|
79%
|
0.54
|
0.57
|
0.31
|
0.23
|
|
80%
|
0.57
|
0.64
|
0.33
|
0.23
|
|
81%
|
0.60
|
0.64
|
0.38
|
0.23
|
|
82%
|
0.61
|
0.64
|
0.38
|
0.24
|
|
83%
|
0.64
|
0.71
|
0.38
|
0.27
|
|
84%
|
0.68
|
0.71
|
0.44
|
0.27
|
|
85%
|
0.71
|
0.79
|
0.44
|
0.30
|
|
86%
|
0.75
|
0.81
|
0.44
|
0.32
|
|
87%
|
0.79
|
0.86
|
0.50
|
0.36
|
|
88%
|
0.82
|
0.90
|
0.50
|
0.36
|
|
89%
|
0.86
|
0.93
|
0.50
|
0.41
|
|
90%
|
0.89
|
1.00
|
0.56
|
0.41
|
|
91%
|
0.96
|
1.07
|
0.58
|
0.45
|
|
92%
|
1.04
|
1.14
|
0.62
|
0.50
|
|
93%
|
1.07
|
1.19
|
0.69
|
0.55
|
|
94%
|
1.14
|
1.29
|
0.71
|
0.63
|
|
95%
|
1.22
|
1.36
|
0.75
|
0.68
|
|
96%
|
1.36
|
1.50
|
0.88
|
0.77
|
|
97%
|
1.50
|
1.64
|
0.94
|
0.97
|
|
98%
|
1.71
|
1.86
|
1.06
|
1.14
|
|
99%
|
2.00
|
2.14
|
1.31
|
1.45
|
|
100%
|
2.86
|
3.00
|
2.62
|
2.64
|
edx66<-subset(edx,vecums<6.5&vecums>=5.5,)
BF<-as.data.frame(quantile(na.omit(edx66$BSI), probs = seq(1, 100, by = 1) / 100))
BF$nos<-rownames(BF)
names(BF)<-c('Uzvedība', 'Procentile')
rownames(BF)<-1:nrow(BF)
BF<-(subset(BF,,c('Procentile','Uzvedība')))
BF$Izglītība<-quantile(na.omit(edx66$EDSI), probs = seq(1, 100, by = 1) / 100)
BF$Emocionalitāte<-quantile(na.omit(edx66$EMSI), probs = seq(1, 100, by = 1) / 100)
BF$Komunikācija<-quantile(na.omit(edx66$CSI), probs = seq(1, 100, by = 1) / 100)
tab_df(BF,title=paste('5.5 g. līdz 6.5 g.v. bērni. n=',nrow(edx66),sep=''))
5.5 g. līdz 6.5 g.v. bērni. n=11185
|
Procentile
|
Uzvedība
|
Izglītība
|
Emocionalitāte
|
Komunikācija
|
|
1%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
2%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
3%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
4%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
5%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
6%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
7%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
8%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
9%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
10%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
11%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
12%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
13%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
14%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
15%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
16%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
17%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
18%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
19%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
20%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
21%
|
0.02
|
0.00
|
0.00
|
0.00
|
|
22%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
23%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
24%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
25%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
26%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
27%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
28%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
29%
|
0.05
|
0.05
|
0.00
|
0.00
|
|
30%
|
0.07
|
0.07
|
0.00
|
0.00
|
|
31%
|
0.07
|
0.07
|
0.00
|
0.00
|
|
32%
|
0.07
|
0.07
|
0.00
|
0.00
|
|
33%
|
0.07
|
0.07
|
0.00
|
0.00
|
|
34%
|
0.07
|
0.07
|
0.00
|
0.00
|
|
35%
|
0.07
|
0.07
|
0.00
|
0.00
|
|
36%
|
0.07
|
0.07
|
0.00
|
0.00
|
|
37%
|
0.10
|
0.07
|
0.04
|
0.00
|
|
38%
|
0.11
|
0.07
|
0.04
|
0.00
|
|
39%
|
0.11
|
0.07
|
0.06
|
0.00
|
|
40%
|
0.11
|
0.10
|
0.06
|
0.00
|
|
41%
|
0.11
|
0.14
|
0.06
|
0.00
|
|
42%
|
0.11
|
0.14
|
0.06
|
0.00
|
|
43%
|
0.12
|
0.14
|
0.06
|
0.00
|
|
44%
|
0.14
|
0.14
|
0.06
|
0.00
|
|
45%
|
0.14
|
0.14
|
0.06
|
0.00
|
|
46%
|
0.14
|
0.14
|
0.06
|
0.00
|
|
47%
|
0.14
|
0.14
|
0.06
|
0.00
|
|
48%
|
0.14
|
0.14
|
0.06
|
0.00
|
|
49%
|
0.17
|
0.14
|
0.06
|
0.00
|
|
50%
|
0.18
|
0.14
|
0.06
|
0.00
|
|
51%
|
0.18
|
0.19
|
0.06
|
0.00
|
|
52%
|
0.18
|
0.21
|
0.08
|
0.03
|
|
53%
|
0.18
|
0.21
|
0.12
|
0.03
|
|
54%
|
0.21
|
0.21
|
0.12
|
0.05
|
|
55%
|
0.21
|
0.21
|
0.12
|
0.05
|
|
56%
|
0.21
|
0.21
|
0.12
|
0.05
|
|
57%
|
0.21
|
0.21
|
0.12
|
0.05
|
|
58%
|
0.24
|
0.29
|
0.12
|
0.05
|
|
59%
|
0.25
|
0.29
|
0.12
|
0.05
|
|
60%
|
0.25
|
0.29
|
0.12
|
0.05
|
|
61%
|
0.26
|
0.29
|
0.12
|
0.05
|
|
62%
|
0.29
|
0.29
|
0.12
|
0.05
|
|
63%
|
0.29
|
0.29
|
0.12
|
0.06
|
|
64%
|
0.31
|
0.29
|
0.17
|
0.06
|
|
65%
|
0.32
|
0.33
|
0.17
|
0.09
|
|
66%
|
0.32
|
0.36
|
0.19
|
0.09
|
|
67%
|
0.33
|
0.36
|
0.19
|
0.09
|
|
68%
|
0.36
|
0.36
|
0.19
|
0.09
|
|
69%
|
0.36
|
0.36
|
0.19
|
0.09
|
|
70%
|
0.38
|
0.38
|
0.19
|
0.09
|
|
71%
|
0.39
|
0.43
|
0.19
|
0.09
|
|
72%
|
0.43
|
0.43
|
0.21
|
0.12
|
|
73%
|
0.43
|
0.43
|
0.25
|
0.14
|
|
74%
|
0.43
|
0.43
|
0.25
|
0.14
|
|
75%
|
0.46
|
0.48
|
0.25
|
0.14
|
|
76%
|
0.48
|
0.50
|
0.25
|
0.14
|
|
77%
|
0.50
|
0.50
|
0.25
|
0.15
|
|
78%
|
0.54
|
0.52
|
0.25
|
0.18
|
|
79%
|
0.54
|
0.57
|
0.30
|
0.18
|
|
80%
|
0.57
|
0.57
|
0.31
|
0.18
|
|
81%
|
0.60
|
0.57
|
0.31
|
0.21
|
|
82%
|
0.61
|
0.64
|
0.31
|
0.23
|
|
83%
|
0.64
|
0.64
|
0.34
|
0.23
|
|
84%
|
0.68
|
0.67
|
0.38
|
0.27
|
|
85%
|
0.71
|
0.71
|
0.38
|
0.27
|
|
86%
|
0.75
|
0.71
|
0.38
|
0.27
|
|
87%
|
0.79
|
0.79
|
0.44
|
0.32
|
|
88%
|
0.82
|
0.86
|
0.44
|
0.32
|
|
89%
|
0.86
|
0.86
|
0.50
|
0.36
|
|
90%
|
0.89
|
0.93
|
0.50
|
0.37
|
|
91%
|
0.96
|
1.00
|
0.54
|
0.41
|
|
92%
|
1.04
|
1.07
|
0.56
|
0.45
|
|
93%
|
1.11
|
1.14
|
0.62
|
0.50
|
|
94%
|
1.18
|
1.21
|
0.62
|
0.59
|
|
95%
|
1.25
|
1.29
|
0.69
|
0.67
|
|
96%
|
1.36
|
1.43
|
0.81
|
0.76
|
|
97%
|
1.50
|
1.52
|
0.92
|
0.86
|
|
98%
|
1.68
|
1.71
|
1.06
|
1.09
|
|
99%
|
1.96
|
2.00
|
1.31
|
1.36
|
|
100%
|
2.93
|
3.00
|
2.25
|
2.73
|
edx78<-subset(edx,vecums>=6.5,)
BF<-as.data.frame(quantile(na.omit(edx78$BSI), probs = seq(1, 100, by = 1) / 100))
BF$nos<-rownames(BF)
names(BF)<-c('Uzvedība', 'Procentile')
rownames(BF)<-1:nrow(BF)
BF<-(subset(BF,,c('Procentile','Uzvedība')))
BF$Izglītība<-quantile(na.omit(edx78$EDSI), probs = seq(1, 100, by = 1) / 100)
BF$Emocionalitāte<-quantile(na.omit(edx78$EMSI), probs = seq(1, 100, by = 1) / 100)
BF$Komunikācija<-quantile(na.omit(edx78$CSI), probs = seq(1, 100, by = 1) / 100)
tab_df(BF,title=paste('6.5 g. un vecāki bērni. n=',nrow(edx78),sep=''))
6.5 g. un vecāki bērni. n=8237
|
Procentile
|
Uzvedība
|
Izglītība
|
Emocionalitāte
|
Komunikācija
|
|
1%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
2%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
3%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
4%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
5%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
6%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
7%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
8%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
9%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
10%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
11%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
12%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
13%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
14%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
15%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
16%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
17%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
18%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
19%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
20%
|
0.00
|
0.00
|
0.00
|
0.00
|
|
21%
|
0.02
|
0.00
|
0.00
|
0.00
|
|
22%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
23%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
24%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
25%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
26%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
27%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
28%
|
0.04
|
0.00
|
0.00
|
0.00
|
|
29%
|
0.05
|
0.00
|
0.00
|
0.00
|
|
30%
|
0.07
|
0.00
|
0.00
|
0.00
|
|
31%
|
0.07
|
0.00
|
0.00
|
0.00
|
|
32%
|
0.07
|
0.00
|
0.00
|
0.00
|
|
33%
|
0.07
|
0.05
|
0.00
|
0.00
|
|
34%
|
0.07
|
0.07
|
0.00
|
0.00
|
|
35%
|
0.07
|
0.07
|
0.00
|
0.00
|
|
36%
|
0.07
|
0.07
|
0.00
|
0.00
|
|
37%
|
0.11
|
0.07
|
0.00
|
0.00
|
|
38%
|
0.11
|
0.07
|
0.00
|
0.00
|
|
39%
|
0.11
|
0.07
|
0.00
|
0.00
|
|
40%
|
0.11
|
0.07
|
0.00
|
0.00
|
|
41%
|
0.11
|
0.07
|
0.00
|
0.00
|
|
42%
|
0.11
|
0.07
|
0.04
|
0.00
|
|
43%
|
0.12
|
0.07
|
0.04
|
0.00
|
|
44%
|
0.14
|
0.07
|
0.06
|
0.00
|
|
45%
|
0.14
|
0.10
|
0.06
|
0.00
|
|
46%
|
0.14
|
0.14
|
0.06
|
0.00
|
|
47%
|
0.14
|
0.14
|
0.06
|
0.00
|
|
48%
|
0.14
|
0.14
|
0.06
|
0.00
|
|
49%
|
0.17
|
0.14
|
0.06
|
0.00
|
|
50%
|
0.18
|
0.14
|
0.06
|
0.00
|
|
51%
|
0.18
|
0.14
|
0.06
|
0.00
|
|
52%
|
0.18
|
0.14
|
0.06
|
0.00
|
|
53%
|
0.18
|
0.14
|
0.06
|
0.00
|
|
54%
|
0.21
|
0.14
|
0.06
|
0.00
|
|
55%
|
0.21
|
0.14
|
0.06
|
0.03
|
|
56%
|
0.21
|
0.19
|
0.08
|
0.05
|
|
57%
|
0.21
|
0.21
|
0.08
|
0.05
|
|
58%
|
0.25
|
0.21
|
0.12
|
0.05
|
|
59%
|
0.25
|
0.21
|
0.12
|
0.05
|
|
60%
|
0.25
|
0.21
|
0.12
|
0.05
|
|
61%
|
0.26
|
0.21
|
0.12
|
0.05
|
|
62%
|
0.29
|
0.24
|
0.12
|
0.05
|
|
63%
|
0.29
|
0.29
|
0.12
|
0.05
|
|
64%
|
0.29
|
0.29
|
0.12
|
0.05
|
|
65%
|
0.32
|
0.29
|
0.12
|
0.06
|
|
66%
|
0.32
|
0.29
|
0.12
|
0.09
|
|
67%
|
0.32
|
0.29
|
0.12
|
0.09
|
|
68%
|
0.36
|
0.29
|
0.17
|
0.09
|
|
69%
|
0.36
|
0.33
|
0.19
|
0.09
|
|
70%
|
0.36
|
0.36
|
0.19
|
0.09
|
|
71%
|
0.39
|
0.36
|
0.19
|
0.09
|
|
72%
|
0.39
|
0.36
|
0.19
|
0.09
|
|
73%
|
0.43
|
0.38
|
0.19
|
0.09
|
|
74%
|
0.43
|
0.43
|
0.19
|
0.12
|
|
75%
|
0.43
|
0.43
|
0.21
|
0.14
|
|
76%
|
0.46
|
0.43
|
0.25
|
0.14
|
|
77%
|
0.50
|
0.48
|
0.25
|
0.14
|
|
78%
|
0.50
|
0.50
|
0.25
|
0.14
|
|
79%
|
0.54
|
0.50
|
0.25
|
0.18
|
|
80%
|
0.55
|
0.50
|
0.25
|
0.18
|
|
81%
|
0.57
|
0.57
|
0.25
|
0.18
|
|
82%
|
0.61
|
0.57
|
0.31
|
0.18
|
|
83%
|
0.64
|
0.62
|
0.31
|
0.23
|
|
84%
|
0.68
|
0.64
|
0.31
|
0.23
|
|
85%
|
0.71
|
0.64
|
0.31
|
0.24
|
|
86%
|
0.75
|
0.71
|
0.38
|
0.27
|
|
87%
|
0.79
|
0.71
|
0.38
|
0.27
|
|
88%
|
0.82
|
0.79
|
0.38
|
0.32
|
|
89%
|
0.86
|
0.86
|
0.44
|
0.33
|
|
90%
|
0.93
|
0.90
|
0.44
|
0.36
|
|
91%
|
0.96
|
0.93
|
0.50
|
0.41
|
|
92%
|
1.04
|
1.00
|
0.50
|
0.45
|
|
93%
|
1.10
|
1.07
|
0.56
|
0.50
|
|
94%
|
1.18
|
1.14
|
0.62
|
0.55
|
|
95%
|
1.29
|
1.21
|
0.62
|
0.59
|
|
96%
|
1.36
|
1.29
|
0.75
|
0.68
|
|
97%
|
1.50
|
1.38
|
0.77
|
0.77
|
|
98%
|
1.64
|
1.57
|
0.92
|
0.91
|
|
99%
|
1.93
|
1.90
|
1.19
|
1.18
|
|
100%
|
2.79
|
2.79
|
2.19
|
2.73
|
Gala vērtējuma aprēķins
Gala aprēķins tiek veikts sekojoši: 1. tiek aprēķināts aritmētiskais
vidējais rezultāts skalā, atkarībā no tā, cik daudz pantu, piemēram,
Komunikācijas skalā pantu daudzums ir 11, tāpēc iegūtais rezultāts tiek
dalīts ar 11 un iegūstam skaitli, kas var variēt no 1 līdz 4, kur 4
nozīmē maksimālo iespējamo vērtību; 2. tiek aprēķināts aritmētiskais
vidējais starp vērtētājiem skalu līmenī; 3. tiek noteikta skalas
kategorija - 1., 2. vai 3.; 4. tiek noteikta gala kategorija pēc
augstākā rezultāta skalu kategorijā, piemēram, ja trijās skalās ir 1.
kategorija, bet vienā skalā ir 3. kategorija, tad gala kategorija tiek
noteikta kā 3.
#Kategorijas aprēķināšana
edx$BSIcat<-NA;
edx$EDSIcat<-NA;
edx$EMSIcat<-NA;
edx$CSIcat<-NA;
##Vecums mazāks par 2.5 g.v.
{
BN90_2<-quantile(na.omit(edx0$BSI), probs = c(90) / 100);print(paste(round(BN90_2,3),'Uzvedība 90. procentile'))
BN98_2<-quantile(na.omit(edx0$BSI), probs = c(98) / 100);print(paste(round(BN98_2,3),'Uzvedība 98. procentile'))
EDN90_2<-quantile(na.omit(edx0$EDSI), probs = c(90) / 100);print(paste(round(EDN90_2,3),'Emocionālā 90. procentile'))
EDN98_2<-quantile(na.omit(edx0$EDSI), probs = c(98) / 100);print(paste(round(EDN98_2,3),'Emocionālā 98. procentile'))
EMN90_2<-quantile(na.omit(edx0$EMSI), probs = c(90) / 100);print(paste(round(EMN90_2,3),'Emocionālā 90. procentile'))
EMN98_2<-quantile(na.omit(edx0$EMSI), probs = c(98) / 100);print(paste(round(EMN98_2,3),'Emocionālā 98. procentile'))
CN90_2<-quantile(na.omit(edx0$CSI), probs = c(90) / 100);print(paste(round(CN90_2,3),'Komunikācija 90. procentile'))
CN98_2<-quantile(na.omit(edx0$CSI), probs = c(98) / 100);print(paste(round(CN98_2,3),'Komunikācija 98. procentile'))
edx$BSIcat<-ifelse(edx$vecums<2.5&edx$BSI<BN90_2,1,ifelse(edx$vecums<2.5&edx$BSI<BN98_2&edx$BSI>=BN90_2,2,ifelse(edx$vecums<2.5&edx$BSI>=BN98_2,3,edx$BSIcat)))
edx$EDSIcat<-ifelse(edx$vecums<2.5&edx$EDSI<EDN90_2,1,ifelse(edx$vecums<2.5&edx$EDSI<EDN98_2&edx$EDSI>=EDN90_2,2,ifelse(edx$vecums<2.5&edx$EDSI>=EDN98_2,3,edx$EDSIcat)))
edx$EMSIcat<-ifelse(edx$vecums<2.5&edx$EMSI<EMN90_2,1,ifelse(edx$vecums<2.5&edx$EMSI<EMN98_2&edx$EMSI>=EMN90_2,2,ifelse(edx$vecums<2.5&edx$EMSI>=EMN98_2,3,edx$EMSIcat)))
edx$CSIcat<-ifelse(edx$vecums<2.5&edx$CSI<CN90_2,1,ifelse(edx$vecums<2.5&edx$CSI<CN98_2&edx$CSI>=CN90_2,2,ifelse(edx$vecums<2.5&edx$CSI>=CN98_2,3,edx$CSIcat)))
}
## [1] "0.768 Uzvedība 90. procentile"
## [1] "1.659 Uzvedība 98. procentile"
## [1] "0.905 Emocionālā 90. procentile"
## [1] "1.733 Emocionālā 98. procentile"
## [1] "0.625 Emocionālā 90. procentile"
## [1] "1.682 Emocionālā 98. procentile"
## [1] "0.773 Komunikācija 90. procentile"
## [1] "1.781 Komunikācija 98. procentile"
##no 2.5 g.v.līdz 3.5 g.v.
{
BN90_3<-quantile(na.omit(edx30$BSI), probs = c(90) / 100);print(paste(round(BN90_3,3),'Uzvedība 90. procentile'))
BN98_3<-quantile(na.omit(edx30$BSI), probs = c(98) / 100);print(paste(round(BN98_3,3),'Uzvedība 98. procentile'))
EDN90_3<-quantile(na.omit(edx30$EDSI), probs = c(90) / 100);print(paste(round(EDN90_3,3),'Izglītības 90. procentile'))
EDN98_3<-quantile(na.omit(edx30$EDSI), probs = c(98) / 100);print(paste(round(EDN98_3,3),'Izglītības 98. procentile'))
EMN90_3<-quantile(na.omit(edx30$EMSI), probs = c(90) / 100);print(paste(round(EMN90_3,3),'Emocionālā 90. procentile'))
EMN98_3<-quantile(na.omit(edx30$EMSI), probs = c(98) / 100);print(paste(round(EMN98_3,3),'Emocionālā 98. procentile'))
CN90_3<-quantile(na.omit(edx30$CSI), probs = c(90) / 100);print(paste(round(CN90_3,3),'Komunikācija 90. procentile'))
CN98_3<-quantile(na.omit(edx30$CSI), probs = c(98) / 100);print(paste(round(CN98_3,3),'Komunikācija 98. procentile'))
edx$BSIcat<-ifelse(edx$vecums<3.5&edx$vecums>=2.5&edx$BSI<BN90_3,1,ifelse(edx$vecums<3.5&edx$vecums>=2.5&edx$BSI<BN98_3&edx$BSI>=BN90_3,2,ifelse(edx$vecums<3.5&edx$vecums>=2.5&edx$BSI>=BN98_3,3,edx$BSIcat)))
edx$EDSIcat<-ifelse(edx$vecums<3.5&edx$vecums>=2.5&edx$EDSI<EDN90_3,1,ifelse(edx$vecums<3.5&edx$vecums>=2.5&edx$EDSI<EDN98_3&edx$EDSI>=EDN90_3,2,ifelse(edx$vecums<3.5&edx$vecums>=2.5&edx$EDSI>=EDN98_3,3,edx$EDSIcat)))
edx$EMSIcat<-ifelse(edx$vecums<3.5&edx$vecums>=2.5&edx$EMSI<EMN90_3,1,ifelse(edx$vecums<3.5&edx$vecums>=2.5&edx$EMSI<EMN98_3&edx$EMSI>=EMN90_3,2,ifelse(edx$vecums<3.5&edx$vecums>=2.5&edx$EMSI>=EMN98_3,3,edx$EMSIcat)))
edx$CSIcat<-ifelse(edx$vecums<3.5&edx$vecums>=2.5&edx$CSI<CN90_3,1,ifelse(edx$vecums<3.5&edx$vecums>=2.5&edx$CSI<CN98_3&edx$CSI>=CN90_3,2,ifelse(edx$vecums<3.5&edx$vecums>=2.5&edx$CSI>=CN98_3,3,edx$CSIcat)))
}
## [1] "0.929 Uzvedība 90. procentile"
## [1] "1.571 Uzvedība 98. procentile"
## [1] "1 Izglītības 90. procentile"
## [1] "1.786 Izglītības 98. procentile"
## [1] "0.688 Emocionālā 90. procentile"
## [1] "1.281 Emocionālā 98. procentile"
## [1] "0.727 Komunikācija 90. procentile"
## [1] "1.411 Komunikācija 98. procentile"
## no 3.5 g.v. līdz 4.5 g.v.
{
BN90_4<-quantile(na.omit(edx42$BSI), probs = c(90) / 100);print(paste(round(BN90_4,3),'Uzvedība 90. procentile'))
BN98_4<-quantile(na.omit(edx42$BSI), probs = c(98) / 100);print(paste(round(BN98_4,3),'Uzvedība 98. procentile'))
EDN90_4<-quantile(na.omit(edx42$EDSI), probs = c(90) / 100);print(paste(round(EDN90_4,3),'Izglītības 90. procentile'))
EDN98_4<-quantile(na.omit(edx42$EDSI), probs = c(98) / 100);print(paste(round(EDN98_4,3),'Izglītības 98. procentile'))
EMN90_4<-quantile(na.omit(edx42$EMSI), probs = c(90) / 100);print(paste(round(EMN90_4,3),'Emocionālā 90. procentile'))
EMN98_4<-quantile(na.omit(edx42$EMSI), probs = c(98) / 100);print(paste(round(EMN98_4,3),'Emocionālā 98. procentile'))
CN90_4<-quantile(na.omit(edx42$CSI), probs = c(90) / 100);print(paste(round(CN90_4,3),'Komunikācija 90. procentile'))
CN98_4<-quantile(na.omit(edx42$CSI), probs = c(98) / 100);print(paste(round(CN98_4,3),'Komunikācija 98. procentile'))
edx$BSIcat<-ifelse(edx$vecums<4.5&edx$vecums>=3.5&edx$BSI<BN90_4,1,ifelse(edx$vecums<4.5&edx$vecums>=3.5&edx$BSI<BN98_4&edx$BSI>=BN90_4,2,ifelse(edx$vecums<4.5&edx$vecums>=3.5&edx$BSI>=BN98_4,3,edx$BSIcat)))
edx$EDSIcat<-ifelse(edx$vecums<4.5&edx$vecums>=3.5&edx$EDSI<EDN90_4,1,ifelse(edx$vecums<4.5&edx$vecums>=3.5&edx$EDSI<EDN98_4&edx$EDSI>=EDN90_4,2,ifelse(edx$vecums<4.5&edx$vecums>=3.5&edx$EDSI>=EDN98_4,3,edx$EDSIcat)))
edx$EMSIcat<-ifelse(edx$vecums<4.5&edx$vecums>=3.5&edx$EMSI<EMN90_4,1,ifelse(edx$vecums<4.5&edx$vecums>=3.5&edx$EMSI<EMN98_4&edx$EMSI>=EMN90_4,2,ifelse(edx$vecums<4.5&edx$vecums>=3.5&edx$EMSI>=EMN98_4,3,edx$EMSIcat)))
edx$CSIcat<-ifelse(edx$vecums<4.5&edx$vecums>=3.5&edx$CSI<CN90_4,1,ifelse(edx$vecums<4.5&edx$vecums>=3.5&edx$CSI<CN98_4&edx$CSI>=CN90_4,2,ifelse(edx$vecums<4.5&edx$vecums>=3.5&edx$CSI>=CN98_4,3,edx$CSIcat)))
}
## [1] "0.929 Uzvedība 90. procentile"
## [1] "1.679 Uzvedība 98. procentile"
## [1] "1.048 Izglītības 90. procentile"
## [1] "1.857 Izglītības 98. procentile"
## [1] "0.625 Emocionālā 90. procentile"
## [1] "1.208 Emocionālā 98. procentile"
## [1] "0.636 Komunikācija 90. procentile"
## [1] "1.364 Komunikācija 98. procentile"
## no 4.5 g.v. līdz 5.5 g.v.
{
BN90_5<-quantile(na.omit(edx54$BSI), probs = c(90) / 100);print(paste(round(BN90_5,3),'Uzvedība 90. procentile'))
BN98_5<-quantile(na.omit(edx54$BSI), probs = c(98) / 100);print(paste(round(BN98_5,3),'Uzvedība 98. procentile'))
EDN90_5<-quantile(na.omit(edx54$EDSI), probs = c(90) / 100);print(paste(round(EDN90_5,3),'Izglītības 90. procentile'))
EDN98_5<-quantile(na.omit(edx54$EDSI), probs = c(98) / 100);print(paste(round(EDN98_5,3),'Izglītības 98. procentile'))
EMN90_5<-quantile(na.omit(edx54$EMSI), probs = c(90) / 100);print(paste(round(EMN90_5,3),'Emocionālā 90. procentile'))
EMN98_5<-quantile(na.omit(edx54$EMSI), probs = c(98) / 100);print(paste(round(EMN98_5,3),'Emocionālā 98. procentile'))
CN90_5<-quantile(na.omit(edx54$CSI), probs = c(90) / 100);print(paste(round(CN90_5,3),'Komunikācija 90. procentile'))
CN98_5<-quantile(na.omit(edx54$CSI), probs = c(98) / 100);print(paste(round(CN98_5,3),'Komunikācija 98. procentile'))
edx$BSIcat<-ifelse(edx$vecums<5.5&edx$vecums>=4.5&edx$BSI<BN90_5,1,ifelse(edx$vecums<5.5&edx$vecums>=4.5&edx$BSI<BN98_5&edx$BSI>=BN90_5,2,ifelse(edx$vecums<5.5&edx$vecums>=4.5&edx$BSI>=BN98_5,3,edx$BSIcat)))
edx$EDSIcat<-ifelse(edx$vecums<5.5&edx$vecums>=4.5&edx$EDSI<EDN90_5,1,ifelse(edx$vecums<5.5&edx$vecums>=4.5&edx$EDSI<EDN98_5&edx$EDSI>=EDN90_5,2,ifelse(edx$vecums<5.5&edx$vecums>=4.5&edx$EDSI>=EDN98_5,3,edx$EDSIcat)))
edx$EMSIcat<-ifelse(edx$vecums<5.5&edx$vecums>=4.5&edx$EMSI<EMN90_5,1,ifelse(edx$vecums<5.5&edx$vecums>=4.5&edx$EMSI<EMN98_5&edx$EMSI>=EMN90_5,2,ifelse(edx$vecums<5.5&edx$vecums>=4.5&edx$EMSI>=EMN98_5,3,edx$EMSIcat)))
edx$CSIcat<-ifelse(edx$vecums<5.5&edx$vecums>=4.5&edx$CSI<CN90_5,1,ifelse(edx$vecums<5.5&edx$vecums>=4.5&edx$CSI<CN98_5&edx$CSI>=CN90_5,2,ifelse(edx$vecums<5.5&edx$vecums>=4.5&edx$CSI>=CN98_5,3,edx$CSIcat)))
}
## [1] "0.893 Uzvedība 90. procentile"
## [1] "1.705 Uzvedība 98. procentile"
## [1] "1 Izglītības 90. procentile"
## [1] "1.857 Izglītības 98. procentile"
## [1] "0.562 Emocionālā 90. procentile"
## [1] "1.062 Emocionālā 98. procentile"
## [1] "0.409 Komunikācija 90. procentile"
## [1] "1.136 Komunikācija 98. procentile"
## no 5.5 g.v. līdz 6.5 g.v.
{
BN90_6<-quantile(na.omit(edx66$BSI), probs = c(90) / 100);print(paste(round(BN90_6,3),'Uzvedība 90. procentile'))
BN98_6<-quantile(na.omit(edx66$BSI), probs = c(98) / 100);print(paste(round(BN98_6,3),'Uzvedība 98. procentile'))
EDN90_6<-quantile(na.omit(edx66$EDSI), probs = c(90) / 100);print(paste(round(EDN90_6,3),'Izglītības 90. procentile'))
EDN98_6<-quantile(na.omit(edx66$EDSI), probs = c(98) / 100);print(paste(round(EDN98_6,3),'Izglītības 98. procentile'))
EMN90_6<-quantile(na.omit(edx66$EMSI), probs = c(90) / 100);print(paste(round(EMN90_6,3),'Emocionālā 90. procentile'))
EMN98_6<-quantile(na.omit(edx66$EMSI), probs = c(98) / 100);print(paste(round(EMN98_6,3),'Emocionālā 98. procentile'))
CN90_6<-quantile(na.omit(edx66$CSI), probs = c(90) / 100);print(paste(round(CN90_6,3),'Komunikācija 90. procentile'))
CN98_6<-quantile(na.omit(edx66$CSI), probs = c(98) / 100);print(paste(round(CN98_6,3),'Komunikācija 98. procentile'))
edx$BSIcat<-ifelse(edx$vecums<6.5&edx$vecums>=5.5&edx$BSI<BN90_6,1,ifelse(edx$vecums<6.5&edx$vecums>=5.5&edx$BSI<BN98_6&edx$BSI>=BN90_6,2,ifelse(edx$vecums<6.5&edx$vecums>=5.5&edx$BSI>=BN98_6,3,edx$BSIcat)))
edx$EDSIcat<-ifelse(edx$vecums<6.5&edx$vecums>=5.5&edx$EDSI<EDN90_6,1,ifelse(edx$vecums<6.5&edx$vecums>=5.5&edx$EDSI<EDN98_6&edx$EDSI>=EDN90_6,2,ifelse(edx$vecums<6.5&edx$vecums>=5.5&edx$EDSI>=EDN98_6,3,edx$EDSIcat)))
edx$EMSIcat<-ifelse(edx$vecums<6.5&edx$vecums>=5.5&edx$EMSI<EMN90_6,1,ifelse(edx$vecums<6.5&edx$vecums>=5.5&edx$EMSI<EMN98_6&edx$EMSI>=EMN90_6,2,ifelse(edx$vecums<6.5&edx$vecums>=5.5&edx$EMSI>=EMN98_6,3,edx$EMSIcat)))
edx$CSIcat<-ifelse(edx$vecums<6.5&edx$vecums>=5.5&edx$CSI<CN90_6,1,ifelse(edx$vecums<6.5&edx$vecums>=5.5&edx$CSI<CN98_6&edx$CSI>=CN90_6,2,ifelse(edx$vecums<6.5&edx$vecums>=5.5&edx$CSI>=CN98_6,3,edx$CSIcat)))
}
## [1] "0.893 Uzvedība 90. procentile"
## [1] "1.679 Uzvedība 98. procentile"
## [1] "0.929 Izglītības 90. procentile"
## [1] "1.714 Izglītības 98. procentile"
## [1] "0.5 Emocionālā 90. procentile"
## [1] "1.062 Emocionālā 98. procentile"
## [1] "0.373 Komunikācija 90. procentile"
## [1] "1.091 Komunikācija 98. procentile"
## no 6.5 g.v.
{
BN90_7<-quantile(na.omit(edx78$BSI), probs = c(90) / 100);print(paste(round(BN90_7,3),'Uzvedība 90. procentile'))
BN98_7<-quantile(na.omit(edx78$BSI), probs = c(98) / 100);print(paste(round(BN98_7,3),'Uzvedība 98. procentile'))
EDN90_7<-quantile(na.omit(edx78$EDSI), probs = c(90) / 100);print(paste(round(EDN90_7,3),'Izglītības 90. procentile'))
EDN98_7<-quantile(na.omit(edx78$EDSI), probs = c(98) / 100);print(paste(round(EDN98_7,3),'Izglītības 98. procentile'))
EMN90_7<-quantile(na.omit(edx78$EMSI), probs = c(90) / 100);print(paste(round(EMN90_7,3),'Emocionālā 90. procentile'))
EMN98_7<-quantile(na.omit(edx78$EMSI), probs = c(98) / 100);print(paste(round(EMN98_7,3),'Emocionālā 98. procentile'))
CN90_7<-quantile(na.omit(edx78$CSI), probs = c(90) / 100);print(paste(round(CN90_7,3),'Komunikācija 90. procentile'))
CN98_7<-quantile(na.omit(edx78$CSI), probs = c(98) / 100);print(paste(round(CN98_7,3),'Komunikācija 98. procentile'))
edx$BSIcat<-ifelse(edx$vecums>=6.5&edx$BSI<BN90_7,1,ifelse(edx$vecums>=6.5&edx$BSI<BN98_7&edx$BSI>=BN90_7,2,ifelse(edx$vecums>=6.5&edx$BSI>=BN98_7,3,edx$BSIcat)))
edx$EDSIcat<-ifelse(edx$vecums>=6.5&edx$EDSI<EDN90_7,1,ifelse(edx$vecums>=6.5&edx$EDSI<EDN98_7&edx$EDSI>=EDN90_7,2,ifelse(edx$vecums>=6.5&edx$EDSI>=EDN98_7,3,edx$EDSIcat)))
edx$EMSIcat<-ifelse(edx$vecums>=6.5&edx$EMSI<EMN90_7,1,ifelse(edx$vecums>=6.5&edx$EMSI<EMN98_7&edx$EMSI>=EMN90_7,2,ifelse(edx$vecums>=6.5&edx$EMSI>=EMN98_7,3,edx$EMSIcat)))
edx$CSIcat<-ifelse(edx$vecums>=6.5&edx$CSI<CN90_7,1,ifelse(edx$vecums>=6.5&edx$CSI<CN98_7&edx$CSI>=CN90_7,2,ifelse(edx$vecums>=6.5&edx$CSI>=CN98_7,3,edx$CSIcat)))
}
## [1] "0.929 Uzvedība 90. procentile"
## [1] "1.643 Uzvedība 98. procentile"
## [1] "0.905 Izglītības 90. procentile"
## [1] "1.571 Izglītības 98. procentile"
## [1] "0.438 Emocionālā 90. procentile"
## [1] "0.917 Emocionālā 98. procentile"
## [1] "0.364 Komunikācija 90. procentile"
## [1] "0.909 Komunikācija 98. procentile"
# aprēķinām gala kategoriju.
edx$KidCat <- apply(edx[, c("BSIcat", "EDSIcat", "EMSIcat", "CSIcat")], 1, function(row) {
# Izņem NA vērtības
row <- row[!is.na(row)]
if (length(row) == 0) {
return(NA)
}
max_val <- max(row)
return(max_val)
})
table(edx$KidCat)
##
## 1 2 3
## 25719 6739 2130
table(edx$KidCat)/sum(table(edx$KidCat))
##
## 1 2 3
## 0.74358159 0.19483636 0.06158205
#kategorijas korelācija ar vecumu:
cor.test(edx$KidCat,as.numeric(edx$vecums), use = "na.or.complete")
##
## Pearson's product-moment correlation
##
## data: edx$KidCat and as.numeric(edx$vecums)
## t = -1.8767, df = 34586, p-value = 0.06056
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.0206274450 0.0004478614
## sample estimates:
## cor
## -0.01009091
# Instalējiet nepieciešamo pakotni, ja tas vēl nav izdarīts
if (!require("htmlTable")) install.packages("htmlTable")
## Loading required package: htmlTable
## Warning: package 'htmlTable' was built under R version 4.3.3
library(htmlTable)
# Izveidojam datus, kas tiks attēloti tabulā
mērījumi <- c("Uzvedība", rep("", 5), "Izglītība", rep("", 5),
"Emocionālā", rep("", 5), "Komunikācija", rep("", 5))
vecumi <- c("Mazāks par 2.5 gadiem", "2.5-3.5 gadi", "3.5-4.5 gadi", "4.5-5.5 gadi",
"5.5-6.5 gadi", "No 6.5 gadiem",
"Mazāks par 2.5 gadiem", "2.5-3.5 gadi", "3.5-4.5 gadi", "4.5-5.5 gadi",
"5.5-6.5 gadi", "No 6.5 gadiem",
"Mazāks par 2.5 gadiem", "2.5-3.5 gadi", "3.5-4.5 gadi", "4.5-5.5 gadi",
"5.5-6.5 gadi", "No 6.5 gadiem",
"Mazāks par 2.5 gadiem", "2.5-3.5 gadi", "3.5-4.5 gadi", "4.5-5.5 gadi",
"5.5-6.5 gadi", "No 6.5 gadiem")
procentile_90 <- round(c(BN90_2, BN90_3, BN90_4, BN90_5, BN90_6, BN90_7,
EDN90_2, EDN90_3, EDN90_4, EDN90_5, EDN90_6, EDN90_7,
EMN90_2, EMN90_3, EMN90_4, EMN90_5, EMN90_6, EMN90_7,
CN90_2, CN90_3, CN90_4, CN90_5, CN90_6, CN90_7), 3)
procentile_98 <- round(c(BN98_2, BN98_3, BN98_4, BN98_5, BN98_6, BN98_7,
EDN98_2, EDN98_3, EDN98_4, EDN98_5, EDN98_6, EDN98_7,
EMN98_2, EMN98_3, EMN98_4, EMN98_5, EMN98_6, EMN98_7,
CN98_2, CN98_3, CN98_4, CN98_5, CN98_6, CN98_7), 3)
# Pārliecināmies, ka visiem vektoriem ir vienāds garums
length(mērījumi) == length(vecumi) && length(vecumi) == length(procentile_90) && length(procentile_90) == length(procentile_98)
## [1] TRUE
# Ja garumi ir vienādi, izveidojam datu rāmi
tabula <- data.frame(
Mērījums = mērījumi,
Vecums = vecumi,
`90. procentile` = procentile_90,
`98. procentile` = procentile_98
)
# Izveidojam HTML tabulu
html_tabula <- htmlTable(tabula,
header = c("Mērījums", "Vecums", "90. procentile", "98. procentile"),
caption = "Procentiles katrai skalu kategorijai un vecuma grupai",
rnames = FALSE,
align = "llcc")
# Izvadām HTML tabulu
html_tabula
|
Procentiles katrai skalu kategorijai un vecuma grupai
|
|
Mērījums
|
Vecums
|
- procentile
|
- procentile
|
|
Uzvedība
|
Mazāks par 2.5 gadiem
|
0.768
|
1.659
|
|
|
2.5-3.5 gadi
|
0.929
|
1.571
|
|
|
3.5-4.5 gadi
|
0.929
|
1.679
|
|
|
4.5-5.5 gadi
|
0.893
|
1.705
|
|
|
5.5-6.5 gadi
|
0.893
|
1.679
|
|
|
No 6.5 gadiem
|
0.929
|
1.643
|
|
Izglītība
|
Mazāks par 2.5 gadiem
|
0.905
|
1.733
|
|
|
2.5-3.5 gadi
|
1
|
1.786
|
|
|
3.5-4.5 gadi
|
1.048
|
1.857
|
|
|
4.5-5.5 gadi
|
1
|
1.857
|
|
|
5.5-6.5 gadi
|
0.929
|
1.714
|
|
|
No 6.5 gadiem
|
0.905
|
1.571
|
|
Emocionālā
|
Mazāks par 2.5 gadiem
|
0.625
|
1.682
|
|
|
2.5-3.5 gadi
|
0.688
|
1.281
|
|
|
3.5-4.5 gadi
|
0.625
|
1.208
|
|
|
4.5-5.5 gadi
|
0.562
|
1.062
|
|
|
5.5-6.5 gadi
|
0.5
|
1.062
|
|
|
No 6.5 gadiem
|
0.438
|
0.917
|
|
Komunikācija
|
Mazāks par 2.5 gadiem
|
0.773
|
1.781
|
|
|
2.5-3.5 gadi
|
0.727
|
1.411
|
|
|
3.5-4.5 gadi
|
0.636
|
1.364
|
|
|
4.5-5.5 gadi
|
0.409
|
1.136
|
|
|
5.5-6.5 gadi
|
0.373
|
1.091
|
|
|
No 6.5 gadiem
|
0.364
|
0.909
|
Validizācijas izlases izveide
#VALIDIZĀCIJAS IZLASE
load("C:/privati/SOSinventory/SOSinventory/evans.RData")
group1 <- c(1643 # PII Bitīte, 6. grupa
,1641 # PII Bitīte, 4. grupa
,1642 # PII Bitīte, 5. grupa
,1639 # PII Bitīte, 1. grupa
,1646 # PII Bitīte, 11. grupa
#,95 # Kadiķīši no PII Kurzeme, bet 2020.gads
#,785 # Kadiķīši no PII Kurzeme, bet 2021.gads
#,1005 # Kadiķīši no PII Kurzeme, bet 2021.gads
)
group1b <- c(1643 # PII Bitīte, 6. grupa
,1641 # PII Bitīte, 4. grupa
,1642 # PII Bitīte, 5. grupa
,1639 # PII Bitīte, 1. grupa
,1646 # PII Bitīte, 11. grupa
,95 # Kadiķīši no PII Kurzeme, bet 2020.gads
,785 # Kadiķīši no PII Kurzeme, bet 2021.gads
,1005 # Kadiķīši no PII Kurzeme, bet 2021.gads
)
group2 <- c(1627 # PII Zvaniņš, 11. grupa
,1631 # PII Zvaniņš, 9. grupa - Mārītes
,1634# PII Zvaniņš, 3 grupa Pelītes
,1591 # PII 244, 1. grupa
,1594 # PII 244, 4. grupa
,1595 # PII 244, 5. grupa
,1596 # PII 244, 6. grupa
,1597 # PII 244, 9. grupa
,1599 # PII 244, 12. grupa
,1600 # PII 244, 13. grupa
,1601 # PII 244, 14. grupa
,1602 # PII 244, 15. grupa
,1603 # PII 244, 17. grupa
,1604 # PII 244, 18. grupa
,1605 # PII 244, 19. grupa
,1648 # PII Ābecītis 13, 2. grupa
)
#set.seed(123)
#group2 <- sample(setdiff(as.character(evans$group_id), as.character(group1b)), 50)
dfvalid <- evans %>%
mutate(pazime = case_when(
group_id %in% group1 ~ 1,
group_id %in% group2 ~ 2,
TRUE ~ NA_real_
))
dfvalid<-subset(dfvalid,is.na(pazime)==FALSE);dim(dfvalid)
## [1] 807 230
#1 pamatatlase
{
nrow(dfvalid);dfvalid<-subset(dfvalid,stype=='MAINSURVEY');nrow(dfvalid)
}
## [1] 807
#2 pildīšanas laiks
{
nrow(dfvalid); dfvalid<-subset(dfvalid, is.na(eminutes)==FALSE,); nrow(dfvalid)
nrow(dfvalid);dfvalid<-subset(dfvalid,eminutes>quantile(dfvalid$eminutes, probs = c(0.05)),);nrow(dfvalid)
}
## [1] 752
#izņemam testa gadījumus:
{
nrow(dfvalid);dfvalid<-subset(dfvalid,gsch!='999999'&gsch!='999997'&gsch!='999998', );nrow(dfvalid)
}
## [1] 752
# aizstājam atbildes ar vērtību 5 un 3 ar NA
{
kolonas5miss<-c(B,EM,ED,C)
dfvalid[, c(kolonas5miss)][dfvalid[, kolonas5miss] == '5'] <- NA
head(dfvalid)
}
## id survey_id group_id kid_id user_id status created_at
## 58893 60384 279 1591 12592 1812 2 2023-10-24 13:01:32
## 58894 60379 279 1591 12613 1812 2 2023-10-24 13:01:32
## 58895 60378 279 1591 12612 1812 2 2023-10-24 13:01:32
## 58896 60380 279 1591 12614 1812 2 2023-10-24 13:01:32
## 58897 60381 279 1591 12557 1812 2 2023-10-24 13:01:32
## 58898 60382 279 1591 12618 1812 2 2023-10-24 13:01:32
## updated_at category comment eseconds kbd kgend kresult
## 58893 2023-10-30 13:43:01 0 <NA> 520889 2020-02-01 2 0
## 58894 2023-10-30 14:03:18 0 <NA> 522106 2020-11-03 2 0
## 58895 2023-10-30 13:51:53 1 <NA> 521421 2020-09-18 1 0
## 58896 2023-10-30 14:12:50 0 <NA> 522678 2020-11-13 2 0
## 58897 2023-10-30 14:20:16 0 <NA> 523124 2020-06-14 1 0
## 58898 2023-10-30 14:26:39 0 <NA> 523507 2020-07-27 1 0
## gsch gstart gend gupd gstatus stype
## 58893 13 2023-09-01 2024-08-31 2023-10-23 12:57:00 1 MAINSURVEY
## 58894 13 2023-09-01 2024-08-31 2023-10-23 12:57:00 1 MAINSURVEY
## 58895 13 2023-09-01 2024-08-31 2023-10-23 12:57:00 1 MAINSURVEY
## 58896 13 2023-09-01 2024-08-31 2023-10-23 12:57:00 1 MAINSURVEY
## 58897 13 2023-09-01 2024-08-31 2023-10-23 12:57:00 1 MAINSURVEY
## 58898 13 2023-09-01 2024-08-31 2023-10-23 12:57:00 1 MAINSURVEY
## sstart send sstatus srep screate
## 58893 2023-10-24 2023-11-10 1 0 2023-10-24 13:01:31
## 58894 2023-10-24 2023-11-10 1 0 2023-10-24 13:01:31
## 58895 2023-10-24 2023-11-10 1 0 2023-10-24 13:01:31
## 58896 2023-10-24 2023-11-10 1 0 2023-10-24 13:01:31
## 58897 2023-10-24 2023-11-10 1 0 2023-10-24 13:01:31
## 58898 2023-10-24 2023-11-10 1 0 2023-10-24 13:01:31
## supd scat includeSpecial B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
## 58893 2023-10-24 13:01:31 0 0 NA NA NA NA NA NA NA NA NA NA
## 58894 2023-10-24 13:01:31 0 0 2 2 3 3 3 3 3 4 4 3
## 58895 2023-10-24 13:01:31 0 0 1 1 4 2 2 2 2 4 4 3
## 58896 2023-10-24 13:01:31 0 0 1 1 3 2 1 4 2 4 4 2
## 58897 2023-10-24 13:01:31 0 0 4 4 4 4 4 4 4 4 4 4
## 58898 2023-10-24 13:01:31 0 0 1 2 4 3 2 3 3 4 4 3
## B11 B12 B13 B14 EM1 EM2 EM3 EM4 EM5 EM6 EM7 ED1 ED2 ED3 ED4 ED5 ED6 ED7
## 58893 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## 58894 3 4 4 3 4 4 4 4 4 4 2 2 3 4 3 4 4 4
## 58895 3 4 3 2 4 4 4 4 4 4 4 2 2 3 3 4 4 4
## 58896 2 4 4 4 4 4 4 4 4 4 4 1 2 3 3 4 4 4
## 58897 4 4 4 3 4 4 4 3 4 4 4 4 4 4 4 4 4 4
## 58898 4 4 4 3 4 4 4 4 4 4 4 1 3 3 3 4 4 4
## C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 S1 S2 S3 S4 S6 S5 S7 S8 S9 S10 S11 B1s
## 58893 NA NA NA NA NA NA NA NA NA NA 5 NA 5 5 5 5 5 3 5 5 5 4 0
## 58894 4 4 4 4 3 NA 4 4 4 4 4 4 4 3 4 4 3 2 4 4 4 1 0
## 58895 4 4 4 4 4 NA 4 4 4 4 4 4 3 4 4 3 4 2 4 4 4 1 0
## 58896 4 4 3 4 4 NA 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 1 0
## 58897 3 4 4 4 4 NA 3 4 4 4 4 4 3 4 4 4 4 2 4 4 4 2 0
## 58898 4 4 4 4 4 NA 4 4 4 4 4 4 2 4 4 4 4 2 4 4 4 1 0
## B2s B3s B4s B5s B6s B7s B8s B9s B10s B11s B12s B13s B14s EM1s EM2s EM3s
## 58893 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58894 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58895 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58896 0 0 0 0 0 89 0 0 0 0 0 0 0 0 0 0
## 58897 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58898 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## EM4s EM5s EM6s EM7s ED1s ED2s ED3s ED4s ED5s ED6s ED7s C1s C2s C3s C4s
## 58893 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58894 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58895 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58896 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58897 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58898 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## C5s C6s C7s C8s C9s C10s C11s S1s S2s S3s S4s S6s S5s S7s S8s S9s S10s
## 58893 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58894 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58895 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58896 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58897 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58898 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## S11s B1v B2v B3v B4v B5v B6v B7v B8v B9v B10v B11v B12v B13v B14v EM1v
## 58893 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58894 0 2 2 1 1 1 1 1 0 0 1 1 0 0 1 0
## 58895 0 3 3 0 2 2 2 2 0 0 1 1 0 1 2 0
## 58896 0 3 3 1 2 3 0 2 0 0 2 2 0 0 0 0
## 58897 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## 58898 0 3 2 0 1 2 1 1 0 0 1 0 0 0 1 0
## EM2v EM3v EM4v EM5v EM6v EM7v ED1v ED2v ED3v ED4v ED5v ED6v ED7v C1v C2v
## 58893 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58894 0 0 0 0 0 2 2 1 0 1 0 0 0 0 0
## 58895 0 0 0 0 0 0 2 2 1 1 0 0 0 0 0
## 58896 0 0 0 0 0 0 3 2 1 1 0 0 0 0 0
## 58897 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
## 58898 0 0 0 0 0 0 3 1 1 1 0 0 0 0 0
## C3v C4v C5v C6v C7v C8v C9v C10v C11v S1v S2v S3v S4v S6v S5v S7v S8v S9v
## 58893 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58894 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
## 58895 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
## 58896 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58897 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
## 58898 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
## S10v S11v B1i B2i B3i B4i B5i B6i B7i B8i B9i B10i B11i B12i B13i B14i
## 58893 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 58894 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58895 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58896 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58897 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58898 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## EM1i EM2i EM3i EM4i EM5i EM6i EM7i ED1i ED2i ED3i ED4i ED5i ED6i ED7i C1i
## 58893 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 58894 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58895 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58896 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58897 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 58898 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## C2i C3i C4i C5i C6i C7i C8i C9i C10i C11i S1i S2i S3i S4i S6i S5i S7i S8i
## 58893 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 58894 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
## 58895 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
## 58896 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
## 58897 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
## 58898 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
## S9i S10i S11i eminutes pazime
## 58893 1 1 1 7.650000 2
## 58894 1 1 1 9.550000 2
## 58895 1 1 1 8.000000 2
## 58896 1 1 1 8.883333 2
## 58897 1 1 1 6.700000 2
## 58898 1 1 1 5.816667 2
dfvalid$vecums<-(as.Date(dfvalid$send)-as.Date(dfvalid$kbd))/365.42
quantile(dfvalid$vecums, c(0.01,0.99))
## Time differences in days
## 1% 99%
## 2.911882 7.147939
nrow(dfvalid);dfvalid<-subset(dfvalid,vecums>2.4&vecums<=8.5);nrow(dfvalid)
## [1] 752
## [1] 752
#nrow(dfvalid);dfvalid <- dfvalid[complete.cases(dfvalid[, names(dfvalid)[29:78]]), ]; nrow(dfvalid)
#head(dfvalid)
for (i in 1:length(B)){
dfvalid[,B[i]]<-4-dfvalid[,B[i]]
}
for (i in 1:length(ED)){
dfvalid[,ED[i]]<-4-dfvalid[,ED[i]]
}
for (i in 1:length(EM)){
dfvalid[,EM[i]]<-4-dfvalid[,EM[i]]
}
for (i in 1:length(C)){
dfvalid[,C[i]]<-4-dfvalid[,C[i]]
}
edxv<-(dfvalid[,c(B,EM,ED,C,"kid_id","id","group_id","user_id","kgend","gsch","survey_id","vecums","pazime")])
#noņemam gadījumus, kad izstrūkst dati
nrow(edxv);edxv <- edxv[complete.cases(edxv[, names(edxv)[1:40]]), ]; nrow(edxv)
## [1] 752
## [1] 682
edxv$B <- Reduce(`+`, edxv[B])
edxv$C <- Reduce(`+`, edxv[C])
edxv$EM <-Reduce(`+`, edxv[EM])
edxv$ED <-Reduce(`+`, edxv[ED])
edxv$object_id<-paste(as.character(edxv$survey_id),as.character(edxv$group_id),as.character(edxv$kid_id),sep='')
edxv$evcase_id<-paste(as.character(edxv$survey_id),as.character(edxv$group_id),sep='')
edxv$evaluator_id<-edxv$user_id
edxv$evaluation<-edxv$B
edxv <- edxv %>% arrange(as.numeric(evcase_id))
edxv$BS<-edxv$B/14
edxv$EDS<-edxv$ED/8
edxv$EMS<-edxv$EM/7
edxv$CS<-edxv$C/10
head(edxv)
## B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 EM1 EM2 EM3 EM4 EM5 EM6 EM7
## 1 2 3 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## 3 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## 6 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## ED1 ED2 ED3 ED4 ED5 ED6 ED7 S1 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 kid_id id
## 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9487 60383
## 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16103 60385
## 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12620 60386
## 4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 12559 60387
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12623 60389
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12625 60392
## group_id user_id kgend gsch survey_id vecums pazime B C EM ED
## 1 1591 1812 2 13 279 3.907832 days 2 13 0 0 1
## 2 1591 1812 1 13 279 3.459033 days 2 0 0 1 1
## 3 1591 1812 1 13 279 3.045810 days 2 4 0 0 2
## 4 1591 1812 2 13 279 3.511028 days 2 0 1 0 0
## 5 1591 1812 2 13 279 3.158010 days 2 2 0 0 0
## 6 1591 1812 2 13 279 2.958240 days 2 2 0 0 0
## object_id evcase_id evaluator_id evaluation BS EDS EMS CS
## 1 27915919487 2791591 1812 13 0.9285714 0.125 0.0000000 0.0
## 2 279159116103 2791591 1812 0 0.0000000 0.125 0.1428571 0.0
## 3 279159112620 2791591 1812 4 0.2857143 0.250 0.0000000 0.0
## 4 279159112559 2791591 1812 0 0.0000000 0.000 0.0000000 0.1
## 5 279159112623 2791591 1812 2 0.1428571 0.000 0.0000000 0.0
## 6 279159112625 2791591 1812 2 0.1428571 0.000 0.0000000 0.0
#aprēķinām kopējo rezultātu katram bērnam
edxv$BSI<-NA;edxv$EDSI<-NA;edxv$EMSI<-NA;edxv$CSI<-NA;
for (i in 1: length(unique(edxv$kid_id))){
temp<-NULL
temp<-subset(edxv,kid_id==unique(edxv$kid_id)[i],c('BS','EDS','EMS','CS'))
if (nrow(temp)>1){
edxv$BSI[edxv$kid_id == unique(edxv$kid_id)[i]] <- mean(temp$BS)
edxv$EDSI[edxv$kid_id == unique(edxv$kid_id)[i]] <- mean(temp$EDS)
edxv$EMSI[edxv$kid_id == unique(edxv$kid_id)[i]] <- mean(temp$EMS)
edxv$CSI[edxv$kid_id == unique(edxv$kid_id)[i]] <- mean(temp$CS)
}
}
#aprēķinām kopējo rezultātu katram bērnam
edxv$BSIcat<-NA;
edxv$EDSIcat<-NA;
edxv$EMSIcat<-NA;
edxv$CSIcat<-NA;
edxv$BSIcat<-ifelse(edxv$vecums<2.5&edxv$BSI<BN90_2,1,ifelse(edxv$vecums<2.5&edxv$BSI<BN98_2&edxv$BSI>=BN90_2,2,ifelse(edxv$vecums<2.5&edxv$BSI>=BN98_2,3,edxv$BSIcat)))
edxv$EDSIcat<-ifelse(edxv$vecums<2.5&edxv$EDSI<EDN90_2,1,ifelse(edxv$vecums<2.5&edxv$EDSI<EDN98_2&edxv$EDSI>=EDN90_2,2,ifelse(edxv$vecums<2.5&edxv$EDSI>=EDN98_2,3,edxv$EDSIcat)))
edxv$EMSIcat<-ifelse(edxv$vecums<2.5&edxv$EMSI<EMN90_2,1,ifelse(edxv$vecums<2.5&edxv$EMSI<EMN98_2&edxv$EMSI>=EMN90_2,2,ifelse(edxv$vecums<2.5&edxv$EMSI>=EMN98_2,3,edxv$EMSIcat)))
edxv$CSIcat<-ifelse(edxv$vecums<2.5&edxv$CSI<CN90_2,1,ifelse(edxv$vecums<2.5&edxv$CSI<CN98_2&edxv$CSI>=CN90_2,2,ifelse(edxv$vecums<2.5&edxv$CSI>=CN98_2,3,edxv$CSIcat)))
edxv$BSIcat<-ifelse(edxv$vecums<3.5&edxv$vecums>=2.5&edxv$BSI<BN90_3,1,ifelse(edxv$vecums<3.5&edxv$vecums>=2.5&edxv$BSI<BN98_3&edxv$BSI>=BN90_3,2,ifelse(edxv$vecums<3.5&edxv$vecums>=2.5&edxv$BSI>=BN98_3,3,edxv$BSIcat)))
edxv$EDSIcat<-ifelse(edxv$vecums<3.5&edxv$vecums>=2.5&edxv$EDSI<EDN90_3,1,ifelse(edxv$vecums<3.5&edxv$vecums>=2.5&edxv$EDSI<EDN98_3&edxv$EDSI>=EDN90_3,2,ifelse(edxv$vecums<3.5&edxv$vecums>=2.5&edxv$EDSI>=EDN98_3,3,edxv$EDSIcat)))
edxv$EMSIcat<-ifelse(edxv$vecums<3.5&edxv$vecums>=2.5&edxv$EMSI<EMN90_3,1,ifelse(edxv$vecums<3.5&edxv$vecums>=2.5&edxv$EMSI<EMN98_3&edxv$EMSI>=EMN90_3,2,ifelse(edxv$vecums<3.5&edxv$vecums>=2.5&edxv$EMSI>=EMN98_3,3,edxv$EMSIcat)))
edxv$CSIcat<-ifelse(edxv$vecums<3.5&edxv$vecums>=2.5&edxv$CSI<CN90_3,1,ifelse(edxv$vecums<3.5&edxv$vecums>=2.5&edxv$CSI<CN98_3&edxv$CSI>=CN90_3,2,ifelse(edxv$vecums<3.5&edxv$vecums>=2.5&edxv$CSI>=CN98_3,3,edxv$CSIcat)))
edxv$BSIcat<-ifelse(edxv$vecums<4.5&edxv$vecums>=3.5&edxv$BSI<BN90_4,1,ifelse(edxv$vecums<4.5&edxv$vecums>=3.5&edxv$BSI<BN98_4&edxv$BSI>=BN90_4,2,ifelse(edxv$vecums<4.5&edxv$vecums>=3.5&edxv$BSI>=BN98_4,3,edxv$BSIcat)))
edxv$EDSIcat<-ifelse(edxv$vecums<4.5&edxv$vecums>=3.5&edxv$EDSI<EDN90_4,1,ifelse(edxv$vecums<4.5&edxv$vecums>=3.5&edxv$EDSI<EDN98_4&edxv$EDSI>=EDN90_4,2,ifelse(edxv$vecums<4.5&edxv$vecums>=3.5&edxv$EDSI>=EDN98_4,3,edxv$EDSIcat)))
edxv$EMSIcat<-ifelse(edxv$vecums<4.5&edxv$vecums>=3.5&edxv$EMSI<EMN90_4,1,ifelse(edxv$vecums<4.5&edxv$vecums>=3.5&edxv$EMSI<EMN98_4&edxv$EMSI>=EMN90_4,2,ifelse(edxv$vecums<4.5&edxv$vecums>=3.5&edxv$EMSI>=EMN98_4,3,edxv$EMSIcat)))
edxv$CSIcat<-ifelse(edxv$vecums<4.5&edxv$vecums>=3.5&edxv$CSI<CN90_4,1,ifelse(edxv$vecums<4.5&edxv$vecums>=3.5&edxv$CSI<CN98_4&edxv$CSI>=CN90_4,2,ifelse(edxv$vecums<4.5&edxv$vecums>=3.5&edxv$CSI>=CN98_4,3,edxv$CSIcat)))
edxv$BSIcat<-ifelse(edxv$vecums<5.5&edxv$vecums>=4.5&edxv$BSI<BN90_5,1,ifelse(edxv$vecums<5.5&edxv$vecums>=4.5&edxv$BSI<BN98_5&edxv$BSI>=BN90_5,2,ifelse(edxv$vecums<5.5&edxv$vecums>=4.5&edxv$BSI>=BN98_5,3,edxv$BSIcat)))
edxv$EDSIcat<-ifelse(edxv$vecums<5.5&edxv$vecums>=4.5&edxv$EDSI<EDN90_5,1,ifelse(edxv$vecums<5.5&edxv$vecums>=4.5&edxv$EDSI<EDN98_5&edxv$EDSI>=EDN90_5,2,ifelse(edxv$vecums<5.5&edxv$vecums>=4.5&edxv$EDSI>=EDN98_5,3,edxv$EDSIcat)))
edxv$EMSIcat<-ifelse(edxv$vecums<5.5&edxv$vecums>=4.5&edxv$EMSI<EMN90_5,1,ifelse(edxv$vecums<5.5&edxv$vecums>=4.5&edxv$EMSI<EMN98_5&edxv$EMSI>=EMN90_5,2,ifelse(edxv$vecums<5.5&edxv$vecums>=4.5&edxv$EMSI>=EMN98_5,3,edxv$EMSIcat)))
edxv$CSIcat<-ifelse(edxv$vecums<5.5&edxv$vecums>=4.5&edxv$CSI<CN90_5,1,ifelse(edxv$vecums<5.5&edxv$vecums>=4.5&edxv$CSI<CN98_5&edxv$CSI>=CN90_5,2,ifelse(edxv$vecums<5.5&edxv$vecums>=4.5&edxv$CSI>=CN98_5,3,edxv$CSIcat)))
edxv$BSIcat<-ifelse(edxv$vecums<6.5&edxv$vecums>=5.5&edxv$BSI<BN90_6,1,ifelse(edxv$vecums<6.5&edxv$vecums>=5.5&edxv$BSI<BN98_6&edxv$BSI>=BN90_6,2,ifelse(edxv$vecums<6.5&edxv$vecums>=5.5&edxv$BSI>=BN98_6,3,edxv$BSIcat)))
edxv$EDSIcat<-ifelse(edxv$vecums<6.5&edxv$vecums>=5.5&edxv$EDSI<EDN90_6,1,ifelse(edxv$vecums<6.5&edxv$vecums>=5.5&edxv$EDSI<EDN98_6&edxv$EDSI>=EDN90_6,2,ifelse(edxv$vecums<6.5&edxv$vecums>=5.5&edxv$EDSI>=EDN98_6,3,edxv$EDSIcat)))
edxv$EMSIcat<-ifelse(edxv$vecums<6.5&edxv$vecums>=5.5&edxv$EMSI<EMN90_6,1,ifelse(edxv$vecums<6.5&edxv$vecums>=5.5&edxv$EMSI<EMN98_6&edxv$EMSI>=EMN90_6,2,ifelse(edxv$vecums<6.5&edxv$vecums>=5.5&edxv$EMSI>=EMN98_6,3,edxv$EMSIcat)))
edxv$CSIcat<-ifelse(edxv$vecums<6.5&edxv$vecums>=5.5&edxv$CSI<CN90_6,1,ifelse(edxv$vecums<6.5&edxv$vecums>=5.5&edxv$CSI<CN98_6&edxv$CSI>=CN90_6,2,ifelse(edxv$vecums<6.5&edxv$vecums>=5.5&edxv$CSI>=CN98_6,3,edxv$CSIcat)))
edxv$BSIcat<-ifelse(edxv$vecums>=6.5&edxv$BSI<BN90_7,1,ifelse(edxv$vecums>=6.5&edxv$BSI<BN98_7&edxv$BSI>=BN90_7,2,ifelse(edxv$vecums>=6.5&edxv$BSI>=BN98_7,3,edxv$BSIcat)))
edxv$EDSIcat<-ifelse(edxv$vecums>=6.5&edxv$EDSI<EDN90_7,1,ifelse(edxv$vecums>=6.5&edxv$EDSI<EDN98_7&edxv$EDSI>=EDN90_7,2,ifelse(edxv$vecums>=6.5&edxv$EDSI>=EDN98_7,3,edxv$EDSIcat)))
edxv$EMSIcat<-ifelse(edxv$vecums>=6.5&edxv$EMSI<EMN90_7,1,ifelse(edxv$vecums>=6.5&edxv$EMSI<EMN98_7&edxv$EMSI>=EMN90_7,2,ifelse(edxv$vecums>=6.5&edxv$EMSI>=EMN98_7,3,edxv$EMSIcat)))
edxv$CSIcat<-ifelse(edxv$vecums>=6.5&edxv$CSI<CN90_7,1,ifelse(edxv$vecums>=6.5&edxv$CSI<CN98_7&edxv$CSI>=CN90_7,2,ifelse(edxv$vecums>=6.5&edxv$CSI>=CN98_7,3,edxv$CSIcat)))
# aprēķinām gala kategoriju.
edxv$KidCat <- apply(edxv[, c("BSIcat", "EDSIcat", "EMSIcat", "CSIcat")], 1, function(row) {
# Izņem NA vērtības
row <- row[!is.na(row)]
if (length(row) == 0) {
return(NA)
}
max_val <- max(row)
return(max_val)
})
table(edxv$KidCat)
##
## 1 2 3
## 438 128 48
table(edxv$KidCat)/sum(table(edxv$KidCat))
##
## 1 2 3
## 0.7133550 0.2084691 0.0781759
#kategorijas korelācija ar vecumu:
cor.test(edxv$KidCat,as.numeric(edxv$vecums), use = "na.or.complete")
##
## Pearson's product-moment correlation
##
## data: edxv$KidCat and as.numeric(edxv$vecums)
## t = -1.3399, df = 612, p-value = 0.1808
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.13264304 0.02514873
## sample estimates:
## cor
## -0.05408479
# kopējā kategorija
cor.test(edxv$KidCat,as.numeric(edxv$pazime), use = "na.or.complete")
##
## Pearson's product-moment correlation
##
## data: edxv$KidCat and as.numeric(edxv$pazime)
## t = -7.6849, df = 612, p-value = 6.115e-14
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.3671683 -0.2227643
## sample estimates:
## cor
## -0.2966611
#atsevišķas kategorijas:
cor.test(edxv$BSIcat,as.numeric(edxv$pazime), use = "na.or.complete")
##
## Pearson's product-moment correlation
##
## data: edxv$BSIcat and as.numeric(edxv$pazime)
## t = -4.2004, df = 612, p-value = 3.061e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.24329733 -0.08945287
## sample estimates:
## cor
## -0.167394
cor.test(edxv$EMSIcat,as.numeric(edxv$pazime), use = "na.or.complete")
##
## Pearson's product-moment correlation
##
## data: edxv$EMSIcat and as.numeric(edxv$pazime)
## t = -8.9284, df = 612, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.4076529 -0.2675377
## sample estimates:
## cor
## -0.3394772
cor.test(edxv$CSIcat,as.numeric(edxv$pazime), use = "na.or.complete")
##
## Pearson's product-moment correlation
##
## data: edxv$CSIcat and as.numeric(edxv$pazime)
## t = -4.3663, df = 612, p-value = 1.484e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2495058 -0.0960058
## sample estimates:
## cor
## -0.1738113
cor.test(edxv$EDSIcat,as.numeric(edxv$pazime), use = "na.or.complete")
##
## Pearson's product-moment correlation
##
## data: edxv$EDSIcat and as.numeric(edxv$pazime)
## t = -6.4367, df = 612, p-value = 2.467e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.3244663 -0.1761898
## sample estimates:
## cor
## -0.2518052
Pielikumi
Sākotnējais skalu un pantu saturs
b1<-"Bērns ir pārmērīgi kustīgs un aktīvs"; bh1<-"Piemēram, nevar nosēdēt brīžos, kad jāpilda kāds uzdevums un nepieciešama koncentrēšanās."
b2<-"Bērns neievēro noteikumus";b2h<-""
b3<-"Bērns cenšas pievērst sev daudz uzmanības";b3h<-""
b4<-"Bērns zaudē savaldīšanos";b4h<-""
b5<-"Bērns kaujās, kniebj, kož, sit u.tml. aizskar citus bērnus";b5h<-""
b6<-"Bērns ķircina, provocē citus bērnus";b6h<-""
b7<-"Bērnam dara pāri vienaudži";b7h<-""
b8<-"Bērns lamājas rupjiem vārdiem";b8h<-""
b9<-"Bērns draud citiem";b9h<-""
b10<-"Bērns nedalās ar citiem";b10h<-""
b11<-"Bērns izved no pacietības, nokaitina";b11h<-""
b12<-"Bērns ātri apvainojas";b12h<-""
b13<-"Bērns ir dusmīgs";b13h<-""
b14<-"Bērns sūdzas par citiem bērniem";b14h<-""
em1<-"Bērns ir nedrošs, bailīgs un nepārliecināts";em1h<-""
em2<-"Bērnam ir bailes no konkrētām vietām vai situācijām";em2h<-""
em3<-"Bērns ir raudulīgs";em3h<-""
em4<-"No rītiem bērns nelaiž prom vecākus, nevēlas palikt bērnu dārzā";em4h<-""
em5<-"Bērns uzmācīgi turas pieaugušo tuvumā";em5h<-""
em6<-"Bērns satraucas bez iemesla";em6h<-""
em7<-"Satraukuma brīžos pastiprināti reaģē: bērns nekontrolēti sūkā īkšķi, šūpo ķermeni, rausta acis (tiki) vai valodu u.c.";em7h<-""
ed1<-"Nodarbību laikā bērns pievēršas dažādām blakus lietām";ed1h<-""
ed2<-"Bērna darbi ir nekārtīgi";ed2h<-""
ed3<-"Bērns slikti saprot paskaidrojumus";ed3h<-""
ed4<-"Bērnam ir grūti pabeigt iesākto";ed4h<-""
ed5<-"Bērns atsakās piedalīties nodarbībās";ed5h<-""
ed6<-"Bērnu grūti ieinteresēt";ed6h<-""
ed7<-"Bērns nespēj sevi nodarbināt";ed7h<-""
c1<-"Bērns ir kluss un nerunīgs";c1h<-""
c2<-"Bērnam ir grūti sarunāties ar pieaugušajiem";c2h<-""
c3<-"Bērnam ir grūti sarunāties ar citiem bērniem";c3h<-""
c4<-"Bērns nespēlējas ar vienaudžiem";c4h<-""
c5<-"Bērns problēmu situācijās nelūdz palīdzību pieaugušajiem";c5h<-""
c6<-"Bērns nelūdz palīdzību no citiem bērniem";c6h<-""
c7<-"Bērns daudz laiku pavada vienatnē";c7h<-""
c8<-"Bērns neveido acu kontaktu";c8h<-""
c9<-"Bērns izvairās no fiziska kontakta";c9h<-""
c10<-"Bērns ir noslēgts, 'neredzams'";c10h<-""
c11<-"Bērnu nekas neiepriecina";c11h<-""
s1<-"Bērns ātri nogurst";s1h<-""
s2<-"Bērns atsakās ēst to, kas ir pasniegts";s2h<-""
s3<-"Bērns piečurā bikses nomodā";s3h<-""
s4<-"Bērns piečurā gultu miegā";s4h<-""
s5<-"Bērns piekakā bikses nomodā";s5h<-""
s6<-"Bērns slikti guļ bērnudārzā";s6h<-""
s7<-"Bērns bieži saslimst";s7h<-""
s8<-"Bērns sūdzas par vēdera, galvas vai citām sāpēm";s8h<-""
s9<-"Bērns raudot apčurājas vai vemj";s9h<-""
s10<-"Bērnam neskaidras izcelsmes izsitumi uz ķermeņa, sejas, rokām, kājām utt";s10h<-""
s11<-"Bērns apmeklē bērnudārzu";s11h<-""
Praktiskās rekomendācijas
- Rast risinājumu, kā sistemātiski saglabāt informāciju par bērnu
gadījumiem, kad piesaistīts speciālists un informāciju par speciālista
slēdzienu. Šāda informācija ir ārkārtīgi svarīga instrumenta tālākajā
attīstībā, uzlabojot tā efektivitāti. Tas dos iespēju kalibrēt
robežvērtības, pie kurām tiek identificēti bērni, lai piesaistītu
speciālistu.
- Rekomendēju atbilžu variantiem lietot vērtības no 0 līdz 3, tas
atvieglos nākotnē veikt pētījumus, lai nevajadzētu neko
transformēt.
- Skalu rezultātu rekomendēju aprēķināt kā aritmētisko vidējo,
tādējādi nodrošinot normu vienkāršāku salīdzinājumu starp skalām.
Respektīvi, visiem atbilžu variantiem uzreiz tiek piešķirta vērtība (no
0 līdz 3), bet skalas formula aprēķina pēc konfigurācijas – pie skalas x
piesieti 4 jautājumi, tad summētais rezultāts tiek dalīts ar 4.