Simulación 2 factores, 8 ítems, 4 opciones de respuesta
Se crea la matriz de correlación con el paquete LikertMakerR
Warning: package 'LikertMakeR' was built under R version 4.3.3
items281 <- 8
alpha281 <- 0.99
variance281 <- 0.3
set.seed (281 )
cor_matrix281 <- makeCorrAlpha (items = items281, alpha = alpha281, variance = variance281)
correlation values consistent with desired alpha in 1718 iterations
The correlation matrix is positive definite
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 1.0000000 0.8935159 0.8977847 0.9004613 0.9015496 0.9041765 0.9044367
[2,] 0.8935159 1.0000000 0.9080256 0.9082028 0.9131462 0.9133281 0.9144172
[3,] 0.8977847 0.9080256 1.0000000 0.9249900 0.9291429 0.9300132 0.9321426
[4,] 0.9004613 0.9082028 0.9249900 1.0000000 0.9377217 0.9391159 0.9405242
[5,] 0.9015496 0.9131462 0.9291429 0.9377217 1.0000000 0.9422426 0.9475461
[6,] 0.9041765 0.9133281 0.9300132 0.9391159 0.9422426 1.0000000 0.9498002
[7,] 0.9044367 0.9144172 0.9321426 0.9405242 0.9475461 0.9498002 1.0000000
[8,] 0.9057662 0.9245651 0.9347412 0.9419375 0.9482656 0.9594692 0.9598167
[,8]
[1,] 0.9057662
[2,] 0.9245651
[3,] 0.9347412
[4,] 0.9419375
[5,] 0.9482656
[6,] 0.9594692
[7,] 0.9598167
[8,] 1.0000000
Se crean 6 modelos con el paqute lavaan, combinando las posibles cargas factoriales: [0.3-0.5] o [0.51 - 0.7] y la correlación entre factores: 0.0, 0.3 o 0.5.
Warning: package 'lavaan' was built under R version 4.3.2
This is lavaan 0.6-16
lavaan is FREE software! Please report any bugs.
twof_cor0_load03_05 <- '
F1 =~ 0.31*x1 + 0.35*x2 + 0.4*x3+0.45*x4
F2 =~ 0.5*x5+0.45*x6+0.40*x7+0.35*x8
F1 ~~ 0*F2'
twof_cor0_load05_07 <- '
F1 =~ 0.51*x1 + 0.55*x2 + 0.6*x3+0.65*x4
F2 =~ 0.7*x5+0.65*x6+0.6*x7+0.55*x8
F1 ~~ 0*F2'
twof_cor03_load03_05 <- '
F1 =~ 0.31*x1 + 0.35*x2 + 0.4*x3+0.45*x4
F2 =~ 0.5*x5+0.45*x6+0.40*x7+0.35*x8
F1~~0.3*F2'
twof_cor03_load05_07 <- '
F1 =~ 0.51*x1 + 0.55*x2 + 0.6*x3+0.65*x4
F2 =~ 0.7*x5+0.65*x6+0.6*x7+0.55*x8
F1~~0.3*F2'
twof_cor05_load03_05 <- '
F1 =~ 0.31*x1 + 0.35*x2 + 0.4*x3+0.45*x4
F2 =~ 0.5*x5+0.45*x6+0.40*x7+0.35*x8
F1~~0.5*F2'
twof_cor05_load05_07 <- '
F1 =~ 0.51*x1 + 0.55*x2 + 0.6*x3+0.65*x4
F2 =~ 0.7*x5+0.65*x6+0.6*x7+0.55*x8
F1~~0.5*F2'
Posterior, se guardan los modelos en un objeto
mod2f<- c (twof_cor0_load03_05, twof_cor0_load05_07, twof_cor03_load03_05, twof_cor03_load05_07,
twof_cor05_load03_05, twof_cor05_load05_07)
Para la creación de una función que permita obtener de manera directa las matrices de correlación, primero es necesario crear una serie de objetos vacíos y otros con un valor prefijado
Warning: package 'doParallel' was built under R version 4.3.3
Loading required package: foreach
Warning: package 'foreach' was built under R version 4.3.3
Loading required package: iterators
Loading required package: parallel
library (foreach)
seeds2100<- list (NULL ) # semillas aleatorios
data2100 <- list (NULL ) # primeras bases de datos con base a los modelos lavaan
iter<- 300 # itereaciones
registerDoParallel (cores = 2 ) # cores para el desarrollo
cor_matrices2100 <- list (NULL ) # objeto para guardar las primeras matrices de correlacion
n2100 <- 100 # Tamaño de muestra
lower2100 <- 1 # limite inferior - opciones de respuesta
upper2100 <- 4 # limite superior - opciones de respuesta
dfMeans2100 <- rep (2.5 , 8 ) # media opciones de respuesta
dfSds2100 <- rep (1 , 8 ) # desviacion estadar opciones de respuesta
basef2100 <- list (NULL ) # base final simulada valores entre 1 y 4
cor_pearson2100 <- list (NULL ) # matrices de pearson
cor_spearman2100 <- list (NULL ) # matrices de spearman
Teniendo en cuenta que un punto del código se debe volver a obtener una nueva base de datos desde una segunda matriz de correlacion, fue necesario crear una funcion para limpiar la matriz y volver a estimar una nueva base de datos.
clean_matrix <- function (mat) {
if (is.matrix (mat)) {
# Eliminar nombres de filas y columnas
rownames (mat) <- NULL
colnames (mat) <- NULL
# Asegurarse de que todos los elementos sean numéricos
as.matrix (mat)
} else {
stop ("El objeto no es una matriz." )
}
}
Se procede a crear el codigo para la generacion de las matrices de pearson y spearman
for (i in 1 : iter) {
# Guardar la semilla
seeds2100[[i]] <- .Random.seed
# Generar datos acorde a cada modelo lavaan
data2100[[i]] <- foreach (b = 1 : 6 , .combine = list, .multicombine = TRUE ) %dopar% {
lavaan:: simulateData (model = mod2f[[b]], sample.nobs = n2100, model.type = "cfa" ,
ov.var = cor_matrix281, return.type = "data.frame" ,
return.fit = FALSE , standardized = FALSE )
}
# Limpiar y redondear las matrices de correlación
cor_matrices2100[[i]] <- lapply (data2100[[i]], function (df) {
cor_matrix <- cor (as.matrix (df))
clean_matrix (cor_matrix)
})
# Creando base de datos estilo Likert
basef2100[[i]] <- foreach (c = 1 : 6 , .combine = list, .multicombine = TRUE ) %dopar% {
LikertMakeR:: makeItems (
n = n2100, means = dfMeans2100, sds = dfSds2100,
lowerbound = rep (lower2100, 8 ), upperbound = rep (upper2100, 8 ),
cormatrix = cor_matrices2100[[i]][[c]]
)
}
# Creando las nuevas matrices de correlación
cor_pearson2100[[i]] <- foreach (dataset = basef2100[[i]], .combine = 'list' , .multicombine = TRUE ) %dopar% {
cor_matrixp <- cor (as.matrix (dataset))
clean_matrix (cor_matrixp)
}
cor_spearman2100[[i]] <- foreach (dataset = basef2100[[i]], .combine = 'list' , .multicombine = TRUE ) %dopar% {
cor_matrixsp <- cor (as.matrix (dataset), method = "spearman" )
clean_matrix (cor_matrixsp)
}
}
Análisis paralelo (AP)
Matriz de correlación de Pearson
Warning: package 'psych' was built under R version 4.3.2
Attaching package: 'psych'
The following object is masked from 'package:lavaan':
cor2cov
The following object is masked from 'package:LikertMakeR':
alpha
Warning: package 'doRNG' was built under R version 4.3.3
Loading required package: rngtools
Warning: package 'rngtools' was built under R version 4.3.3
fa_parallel_pearson1 <- foreach (j = 1 : 6 , .combine = 'list' , .packages = c ("psych" , "foreach" , "doRNG" )) %:%
foreach (i = 1 : iter, .combine = 'c' , .packages = "psych" , .options.RNG = 1234 ) %dopar% {
set.seed (1234 + i + j)
res <- fa.parallel (cor_pearson2100[[i]][[j]], fa = "fa" , fm = "pa" , n.obs = n2100)
res$ nfact
}
fa_parallel_pearson1
[[1]]
[[1]][[1]]
[[1]][[1]][[1]]
[[1]][[1]][[1]][[1]]
[[1]][[1]][[1]][[1]][[1]]
[1] 3 3 3 1 3 0 3 2 3 1 2 3 3 2 0 2 0 2 3 1 0 2 1 3 6 0 3 4 2 3 3 2 4 0 0 4 2
[38] 4 2 0 2 0 0 1 2 0 4 3 3 2 3 5 0 4 7 4 3 4 0 2 2 2 2 5 1 3 2 2 2 4 1 1 3 2
[75] 3 2 3 3 0 4 3 1 2 2 3 4 3 5 2 0 2 0 3 2 2 2 1 0 2 2 4 2 1 5 4 3 2 2 5 1 3
[112] 3 3 3 2 1 3 3 2 1 4 2 2 2 3 3 4 2 0 1 2 0 4 2 2 0 1 2 3 1 2 3 1 2 4 2 4 2
[149] 2 2 3 3 2 3 2 2 2 4 2 3 3 2 2 4 2 4 2 4 3 2 2 4 2 2 2 3 3 3 2 2 1 2 2 3 2
[186] 2 3 3 1 4 3 4 3 1 3 2 4 3 4 5 0 4 3 2 2 3 3 1 3 3 4 5 3 2 2 1 0 5 2 2 0 0
[223] 3 2 0 2 3 3 1 3 0 0 5 2 1 2 0 1 3 3 2 1 3 5 0 4 3 0 2 2 4 0 3 3 3 2 2 2 2
[260] 0 3 2 2 2 4 2 2 3 2 4 1 5 3 3 4 3 1 5 0 1 0 2 2 3 3 3 0 4 5 0 1 2 4 3 2 0
[297] 3 2 4 2
[[1]][[1]][[1]][[1]][[2]]
[1] 2 2 2 2 2 2 2 2 3 3 3 2 3 2 3 2 3 2 2 2 2 2 3 2 3 3 3 2 2 2 2 2 4 2 4 2 2
[38] 2 2 2 2 4 2 2 2 2 4 2 2 4 2 2 2 2 2 2 4 2 3 3 2 2 2 2 2 2 3 2 2 2 2 3 2 2
[75] 2 2 2 2 2 2 2 2 3 2 3 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 4 3 3 2 2 2 2
[112] 2 2 2 2 2 2 2 4 2 2 2 3 3 2 2 2 2 2 2 2 4 2 2 2 4 4 3 3 2 2 3 2 2 2 3 2 3
[149] 3 2 2 2 2 2 2 3 2 4 3 2 2 2 2 3 3 2 2 2 2 2 2 2 4 3 2 2 2 3 2 3 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 3 2 2 2 3 2 3 2 2 2 2 2 3 2 2 2 2 2 3 2 3 2 3 2 5 2 2 2
[223] 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 3 2 2 2 2 2 2 2 3 2
[260] 3 2 2 2 2 2 2 3 2 3 2 3 3 4 3 5 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 3
[297] 2 2 2 3
[[1]][[1]][[1]][[2]]
[1] 4 3 0 2 3 3 0 4 2 0 3 2 4 0 2 1 2 2 4 3 1 3 3 2 2 2 2 3 1 3 3 4 4 0 5 4 2
[38] 3 3 2 2 3 2 2 1 2 1 3 1 2 1 4 4 2 1 2 2 1 1 0 3 3 3 4 3 3 4 2 3 2 1 5 2 3
[75] 2 2 2 0 3 2 0 2 2 4 2 2 1 0 2 3 2 3 2 0 0 0 0 2 2 3 4 2 3 2 3 3 3 3 2 2 3
[112] 1 2 5 3 4 2 2 2 2 2 4 1 4 2 3 4 1 1 3 1 2 1 1 2 2 0 0 3 3 2 0 3 3 0 2 0 1
[149] 4 3 3 3 4 3 0 2 5 2 3 3 4 1 1 3 0 4 4 2 1 4 0 4 2 0 5 3 2 2 2 3 2 3 3 0 2
[186] 1 1 3 4 1 2 3 0 2 0 4 2 0 4 2 3 4 3 2 2 3 4 2 5 2 5 2 3 2 2 2 2 0 4 2 0 1
[223] 2 4 2 3 0 2 3 2 2 2 2 1 1 3 5 4 3 5 3 3 4 1 4 2 3 2 3 0 2 0 1 0 4 2 0 1 4
[260] 3 1 2 2 4 1 3 0 3 5 2 5 4 3 0 1 0 3 4 4 0 4 2 2 0 0 0 2 1 0 3 2 4 2 2 1 0
[297] 2 3 2 3
[[1]][[1]][[2]]
[1] 2 3 3 2 2 2 2 2 2 2 2 2 4 2 2 2 2 4 3 2 2 2 2 2 2 3 2 2 2 2 2 2 4 2 2 2 2
[38] 3 2 2 3 2 2 4 2 3 2 2 2 3 2 2 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 2 2 2 2 2 3 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 4 3 2 2 3 2 2 3 2 2 2 2 2 4 4 3 3 2 2 2 2 3 3 2 2
[112] 2 3 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 4 3 2 2 2 3 2 2 3 2 2 2 2 2 2 2 3 2 3
[149] 3 2 3 2 4 2 2 2 2 3 2 2 2 2 2 5 3 2 3 2 2 2 2 2 4 2 2 2 2 2 2 2 3 3 2 2 4
[186] 2 4 3 4 2 2 3 2 2 3 2 2 2 2 3 3 2 2 2 2 2 2 2 2 3 2 2 4 2 2 2 2 2 3 2 2 2
[223] 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 2 3 3 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2
[260] 2 1 2 3 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 3 2 3 2 2 2 3 3 2 2
[297] 2 3 2 2
[[1]][[2]]
[1] 3 3 4 2 0 0 2 4 3 2 4 3 2 1 1 2 3 0 0 1 2 2 4 2 1 1 3 3 2 1 2 0 3 2 3 4 3
[38] 3 1 2 3 2 4 1 0 3 4 2 3 0 4 2 1 2 2 3 3 4 2 0 3 0 2 0 1 3 1 3 3 2 2 2 4 2
[75] 2 3 4 2 1 1 3 4 3 4 1 3 1 5 2 4 2 1 1 0 1 3 2 2 0 2 2 3 1 0 4 3 5 4 0 2 1
[112] 1 2 5 1 1 2 3 4 1 3 3 1 2 1 3 5 2 1 5 3 3 3 2 0 2 1 4 1 1 1 2 3 2 4 2 3 3
[149] 4 2 1 0 4 1 2 2 2 2 1 2 4 1 2 2 3 1 4 2 0 4 3 2 2 2 4 2 1 4 3 3 2 3 4 1 2
[186] 2 1 3 2 4 4 2 2 1 4 4 4 3 4 3 2 1 3 5 1 2 1 2 1 1 4 3 2 2 5 2 4 0 1 2 1 2
[223] 3 1 2 0 3 2 1 3 1 0 4 3 3 1 1 1 3 2 2 2 5 0 1 2 2 0 3 1 2 3 4 1 1 2 0 1 1
[260] 3 3 0 1 2 4 1 0 4 3 5 3 4 2 1 5 1 4 1 5 1 2 3 5 2 1 2 2 1 3 4 1 2 2 1 2 3
[297] 3 2 2 0
[[2]]
[1] 2 3 3 2 3 2 2 3 3 2 2 2 3 2 3 2 2 2 3 2 2 3 2 2 2 2 3 3 2 3 3 1 2 2 3 2 1
[38] 2 2 2 2 2 2 2 3 3 2 2 3 3 3 3 1 2 2 2 3 2 3 3 2 3 2 3 2 2 1 2 2 2 2 2 3 2
[75] 3 2 4 3 2 1 2 4 2 3 2 2 2 5 2 2 2 1 2 2 3 2 2 4 2 3 1 2 2 2 4 3 2 3 1 2 2
[112] 2 3 2 2 3 2 2 2 3 2 2 2 3 2 2 1 2 3 2 2 2 2 2 3 1 2 2 1 4 3 2 2 2 2 2 2 2
[149] 2 2 2 3 2 1 4 3 3 1 3 2 2 2 4 2 3 2 3 2 5 2 2 2 2 2 4 2 3 5 1 2 2 2 2 2 3
[186] 3 2 2 2 2 2 2 2 1 2 2 3 2 3 3 2 2 2 2 2 2 2 1 2 2 2 3 2 2 2 2 4 4 2 3 2 2
[223] 2 2 2 2 2 3 2 2 3 2 2 2 3 2 3 2 2 2 2 2 3 2 2 3 2 3 5 2 4 2 2 2 3 3 2 1 2
[260] 2 3 2 2 2 4 2 4 2 2 3 2 2 2 2 3 2 2 2 3 2 3 4 1 2 2 2 2 2 1 2 2 2 2 2 2 2
[297] 2 2 2 3
Matrices de correlación de Spearman
fa_parallel_spearman1 <- foreach (j = 1 : 6 , .combine = 'list' , .packages = c ("psych" , "foreach" , "doRNG" )) %:%
foreach (i = 1 : iter, .combine = 'c' , .packages = "psych" , .options.RNG = 1234 ) %dopar% {
set.seed (1234 + i + j)
res <- fa.parallel (cor_spearman2100[[i]][[j]], fa = "fa" , fm = "pa" , n.obs = n2100)
res$ nfact
}
fa_parallel_spearman1
[[1]]
[[1]][[1]]
[[1]][[1]][[1]]
[[1]][[1]][[1]][[1]]
[[1]][[1]][[1]][[1]][[1]]
[1] 3 3 3 1 3 3 0 2 5 1 2 3 3 2 0 3 0 2 3 1 0 2 1 3 6 0 3 4 3 3 3 2 4 0 0 4 2
[38] 4 2 0 2 0 0 1 4 0 4 3 4 2 3 5 0 4 7 4 3 4 0 2 2 2 4 5 1 0 3 2 2 4 1 1 3 4
[75] 3 2 3 3 0 4 3 1 2 4 3 4 3 5 2 0 2 0 3 2 2 2 1 0 2 2 3 2 1 5 4 3 2 2 5 1 3
[112] 3 3 3 2 1 3 3 2 1 4 2 2 2 2 3 2 2 0 1 2 0 4 0 2 0 1 2 3 1 2 3 1 2 4 2 4 2
[149] 2 2 3 3 2 3 2 2 2 4 2 3 3 2 2 4 2 4 2 4 3 2 4 2 2 2 6 3 3 4 2 2 1 2 2 3 2
[186] 2 3 3 1 4 3 4 3 1 3 2 0 3 4 5 0 0 3 2 2 3 3 1 3 3 4 5 3 2 2 1 2 5 2 2 0 0
[223] 3 2 0 2 3 3 2 3 1 0 5 2 1 2 0 5 3 3 2 1 3 5 0 3 4 0 2 2 4 0 3 1 3 2 2 2 2
[260] 0 4 2 2 2 4 4 2 4 2 4 2 5 3 3 4 3 1 5 0 1 0 2 2 3 3 3 0 4 5 0 1 2 4 3 2 0
[297] 3 2 4 2
[[1]][[1]][[1]][[1]][[2]]
[1] 2 2 2 2 2 2 2 2 3 3 3 2 3 2 3 2 3 2 2 2 2 2 3 2 3 3 3 2 2 2 2 2 3 2 4 2 2
[38] 2 2 2 2 4 2 2 2 2 3 2 2 3 2 2 2 2 2 2 4 2 3 3 2 2 2 2 2 2 3 2 2 2 2 3 2 2
[75] 2 2 2 2 2 2 2 2 3 2 3 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 4 3 3 2 2 2 2
[112] 2 2 2 2 2 2 2 4 2 2 2 2 3 2 2 2 2 2 2 2 4 2 2 2 4 4 3 3 2 2 2 2 2 2 3 2 3
[149] 4 2 2 2 2 2 2 3 2 4 2 2 2 2 2 3 3 2 2 2 3 2 2 2 4 3 2 2 2 3 2 3 2 2 3 2 2
[186] 2 2 2 2 2 2 2 2 2 3 2 2 2 3 2 3 2 2 3 2 2 3 2 2 2 2 2 3 2 3 2 3 2 3 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 3 2 2 2 2 2 2 2 3 2
[260] 3 2 2 2 2 2 2 2 2 3 2 3 3 4 2 5 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 3
[297] 2 2 2 2
[[1]][[1]][[1]][[2]]
[1] 4 3 0 2 3 3 0 2 2 0 4 2 4 0 2 1 2 2 4 3 1 3 3 2 2 2 2 3 3 3 3 1 0 0 5 5 2
[38] 3 3 2 2 3 2 2 1 2 1 3 1 0 1 4 4 2 1 2 2 1 1 0 3 3 3 4 5 3 4 2 3 2 1 3 1 3
[75] 1 2 2 0 2 2 0 2 2 2 2 2 1 0 0 3 2 3 2 0 1 0 0 2 2 3 3 3 3 2 3 3 3 3 2 2 3
[112] 1 2 5 3 4 2 2 2 2 2 0 1 4 2 3 1 4 1 3 1 2 1 1 2 2 0 0 3 0 2 0 3 4 0 4 0 1
[149] 2 3 3 3 4 3 0 2 5 2 3 3 4 2 1 3 0 4 4 2 1 5 0 4 2 0 5 3 2 2 2 3 2 3 3 0 2
[186] 1 1 3 4 4 2 3 0 3 0 4 2 0 3 6 3 4 3 2 2 3 4 2 0 2 5 2 3 2 2 2 2 0 5 2 0 1
[223] 2 4 2 3 0 2 3 2 2 2 2 1 4 3 5 4 3 5 3 0 4 1 4 2 3 2 3 0 2 0 1 0 4 2 0 1 4
[260] 3 1 2 2 3 1 3 0 3 2 2 5 4 3 0 1 0 3 4 4 5 4 2 2 0 0 0 2 1 0 0 3 4 2 2 0 0
[297] 2 3 2 3
[[1]][[1]][[2]]
[1] 2 3 3 2 2 2 2 2 2 2 2 2 4 3 2 2 2 2 3 2 3 2 2 2 2 3 2 2 2 2 2 2 4 2 2 2 2
[38] 3 2 2 3 2 2 4 3 3 2 2 2 3 2 2 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 2 2 2 3 2 3 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 5 3 2 2 3 2 2 3 2 2 2 2 2 4 4 3 3 2 2 2 2 3 3 2 2
[112] 2 3 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 4 3 2 2 2 3 2 2 3 2 2 2 2 2 2 2 3 3 3
[149] 3 2 3 2 4 3 2 2 2 3 2 2 2 2 2 5 2 2 3 2 2 2 2 2 4 2 2 2 2 2 2 2 3 3 2 2 4
[186] 2 3 3 2 2 2 3 2 2 3 2 2 2 2 3 3 2 2 2 2 2 2 2 2 3 2 2 4 2 2 2 2 3 4 2 2 2
[223] 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 3 2 2 3 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2
[260] 2 1 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 3 2 3 2 2 2 3 3 2 3
[297] 2 3 2 2
[[1]][[2]]
[1] 3 3 4 2 0 2 2 4 3 2 6 4 2 1 1 2 3 0 0 1 1 2 4 2 1 3 2 3 2 3 2 0 3 0 3 4 3
[38] 3 1 2 3 2 4 2 0 3 3 2 3 0 4 2 1 2 2 3 3 4 2 0 3 0 2 0 1 3 1 3 3 2 2 2 4 2
[75] 2 3 4 0 1 1 3 4 3 3 1 3 1 6 2 4 2 1 1 0 1 3 1 2 0 2 2 3 1 0 4 3 5 4 0 2 1
[112] 1 2 5 1 1 2 3 4 1 3 3 1 2 1 3 5 2 1 3 3 3 3 2 0 2 2 4 1 1 1 2 3 2 4 2 3 2
[149] 3 2 1 0 4 1 2 2 2 2 1 2 2 1 2 2 3 1 5 2 0 4 5 2 2 2 4 3 1 4 3 3 4 3 4 1 2
[186] 2 1 3 2 4 4 2 2 1 4 2 4 4 4 3 2 1 2 5 1 2 1 2 1 1 2 3 3 2 5 2 4 0 1 2 1 2
[223] 3 3 2 4 3 3 1 3 1 0 1 3 3 1 1 1 2 2 2 2 5 2 1 2 2 0 3 1 2 3 4 1 1 2 0 1 1
[260] 2 4 0 1 3 4 1 0 4 3 5 3 4 2 1 5 1 4 1 5 1 2 3 4 2 1 2 2 1 3 4 1 2 2 1 2 3
[297] 3 2 4 0
[[2]]
[1] 2 3 3 2 3 2 4 3 2 2 2 2 3 2 3 3 2 2 3 2 2 3 2 2 2 2 3 3 2 3 3 1 2 2 3 2 1
[38] 2 4 2 2 2 2 2 3 3 2 2 3 2 3 3 1 2 2 2 3 2 3 4 2 3 2 3 2 2 3 2 2 2 2 2 3 3
[75] 3 3 4 3 2 1 2 4 2 3 2 2 2 3 2 2 2 2 2 2 3 2 2 4 2 3 1 2 3 2 4 3 2 3 1 2 2
[112] 2 3 2 2 3 2 2 2 4 2 2 2 3 2 2 1 2 3 2 2 2 2 2 3 1 2 2 3 4 3 2 3 2 2 2 2 2
[149] 2 2 2 3 2 1 4 3 3 1 3 2 2 2 4 2 2 2 3 2 5 2 2 2 2 2 4 2 4 4 1 2 2 1 2 2 3
[186] 4 2 2 2 2 2 2 2 1 2 2 3 2 2 3 2 2 2 2 2 2 2 1 2 2 2 3 2 2 2 2 4 4 2 3 2 2
[223] 2 3 2 2 2 3 2 2 4 2 2 2 2 2 4 2 2 2 2 2 3 2 2 3 2 3 5 2 4 2 2 2 3 3 4 1 2
[260] 2 3 2 2 2 4 2 4 2 3 3 2 3 2 2 3 2 2 2 4 2 2 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 3
Mínimo promedio parcial (MAP)
Correlación de Pearson
Warning: package 'EFA.dimensions' was built under R version 4.3.2
**************************************************************************************************
EFA.dimensions 0.1.8.1
Please contact Brian O'Connor at brian.oconnor@ubc.ca if you have questions or suggestions.
**************************************************************************************************
MAP_pearson1 <- foreach (j = 1 : 6 , .combine = 'list' , .packages = c ("EFA.dimensions" , "foreach" , "doRNG" )) %:%
foreach (i = 1 : iter, .combine = 'c' , .packages = "EFA.dimensions" , .options.RNG = 1234 ) %dopar% {
set.seed (1234 + i + j)
res <- MAP (cor_pearson2100[[i]][[j]], Ncases = n2100)
res$ NfactorsMAP
}
MAP_pearson1
[[1]]
[[1]][[1]]
[[1]][[1]][[1]]
[[1]][[1]][[1]][[1]]
[[1]][[1]][[1]][[1]][[1]]
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[38] 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[75] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[112] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[149] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[186] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[223] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[260] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
[297] 0 0 0 0
[[1]][[1]][[1]][[1]][[2]]
[1] 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0
[38] 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
[75] 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
[112] 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 2 0
[149] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 1
[186] 0 0 2 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
[223] 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0
[260] 0 0 0 0 2 0 1 0 0 0 2 0 1 0 0 0 0 0 0 2 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
[297] 0 0 0 0
[[1]][[1]][[1]][[2]]
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[38] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
[75] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[112] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[149] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[186] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[223] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[260] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[297] 0 0 0 0
[[1]][[1]][[2]]
[1] 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 0 1 0
[38] 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 1
[75] 0 0 0 2 1 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0 1 2 1 0 1 1 1 1 0 0 0 0 0 1
[112] 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 2 1 0 1 1 1 1
[149] 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 2 0 1 0 0 0 2 1 1 0 0 0 0 0 1 1 1 1 2 0
[186] 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0
[223] 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1
[260] 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1 1
[297] 1 1 1 1
[[1]][[2]]
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[38] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
[75] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[112] 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[149] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
[186] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[223] 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
[260] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[297] 0 1 0 0
[[2]]
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1
[38] 1 1 1 1 1 2 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0
[75] 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1
[112] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1
[149] 1 0 1 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1
[186] 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0
[223] 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[260] 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1
[297] 1 1 0 0
Correlación de Spearman
MAP_spearman1 <- foreach (j = 1 : 6 , .combine = 'list' , .packages = c ("EFA.dimensions" , "foreach" , "doRNG" )) %:%
foreach (i = 1 : iter, .combine = 'c' , .packages = "EFA.dimensions" , .options.RNG = 1234 ) %dopar% {
set.seed (1234 + i + j)
res <- MAP (cor_spearman2100[[i]][[j]], Ncases = n2100)
res$ NfactorsMAP
}
MAP_spearman1
[[1]]
[[1]][[1]]
[[1]][[1]][[1]]
[[1]][[1]][[1]][[1]]
[[1]][[1]][[1]][[1]][[1]]
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[38] 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[75] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[112] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[149] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[186] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[223] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[260] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
[297] 0 0 0 0
[[1]][[1]][[1]][[1]][[2]]
[1] 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0
[38] 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
[75] 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
[112] 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 2 0
[149] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1
[186] 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
[223] 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0
[260] 0 0 0 0 2 0 1 0 0 0 2 0 1 0 0 0 0 0 0 2 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
[297] 0 0 0 0
[[1]][[1]][[1]][[2]]
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[38] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[75] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[112] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[149] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[186] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[223] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[260] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[297] 0 0 0 0
[[1]][[1]][[2]]
[1] 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 0 1 0
[38] 0 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0
[75] 0 0 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 2 1 0 1 1 1 1 0 0 0 0 0 1
[112] 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 2 1 0 1 1 1 1
[149] 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 2 0 1 0 0 0 2 1 1 0 0 0 0 0 1 1 0 1 2 0
[186] 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0
[223] 0 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1
[260] 0 1 1 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 1 0 1 1
[297] 1 0 1 1
[[1]][[2]]
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[38] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
[75] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[112] 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[149] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
[186] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[223] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
[260] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[297] 0 1 0 0
[[2]]
[1] 1 1 1 1 1 1 1 1 1 2 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1
[38] 1 1 1 1 1 2 1 0 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0
[75] 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1
[112] 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1
[149] 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1
[186] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0
[223] 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
[260] 0 1 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1
[297] 1 1 0 0
Análisis exploratorio gráfico (AEG)
Correlación de pearson
Warning: package 'EGAnet' was built under R version 4.3.3
[1;m[4;m
EGAnet (version 2.0.6)[0m[0m
For help getting started, see <https://r-ega.net>
For bugs and errors, submit an issue to <https://github.com/hfgolino/EGAnet/issues>
EGA_pearson1 <- foreach (j = 1 : 6 , .combine = 'list' , .packages = c ("EGAnet" , "foreach" , "doRNG" )) %:%
foreach (i = 1 : iter, .combine = 'c' , .packages = "EGAnet" , .options.RNG = 1234 ) %dopar% {
set.seed (1234 + i + j)
res <- tryCatch (EGA (cor_pearson2100[[i]][[j]], n = n2100, plot.EGA = FALSE ),
warn= FALSE , error= function (e) return (NA ))
res$ n.dim
}
EGA_pearson1
[[1]]
[[1]][[1]]
[[1]][[1]][[1]]
[[1]][[1]][[1]][[1]]
[[1]][[1]][[1]][[1]][[1]]
[1] 0 2 0 0 0 0 3 0 0 1 0 0 2 1 0 0 0 0 2 0 0 0 0 0 2 1 0 3 2 0 0 0 0 1 0 2 0
[38] 0 0 0 0 1 0 0 0 0 1 0 0 1 3 1 1 0 0 2 1 0 0 0 2 0 0 0 0 1 0 0 1 1 0 0 0 1
[75] 0 0 0 0 0 0 0 0 2 0 0 2 1 0 1 0 0 0 0 2 0 0 3 1 1 2 1 1 0 0 2 1 0 1 0 0 0
[112] 3 1 0 1 1 1 2 2 2 0 1 0 0 1 0 0 1 0 0 0 0 2 0 1 0 1 0 0 0 0 0 0 0 1 2 0 1
[149] 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 2 1 0 2 0 0 1 0 1 0 0 0 1 2 0 0 0 2 0 0
[186] 1 0 2 0 0 1 2 0 0 1 0 1 0 0 0 0 2 1 0 2 1 0 1 0 2 0 0 0 0 1 1 0 2 0 1 0 1
[223] 0 1 0 0 0 1 0 2 1 0 0 0 0 0 1 2 0 3 0 0 3 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1
[260] 0 0 0 0 1 2 0 0 0 0 2 1 0 0 0 1 1 1 1 0 1 0 0 0 2 0 0 1 0 0 0 2 0 0 1 0 0
[297] 0 0 0 2
[[1]][[1]][[1]][[1]][[2]]
[1] 3 2 2 1 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 3 0 2 2 2 2 4 2 0
[38] 2 2 2 2 3 3 2 2 2 2 2 2 0 2 0 2 2 2 2 2 2 3 2 2 2 2 2 1 2 2 2 2 2 3 1 2 2
[75] 2 2 2 2 0 2 3 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 0 2 2 0 2 2 2 2 2 2
[112] 2 2 1 2 2 0 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 3 3 0 2 2 1 2 2 2 2 2
[149] 2 2 2 2 2 2 0 2 2 2 2 2 1 2 2 2 2 2 2 2 0 2 2 2 2 1 0 2 2 2 2 2 2 2 2 1 2
[186] 2 2 2 2 2 3 2 2 2 2 2 0 2 0 2 2 2 2 2 2 2 2 2 3 2 0 2 0 2 2 2 1 2 2 2 2 2
[223] 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 0 2 2 2 2 1 2 2 2 2 2 2 2
[260] 2 2 2 0 2 2 2 3 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 0 2 2 2 0 2
[297] 2 3 2 2
[[1]][[1]][[1]][[2]]
[1] 1 1 0 0 0 1 0 2 0 1 0 0 2 1 0 0 0 0 1 1 0 2 0 0 0 0 1 1 2 0 1 1 0 0 0 1 0
[38] 1 2 1 0 1 3 0 1 0 0 0 1 0 2 0 0 0 0 1 0 0 0 0 1 0 2 0 0 2 1 0 2 0 1 0 0 0
[75] 0 0 0 0 0 0 0 0 2 2 1 0 1 0 0 1 0 1 0 2 2 1 0 0 1 1 0 0 1 0 0 1 1 1 1 2 0
[112] 2 0 0 0 3 0 0 1 2 0 0 0 1 0 0 1 0 0 2 1 1 0 2 1 0 1 0 1 0 2 0 0 0 0 1 0 2
[149] 2 1 0 2 0 1 0 0 0 0 0 0 0 1 0 1 1 3 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 2
[186] 2 1 0 0 0 3 0 1 0 0 0 1 2 0 0 1 1 0 0 0 1 1 0 0 0 1 2 0 1 0 1 0 0 0 0 1 0
[223] 0 0 0 0 0 2 0 0 1 0 2 0 0 3 0 1 1 1 1 2 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1
[260] 0 0 2 2 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 2 0 0 1 3 0 2 1 1 0 1 0 2 1 0 0
[297] 0 0 0 1
[[1]][[1]][[2]]
[1] 2 2 1 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 0
[38] 2 2 2 2 2 2 3 0 2 0 0 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 0 2 2 1 2 2 2 2 2 2 2
[75] 2 1 2 2 2 0 3 2 1 2 2 2 3 3 2 2 2 2 2 3 0 2 1 2 2 2 0 2 2 2 2 2 1 3 0 2 2
[112] 2 2 2 2 2 0 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 0 2 2 0 2 2 1 2
[149] 2 1 2 2 2 0 2 2 2 2 2 2 2 3 2 3 2 2 0 0 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 0
[186] 0 2 2 2 2 2 2 2 1 4 2 2 2 2 2 0 2 0 2 1 2 2 2 2 2 2 0 2 2 2 2 2 2 0 2 0 2
[223] 2 2 2 2 2 0 2 2 2 1 3 2 2 2 2 2 2 2 2 2 1 2 2 2 2 0 2 2 0 2 2 2 3 2 2 2 2
[260] 1 0 0 2 2 0 2 2 2 2 2 2 2 2 2 2 0 0 2 2 0 2 2 3 2 2 1 0 2 2 2 1 0 2 2 2 2
[297] 2 2 2 2
[[1]][[2]]
[1] 0 1 2 0 0 0 2 0 0 1 0 2 0 3 2 1 1 0 0 1 0 2 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0
[38] 0 0 0 0 0 0 0 0 0 1 0 2 0 1 1 0 0 0 3 0 0 2 0 0 0 0 0 0 0 0 1 2 0 0 0 2 0
[75] 1 0 0 1 0 0 0 0 0 0 1 2 1 0 0 1 2 1 0 0 1 1 0 1 1 0 1 2 0 0 0 1 0 0 0 1 0
[112] 1 0 0 0 2 2 0 0 1 0 2 0 1 1 0 0 0 0 0 2 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 2 0
[149] 1 1 2 0 2 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 2 3 1 0 0
[186] 1 0 3 0 1 0 2 0 1 0 0 0 0 0 0 0 1 2 0 0 1 0 2 0 0 0 0 0 0 0 1 0 0 0 1 0 2
[223] 0 0 1 1 2 0 0 3 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 2 0 0 2 0 0 0 0 0
[260] 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0 1 0 2 0 0 2 2 0 0 0 0 1 0 0 0 0
[297] 0 2 0 1
[[2]]
[1] 2 3 2 0 2 2 2 2 2 2 2 2 2 2 3 2 2 2 1 2 1 1 2 2 2 2 2 3 3 2 0 2 1 2 2 2 1
[38] 2 3 2 1 2 2 2 2 3 2 2 2 1 2 2 1 2 2 2 2 0 2 2 2 2 2 0 1 2 3 1 2 2 0 2 2 2
[75] 3 2 2 2 2 2 2 2 1 2 0 3 2 3 0 2 0 0 2 2 2 2 1 0 2 2 0 2 1 2 2 1 1 0 1 2 2
[112] 2 2 3 2 3 2 2 2 2 2 2 2 2 2 3 2 3 0 2 2 2 1 2 2 1 1 2 1 3 2 2 2 2 2 2 2 0
[149] 0 0 2 3 2 1 0 2 2 0 3 2 2 2 3 0 3 2 1 2 2 2 2 1 2 2 2 2 2 3 2 2 2 0 2 1 0
[186] 3 2 0 2 2 2 1 2 1 2 2 2 2 0 2 2 0 2 0 0 2 2 1 1 0 0 3 2 2 2 2 3 3 0 2 2 0
[223] 2 3 2 2 1 3 2 2 2 2 2 2 2 2 2 3 2 3 0 2 0 2 2 2 2 2 0 2 0 2 2 2 2 2 2 1 2
[260] 2 0 2 2 2 2 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 3 1 2 0 2 2 2 0 2 1 2 2 0 2 1
[297] 2 3 2 1
Correlación de spearman
EGA_spearman1 <- foreach (j = 1 : 6 , .combine = 'list' , .packages = c ("EGAnet" , "foreach" , "doRNG" )) %:%
foreach (i = 1 : iter, .combine = 'c' , .packages = "EGAnet" , .options.RNG = 1234 ) %dopar% {
set.seed (1234 + i + j)
res <- tryCatch (EGA (cor_spearman2100[[i]][[j]], n = n2100, plot.EGA = FALSE ),
warn= FALSE , error= function (e) return (NA ))
res$ n.dim
}
EGA_spearman1
[[1]]
[[1]][[1]]
[[1]][[1]][[1]]
[[1]][[1]][[1]][[1]]
[[1]][[1]][[1]][[1]][[1]]
[1] 0 2 0 0 0 1 1 2 0 1 0 0 2 1 0 1 0 0 0 1 0 0 1 0 2 0 0 3 1 0 0 0 0 0 1 2 0
[38] 2 0 0 0 0 0 0 0 1 1 0 0 1 3 1 0 0 0 2 1 0 0 0 2 0 0 1 1 1 1 0 1 1 0 1 0 0
[75] 0 0 0 0 0 0 2 0 0 0 0 0 1 0 1 0 0 0 0 2 0 0 3 0 0 0 0 1 0 0 2 1 0 0 0 0 0
[112] 3 1 0 1 1 1 2 2 0 1 1 0 0 1 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 2 1 1
[149] 0 0 0 1 0 0 1 0 1 1 0 1 1 0 2 0 0 2 1 0 0 0 0 0 0 0 0 1 0 1 2 0 1 0 0 0 0
[186] 1 0 2 0 0 1 2 0 0 1 0 1 0 0 0 0 2 1 0 2 0 0 1 0 0 0 0 0 0 1 0 0 2 0 1 0 0
[223] 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 2 0 3 0 0 4 1 0 0 0 0 0 1 1 0 0 1 0 0 0 2 1
[260] 0 0 1 0 1 0 0 0 0 0 2 0 0 0 0 0 1 1 1 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 1 0 0
[297] 0 0 0 2
[[1]][[1]][[1]][[1]][[2]]
[1] 3 2 2 0 0 2 2 0 1 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 3 0 2 2 2 2 4 2 0
[38] 2 2 0 2 2 3 2 2 2 0 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 1 2 2 2 2 2 3 1 2 2
[75] 2 2 2 2 0 2 2 2 2 2 2 2 2 2 3 1 2 2 2 2 2 2 2 1 2 2 2 0 2 0 0 2 2 2 2 1 2
[112] 2 2 1 2 2 0 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 0 2 2 2 2 1
[149] 4 2 2 2 2 2 0 2 2 2 0 2 1 2 2 2 2 2 2 2 0 2 2 2 2 2 0 2 2 2 2 2 2 2 2 0 2
[186] 2 2 2 2 2 3 2 2 2 2 2 0 2 0 2 2 2 2 2 2 2 2 2 3 2 0 2 0 2 2 2 0 2 0 2 2 2
[223] 0 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 0 2 2 2 3 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 3 0 2 2 2 0 2
[297] 2 3 2 2
[[1]][[1]][[1]][[2]]
[1] 1 1 1 0 0 1 0 1 0 0 0 0 2 0 0 3 0 1 0 1 0 2 1 0 0 0 1 1 0 2 1 1 0 0 0 1 0
[38] 0 2 0 0 1 3 0 1 0 0 0 0 1 2 0 0 1 1 1 0 0 0 0 0 0 2 0 0 2 1 0 2 0 0 0 0 0
[75] 0 0 0 0 0 0 0 0 0 2 1 1 1 0 1 1 0 1 0 0 2 1 0 0 0 1 0 0 2 2 0 1 1 1 1 2 0
[112] 0 0 0 0 2 0 0 1 2 0 0 1 1 0 1 1 0 0 2 1 1 0 2 1 0 0 0 1 0 2 0 0 0 0 0 0 1
[149] 0 0 0 2 0 0 0 2 2 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 3 1 1 1 0 0 0 2
[186] 2 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 1 2 0 1 0 1 0 0 0 0 0 0
[223] 0 0 0 0 0 2 0 0 1 0 2 0 0 2 0 1 1 1 1 0 3 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0
[260] 0 0 2 2 0 0 1 0 0 0 0 0 2 2 0 0 0 2 0 0 0 3 2 0 0 0 0 0 1 0 0 0 0 2 0 1 0
[297] 0 0 0 1
[[1]][[1]][[2]]
[1] 2 2 1 2 2 2 2 2 2 2 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 1 0
[38] 2 2 2 2 2 2 3 1 2 0 0 2 2 2 2 3 2 2 2 2 2 2 2 0 2 2 2 2 2 1 2 2 2 0 2 2 2
[75] 2 0 2 2 2 1 3 2 1 2 2 2 3 3 2 2 2 2 2 3 0 2 1 2 2 2 0 2 2 2 2 2 1 2 1 2 2
[112] 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 3 2 2 2 2 0 2 2 2 2 2 2 2 2 0 2 2 1 2
[149] 2 1 2 2 2 0 2 2 2 2 2 2 2 3 2 2 2 2 0 3 2 2 2 2 2 2 2 2 0 2 2 2 1 2 2 2 0
[186] 0 1 2 2 2 2 3 1 0 3 2 2 2 2 2 0 2 0 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 0 2 0 2
[223] 2 2 2 2 2 0 2 2 2 1 3 2 2 2 2 2 2 2 2 2 1 2 2 2 2 0 2 2 0 2 2 2 3 2 2 2 1
[260] 1 1 0 2 2 0 2 2 1 2 2 2 2 2 2 2 0 0 2 2 1 2 2 2 2 2 0 1 2 2 2 0 0 2 0 2 2
[297] 2 2 2 2
[[1]][[2]]
[1] 0 1 3 1 1 0 2 0 1 0 0 2 0 3 0 1 1 0 1 1 0 2 0 0 0 1 0 2 0 0 1 1 0 0 0 0 0
[38] 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0
[75] 1 0 0 0 0 0 0 0 1 0 1 2 1 0 0 1 2 1 0 0 0 1 0 0 0 0 1 2 0 0 0 1 0 1 1 1 0
[112] 1 0 0 0 2 2 1 0 1 0 2 0 1 1 0 0 0 0 0 2 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 2 0
[149] 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 2 3 1 0 1
[186] 1 0 3 0 1 0 2 0 1 0 0 0 0 0 0 0 0 2 2 0 2 0 2 0 0 0 0 0 0 0 1 0 3 0 1 0 2
[223] 2 1 1 0 0 0 0 3 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0 1 1 0 0 1 0 0
[260] 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0 0 0 2 0 1 2 2 0 0 0 0 0 0 0 0 0
[297] 0 2 0 0
[[2]]
[1] 2 1 2 0 2 2 2 2 2 2 2 2 2 2 3 2 2 2 0 2 0 1 2 2 2 2 2 3 2 2 0 1 2 2 2 2 0
[38] 2 2 2 1 2 2 2 2 3 2 2 2 0 0 2 1 2 2 2 2 0 2 2 2 2 2 2 1 2 3 1 2 2 0 2 2 2
[75] 0 2 2 2 2 2 3 2 1 2 0 3 2 3 0 0 0 1 2 2 1 2 1 0 2 2 0 2 1 2 2 1 1 0 1 2 2
[112] 2 2 1 2 3 2 2 2 2 2 1 2 2 2 3 1 3 0 0 2 2 1 2 2 1 0 2 2 3 2 2 2 2 2 3 2 0
[149] 0 0 2 3 2 1 0 2 2 2 3 2 2 2 3 0 3 2 0 2 2 2 2 1 2 2 2 2 2 3 2 2 1 0 2 1 0
[186] 3 2 0 2 0 2 0 2 1 2 2 2 2 0 2 2 0 2 0 0 2 2 1 0 0 0 2 2 2 2 2 3 3 0 2 2 2
[223] 0 3 3 2 1 3 2 2 2 2 2 2 2 2 2 3 0 3 0 2 0 2 1 2 2 2 0 2 0 2 2 2 2 2 2 1 1
[260] 2 0 2 0 2 2 2 3 1 0 2 2 2 2 2 2 2 2 2 2 2 2 3 1 2 0 2 2 2 1 2 1 2 0 0 2 0
[297] 2 3 2 0
Componentes principales categórico (Kaiser - Princals)
Correlación de Pearson
Warning: package 'Gifi' was built under R version 4.3.3
PRINCAL_pearson1 <- foreach (j = 1 : 6 , .combine = 'list' , .packages = c ("Gifi" , "foreach" , "doRNG" )) %:%
foreach (i = 1 : iter, .combine = 'c' , .packages = "Gifi" , .options.RNG = 1234 ) %dopar% {
set.seed (1234 + i + j)
invisible (capture.output ({
res <- princals (cor_pearson2100[[i]][[j]])
}))
res$ ndim
}
PRINCAL_pearson1
[[1]]
[[1]][[1]]
[[1]][[1]][[1]]
[[1]][[1]][[1]][[1]]
[[1]][[1]][[1]][[1]][[1]]
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 2
[[1]][[1]][[1]][[1]][[2]]
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 2
[[1]][[1]][[1]][[2]]
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 2
[[1]][[1]][[2]]
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 2
[[1]][[2]]
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 2
[[2]]
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 2
Correlación de Spearman
PRINCAL_spearman1 <- foreach (j = 1 : 6 , .combine = 'list' , .packages = c ("Gifi" , "foreach" , "doRNG" )) %:%
foreach (i = 1 : iter, .combine = 'c' , .packages = "Gifi" , .options.RNG = 1234 ) %dopar% {
set.seed (1234 + i + j)
invisible (capture.output ({
res <- princals (cor_spearman2100[[i]][[j]])
}))
res$ ndim
}
PRINCAL_spearman1
[[1]]
[[1]][[1]]
[[1]][[1]][[1]]
[[1]][[1]][[1]][[1]]
[[1]][[1]][[1]][[1]][[1]]
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 2
[[1]][[1]][[1]][[1]][[2]]
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 2
[[1]][[1]][[1]][[2]]
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 2
[[1]][[1]][[2]]
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 2
[[1]][[2]]
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 2
[[2]]
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 2
Estimación PRINCALS directamente en la base de datos
Teniendo en cuenta que los resultados siempre eran los mismos, ejecuté el análisis directamente a las bases de datos.
PRINCALS_base1 <- foreach (j = 1 : 6 , .combine = 'list' , .packages = c ("Gifi" , "foreach" , "doRNG" )) %:%
foreach (i = 1 : iter, .combine = 'c' , .packages = "Gifi" , .options.RNG = 1234 ) %dopar% {
set.seed (1234 + i + j)
invisible (capture.output ({
res <- princals (basef2100[[i]][[j]])
}))
res$ ndim
}
PRINCALS_base1
[[1]]
[[1]][[1]]
[[1]][[1]][[1]]
[[1]][[1]][[1]][[1]]
[[1]][[1]][[1]][[1]][[1]]
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 2
[[1]][[1]][[1]][[1]][[2]]
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 2
[[1]][[1]][[1]][[2]]
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 2
[[1]][[1]][[2]]
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 2
[[1]][[2]]
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 2
[[2]]
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[186] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[297] 2 2 2 2
Medidas de precisión - exactitud
procesar_lista <- function (lista) {
vector <- unlist (lista)
split (vector, ceiling (seq_along (vector) / iter))
}
listas <- list (fa_parallel_spearman1, fa_parallel_pearson1, MAP_spearman1, MAP_pearson1,
EGA_pearson1, EGA_spearman1, PRINCAL_pearson1, PRINCAL_spearman1,PRINCALS_base1)
bloques <- lapply (listas, procesar_lista)
names (bloques) <- c ("fa_parallel_spearman1" , "fa_parallel_pearson1" , "MAP_spearman1" ,
"MAP_pearson1" , "EGA_pearson1" , "EGA_spearman1" ,
"PRINCAL_pearson1" , "PRINCAL_spearman1" , "PRINCALS_base1" )
proporcion_correcta <- function (results, correct_value = 2 ) {
correct_counts <- sum (results == correct_value)
correct_counts / length (results)
}
mbe <- function (results, correct_value = 2 ) {
sum (correct_value - results) / length (results)
}
mae <- function (results, correct_value = 2 ) {
mean (abs (correct_value - results))
}
resultados <- lapply (bloques, function (bloque) {
lapply (bloque, function (data) {
list (
PC = proporcion_correcta (data),
MBE = mbe (data),
MAE = mae (data)
)
})
})
data_frames <- lapply (resultados, function (res) {
do.call (rbind, lapply (res, function (r) {
data.frame (PC = r$ PC, MBE = r$ MBE, MAE = r$ MAE)
}))
})
names (data_frames) <- c ("fa_parallel_spearman1" , "fa_parallel_pearson1" , "MAP_spearman1" ,
"MAP_pearson1" , "EGA_pearson1" , "EGA_spearman1" ,
"PRINCAL_pearson1" , "PRINCAL_spearman1" , "PRINCALS_base1" )
newnames<- c ("Carga_baja_ortogonal" , "Carga_alta_ortogonal" , "Carga_baja_oblic_03" , "Carga_alta_oblic_03" , "Carga_baja_oblic_05" , "Carga_alta_oblic_05" )
data_frames <- lapply (data_frames, function (df) {
rownames (df) <- newnames
return (df)
})
data_frames
$fa_parallel_spearman1
PC MBE MAE
Carga_baja_ortogonal 0.3166667 -0.3666667 1.0866667
Carga_alta_ortogonal 0.7700000 -0.2766667 0.2766667
Carga_baja_oblic_03 0.3133333 -0.1700000 1.0633333
Carga_alta_oblic_03 0.7433333 -0.3033333 0.3100000
Carga_baja_oblic_05 0.3000000 -0.2300000 1.0100000
Carga_alta_oblic_05 0.6333333 -0.3566667 0.4633333
$fa_parallel_pearson1
PC MBE MAE
Carga_baja_ortogonal 0.3333333 -0.3233333 1.0233333
Carga_alta_ortogonal 0.7566667 -0.3033333 0.3033333
Carga_baja_oblic_03 0.3233333 -0.2233333 1.0300000
Carga_alta_oblic_03 0.7500000 -0.3000000 0.3066667
Carga_baja_oblic_05 0.2933333 -0.2066667 1.0133333
Carga_alta_oblic_05 0.6466667 -0.3000000 0.4266667
$MAP_spearman1
PC MBE MAE
Carga_baja_ortogonal 0.000000000 1.993333 1.993333
Carga_alta_ortogonal 0.030000000 1.806667 1.806667
Carga_baja_oblic_03 0.000000000 2.000000 2.000000
Carga_alta_oblic_03 0.016666667 1.530000 1.530000
Carga_baja_oblic_05 0.000000000 1.956667 1.956667
Carga_alta_oblic_05 0.006666667 1.220000 1.220000
$MAP_pearson1
PC MBE MAE
Carga_baja_ortogonal 0.000000000 1.993333 1.993333
Carga_alta_ortogonal 0.036666667 1.773333 1.773333
Carga_baja_oblic_03 0.000000000 1.996667 1.996667
Carga_alta_oblic_03 0.020000000 1.490000 1.490000
Carga_baja_oblic_05 0.000000000 1.943333 1.943333
Carga_alta_oblic_05 0.003333333 1.190000 1.190000
$EGA_pearson1
PC MBE MAE
Carga_baja_ortogonal 0.1166667 1.4600000 1.5066667
Carga_alta_ortogonal 0.8200000 0.1533333 0.2600000
Carga_baja_oblic_03 0.1166667 1.4500000 1.4900000
Carga_alta_oblic_03 0.7800000 0.2333333 0.3400000
Carga_baja_oblic_05 0.1066667 1.5266667 1.5666667
Carga_alta_oblic_05 0.6533333 0.2766667 0.4766667
$EGA_spearman1
PC MBE MAE
Carga_baja_ortogonal 0.09666667 1.5133333 1.5600000
Carga_alta_ortogonal 0.80000000 0.2100000 0.3166667
Carga_baja_oblic_03 0.11333333 1.4833333 1.5166667
Carga_alta_oblic_03 0.75666667 0.2566667 0.3500000
Carga_baja_oblic_05 0.08666667 1.5400000 1.5933333
Carga_alta_oblic_05 0.61666667 0.3733333 0.5600000
$PRINCAL_pearson1
PC MBE MAE
Carga_baja_ortogonal 1 0 0
Carga_alta_ortogonal 1 0 0
Carga_baja_oblic_03 1 0 0
Carga_alta_oblic_03 1 0 0
Carga_baja_oblic_05 1 0 0
Carga_alta_oblic_05 1 0 0
$PRINCAL_spearman1
PC MBE MAE
Carga_baja_ortogonal 1 0 0
Carga_alta_ortogonal 1 0 0
Carga_baja_oblic_03 1 0 0
Carga_alta_oblic_03 1 0 0
Carga_baja_oblic_05 1 0 0
Carga_alta_oblic_05 1 0 0
$PRINCALS_base1
PC MBE MAE
Carga_baja_ortogonal 1 0 0
Carga_alta_ortogonal 1 0 0
Carga_baja_oblic_03 1 0 0
Carga_alta_oblic_03 1 0 0
Carga_baja_oblic_05 1 0 0
Carga_alta_oblic_05 1 0 0