In today’s rapidly evolving educational landscape, the continuous evaluation and improvement of academic programs are paramount. The Master of Applied Statistics program must be regularly assessed based on user feedback to ensure its relevance and effectiveness. Evaluating this program’s curriculum from the perspective of students, alumni, employers, and other stakeholders is crucial for enhancing program quality, meeting stakeholder expectations, and ensuring long-term success.
Regular curriculum evaluations help identify strengths and areas for improvement. Feedback from students and alumni provides insights into course effectiveness, relevance of material, and overall learning experience. This allows the program to evolve, remaining rigorous and pertinent.
Educational programs must align with industry standards and expectations. Employers can offer valuable input on practical skills and knowledge required in the workplace. Incorporating this feedback ensures graduates are well-prepared for their careers, enhancing their employability and the program’s reputation.
The higher education landscape is dynamic. Regular evaluations based on user feedback enable the program to adapt to new developments and trends, such as advancements in technology and data science. This proactive approach ensures graduates are equipped to tackle contemporary challenges and excel in their careers.
data$Institution<-factor(data$Nama.perusahaan.instansi)
data$Institution<-recode(data$Institution,
"BPS"="Central Bureau of Statistics",
"Badan Pusat Statistik"="Central Bureau of Statistics")
Institution = tabyl(data, Institution) %>%
adorn_totals("row") %>%
adorn_pct_formatting(digits = 2)
names(Institution) = c("Institution", "Frequency", "Percentage")
Institution %>%
flextable() %>% width(j=1,width=1.8) %>% width(j=2:3,width=1.5) %>%
vline() %>% vline_left() %>% align(align="center",part="all") %>%
add_header_row(values="Table 1: Distribution of Institution", colwidths=3) %>%
align(i=2,j=1, align="left",part="header") %>% align(j=1, align="left",part="body")
Table 1: Distribution of Institution | ||
---|---|---|
Institution | Frequency | Percentage |
Central Bureau of Statistics | 4 | 50.00% |
bank bjb | 1 | 12.50% |
DJP | 1 | 12.50% |
LK3P UI | 1 | 12.50% |
TEEG Indonesia | 1 | 12.50% |
Total | 8 | 100.00% |
Institution_plot <- ggplot(Institution[-nrow(Institution),], aes(x = as.factor(Institution), y = Frequency, fill = as.factor(Institution))) +
geom_bar(stat = "identity") +
geom_text(aes(label = Frequency), vjust = -0.5) + # Add labels above the bars
xlab("Institution") +
ylab("Frequency") +guides(fill="none", color="none")+
ggtitle("Figure 2. Alumni Institutions") + theme(legend.Institution = "none")+theme_bw()+
theme(plot.title = element_text(size = 15, face = "bold"))+scale_x_discrete(guide = guide_axis(angle = 90))
Institution_plot
Based on Figure 1, the majority of BPS respondents participated in the user satisfaction survey. This aligns with our observation that many of our students over the years have come from BPS.
data$Competency<-factor(data$Bagaimana.penilaian.Anda.terhadap.kompetensi.teknis.lulusan.Program.S2.Statistika.)
data$Competency<-recode(data$Competency,
"Sangat Baik"="Excellence",
"Baik"="Good",
"Cukup Baik"="Average",
"Kurang Baik"="Poor")
Competency = tabyl(data, Competency) %>%
adorn_totals("row") %>%
adorn_pct_formatting(digits = 2)
names(Competency) = c("Competency", "Frequency", "Percentage")
Competency %>%
flextable() %>% width(j=1,width=1.8) %>% width(j=2:3,width=1.5) %>%
vline() %>% vline_left() %>% align(align="center",part="all") %>%
add_header_row(values="Table 2: Technical Competence of Graduates from the Master's Program in Statistics", colwidths=3) %>%
align(i=2,j=1, align="left",part="header") %>% align(j=1, align="left",part="body")
Table 2: Technical Competence of Graduates from the Master's Program in Statistics | ||
---|---|---|
Competency | Frequency | Percentage |
Good | 4 | 50.00% |
Excellence | 4 | 50.00% |
Total | 8 | 100.00% |
# Pie Chart Kepuasan Keseluruhan Terhadap Kurikulum
pie_Competency<- plot_ly(Competency[-nrow(Competency),], labels = ~Competency, values = ~ Frequency, type = 'pie', textinfo = 'label+percent') %>%
layout(title = 'Figure 2: Technical Competence')
pie_Competency
data$Relevance<-factor(data$Seberapa.baik.lulusan.mampu.menerapkan.ilmu.statistika.dalam.pekerjaan.sehari.hari.)
data$Relevance<-recode(data$Relevance,
"Sangat Baik"="Excellence",
"Baik"="Good",
"Cukup Baik"="Average",
"Kurang Baik"="Poor")
Relevance = tabyl(data, Relevance) %>%
adorn_totals("row") %>%
adorn_pct_formatting(digits = 2)
names(Relevance) = c("Relevance", "Frequency", "Percentage")
Relevance %>%
flextable() %>% width(j=1,width=1.8) %>% width(j=2:3,width=1.5) %>%
vline() %>% vline_left() %>% align(align="center",part="all") %>%
add_header_row(values="Table 3: Relevance of the Statistics Curriculum to the Professional Workforce", colwidths=3) %>%
align(i=2,j=1, align="left",part="header") %>% align(j=1, align="left",part="body")
Table 3: Relevance of the Statistics Curriculum to the Professional Workforce | ||
---|---|---|
Relevance | Frequency | Percentage |
Good | 5 | 62.50% |
Excellence | 3 | 37.50% |
Total | 8 | 100.00% |
# Pie Chart Kepuasan Keseluruhan Terhadap Kurikulum
pie_Relevance<- plot_ly(Relevance[-nrow(Relevance),], labels = ~Relevance, values = ~ Frequency, type = 'pie', textinfo = 'label+percent') %>%
layout(title = 'Figure 3: Relevance of the Statistics Curriculum ')
pie_Relevance
data$Communication<-factor(data$Bagaimana.penilaian.Anda.terhadap.kemampuan.komunikasi.lulusan.)
data$Communication<-recode(data$Communication,
"Sangat Baik"="Excellence",
"Baik"="Good",
"Cukup Baik"="Average",
"Kurang Baik"="Poor")
Communication = tabyl(data, Communication) %>%
adorn_totals("row") %>%
adorn_pct_formatting(digits = 2)
names(Communication) = c("Communication", "Frequency", "Percentage")
Communication %>%
flextable() %>% width(j=1,width=1.8) %>% width(j=2:3,width=1.5) %>%
vline() %>% vline_left() %>% align(align="center",part="all") %>%
add_header_row(values="Table 4: Cummunication Skills of Alumni", colwidths=3) %>%
align(i=2,j=1, align="left",part="header") %>% align(j=1, align="left",part="body")
Table 4: Cummunication Skills of Alumni | ||
---|---|---|
Communication | Frequency | Percentage |
Good | 4 | 50.00% |
Excellence | 4 | 50.00% |
Total | 8 | 100.00% |
# Pie Chart Kepuasan Keseluruhan Terhadap Kurikulum
pie_Communication<- plot_ly(Communication[-nrow(Communication),], labels = ~Communication, values = ~ Frequency, type = 'pie', textinfo = 'label+percent') %>%
layout(title = 'Figure 4: Cummunication Skills of Alumni')
pie_Communication
data$Collaboration<-factor(data$Bagaimana.penilaian.Anda.terhadap.kemampuan.kerjasama.tim.lulusan.)
data$Collaboration<-recode(data$Collaboration,
"Sangat Baik"="Excellence",
"Baik"="Good",
"Cukup Baik"="Average",
"Kurang Baik"="Poor")
Collaboration = tabyl(data, Collaboration) %>%
adorn_totals("row") %>%
adorn_pct_formatting(digits = 2)
names(Collaboration) = c("Collaboration", "Frequency", "Percentage")
Collaboration %>%
flextable() %>% width(j=1,width=1.8) %>% width(j=2:3,width=1.5) %>%
vline() %>% vline_left() %>% align(align="center",part="all") %>%
add_header_row(values="Table 5: Cummunication Skills of Alumni", colwidths=3) %>%
align(i=2,j=1, align="left",part="header") %>% align(j=1, align="left",part="body")
Table 5: Cummunication Skills of Alumni | ||
---|---|---|
Collaboration | Frequency | Percentage |
Good | 1 | 12.50% |
Excellence | 7 | 87.50% |
Total | 8 | 100.00% |
# Pie Chart Kepuasan Keseluruhan Terhadap Kurikulum
pie_Collaboration<- plot_ly(Collaboration[-nrow(Collaboration),], labels = ~Collaboration, values = ~ Frequency, type = 'pie', textinfo = 'label+percent') %>%
layout(title = 'Figure 5: Cummunication Skills of Alumni')
pie_Collaboration
data$Updating<-factor(data$Apakah.lulusan.memiliki.pengetahuan.dan.keterampilan.dalam.penggunaan.big.data..artificial.intelligence..AI...dan.Internet.of.Things..IoT..)
data$Updating<-recode(data$Updating,
"Sangat Baik"="Excellence",
"Baik"="Good",
"Cukup Baik"="Average",
"Kurang Baik"="Poor")
Updating = tabyl(data, Updating) %>%
adorn_totals("row") %>%
adorn_pct_formatting(digits = 2)
names(Updating) = c("Updating", "Frequency", "Percentage")
Updating %>%
flextable() %>% width(j=1,width=1.8) %>% width(j=2:3,width=1.5) %>%
vline() %>% vline_left() %>% align(align="center",part="all") %>%
add_header_row(values="Table 6: Graduates possess knowledge and skills in utilizing big data, artificial intelligence (AI), and the Internet of Things (IoT)", colwidths=3) %>%
align(i=2,j=1, align="left",part="header") %>% align(j=1, align="left",part="body")
Table 6: Graduates possess knowledge and skills in utilizing big data, artificial intelligence (AI), and the Internet of Things (IoT) | ||
---|---|---|
Updating | Frequency | Percentage |
Good | 3 | 37.50% |
Average | 2 | 25.00% |
Excellence | 3 | 37.50% |
Total | 8 | 100.00% |
# Pie Chart Kepuasan Keseluruhan Terhadap Kurikulum
pie_Updating<- plot_ly(Updating[-nrow(Updating),], labels = ~Updating, values = ~ Frequency, type = 'pie', textinfo = 'label+percent') %>%
layout(title = 'Figure 6: Graduates possess knowledge and skills in Society 5.0')
pie_Updating
data$Adaptation<-factor(data$Bagaimana.kemampuan.lulusan.untuk.beradaptasi.dengan.perkembangan.teknologi.di.era.Society.5.0.)
data$Adaptation<-recode(data$Adaptation,
"Sangat Baik"="Excellence",
"Baik"="Good",
"Cukup Baik"="Average",
"Kurang Baik"="Poor")
Adaptation = tabyl(data, Adaptation) %>%
adorn_totals("row") %>%
adorn_pct_formatting(digits = 2)
names(Adaptation) = c("Adaptation", "Frequency", "Percentage")
Adaptation %>%
flextable() %>% width(j=1,width=1.8) %>% width(j=2:3,width=1.5) %>%
vline() %>% vline_left() %>% align(align="center",part="all") %>%
add_header_row(values="Table 7: Cummunication Skills of Alumni on Society 5.0", colwidths=3) %>%
align(i=2,j=1, align="left",part="header") %>% align(j=1, align="left",part="body")
Table 7: Cummunication Skills of Alumni on Society 5.0 | ||
---|---|---|
Adaptation | Frequency | Percentage |
Good | 4 | 50.00% |
Average | 1 | 12.50% |
Excellence | 3 | 37.50% |
Total | 8 | 100.00% |
# Pie Chart Kepuasan Keseluruhan Terhadap Kurikulum
pie_Adaptation<- plot_ly(Adaptation[-nrow(Adaptation),], labels = ~Adaptation, values = ~ Frequency, type = 'pie', textinfo = 'label+percent') %>%
layout(title = 'Figure 7: Cummunication Skills of Alumni on Society 5.0')
pie_Adaptation
text <-data$Apakah.ada.kompetensi.lain.yang.menurut.Anda.perlu.dimiliki.oleh.lulusan.Program.S2
text = unlist(strsplit(text, "\\W+"))
text = tolower(text)
text = data.frame(table(text))
#wordcloud(text$text, text$Freq)
text = text[!is.element(text$text, stopw),]
wordcloud(text$text, text$Freq, min.freq = 1, random.order=FALSE, rot.per=0.25, colors=brewer.pal(15, "Dark2"))
## Warning in brewer.pal(15, "Dark2"): n too large, allowed maximum for palette Dark2 is 8
## Returning the palette you asked for with that many colors
# Create the data frame with the provided text data
text <-data$Apakah.ada.saran.atau.rekomendasi.terkait.perbaikan.atau.penambahan.mata.kuliah.yang.sesuai.dengan.kebutuhan.industri.dan.perkembangan.teknologi.
text = unlist(strsplit(text, "\\W+"))
text = tolower(text)
text = data.frame(table(text))
text = text[!is.element(text$text, stopw),]
wordcloud(text$text, text$Freq, min.freq = 1, random.order=FALSE, rot.per=0.25, colors=brewer.pal(15, "Dark2"))
## Warning in brewer.pal(15, "Dark2"): n too large, allowed maximum for palette Dark2 is 8
## Returning the palette you asked for with that many colors
data$Satisfaction<-factor(data$Seberapa.puas.Anda.dengan.kinerja.lulusan.Program.S2.Statistika.di.perusahaan.instansi.Anda.)
data$Satisfaction<-recode(data$Satisfaction,
"Sangat Puas"="Excellence",
"Puas"="Good",
"Cukup Puas"="Average",
"Kurang Puas"="Poor")
Satisfaction = tabyl(data, Satisfaction) %>%
adorn_totals("row") %>%
adorn_pct_formatting(digits = 2)
names(Satisfaction) = c("Satisfaction", "Frequency", "Percentage")
Satisfaction %>%
flextable() %>% width(j=1,width=1.8) %>% width(j=2:3,width=1.5) %>%
vline() %>% vline_left() %>% align(align="center",part="all") %>%
add_header_row(values="Table 8: Graduate User Satisfaction", colwidths=3) %>%
align(i=2,j=1, align="left",part="header") %>% align(j=1, align="left",part="body")
Table 8: Graduate User Satisfaction | ||
---|---|---|
Satisfaction | Frequency | Percentage |
Good | 5 | 62.50% |
Excellence | 3 | 37.50% |
Total | 8 | 100.00% |
# Pie Chart Kepuasan Keseluruhan Terhadap Kurikulum
pie_Satisfaction<- plot_ly(Satisfaction[-nrow(Satisfaction),], labels = ~Satisfaction, values = ~ Frequency, type = 'pie', textinfo = 'label+percent') %>%
layout(title = 'Figure 8: Graduate User Satisfaction')
pie_Satisfaction
# Create the data frame with the provided text data
text <-data$Apakah.ada.hal.lain.yang.ingin.Anda.sampaikan.terkait.kurikulum.Program.S2.Statistika.
text = unlist(strsplit(text, "\\W+"))
text = tolower(text)
text = data.frame(table(text))
text = text[!is.element(text$text, stopw),]
wordcloud(text$text, text$Freq, min.freq = 1, random.order=FALSE, rot.per=0.25, colors=brewer.pal(15, "Dark2"))
data$Recomendation<-factor(data$Seberapa.besar.kemungkinan.Anda.merekomendasikan.lulusan.Program.S2.Statistika.kepada.perusahaan.instansi.lain.)
data$Recomendation<-recode(data$Recomendation,
"Sangat Besar"="Excellence",
"Besar"="Good",
"Cukup Besar"="Average",
"Kurang Besar"="Poor")
Recomendation = tabyl(data, Recomendation) %>%
adorn_totals("row") %>%
adorn_pct_formatting(digits = 2)
names(Recomendation) = c("Recomendation", "Frequency", "Percentage")
Recomendation %>%
flextable() %>% width(j=1,width=1.8) %>% width(j=2:3,width=1.5) %>%
vline() %>% vline_left() %>% align(align="center",part="all") %>%
add_header_row(values="Table 9: Possibility of recommending alumni of applied statistics master's degree to other institutions", colwidths=3) %>%
align(i=2,j=1, align="left",part="header") %>% align(j=1, align="left",part="body")
Table 9: Possibility of recommending alumni of applied statistics master's degree to other institutions | ||
---|---|---|
Recomendation | Frequency | Percentage |
Good | 4 | 50.00% |
Average | 1 | 12.50% |
Excellence | 3 | 37.50% |
Total | 8 | 100.00% |
pie_Recomendation<- plot_ly(Recomendation[-nrow(Recomendation),], labels = ~Recomendation, values = ~ Frequency, type = 'pie', textinfo = 'label+percent') %>%
layout(title = 'Figure 9: Possibility of recommending alumni to other institutions')
pie_Recomendation
# Create the data frame with the provided text data
text <-data$Apakah.ada.hal.lain.yang.ingin.Anda.sampaikan.terkait.kurikulum.Program.S2.Statistika.Terapan.FMIPA.UNPAD.
text = unlist(strsplit(text, "\\W+"))
text = tolower(text)
text = data.frame(table(text))
text = text[!is.element(text$text, stopw),]
wordcloud(text$text, text$Freq, min.freq = 1, random.order=FALSE, rot.per=0.25, colors=brewer.pal(15, "Dark2"))
Overall, graduates of the applied statistics master’s program are highly regarded by employers, who express strong satisfaction with their performance. However, users have suggested incorporating courses on Artificial Intelligence to align with the latest advancements in AI technology. Evaluating the Master of Applied Statistics program’s curriculum based on user feedback is essential for several reasons. It helps enhance program quality, meet stakeholder expectations, and ensure long-term success. By fostering a culture of continuous improvement and adapting to the evolving educational landscape, the program can maintain its relevance and effectiveness. Ultimately, satisfying stakeholders’ needs and expectations is crucial for the program’s sustainability and its ability to produce competent, industry-ready graduates.