The Poisson Distribution
0.1 R Markdown
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
%—————————————————————————%
%—————————————————————————%
%—————————————————————————% %—————————————————————————%
%—————————————————————————% %—————————————————————————% %—————————————————————%
%—————————————————————%
[fragile]From before: \(P(X = 0)\) given than the mean number of occurrences is 2.
\end{frame}
[fragile]Compute the cumulative distribution functions for the values \(k=\{0,1,2\}\), given that the mean number of occurrences is 2
- The Poisson distribution can sometimes be used to approximate the binomial distribution
- When the number of observations n is large, and the success probability p is small, the \(Bin(n,p)\) distribution approaches the Poisson distribution with the parameter given by \(m = np\).
- This is useful since the computations involved in calculating binomial probabilities are greatly reduced in complexity.
- As a rule of thumb, n should be greater than 50 with p very small, such that np should be less than 5.
- We set = np (other notation m = np) and use the Poisson tables.
- If the value of p is very high, the definition of what constitutes a
success" or
failure” can be switched. \end{itemize}
%———————————————————————%
Suppose we sample 1000 items from a production line that is producing, on average, \(0.1\%\) defective components.
Using the binomial distribution, the probability of exactly 3 defective items in our sample is \[P(X = 3) = ^{1000}C_{3} \times 0.001^{3} \times 0.999^{997}\]
Lets compute each of the component terms individually.
[\(\ast\)] \(^{1000}C_{3}\) \[^{1000}C_{3} = \frac{1000 \times 999 \times 998}{3 \times 2 \times 1} = 166,167,000\]
[\(\ast\)] \(0.001^3\) \[0.001^3 = 0.000000001\]
[\(\ast\)] \(0.999^{997}\) \[0.999^{997} = 0.36880\] \end{itemize}
Multiply these three values to compute the binomial probability \(P(X = 3) = 0.06128\)
\end{itemize}
- Lets use the Poisson distribution to approximate a solution.
- First check that \(n \geq 50\) and \(np < 5\) (Yes to both).
- We choose as our parameter value \(m = np = 1000 \times 0.001 = 1\) \end{itemize} \[P(X = 3) = \frac{e^{-1} \times 1^3}{3!} = \frac{e^{-1}}{6} = \frac{0.36787}{6} = 0.06131 \] Compare this answer with the Binomial probability P(X = 3) = 0.06128. Very good approximation, with much less computation effort.
%============================================================================================%
The Poisson Approximation of the binomial ditribution
Example
\[P(X \geq 2) = 1 - (0.134+0.27) = 0.596\]
\[P(X=1) = 200 0.01 0.99 199\]
\[P(X=1) = 0.270\]
Poisson Approximaitions
\[X \sim \mbox{Binomial}(200, 0.01) \]
P(X= k)=e-kk!
\[P(X \geq 2) = 1- (0.135+0.27) = 0.595\]
%http://www.stats.gla.ac.uk/steps/glossary/hypothesis_testing.html
0.1.1 The Poisson Distribution: Specification
{
- The \(\lambda\) (pronounced `lambda’) is the expected number of occurrences per unit space / unit period.
- (Remark: Some texts will use the notation \(m\) rather than \(\lambda\)) \end{itemize}
Probability Density Function
\[P(X=k) = \frac{e^{m!}}{k!}\] }
%========================================================% Question 6 : Poisson approximation of the Binomial Distribution
binomial parameters number of trialsn =100 probability of success p = 0.01
from binomial tables (MB1)
complement P ( X \(\geq 2) = 0.2642\)
therefore answer is P ( \(X \leq 1) = 0.7358\)
M=15 (1/2 hour or 30 minutes)
5 minute period m=2.5
X : No of arrivals
P(X=0) when M = 2.5
\[P(X=0) = 1 - P(X \geq 1) (Complement)\] \[= 1 - 0.9179\] \[= 0.0821\]
\end{itemize}
%========================================================% Question 6 : Poisson approximation of the Binomial Distribution
- binomial parameters
- number of trialsn =100
- probability of success p = 0.01
from binomial tables (MB1)
complement P ( X \(\geq 2) = 0.2642\)
therefore answer is P ( \(X \leq 1) = 0.7358\) \end{itemize}
\end{document}