Let’s break down your project into practical steps and address each
part systematically.
Step 1: Prove MQPA with a Known Dataset
We’ll start by selecting a known dataset to prove the MQPA. For
simplicity, we’ll use a dataset available in the QM9 dataset collection,
which contains quantum chemical calculations.
Setup and Environment
Ensure you have the necessary libraries installed. We will use Python
with libraries like Qiskit, Pennylane, PyQuil, and standard data science
libraries such as Pandas and NumPy.
# Install necessary libraries
!pip install qiskit pennylane pyquil pandas numpy matplotlib scikit-learn
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
import qiskit
from qiskit import QuantumCircuit, Aer, transpile, assemble
from qiskit.visualization import plot_histogram
import pennylane as qml
from pyquil import Program
from pyquil.gates import H, CNOT
from pyquil.api import QuantumComputer
import matplotlib.pyplot as plt
Load and Preprocess Dataset
We’ll load the QM9 dataset and preprocess it. For simplicity, we’ll
use a sample of the dataset.
# Load QM9 dataset (use a sample for demonstration)
df = pd.read_csv('path_to_qm9_sample.csv') # Replace with the path to your QM9 dataset
# Preprocess data
# Select a subset of features and target
features = df[['feature1', 'feature2', 'feature3']] # Replace with actual feature names
target = df['target'] # Replace with actual target name
# Standardize the features
scaler = StandardScaler()
features_scaled = scaler.fit_transform(features)
Implement MQPA
We’ll define a simple MQPA for demonstration. This will include
creating quantum circuits and using quantum gates.
# Define MQPA function
def mqpa_circuit(params):
n_qubits = 3 # Define number of qubits
dev = qml.device('default.qubit', wires=n_qubits)
@qml.qnode(dev)
def circuit(params):
for i in range(n_qubits):
qml.RX(params[i], wires=i)
qml.RY(params[i+n_qubits], wires=i)
qml.RZ(params[i+2*n_qubits], wires=i)
for i in range(n_qubits - 1):
qml.CNOT(wires=[i, i+1])
return [qml.expval(qml.PauliZ(i)) for i in range(n_qubits)]
return circuit
# Example usage of MQPA
params = np.random.rand(3*3) # Initialize parameters
result = mqpa_circuit(params)
print('MQPA result:', result)
Step 2: Create a Paper Teaching the Professor
We’ll create a detailed paper explaining the MQPA, including quantum
data representation as outlined in the IEEE paper and the curriculum
provided.
Outline of the Paper
- Introduction
- Overview of MQPA
- Importance of quantum data representation
- Quantum Data Representation
- Discrete quantum states (qubits)
- Continuous variable systems
- Insights from IEEE paper (include relevant points)
- Implementation of MQPA
- Description of the dataset (QM9)
- Preprocessing steps
- Implementation details (include code snippets)
- Results and analysis
- Conclusion
- Summary of findings
- Future work
Step 3: Autoencoder and GAN with QM9 Dataset
Classical Autoencoder
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense
# Define classical autoencoder
input_dim = features_scaled.shape[1]
encoding_dim = 2
input_layer = Input(shape=(input_dim,))
encoder = Dense(encoding_dim, activation='relu')(input_layer)
decoder = Dense(input_dim, activation='sigmoid')(encoder)
autoencoder = Model(input_layer, decoder)
autoencoder.compile(optimizer='adam', loss='mse')
# Train autoencoder
autoencoder.fit(features_scaled, features_scaled, epochs=50, batch_size=32, shuffle=True)
Quantum Autoencoder
# Define quantum autoencoder
n_qubits = input_dim
dev = qml.device('default.qubit', wires=n_qubits)
@qml.qnode(dev)
def quantum_autoencoder(params, x):
qml.templates.AmplitudeEmbedding(x, wires=range(n_qubits), normalize=True)
for i in range(n_qubits):
qml.RY(params[i], wires=i)
for i in range(n_qubits - 1):
qml.CNOT(wires=[i, i+1])
return [qml.expval(qml.PauliZ(i)) for i in range(n_qubits)]
# Example usage
params = np.random.rand(n_qubits)
encoded = [quantum_autoencoder(params, x) for x in features_scaled]
print('Quantum encoded data:', encoded)
GAN for Particle Detection and Anomaly Detection
Classical and Quantum implementations will be provided with detailed
steps.
Step 4: Step-by-Step Implementation
We will proceed step-by-step with practical examples and code
snippets to ensure a clear understanding.
Step 5: Assess and Organize
We’ll assess each step and organize the information into a coherent
structure for easy reference and learning.
Step 6: First-Person Responses
I will guide you through each step in a first-person narrative to
facilitate understanding.
Let’s start with Step 1 and proceed from there. Please provide any
specific details or preferences you have for the dataset or additional
requirements.
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2sgLSBwcm9qZWN0IHRpZHlpbmcgdXAiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KTGV0J3MgYnJlYWsgZG93biB5b3VyIHByb2plY3QgaW50byBwcmFjdGljYWwgc3RlcHMgYW5kIGFkZHJlc3MgZWFjaCBwYXJ0IHN5c3RlbWF0aWNhbGx5LiANCg0KIyMjIFN0ZXAgMTogUHJvdmUgTVFQQSB3aXRoIGEgS25vd24gRGF0YXNldA0KDQpXZSdsbCBzdGFydCBieSBzZWxlY3RpbmcgYSBrbm93biBkYXRhc2V0IHRvIHByb3ZlIHRoZSBNUVBBLiBGb3Igc2ltcGxpY2l0eSwgd2UnbGwgdXNlIGEgZGF0YXNldCBhdmFpbGFibGUgaW4gdGhlIFFNOSBkYXRhc2V0IGNvbGxlY3Rpb24sIHdoaWNoIGNvbnRhaW5zIHF1YW50dW0gY2hlbWljYWwgY2FsY3VsYXRpb25zLg0KDQoqKlNldHVwIGFuZCBFbnZpcm9ubWVudCoqDQoNCkVuc3VyZSB5b3UgaGF2ZSB0aGUgbmVjZXNzYXJ5IGxpYnJhcmllcyBpbnN0YWxsZWQuIFdlIHdpbGwgdXNlIFB5dGhvbiB3aXRoIGxpYnJhcmllcyBsaWtlIFFpc2tpdCwgUGVubnlsYW5lLCBQeVF1aWwsIGFuZCBzdGFuZGFyZCBkYXRhIHNjaWVuY2UgbGlicmFyaWVzIHN1Y2ggYXMgUGFuZGFzIGFuZCBOdW1QeS4NCg0KYGBgcHl0aG9uDQojIEluc3RhbGwgbmVjZXNzYXJ5IGxpYnJhcmllcw0KIXBpcCBpbnN0YWxsIHFpc2tpdCBwZW5ueWxhbmUgcHlxdWlsIHBhbmRhcyBudW1weSBtYXRwbG90bGliIHNjaWtpdC1sZWFybg0KDQppbXBvcnQgcGFuZGFzIGFzIHBkDQppbXBvcnQgbnVtcHkgYXMgbnANCmZyb20gc2tsZWFybi5wcmVwcm9jZXNzaW5nIGltcG9ydCBTdGFuZGFyZFNjYWxlcg0KaW1wb3J0IHFpc2tpdA0KZnJvbSBxaXNraXQgaW1wb3J0IFF1YW50dW1DaXJjdWl0LCBBZXIsIHRyYW5zcGlsZSwgYXNzZW1ibGUNCmZyb20gcWlza2l0LnZpc3VhbGl6YXRpb24gaW1wb3J0IHBsb3RfaGlzdG9ncmFtDQppbXBvcnQgcGVubnlsYW5lIGFzIHFtbA0KZnJvbSBweXF1aWwgaW1wb3J0IFByb2dyYW0NCmZyb20gcHlxdWlsLmdhdGVzIGltcG9ydCBILCBDTk9UDQpmcm9tIHB5cXVpbC5hcGkgaW1wb3J0IFF1YW50dW1Db21wdXRlcg0KaW1wb3J0IG1hdHBsb3RsaWIucHlwbG90IGFzIHBsdA0KYGBgDQoNCioqTG9hZCBhbmQgUHJlcHJvY2VzcyBEYXRhc2V0KioNCg0KV2UnbGwgbG9hZCB0aGUgUU05IGRhdGFzZXQgYW5kIHByZXByb2Nlc3MgaXQuIEZvciBzaW1wbGljaXR5LCB3ZSdsbCB1c2UgYSBzYW1wbGUgb2YgdGhlIGRhdGFzZXQuDQoNCmBgYHB5dGhvbg0KIyBMb2FkIFFNOSBkYXRhc2V0ICh1c2UgYSBzYW1wbGUgZm9yIGRlbW9uc3RyYXRpb24pDQpkZiA9IHBkLnJlYWRfY3N2KCdwYXRoX3RvX3FtOV9zYW1wbGUuY3N2JykgICMgUmVwbGFjZSB3aXRoIHRoZSBwYXRoIHRvIHlvdXIgUU05IGRhdGFzZXQNCg0KIyBQcmVwcm9jZXNzIGRhdGENCiMgU2VsZWN0IGEgc3Vic2V0IG9mIGZlYXR1cmVzIGFuZCB0YXJnZXQNCmZlYXR1cmVzID0gZGZbWydmZWF0dXJlMScsICdmZWF0dXJlMicsICdmZWF0dXJlMyddXSAgIyBSZXBsYWNlIHdpdGggYWN0dWFsIGZlYXR1cmUgbmFtZXMNCnRhcmdldCA9IGRmWyd0YXJnZXQnXSAgIyBSZXBsYWNlIHdpdGggYWN0dWFsIHRhcmdldCBuYW1lDQoNCiMgU3RhbmRhcmRpemUgdGhlIGZlYXR1cmVzDQpzY2FsZXIgPSBTdGFuZGFyZFNjYWxlcigpDQpmZWF0dXJlc19zY2FsZWQgPSBzY2FsZXIuZml0X3RyYW5zZm9ybShmZWF0dXJlcykNCmBgYA0KDQoqKkltcGxlbWVudCBNUVBBKioNCg0KV2UnbGwgZGVmaW5lIGEgc2ltcGxlIE1RUEEgZm9yIGRlbW9uc3RyYXRpb24uIFRoaXMgd2lsbCBpbmNsdWRlIGNyZWF0aW5nIHF1YW50dW0gY2lyY3VpdHMgYW5kIHVzaW5nIHF1YW50dW0gZ2F0ZXMuDQoNCmBgYHB5dGhvbg0KIyBEZWZpbmUgTVFQQSBmdW5jdGlvbg0KZGVmIG1xcGFfY2lyY3VpdChwYXJhbXMpOg0KICAgIG5fcXViaXRzID0gMyAgIyBEZWZpbmUgbnVtYmVyIG9mIHF1Yml0cw0KICAgIGRldiA9IHFtbC5kZXZpY2UoJ2RlZmF1bHQucXViaXQnLCB3aXJlcz1uX3F1Yml0cykNCg0KICAgIEBxbWwucW5vZGUoZGV2KQ0KICAgIGRlZiBjaXJjdWl0KHBhcmFtcyk6DQogICAgICAgIGZvciBpIGluIHJhbmdlKG5fcXViaXRzKToNCiAgICAgICAgICAgIHFtbC5SWChwYXJhbXNbaV0sIHdpcmVzPWkpDQogICAgICAgICAgICBxbWwuUlkocGFyYW1zW2krbl9xdWJpdHNdLCB3aXJlcz1pKQ0KICAgICAgICAgICAgcW1sLlJaKHBhcmFtc1tpKzIqbl9xdWJpdHNdLCB3aXJlcz1pKQ0KICAgICAgICBmb3IgaSBpbiByYW5nZShuX3F1Yml0cyAtIDEpOg0KICAgICAgICAgICAgcW1sLkNOT1Qod2lyZXM9W2ksIGkrMV0pDQogICAgICAgIHJldHVybiBbcW1sLmV4cHZhbChxbWwuUGF1bGlaKGkpKSBmb3IgaSBpbiByYW5nZShuX3F1Yml0cyldDQoNCiAgICByZXR1cm4gY2lyY3VpdA0KDQojIEV4YW1wbGUgdXNhZ2Ugb2YgTVFQQQ0KcGFyYW1zID0gbnAucmFuZG9tLnJhbmQoMyozKSAgIyBJbml0aWFsaXplIHBhcmFtZXRlcnMNCnJlc3VsdCA9IG1xcGFfY2lyY3VpdChwYXJhbXMpDQpwcmludCgnTVFQQSByZXN1bHQ6JywgcmVzdWx0KQ0KYGBgDQoNCiMjIyBTdGVwIDI6IENyZWF0ZSBhIFBhcGVyIFRlYWNoaW5nIHRoZSBQcm9mZXNzb3INCg0KV2UnbGwgY3JlYXRlIGEgZGV0YWlsZWQgcGFwZXIgZXhwbGFpbmluZyB0aGUgTVFQQSwgaW5jbHVkaW5nIHF1YW50dW0gZGF0YSByZXByZXNlbnRhdGlvbiBhcyBvdXRsaW5lZCBpbiB0aGUgSUVFRSBwYXBlciBhbmQgdGhlIGN1cnJpY3VsdW0gcHJvdmlkZWQuDQoNCioqT3V0bGluZSBvZiB0aGUgUGFwZXIqKg0KDQoxLiAqKkludHJvZHVjdGlvbioqDQogICAtIE92ZXJ2aWV3IG9mIE1RUEENCiAgIC0gSW1wb3J0YW5jZSBvZiBxdWFudHVtIGRhdGEgcmVwcmVzZW50YXRpb24NCg0KMi4gKipRdWFudHVtIERhdGEgUmVwcmVzZW50YXRpb24qKg0KICAgLSBEaXNjcmV0ZSBxdWFudHVtIHN0YXRlcyAocXViaXRzKQ0KICAgLSBDb250aW51b3VzIHZhcmlhYmxlIHN5c3RlbXMNCiAgIC0gSW5zaWdodHMgZnJvbSBJRUVFIHBhcGVyIChpbmNsdWRlIHJlbGV2YW50IHBvaW50cykNCg0KMy4gKipJbXBsZW1lbnRhdGlvbiBvZiBNUVBBKioNCiAgIC0gRGVzY3JpcHRpb24gb2YgdGhlIGRhdGFzZXQgKFFNOSkNCiAgIC0gUHJlcHJvY2Vzc2luZyBzdGVwcw0KICAgLSBJbXBsZW1lbnRhdGlvbiBkZXRhaWxzIChpbmNsdWRlIGNvZGUgc25pcHBldHMpDQogICAtIFJlc3VsdHMgYW5kIGFuYWx5c2lzDQoNCjQuICoqQ29uY2x1c2lvbioqDQogICAtIFN1bW1hcnkgb2YgZmluZGluZ3MNCiAgIC0gRnV0dXJlIHdvcmsNCg0KIyMjIFN0ZXAgMzogQXV0b2VuY29kZXIgYW5kIEdBTiB3aXRoIFFNOSBEYXRhc2V0DQoNCioqQ2xhc3NpY2FsIEF1dG9lbmNvZGVyKioNCg0KYGBgcHl0aG9uDQppbXBvcnQgdGVuc29yZmxvdyBhcyB0Zg0KZnJvbSB0ZW5zb3JmbG93LmtlcmFzLm1vZGVscyBpbXBvcnQgTW9kZWwNCmZyb20gdGVuc29yZmxvdy5rZXJhcy5sYXllcnMgaW1wb3J0IElucHV0LCBEZW5zZQ0KDQojIERlZmluZSBjbGFzc2ljYWwgYXV0b2VuY29kZXINCmlucHV0X2RpbSA9IGZlYXR1cmVzX3NjYWxlZC5zaGFwZVsxXQ0KZW5jb2RpbmdfZGltID0gMg0KDQppbnB1dF9sYXllciA9IElucHV0KHNoYXBlPShpbnB1dF9kaW0sKSkNCmVuY29kZXIgPSBEZW5zZShlbmNvZGluZ19kaW0sIGFjdGl2YXRpb249J3JlbHUnKShpbnB1dF9sYXllcikNCmRlY29kZXIgPSBEZW5zZShpbnB1dF9kaW0sIGFjdGl2YXRpb249J3NpZ21vaWQnKShlbmNvZGVyKQ0KDQphdXRvZW5jb2RlciA9IE1vZGVsKGlucHV0X2xheWVyLCBkZWNvZGVyKQ0KYXV0b2VuY29kZXIuY29tcGlsZShvcHRpbWl6ZXI9J2FkYW0nLCBsb3NzPSdtc2UnKQ0KDQojIFRyYWluIGF1dG9lbmNvZGVyDQphdXRvZW5jb2Rlci5maXQoZmVhdHVyZXNfc2NhbGVkLCBmZWF0dXJlc19zY2FsZWQsIGVwb2Nocz01MCwgYmF0Y2hfc2l6ZT0zMiwgc2h1ZmZsZT1UcnVlKQ0KYGBgDQoNCioqUXVhbnR1bSBBdXRvZW5jb2RlcioqDQoNCmBgYHB5dGhvbg0KIyBEZWZpbmUgcXVhbnR1bSBhdXRvZW5jb2Rlcg0Kbl9xdWJpdHMgPSBpbnB1dF9kaW0NCg0KZGV2ID0gcW1sLmRldmljZSgnZGVmYXVsdC5xdWJpdCcsIHdpcmVzPW5fcXViaXRzKQ0KDQpAcW1sLnFub2RlKGRldikNCmRlZiBxdWFudHVtX2F1dG9lbmNvZGVyKHBhcmFtcywgeCk6DQogICAgcW1sLnRlbXBsYXRlcy5BbXBsaXR1ZGVFbWJlZGRpbmcoeCwgd2lyZXM9cmFuZ2Uobl9xdWJpdHMpLCBub3JtYWxpemU9VHJ1ZSkNCiAgICBmb3IgaSBpbiByYW5nZShuX3F1Yml0cyk6DQogICAgICAgIHFtbC5SWShwYXJhbXNbaV0sIHdpcmVzPWkpDQogICAgZm9yIGkgaW4gcmFuZ2Uobl9xdWJpdHMgLSAxKToNCiAgICAgICAgcW1sLkNOT1Qod2lyZXM9W2ksIGkrMV0pDQogICAgcmV0dXJuIFtxbWwuZXhwdmFsKHFtbC5QYXVsaVooaSkpIGZvciBpIGluIHJhbmdlKG5fcXViaXRzKV0NCg0KIyBFeGFtcGxlIHVzYWdlDQpwYXJhbXMgPSBucC5yYW5kb20ucmFuZChuX3F1Yml0cykNCmVuY29kZWQgPSBbcXVhbnR1bV9hdXRvZW5jb2RlcihwYXJhbXMsIHgpIGZvciB4IGluIGZlYXR1cmVzX3NjYWxlZF0NCnByaW50KCdRdWFudHVtIGVuY29kZWQgZGF0YTonLCBlbmNvZGVkKQ0KYGBgDQoNCioqR0FOIGZvciBQYXJ0aWNsZSBEZXRlY3Rpb24gYW5kIEFub21hbHkgRGV0ZWN0aW9uKioNCg0KQ2xhc3NpY2FsIGFuZCBRdWFudHVtIGltcGxlbWVudGF0aW9ucyB3aWxsIGJlIHByb3ZpZGVkIHdpdGggZGV0YWlsZWQgc3RlcHMuDQoNCiMjIyBTdGVwIDQ6IFN0ZXAtYnktU3RlcCBJbXBsZW1lbnRhdGlvbg0KDQpXZSB3aWxsIHByb2NlZWQgc3RlcC1ieS1zdGVwIHdpdGggcHJhY3RpY2FsIGV4YW1wbGVzIGFuZCBjb2RlIHNuaXBwZXRzIHRvIGVuc3VyZSBhIGNsZWFyIHVuZGVyc3RhbmRpbmcuDQoNCiMjIyBTdGVwIDU6IEFzc2VzcyBhbmQgT3JnYW5pemUNCg0KV2UnbGwgYXNzZXNzIGVhY2ggc3RlcCBhbmQgb3JnYW5pemUgdGhlIGluZm9ybWF0aW9uIGludG8gYSBjb2hlcmVudCBzdHJ1Y3R1cmUgZm9yIGVhc3kgcmVmZXJlbmNlIGFuZCBsZWFybmluZy4NCg0KIyMjIFN0ZXAgNjogRmlyc3QtUGVyc29uIFJlc3BvbnNlcw0KDQpJIHdpbGwgZ3VpZGUgeW91IHRocm91Z2ggZWFjaCBzdGVwIGluIGEgZmlyc3QtcGVyc29uIG5hcnJhdGl2ZSB0byBmYWNpbGl0YXRlIHVuZGVyc3RhbmRpbmcuDQoNCkxldCdzIHN0YXJ0IHdpdGggU3RlcCAxIGFuZCBwcm9jZWVkIGZyb20gdGhlcmUuIFBsZWFzZSBwcm92aWRlIGFueSBzcGVjaWZpYyBkZXRhaWxzIG9yIHByZWZlcmVuY2VzIHlvdSBoYXZlIGZvciB0aGUgZGF0YXNldCBvciBhZGRpdGlvbmFsIHJlcXVpcmVtZW50cy4NCg==