1 Functions

source_from_github(repositoy = "DEG_functions",version = "0.2.54")
ℹ SHA-1 hash of file is ee1432006d2446b41e3bbd7e217de81ee047abc7
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!

2 signature

DT::datatable(hmsc_deg, caption = "hmsc_deg")

DT::datatable(opscc_deg, caption = "opscc_deg")
DT::datatable(scc_deg, caption = "scc_deg")

avg_diff_cutoff = 0.1
fdr_cutoff = 0.1

hmsc_top = hmsc_deg %>% filter(avg_diff > avg_diff_cutoff &
                                 fdr < fdr_cutoff) %>% rownames()
opscc_top = opscc_deg %>% filter(avg_diff > avg_diff_cutoff &
                                   fdr < fdr_cutoff) %>% rownames()
scc_top = scc_deg %>% filter(avg_diff > avg_diff_cutoff &
                               fdr < fdr_cutoff) %>% rownames()

all_deg = list(hmsc_top = hmsc_top, opscc_top = opscc_top, scc_top = scc_top)

3 Venn

ggVennDiagram(all_deg)
Warning in grSoftVersion() :
  unable to load shared object '/usr/local/lib/R/modules//R_X11.so':
  libXt.so.6: cannot open shared object file: No such file or directory

4 HMSC GSEA

5 OPSCC GSEA

ranked_vec = opscc_deg[,"avg_diff"]%>% setNames(rownames(opscc_deg)) %>% na.omit() # make named vector
hyp_obj <-hypeR_fgsea(signature = ranked_vec,genesets = geneIds(genesets_h),up_only = F)

plt = hyp_dots(hyp_obj,merge = F,fdr = 0.2)
plt[[1]] + aes(size=nes)+ 
  guides(
    size = guide_legend(title="NES",reverse=T))

plt[[2]] + aes(size=nes) +scale_size(trans = 'reverse')+
  guides(
    size = guide_legend(title="NES",reverse=F))
Scale for 'size' is already present. Adding another scale for 'size', which will replace the existing scale.

NA
NA

6 SCC GSEA

7 OPSCC boxplot


top_genes = hmsc_deg %>% arrange(desc(.$avg_diff)) %>% head(5) %>% rownames()

top_genes_expr = FetchData(object = opscc,vars = c("hpv",top_genes))
df = reshape2::melt(top_genes_expr,value.name = "Expression") %>% dplyr::rename(gene = variable)
Using hpv as id variables
library(rstatix)
stat.test <- df %>%
    group_by(gene) %>%
  wilcox_test(Expression ~ hpv) %>%
  mutate(y.position = 5)

stat.test

stat.test <- stat.test %>% 
  add_xy_position(x = "gene", dodge = 0.8)

ggboxplot(
  df,
  x = "gene",
  y = "Expression",
  color = "hpv",
  palette = "jco",
  add = c("mean","boxplot"),trim = T
)+ stat_pvalue_manual(stat.test, label = "p = {p}",remove.bracket = T)
Warning: Ignoring unknown parameters: trim
Warning: `fun.y` is deprecated. Use `fun` instead.
Warning: `fun.ymin` is deprecated. Use `fun.min` instead.
Warning: `fun.ymax` is deprecated. Use `fun.max` instead.

8 SCC boxplot


top_genes = hmsc_deg %>% arrange(desc(.$avg_diff)) %>% head(5) %>% rownames()

top_genes_expr = FetchData(object = scc_myb_patients,vars = c("hpv_positive",top_genes))
df = reshape2::melt(top_genes_expr,value.name = "Expression") %>% dplyr::rename(gene = variable)
Using hpv_positive as id variables
library(rstatix)
stat.test <- df %>%
    group_by(gene) %>%
  wilcox_test(Expression ~ hpv_positive) %>%
  mutate(y.position = 5)

stat.test

stat.test <- stat.test %>% 
  add_xy_position(x = "gene", dodge = 0.8)

ggboxplot(
  df,
  x = "gene",
  y = "Expression",
  color = "hpv_positive",
  palette = "jco",
  add = c("mean","boxplot"),trim = T
)+ stat_pvalue_manual(stat.test, label = "p = {p}",remove.bracket = T)
Warning: Ignoring unknown parameters: trim
Warning: `fun.y` is deprecated. Use `fun` instead.
Warning: `fun.ymin` is deprecated. Use `fun.min` instead.
Warning: `fun.ymax` is deprecated. Use `fun.max` instead.

LS0tCnRpdGxlOiAnYHIgcnN0dWRpb2FwaTo6Z2V0U291cmNlRWRpdG9yQ29udGV4dCgpJHBhdGggJT4lIGJhc2VuYW1lKCkgJT4lIGdzdWIocGF0dGVybiA9ICJcXC5SbWQiLHJlcGxhY2VtZW50ID0gIiIpYCcgCmF1dGhvcjogIkF2aXNoYWkgV2l6ZWwiCmRhdGU6ICdgciBTeXMudGltZSgpYCcKb3V0cHV0OiAKICBodG1sX25vdGVib29rOiAKICAgIGNvZGVfZm9sZGluZzogaGlkZQogICAgdG9jOiB5ZXMKICAgIHRvY19jb2xsYXBzZTogeWVzCiAgICB0b2NfZmxvYXQ6IAogICAgICBjb2xsYXBzZWQ6IEZBTFNFCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICAgIHRvY19kZXB0aDogMQotLS0KCgoKIyBGdW5jdGlvbnMKCmBgYHtyIHdhcm5pbmc9RkFMU0V9CnNvdXJjZV9mcm9tX2dpdGh1YihyZXBvc2l0b3kgPSAiREVHX2Z1bmN0aW9ucyIsdmVyc2lvbiA9ICIwLjIuNTQiKQoKYGBgCgojIHNpZ25hdHVyZQpgYGB7cn0KIyBmaW5kIGhwdiBzaWduYXR1cmUgZ2VuZXMKaG1zY19kZWcgPSByZWFkLnRhYmxlKGZpbGUgPSAiLi9EYXRhX291dC9IUFZfYW5hbHlzaXMvaHB2X2RlZ19kZi5jc3YiLHJvdy5uYW1lcyA9IDEpCm9wc2NjX2RlZyA9IHJlYWRSRFMoZmlsZSA9ICIuL0RhdGFfb3V0L29wc2NjX2RlZy5yZHMiKQpzY2NfZGVnID0gcmVhZFJEUyhmaWxlID0gIi4vRGF0YV9vdXQvc2NjX2RlZy5yZHMiKQoKCkRUOjpkYXRhdGFibGUoaG1zY19kZWcsIGNhcHRpb24gPSAiaG1zY19kZWciKQpEVDo6ZGF0YXRhYmxlKG9wc2NjX2RlZywgY2FwdGlvbiA9ICJvcHNjY19kZWciKQpEVDo6ZGF0YXRhYmxlKHNjY19kZWcsIGNhcHRpb24gPSAic2NjX2RlZyIpCgphdmdfZGlmZl9jdXRvZmYgPSAwLjEKZmRyX2N1dG9mZiA9IDAuMQoKaG1zY190b3AgPSBobXNjX2RlZyAlPiUgZmlsdGVyKGF2Z19kaWZmID4gYXZnX2RpZmZfY3V0b2ZmICYKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZmRyIDwgZmRyX2N1dG9mZikgJT4lIHJvd25hbWVzKCkKb3BzY2NfdG9wID0gb3BzY2NfZGVnICU+JSBmaWx0ZXIoYXZnX2RpZmYgPiBhdmdfZGlmZl9jdXRvZmYgJgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZkciA8IGZkcl9jdXRvZmYpICU+JSByb3duYW1lcygpCnNjY190b3AgPSBzY2NfZGVnICU+JSBmaWx0ZXIoYXZnX2RpZmYgPiBhdmdfZGlmZl9jdXRvZmYgJgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZmRyIDwgZmRyX2N1dG9mZikgJT4lIHJvd25hbWVzKCkKCmFsbF9kZWcgPSBsaXN0KGhtc2NfdG9wID0gaG1zY190b3AsIG9wc2NjX3RvcCA9IG9wc2NjX3RvcCwgc2NjX3RvcCA9IHNjY190b3ApCgpgYGAKIyBWZW5uCmBgYHtyfQpsaWJyYXJ5KGdnVmVubkRpYWdyYW0pCmdnVmVubkRpYWdyYW0oYWxsX2RlZykKYGBgCiMgSE1TQyBHU0VBCgpgYGB7cn0KcmFua2VkX3ZlYyA9IGhtc2NfZGVnWywiYXZnX2RpZmYiXSU+JSBzZXROYW1lcyhyb3duYW1lcyhobXNjX2RlZykpICU+JSBuYS5vbWl0KCkgIyBtYWtlIG5hbWVkIHZlY3RvcgpoeXBfb2JqIDwtaHlwZVJfZmdzZWEoc2lnbmF0dXJlID0gcmFua2VkX3ZlYyxnZW5lc2V0cyA9IGdlbmVJZHMoZ2VuZXNldHNfaCksdXBfb25seSA9IEYpCgpwbHQgPSBoeXBfZG90cyhoeXBfb2JqLG1lcmdlID0gRixmZHIgPSAwLjIpCnBsdFtbMV1dICsgYWVzKHNpemU9bmVzKSsgCiAgZ3VpZGVzKAogICAgc2l6ZSA9IGd1aWRlX2xlZ2VuZCh0aXRsZT0iTkVTIixyZXZlcnNlPVQpKQoKCmBgYAoKIyBPUFNDQyBHU0VBCgpgYGB7cn0KcmFua2VkX3ZlYyA9IG9wc2NjX2RlZ1ssImF2Z19kaWZmIl0lPiUgc2V0TmFtZXMocm93bmFtZXMob3BzY2NfZGVnKSkgJT4lIG5hLm9taXQoKSAjIG1ha2UgbmFtZWQgdmVjdG9yCmh5cF9vYmogPC1oeXBlUl9mZ3NlYShzaWduYXR1cmUgPSByYW5rZWRfdmVjLGdlbmVzZXRzID0gZ2VuZUlkcyhnZW5lc2V0c19oKSx1cF9vbmx5ID0gRikKCnBsdCA9IGh5cF9kb3RzKGh5cF9vYmosbWVyZ2UgPSBGLGZkciA9IDAuMikKcGx0W1sxXV0gKyBhZXMoc2l6ZT1uZXMpKyAKICBndWlkZXMoCiAgICBzaXplID0gZ3VpZGVfbGVnZW5kKHRpdGxlPSJORVMiLHJldmVyc2U9VCkpCgpwbHRbWzJdXSArIGFlcyhzaXplPW5lcykgK3NjYWxlX3NpemUodHJhbnMgPSAncmV2ZXJzZScpKwogIGd1aWRlcygKICAgIHNpemUgPSBndWlkZV9sZWdlbmQodGl0bGU9Ik5FUyIscmV2ZXJzZT1GKSkKCgpgYGAKCiMgU0NDIEdTRUEKYGBge3J9CnJhbmtlZF92ZWMgPSBzY2NfZGVnWywiYXZnX2RpZmYiXSU+JSBzZXROYW1lcyhyb3duYW1lcyhzY2NfZGVnKSkgJT4lIG5hLm9taXQoKSAjIG1ha2UgbmFtZWQgdmVjdG9yCmh5cF9vYmogPC1oeXBlUl9mZ3NlYShzaWduYXR1cmUgPSByYW5rZWRfdmVjLGdlbmVzZXRzID0gZ2VuZUlkcyhnZW5lc2V0c19oKSx1cF9vbmx5ID0gRikKCnBsdCA9IGh5cF9kb3RzKGh5cF9vYmosbWVyZ2UgPSBGLGZkciA9IDAuMikKcGx0W1sxXV0gKyBhZXMoc2l6ZT1uZXMpKyAKICBndWlkZXMoCiAgICBzaXplID0gZ3VpZGVfbGVnZW5kKHRpdGxlPSJORVMiLHJldmVyc2U9VCkpCmBgYAojIE9QU0NDIGJveHBsb3QKYGBge3J9Cgp0b3BfZ2VuZXMgPSBobXNjX2RlZyAlPiUgYXJyYW5nZShkZXNjKC4kYXZnX2RpZmYpKSAlPiUgaGVhZCg1KSAlPiUgcm93bmFtZXMoKQoKdG9wX2dlbmVzX2V4cHIgPSBGZXRjaERhdGEob2JqZWN0ID0gb3BzY2MsdmFycyA9IGMoImhwdiIsdG9wX2dlbmVzKSkKZGYgPSByZXNoYXBlMjo6bWVsdCh0b3BfZ2VuZXNfZXhwcix2YWx1ZS5uYW1lID0gIkV4cHJlc3Npb24iKSAlPiUgZHBseXI6OnJlbmFtZShnZW5lID0gdmFyaWFibGUpCgpsaWJyYXJ5KHJzdGF0aXgpCnN0YXQudGVzdCA8LSBkZiAlPiUKICAgIGdyb3VwX2J5KGdlbmUpICU+JQogIHdpbGNveF90ZXN0KEV4cHJlc3Npb24gfiBocHYpICU+JQogIG11dGF0ZSh5LnBvc2l0aW9uID0gNSkKCnN0YXQudGVzdAoKc3RhdC50ZXN0IDwtIHN0YXQudGVzdCAlPiUgCiAgYWRkX3h5X3Bvc2l0aW9uKHggPSAiZ2VuZSIsIGRvZGdlID0gMC44KQoKZ2dib3hwbG90KAogIGRmLAogIHggPSAiZ2VuZSIsCiAgeSA9ICJFeHByZXNzaW9uIiwKICBjb2xvciA9ICJocHYiLAogIHBhbGV0dGUgPSAiamNvIiwKICBhZGQgPSBjKCJtZWFuIiwiYm94cGxvdCIpLHRyaW0gPSBUCikrIHN0YXRfcHZhbHVlX21hbnVhbChzdGF0LnRlc3QsIGxhYmVsID0gInAgPSB7cH0iLHJlbW92ZS5icmFja2V0ID0gVCkKYGBgCiMgU0NDIGJveHBsb3QKYGBge3J9Cgp0b3BfZ2VuZXMgPSBobXNjX2RlZyAlPiUgYXJyYW5nZShkZXNjKC4kYXZnX2RpZmYpKSAlPiUgaGVhZCg1KSAlPiUgcm93bmFtZXMoKQoKdG9wX2dlbmVzX2V4cHIgPSBGZXRjaERhdGEob2JqZWN0ID0gc2NjX215Yl9wYXRpZW50cyx2YXJzID0gYygiaHB2X3Bvc2l0aXZlIix0b3BfZ2VuZXMpKQpkZiA9IHJlc2hhcGUyOjptZWx0KHRvcF9nZW5lc19leHByLHZhbHVlLm5hbWUgPSAiRXhwcmVzc2lvbiIpICU+JSBkcGx5cjo6cmVuYW1lKGdlbmUgPSB2YXJpYWJsZSkKCmxpYnJhcnkocnN0YXRpeCkKc3RhdC50ZXN0IDwtIGRmICU+JQogICAgZ3JvdXBfYnkoZ2VuZSkgJT4lCiAgd2lsY294X3Rlc3QoRXhwcmVzc2lvbiB+IGhwdl9wb3NpdGl2ZSkgJT4lCiAgbXV0YXRlKHkucG9zaXRpb24gPSA1KQoKc3RhdC50ZXN0CgpzdGF0LnRlc3QgPC0gc3RhdC50ZXN0ICU+JSAKICBhZGRfeHlfcG9zaXRpb24oeCA9ICJnZW5lIiwgZG9kZ2UgPSAwLjgpCgpnZ2JveHBsb3QoCiAgZGYsCiAgeCA9ICJnZW5lIiwKICB5ID0gIkV4cHJlc3Npb24iLAogIGNvbG9yID0gImhwdl9wb3NpdGl2ZSIsCiAgcGFsZXR0ZSA9ICJqY28iLAogIGFkZCA9IGMoIm1lYW4iLCJib3hwbG90IiksdHJpbSA9IFQKKSsgc3RhdF9wdmFsdWVfbWFudWFsKHN0YXQudGVzdCwgbGFiZWwgPSAicCA9IHtwfSIscmVtb3ZlLmJyYWNrZXQgPSBUKQpgYGAKCg==