Se carga la base de datos, acorde al primer borrador se tienen las siguientes variables para la tabla 1: “Sexo”, “Edad”, “RangosEdad”,“Blancos”, “leucocitosrango”, “plaquetas”, “Plaquetasrango”, “Cariotipo”, “Riesgo”, “PT”, “PTT”, “AlteracionGenetica”, “PromielocitosMO”,“PromielocitosCMF”,“Fibrinogeno”.
Se presenta la tabla 1
## Warning: package 'arsenal' was built under R version 4.3.2
## Warning: package 'survminer' was built under R version 4.3.3
## Loading required package: ggplot2
## Loading required package: ggpubr
##
## Attaching package: 'survminer'
## The following object is masked from 'package:survival':
##
## myeloma
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:arsenal':
##
## is.Date
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
## Warning: package 'plotly' was built under R version 4.3.3
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
c….Sexo……Mujer….Hombre……Edad……Mean..SD…..Range… | Overall..N.33. |
---|---|
Sexo | |
Mujer | 19 (57.6%) |
Hombre | 14 (42.4%) |
Edad | |
Mean (SD) | 41.4 (16.6) |
Range | 20.0 - 80.0 |
RangosEdad | |
<60años | 19 (57.6%) |
>60años | 14 (42.4%) |
Recuento total de leucocitos en SP por 103/uL | |
Mean (SD) | 30.2 (71.2) |
Range | 0.5 - 401.8 |
leucocitosrango | |
<50000 | 27 (81.8%) |
>50000 | 6 (18.2%) |
Recuento total de plaquetas en SP por 103/uL al diagnóstico | |
Mean (SD) | 34.6 (31.8) |
Range | 4.0 - 143.0 |
Plaquetasrango | |
<40000 | 27 (81.8%) |
>40000 | 6 (18.2%) |
Cariotipo | |
Normal | 13 (39.4%) |
Anormal | 16 (48.5%) |
No solicitado | 4 (12.1%) |
Riesgo | |
Bajo | 6 (18.2%) |
Intermedio | 13 (39.4%) |
Alto | 14 (42.4%) |
Riesgo2 | |
Alto | 14 (42.4%) |
Bajo-Intermedio | 19 (57.6%) |
Tiempo protombina | |
Mean (SD) | 14.1 (2.5) |
Range | 10.1 - 22.2 |
Tiempo de tromboplastina | |
Mean (SD) | 28.4 (4.6) |
Range | 22.4 - 42.1 |
AlteracionGenetica | |
N-Miss | 14 |
LMA con hipodiplodia | 18 (94.7%) |
LMA Trisomia 6,8,12 | 1 (5.3%) |
Promielocitos Aberrantes en MO al diagnóstico (Mielograma) | |
N-Miss | 1 |
Mean (SD) | 62.6 (32.2) |
Range | 1.0 - 97.0 |
Promielocitos Aberrantes en MO al diagnóstico (CMF) | |
N-Miss | 2 |
Mean (SD) | 77.6 (20.2) |
Range | 20.0 - 94.7 |
Fibrinogeno | |
N-Miss | 1 |
Mean (SD) | 189.3 (93.2) |
Range | 50.0 - 447.0 |
ID | Tiempo_meses | evento |
---|---|---|
1 | 0 | 1 |
2 | 0 | 1 |
3 | 1 | 1 |
4 | 1 | 1 |
5 | 1 | 1 |
6 | 1 | 1 |
7 | 1 | 1 |
8 | 24 | 1 |
9 | 32 | 1 |
10 | 35 | 1 |
11 | 34 | 0 |
12 | 41 | 1 |
13 | 46 | 0 |
14 | 47 | 1 |
15 | 14 | 0 |
16 | 15 | 0 |
17 | 15 | 0 |
18 | 6 | 0 |
19 | 8 | 0 |
20 | 26 | 0 |
21 | 28 | 0 |
22 | 32 | 0 |
23 | 33 | 0 |
24 | 35 | 0 |
25 | 0 | 0 |
26 | 35 | 0 |
27 | 47 | 0 |
28 | 28 | 0 |
29 | 48 | 0 |
30 | 41 | 0 |
31 | 52 | 0 |
32 | 41 | 0 |
33 | 52 | 0 |
El mayor tiempo es de 52 meses, lo que corresponde a un periodo de 4 años. Se identifican con el símbolo “+” a las censuras (no murieron)
Surv(SUP$Tiempo_meses, SUP$evento)
## [1] 0 0 1 1 1 1 1 24 32 35 34+ 41 46+ 47 14+ 15+ 15+ 6+ 8+
## [20] 26+ 28+ 32+ 33+ 35+ 0+ 35+ 47+ 28+ 48+ 41+ 52+ 41+ 52+
Hay un total de 22 censuras
Se realiza un gráfico acerca de los seguimientos en el periodo de 52 meses
Supervivencia global
time | n.risk | n.event | survival | std.err | upper | lower |
---|---|---|---|---|---|---|
0 | 33 | 2 | 0.9393939 | 0.0415360 | 1.0000000 | 0.8614126 |
1 | 30 | 5 | 0.7828283 | 0.0726880 | 0.9390814 | 0.6525740 |
24 | 20 | 1 | 0.7436869 | 0.0788914 | 0.9155600 | 0.6040785 |
32 | 16 | 1 | 0.6972064 | 0.0865771 | 0.8893262 | 0.5465900 |
35 | 12 | 1 | 0.6391059 | 0.0969162 | 0.8603039 | 0.4747815 |
41 | 9 | 1 | 0.5680941 | 0.1091045 | 0.8277451 | 0.3898917 |
47 | 5 | 1 | 0.4544753 | 0.1339620 | 0.8098640 | 0.2550401 |
Ahora se estima la mediana de supervivencia
## Call: survfit(formula = surv_object ~ 1, data = SUP, type = "kaplan-meier")
##
## n events median 0.95LCL 0.95UCL
## [1,] 33 12 47 35 NA
Se grafica la curva de supervivencia
## Warning in .pvalue(fit, data = data, method = method, pval = pval, pval.coord = pval.coord, : There are no survival curves to be compared.
## This is a null model.
Se realiza un gráfico de riesgo acumulado
Sexo
## [1] "ID" "Tiempo_meses" "evento" "evento2"
Prueba log - rank
H0: No hay diferencia entre las poblaciones en la probabilidad de un evento en cualquier punto temporal
## Call:
## survdiff(formula = Surv(Tiempo_meses, evento) ~ Sexo, data = SUP2)
##
## N Observed Expected (O-E)^2/E (O-E)^2/V
## Sexo=Mujer 19 8 7.59 0.0224 0.0676
## Sexo=Hombre 14 4 4.41 0.0385 0.0676
##
## Chisq= 0.1 on 1 degrees of freedom, p= 0.8
Riesgo
## Call:
## survdiff(formula = Surv(Tiempo_meses, evento) ~ Riesgo2, data = SUP2)
##
## N Observed Expected (O-E)^2/E (O-E)^2/V
## Riesgo2=Alto 14 7 4.1 2.05 3.4
## Riesgo2=Bajo-Intermedio 19 5 7.9 1.07 3.4
##
## Chisq= 3.4 on 1 degrees of freedom, p= 0.07
Edad
## Call:
## survdiff(formula = Surv(Tiempo_meses, evento) ~ RangosEdad, data = SUP2)
##
## N Observed Expected (O-E)^2/E (O-E)^2/V
## RangosEdad=<60años 19 8 7.59 0.0224 0.0676
## RangosEdad=>60años 14 4 4.41 0.0385 0.0676
##
## Chisq= 0.1 on 1 degrees of freedom, p= 0.8