R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.3.3
## Warning: package 'tidyr' was built under R version 4.3.3
## Warning: package 'dplyr' was built under R version 4.3.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(cluster)
library(FactoMineR)
## Warning: package 'FactoMineR' was built under R version 4.3.3
library(gridExtra)
## Warning: package 'gridExtra' was built under R version 4.3.3
## 
## Attaching package: 'gridExtra'
## 
## The following object is masked from 'package:dplyr':
## 
##     combine
library(dplyr)
library (MASS)
## 
## Attaching package: 'MASS'
## 
## The following object is masked from 'package:dplyr':
## 
##     select
library(corrplot)
## corrplot 0.92 loaded
library(ggplot2)
library(ggsignif)
library(psych)
## Warning: package 'psych' was built under R version 4.3.3
## 
## Attaching package: 'psych'
## 
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(purrr)
library(flextable)
## Warning: package 'flextable' was built under R version 4.3.3
## 
## Attaching package: 'flextable'
## 
## The following object is masked from 'package:purrr':
## 
##     compose
library(tables)
## Warning: package 'tables' was built under R version 4.3.3
library(kableExtra)
## Warning: package 'kableExtra' was built under R version 4.3.3
## 
## Attaching package: 'kableExtra'
## 
## The following objects are masked from 'package:flextable':
## 
##     as_image, footnote
## 
## The following object is masked from 'package:dplyr':
## 
##     group_rows
library(car)
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.3.3
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:psych':
## 
##     logit
## 
## The following object is masked from 'package:dplyr':
## 
##     recode
## 
## The following object is masked from 'package:purrr':
## 
##     some
library(ROSE)
## Warning: package 'ROSE' was built under R version 4.3.3
## Loaded ROSE 0.0-4
library(caret)
## Warning: package 'caret' was built under R version 4.3.3
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 4.3.3
## 
## Attaching package: 'caret'
## 
## The following object is masked from 'package:purrr':
## 
##     lift
library(pROC)
## Warning: package 'pROC' was built under R version 4.3.3
## Type 'citation("pROC")' for a citation.
## 
## Attaching package: 'pROC'
## 
## The following objects are masked from 'package:stats':
## 
##     cov, smooth, var
library(ggrepel)
require(ggpubr)
## Loading required package: ggpubr
## Warning: package 'ggpubr' was built under R version 4.3.3
## 
## Attaching package: 'ggpubr'
## 
## The following objects are masked from 'package:flextable':
## 
##     border, font, rotate
library(kableExtra)
require(table1)
## Loading required package: table1
## Warning: package 'table1' was built under R version 4.3.3
## 
## Attaching package: 'table1'
## 
## The following objects are masked from 'package:base':
## 
##     units, units<-
library(graphics)
library(inspectdf)
## Warning: package 'inspectdf' was built under R version 4.3.3
library(vcd)
## Warning: package 'vcd' was built under R version 4.3.3
## Loading required package: grid
require(CGPfunctions)
## Loading required package: CGPfunctions
## Warning: package 'CGPfunctions' was built under R version 4.3.3
## Warning in .recacheSubclasses(def@className, def, env): undefined subclass
## "ndiMatrix" of class "replValueSp"; definition not updated
library(survival)
## Warning: package 'survival' was built under R version 4.3.3
## 
## Attaching package: 'survival'
## 
## The following object is masked from 'package:caret':
## 
##     cluster
library(boot)
## Warning: package 'boot' was built under R version 4.3.3
## 
## Attaching package: 'boot'
## 
## The following object is masked from 'package:survival':
## 
##     aml
## 
## The following object is masked from 'package:lattice':
## 
##     melanoma
## 
## The following object is masked from 'package:car':
## 
##     logit
## 
## The following object is masked from 'package:psych':
## 
##     logit
library(KMsurv)
library(survMisc)
## Warning: package 'survMisc' was built under R version 4.3.3
## 
## Attaching package: 'survMisc'
## 
## The following object is masked from 'package:pROC':
## 
##     ci
## 
## The following object is masked from 'package:ggplot2':
## 
##     autoplot
library(survminer)
## Warning: package 'survminer' was built under R version 4.3.3
## 
## Attaching package: 'survminer'
## 
## The following object is masked from 'package:survival':
## 
##     myeloma
#library(ggfortify)
#library(flexsurv)
#library(actuar)
library(readxl)
library(readxl)
X28072024_base_de_W_final <- read_excel("C:/Users/diana/OneDrive/Escritorio/ASESORIAS_R/28072024 base de W final.xlsx", 
    col_types = c("numeric", "date", "numeric", 
        "numeric", "numeric", "text", "text", 
        "text", "text", "text", "text", "text", 
        "text", "text", "numeric", "numeric", 
        "numeric", "numeric", "text", "date", 
        "date", "numeric", "date", "date", 
        "numeric", "numeric", "numeric", 
        "date", "text", "text", "text", "numeric", 
        "numeric", "numeric", "text", "numeric", 
        "numeric", "text", "text", "text", 
        "text", "text", "numeric", "numeric", 
        "text", "text", "numeric", "text", 
        "text", "numeric", "numeric", "text", 
        "text", "numeric", "text", "text", 
        "numeric", "numeric", "numeric", 
        "numeric", "numeric", "numeric", 
        "numeric", "numeric", "text", "numeric", 
        "numeric", "numeric", "numeric", 
        "numeric", "numeric", "numeric", 
        "numeric", "numeric", "numeric", 
        "numeric", "numeric", "numeric", 
        "numeric", "numeric", "numeric", 
        "numeric", "text", "text", "text", 
        "text", "text", "text"))
View(X28072024_base_de_W_final)

MORTALIDAD GENERAL

summary(X28072024_base_de_W_final)
##        ID           fec_not                           semana     
##  Min.   :  1.0   Min.   :2021-01-15 00:00:00.00   Min.   : 1.00  
##  1st Qu.: 68.5   1st Qu.:2022-04-12 12:00:00.00   1st Qu.:20.00  
##  Median :130.0   Median :2022-08-19 00:00:00.00   Median :27.00  
##  Mean   :128.0   Mean   :2022-08-05 22:25:34.43   Mean   :28.85  
##  3rd Qu.:184.5   3rd Qu.:2022-12-24 00:00:00.00   3rd Qu.:40.00  
##  Max.   :248.0   Max.   :2023-12-15 00:00:00.00   Max.   :52.00  
##                                                                  
##       ano           edad_          uni_med_          grupo_edad       
##  Min.   :2021   Min.   : 1.000   Length:183         Length:183        
##  1st Qu.:2022   1st Qu.: 1.500   Class :character   Class :character  
##  Median :2022   Median : 3.000   Mode  :character   Mode  :character  
##  Mean   :2022   Mean   : 4.191                                        
##  3rd Qu.:2022   3rd Qu.: 5.500                                        
##  Max.   :2023   Max.   :25.000                                        
##                                                                       
##  nombre_nacionalidad    sexo_             dir_res_           tip_ss_         
##  Length:183          Length:183         Length:183         Length:183        
##  Class :character    Class :character   Class :character   Class :character  
##  Mode  :character    Mode  :character   Mode  :character   Mode  :character  
##                                                                              
##                                                                              
##                                                                              
##                                                                              
##    cod_ase_           per_etn_          nom_grupo            estrato_    
##  Length:183         Length:183         Length:183         Min.   :1.000  
##  Class :character   Class :character   Class :character   1st Qu.:2.000  
##  Mode  :character   Mode  :character   Mode  :character   Median :2.000  
##                                                           Mean   :2.126  
##                                                           3rd Qu.:3.000  
##                                                           Max.   :5.000  
##                                                                          
##    gp_discapa      gp_desplaz      gp_migrant      fuente_         
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Length:183        
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   Class :character  
##  Median :2.000   Median :2.000   Median :2.000   Mode  :character  
##  Mean   :1.995   Mean   :1.978   Mean   :1.967                     
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000                     
##  Max.   :2.000   Max.   :2.000   Max.   :2.000                     
##                                                                    
##     fec_con_                         ini_sin_                     
##  Min.   :2021-01-12 00:00:00.00   Min.   :2021-01-10 00:00:00.00  
##  1st Qu.:2022-04-11 00:00:00.00   1st Qu.:2022-04-05 00:00:00.00  
##  Median :2022-07-23 00:00:00.00   Median :2022-07-13 00:00:00.00  
##  Mean   :2022-07-18 13:46:13.76   Mean   :2022-07-10 06:01:58.02  
##  3rd Qu.:2022-12-07 12:00:00.00   3rd Qu.:2022-12-07 00:00:00.00  
##  Max.   :2023-12-14 00:00:00.00   Max.   :2023-12-14 00:00:00.00  
##                                                                   
##     pac_hos_        fec_hos_                     
##  Min.   :1.000   Min.   :2021-01-12 00:00:00.00  
##  1st Qu.:1.000   1st Qu.:2022-04-13 00:00:00.00  
##  Median :1.000   Median :2022-07-13 00:00:00.00  
##  Mean   :1.202   Mean   :2022-07-08 13:21:03.57  
##  3rd Qu.:1.000   3rd Qu.:2022-11-27 00:00:00.00  
##  Max.   :2.000   Max.   :2023-12-14 00:00:00.00  
##                  NA's   :32                      
##     fec_def_                       dif_def_sin      dif_def_hos    
##  Min.   :2021-01-15 00:00:00.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:2022-04-12 00:00:00.00   1st Qu.:  3.00   1st Qu.:  0.00  
##  Median :2022-08-12 00:00:00.00   Median :  8.00   Median :  2.00  
##  Mean   :2022-07-26 21:06:53.10   Mean   : 16.63   Mean   : 10.61  
##  3rd Qu.:2022-12-22 00:00:00.00   3rd Qu.: 20.00   3rd Qu.: 12.00  
##  Max.   :2023-12-14 00:00:00.00   Max.   :337.00   Max.   :260.00  
##                                                    NA's   :32      
##    df_con_sin       fecha_nto_                      sit_defunc       
##  Min.   : 0.000   Min.   :2016-05-11 00:00:00.00   Length:183        
##  1st Qu.: 0.500   1st Qu.:2020-07-13 12:00:00.00   Class :character  
##  Median : 3.000   Median :2021-07-28 00:00:00.00   Mode  :character  
##  Mean   : 8.322   Mean   :2021-05-08 23:52:07.86                     
##  3rd Qu.: 9.500   3rd Qu.:2022-04-07 12:00:00.00                     
##  Max.   :90.000   Max.   :2023-10-16 00:00:00.00                     
##                                                                      
##   tip_ide_ma         num_ide_ma        edad_madre_siv    num_hi_viv    
##  Length:183         Length:183         Min.   :10.00   Min.   : 0.000  
##  Class :character   Class :character   1st Qu.:21.50   1st Qu.: 0.000  
##  Mode  :character   Mode  :character   Median :26.00   Median : 1.000  
##                                        Mean   :27.08   Mean   : 1.251  
##                                        3rd Qu.:32.00   3rd Qu.: 2.000  
##                                        Max.   :46.00   Max.   :11.000  
##                                                                        
##    num_hi_mue      est_conyug          ult_año_es       asis_medic   
##  Min.   : 1.000   Length:183         Min.   : 0.000   Min.   :1.000  
##  1st Qu.: 1.000   Class :character   1st Qu.: 6.000   1st Qu.:1.000  
##  Median : 1.000   Mode  :character   Median :11.000   Median :1.000  
##  Mean   : 1.148                      Mean   : 8.437   Mean   :1.262  
##  3rd Qu.: 1.000                      3rd Qu.:11.000   3rd Qu.:1.000  
##  Max.   :11.000                      Max.   :11.000   Max.   :3.000  
##                                                                      
##  Causa_basica_ant_originaria Descrip_sivigila   Código_CIE_10     
##  Length:183                  Length:183         Length:183        
##  Class :character            Class :character   Class :character  
##  Mode  :character            Mode  :character   Mode  :character  
##                                                                   
##                                                                   
##                                                                   
##                                                                   
##  descrip_CIE10       lista_6_67        edad_gestacional_nacer Peso_al_nacer 
##  Length:183         Length:183         Min.   : 1.00          Min.   : 860  
##  Class :character   Class :character   1st Qu.:33.75          1st Qu.:2322  
##  Mode  :character   Mode  :character   Median :37.00          Median :2800  
##                                        Mean   :32.95          Mean   :2733  
##                                        3rd Qu.:39.00          3rd Qu.:3130  
##                                        Max.   :40.00          Max.   :4800  
##                                        NA's   :95             NA's   :95    
##   direccion          localidad         edad_madre_RUAF  tipo_parto       
##  Length:183         Length:183         Min.   :16.00   Length:183        
##  Class :character   Class :character   1st Qu.:22.00   Class :character  
##  Mode  :character   Mode  :character   Median :26.00   Mode  :character  
##                                        Mean   :27.34                     
##                                        3rd Qu.:32.00                     
##                                        Max.   :46.00                     
##                                        NA's   :103                       
##  tipo_embarazo       hijos_vivos    hijos_muertos    estado_civil      
##  Length:183         Min.   :1.000   Min.   :0.0000   Length:183        
##  Class :character   1st Qu.:1.000   1st Qu.:0.0000   Class :character  
##  Mode  :character   Median :2.000   Median :0.0000   Mode  :character  
##                     Mean   :2.026   Mean   :0.3265                     
##                     3rd Qu.:2.000   3rd Qu.:0.0000                     
##                     Max.   :7.000   Max.   :9.0000                     
##                     NA's   :105     NA's   :85                         
##  nivel_educativo    ultimo_ano_estudios  ndep_proce         nmun_resi        
##  Length:183         Min.   : 0.000      Length:183         Length:183        
##  Class :character   1st Qu.: 5.000      Class :character   Class :character  
##  Mode  :character   Median : 6.000      Mode  :character   Mode  :character  
##                     Mean   : 6.685                                           
##                     3rd Qu.: 9.000                                           
##                     Max.   :11.000                                           
##                     NA's   :110                                              
##    Adenovirus    Influenza    Influenza B    Sincitial   parainfluenza 3
##  Min.   :1     Min.   :1     Min.   :1     Min.   :1     Min.   :1      
##  1st Qu.:1     1st Qu.:1     1st Qu.:1     1st Qu.:1     1st Qu.:1      
##  Median :1     Median :1     Median :1     Median :1     Median :1      
##  Mean   :1     Mean   :1     Mean   :1     Mean   :1     Mean   :1      
##  3rd Qu.:1     3rd Qu.:1     3rd Qu.:1     3rd Qu.:1     3rd Qu.:1      
##  Max.   :1     Max.   :1     Max.   :1     Max.   :1     Max.   :1      
##  NA's   :119   NA's   :177   NA's   :181   NA's   :135   NA's   :161    
##  hemofilus influenza   Rinovirus    Enterovirus   S. Aureus        
##  Min.   :1           Min.   :1     Min.   :1     Length:183        
##  1st Qu.:1           1st Qu.:1     1st Qu.:1     Class :character  
##  Median :1           Median :1     Median :1     Mode  :character  
##  Mean   :1           Mean   :1     Mean   :1                       
##  3rd Qu.:1           3rd Qu.:1     3rd Qu.:1                       
##  Max.   :1           Max.   :1     Max.   :1                       
##  NA's   :166         NA's   :152   NA's   :155                     
##  Streptococcus pneumoniae.  Enterobacter Klepsiela  Neumonie
##  Min.   :1                 Min.   :1     Min.   :1          
##  1st Qu.:1                 1st Qu.:1     1st Qu.:1          
##  Median :1                 Median :1     Median :1          
##  Mean   :1                 Mean   :1     Mean   :1          
##  3rd Qu.:1                 3rd Qu.:1     3rd Qu.:1          
##  Max.   :1                 Max.   :1     Max.   :1          
##  NA's   :165               NA's   :182   NA's   :177        
##  streptococcus piogeno Coronavirus HK Micoplasma Neumonie moraxella catarrhalis
##  Min.   :1             Min.   :1      Min.   :1           Min.   :1            
##  1st Qu.:1             1st Qu.:1      1st Qu.:1           1st Qu.:1            
##  Median :1             Median :1      Median :1           Median :1            
##  Mean   :1             Mean   :1      Mean   :1           Mean   :1            
##  3rd Qu.:1             3rd Qu.:1      3rd Qu.:1           3rd Qu.:1            
##  Max.   :1             Max.   :1      Max.   :1           Max.   :1            
##  NA's   :182           NA's   :182    NA's   :182         NA's   :182          
##   Moraxella sp Acinetobacter    Candida     P Auriginosa Metaneumovirus
##  Min.   :1     Min.   :1     Min.   : NA   Min.   :1     Min.   :1     
##  1st Qu.:1     1st Qu.:1     1st Qu.: NA   1st Qu.:1     1st Qu.:1     
##  Median :1     Median :1     Median : NA   Median :1     Median :1     
##  Mean   :1     Mean   :1     Mean   :NaN   Mean   :1     Mean   :1     
##  3rd Qu.:1     3rd Qu.:1     3rd Qu.: NA   3rd Qu.:1     3rd Qu.:1     
##  Max.   :1     Max.   :1     Max.   : NA   Max.   :1     Max.   :1     
##  NA's   :178   NA's   :181   NA's   :183   NA's   :180   NA's   :171   
##    Neumococo       E coli       covid 19   Citomegalovirus
##  Min.   : NA   Min.   :1     Min.   :1     Min.   :1      
##  1st Qu.: NA   1st Qu.:1     1st Qu.:1     1st Qu.:1      
##  Median : NA   Median :1     Median :1     Median :1      
##  Mean   :NaN   Mean   :1     Mean   :1     Mean   :1      
##  3rd Qu.: NA   3rd Qu.:1     3rd Qu.:1     3rd Qu.:1      
##  Max.   : NA   Max.   :1     Max.   :1     Max.   :1      
##  NA's   :183   NA's   :177   NA's   :169   NA's   :182    
##  Total_agentes_coinfeccion tipo_infeccion     estado_vacunacion 
##  Min.   :0.000             Length:183         Length:183        
##  1st Qu.:0.000             Class :character   Class :character  
##  Median :1.000             Mode  :character   Mode  :character  
##  Mean   :1.634                                                  
##  3rd Qu.:3.000                                                  
##  Max.   :6.000                                                  
##                                                                 
##  Riesgo_materno     Mortalidad_IRA_rev DEMORAS_ASOCIADAS_ATENCION
##  Length:183         Length:183         Length:183                
##  Class :character   Class :character   Class :character          
##  Mode  :character   Mode  :character   Mode  :character          
##                                                                  
##                                                                  
##                                                                  
##                                                                  
##  TIPO_FINAL_cruce  
##  Length:183        
##  Class :character  
##  Mode  :character  
##                    
##                    
##                    
## 
X28072024_base_de_W_final$grupo_edad<- str_replace(X28072024_base_de_W_final$grupo_edad, "De 1 a 6 meses","1 a 6 meses")
X28072024_base_de_W_final$grupo_edad<- str_replace(X28072024_base_de_W_final$grupo_edad, "De 1 a 2 años","1 a 2 años")
X28072024_base_de_W_final$grupo_edad<- str_replace(X28072024_base_de_W_final$grupo_edad, "De 3 a 4 años","3 a 4 años")
X28072024_base_de_W_final$grupo_edad<- str_replace(X28072024_base_de_W_final$grupo_edad, "De 7 a 11 meses","7 a 11 meses")
X28072024_base_de_W_final$tipo_infeccion<- str_replace(X28072024_base_de_W_final$tipo_infeccion, "Viral","viral")
t1 <- table1::table1(~grupo_edad + dif_def_sin + num_hi_viv + Total_agentes_coinfeccion + tipo_infeccion + Riesgo_materno + estado_vacunacion + edad_madre_siv |Mortalidad_IRA_rev, data = X28072024_base_de_W_final)
t1
Confirmada COVID-19
(N=22)
Confirmado IRA
(N=83)
Confirmado Neumonia
(N=78)
Overall
(N=183)
grupo_edad
1 a 2 años 3 (13.6%) 25 (30.1%) 24 (30.8%) 52 (28.4%)
1 a 6 meses 13 (59.1%) 36 (43.4%) 21 (26.9%) 70 (38.3%)
7 a 11 meses 5 (22.7%) 11 (13.3%) 17 (21.8%) 33 (18.0%)
Menor 1 mes 1 (4.5%) 4 (4.8%) 0 (0%) 5 (2.7%)
3 a 4 años 0 (0%) 7 (8.4%) 16 (20.5%) 23 (12.6%)
dif_def_sin
Mean (SD) 10.0 (9.57) 20.6 (41.3) 14.3 (19.2) 16.6 (30.8)
Median [Min, Max] 7.00 [0, 31.0] 8.00 [0, 337] 8.00 [0, 90.0] 8.00 [0, 337]
num_hi_viv
Mean (SD) 1.50 (1.54) 1.34 (1.55) 1.09 (0.956) 1.25 (1.33)
Median [Min, Max] 1.00 [0, 7.00] 1.00 [0, 11.0] 1.00 [0, 4.00] 1.00 [0, 11.0]
Total_agentes_coinfeccion
Mean (SD) 0.773 (1.11) 1.95 (1.72) 1.54 (1.76) 1.63 (1.71)
Median [Min, Max] 0 [0, 4.00] 1.00 [0, 6.00] 1.00 [0, 6.00] 1.00 [0, 6.00]
tipo_infeccion
Mixto 2 (9.1%) 25 (30.1%) 15 (19.2%) 42 (23.0%)
sin agente 12 (54.5%) 19 (22.9%) 32 (41.0%) 63 (34.4%)
viral 8 (36.4%) 38 (45.8%) 27 (34.6%) 73 (39.9%)
Bacteriano 0 (0%) 1 (1.2%) 4 (5.1%) 5 (2.7%)
Riesgo_materno
con riesgo 3 (13.6%) 31 (37.3%) 19 (24.4%) 53 (29.0%)
sin dato 16 (72.7%) 45 (54.2%) 54 (69.2%) 115 (62.8%)
sin riesgo 3 (13.6%) 7 (8.4%) 5 (6.4%) 15 (8.2%)
estado_vacunacion
completo 5 (22.7%) 66 (79.5%) 40 (51.3%) 111 (60.7%)
desconocido 16 (72.7%) 14 (16.9%) 29 (37.2%) 59 (32.2%)
incompleto 1 (4.5%) 3 (3.6%) 9 (11.5%) 13 (7.1%)
edad_madre_siv
Mean (SD) 27.8 (7.85) 27.5 (7.19) 26.4 (7.19) 27.1 (7.25)
Median [Min, Max] 27.0 [17.0, 46.0] 28.0 [14.0, 42.0] 25.0 [10.0, 41.0] 26.0 [10.0, 46.0]

GENERAL POR GRUPO EDAD

PlotXTabs2(data=X28072024_base_de_W_final,x=grupo_edad,y=Mortalidad_IRA_rev)

tabla=table(X28072024_base_de_W_final$grupo_edad, X28072024_base_de_W_final$sexo_)
tabla
##               
##                 F  M
##   1 a 2 años   29 23
##   1 a 6 meses  25 45
##   3 a 4 años   13 10
##   7 a 11 meses 16 17
##   Menor 1 mes   0  5
prop.table(tabla)*100
##               
##                        F         M
##   1 a 2 años   15.846995 12.568306
##   1 a 6 meses  13.661202 24.590164
##   3 a 4 años    7.103825  5.464481
##   7 a 11 meses  8.743169  9.289617
##   Menor 1 mes   0.000000  2.732240
chi <-chisq.test(tabla) #Guardamos los resultados del test en un objeto
## Warning in chisq.test(tabla): Chi-squared approximation may be incorrect
chi
## 
##  Pearson's Chi-squared test
## 
## data:  tabla
## X-squared = 10.338, df = 4, p-value = 0.0351
fisher.test(tabla)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  tabla
## p-value = 0.03247
## alternative hypothesis: two.sided
prop.test(tabla, 183, p=NULL,
          alternative=c("two.sided", "less", "greater"),
          conf.level=0.95, correct=TRUE)
## 
##  5-sample test for equality of proportions without continuity correction
## 
## data:  tabla
## X-squared = 10.338, df = 4, p-value = 0.0351
## alternative hypothesis: two.sided
## sample estimates:
##    prop 1    prop 2    prop 3    prop 4    prop 5 
## 0.5576923 0.3571429 0.5652174 0.4848485 0.0000000

GENERAL POR GRUPO EDAD Y TIPO DE MORTALIDAD

v6 = table(X28072024_base_de_W_final$Mortalidad_IRA_rev, X28072024_base_de_W_final$grupo_edad)
rownames(v6) <- c("Confirmado Neumonia", "Confirmado IRA", "Confirmada COVID-19")
colnames(v6) <- c("Menor 1 mes", "1 a 6 meses", "7 a 11 meses", "1 a 2 años",  "3 a 4 años")              
addmargins(v6)
##                      
##                       Menor 1 mes 1 a 6 meses 7 a 11 meses 1 a 2 años
##   Confirmado Neumonia           3          13            0          5
##   Confirmado IRA               25          36            7         11
##   Confirmada COVID-19          24          21           16         17
##   Sum                          52          70           23         33
##                      
##                       3 a 4 años Sum
##   Confirmado Neumonia          1  22
##   Confirmado IRA               4  83
##   Confirmada COVID-19          0  78
##   Sum                          5 183
chisq.test(v6)
## 
##  Pearson's Chi-squared test
## 
## data:  v6
## X-squared = 21.075, df = 8, p-value = 0.006952
#fisher.test(v6)
assocstats(v6)
##                     X^2 df  P(> X^2)
## Likelihood Ratio 25.564  8 0.0012467
## Pearson          21.075  8 0.0069519
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.321 
## Cramer's V        : 0.24

GENERAL POR GRUPO EDAD Y SEXO

PlotXTabs2(data=X28072024_base_de_W_final,x=grupo_edad,y=sexo_)

v20 = table(X28072024_base_de_W_final$grupo_edad, X28072024_base_de_W_final$sexo_)
rownames(v20) <- c("Menor 1 mes", "1 a 6 meses", "7 a 11 meses", "1 a 2 años", "3 a 4 años")          
colnames(v20) <- c ("M", "F")
addmargins(v20)
##               
##                  M   F Sum
##   Menor 1 mes   29  23  52
##   1 a 6 meses   25  45  70
##   7 a 11 meses  13  10  23
##   1 a 2 años    16  17  33
##   3 a 4 años     0   5   5
##   Sum           83 100 183
chisq.test(v20)
## 
##  Pearson's Chi-squared test
## 
## data:  v20
## X-squared = 10.338, df = 4, p-value = 0.0351
fisher.test(v20)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  v20
## p-value = 0.03247
## alternative hypothesis: two.sided
assocstats(v20)
##                     X^2 df P(> X^2)
## Likelihood Ratio 12.261  4 0.015511
## Pearson          10.338  4 0.035101
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.231 
## Cramer's V        : 0.238
PlotXTabs2(data=X28072024_base_de_W_final,x=grupo_edad, y=tipo_infeccion)

v21 = table(X28072024_base_de_W_final$grupo_edad, X28072024_base_de_W_final$tipo_infeccion)
rownames(v21) <- c("Menor 1 mes", "1 a 6 meses", "7 a 11 meses", "1 a 2 años", "3 a 4 años")          
colnames(v21) <- c ("viral", "sin agente", "Mixto", "Bacteriano")
addmargins(v21)
##               
##                viral sin agente Mixto Bacteriano Sum
##   Menor 1 mes      1         17    13         21  52
##   1 a 6 meses      1         12    30         27  70
##   7 a 11 meses     3          7     4          9  23
##   1 a 2 años       0          6    14         13  33
##   3 a 4 años       0          0     2          3   5
##   Sum              5         42    63         73 183
chisq.test(v21)
## Warning in chisq.test(v21): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  v21
## X-squared = 21.694, df = 12, p-value = 0.0411
#fisher.test(v21)
assocstats(v21)
##                     X^2 df P(> X^2)
## Likelihood Ratio 19.851 12 0.069955
## Pearson          21.694 12 0.041100
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.326 
## Cramer's V        : 0.199
PlotXTabs2(data=X28072024_base_de_W_final,x=estado_vacunacion, y=Total_agentes_coinfeccion)

v22 = table(X28072024_base_de_W_final$estado_vacunacion, X28072024_base_de_W_final$Total_agentes_coinfeccion)
rownames(v22) <- c ("Completo", "desconocido", "incompleto")               
colnames(v22) <- c ("0", "1", "2", "3", "4", "5", "6")
addmargins(v22)
##              
##                 0   1   2   3   4   5   6 Sum
##   Completo     18  27  19  23  10   7   7 111
##   desconocido  38  17   1   3   0   0   0  59
##   incompleto    7   1   1   0   3   1   0  13
##   Sum          63  45  21  26  13   8   7 183
chisq.test(v22)
## Warning in chisq.test(v22): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  v22
## X-squared = 64.063, df = 12, p-value = 4.06e-09
#fisher.test(v22)
assocstats(v22)
##                     X^2 df   P(> X^2)
## Likelihood Ratio 76.089 12 2.2860e-11
## Pearson          64.063 12 4.0604e-09
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.509 
## Cramer's V        : 0.418
PlotXTabs2(data=X28072024_base_de_W_final,x=estado_vacunacion, y=tip_ss_)

v23 = table(X28072024_base_de_W_final$estado_vacunacion, X28072024_base_de_W_final$tip_ss_)
rownames(v23) <- c ("Completo", "desconocido", "incompleto") 
colnames(v23) <- c ("S", "P", "N", "C", "I")              
addmargins(v23)
##              
##                 S   P   N   C   I Sum
##   Completo     76   1   1   1  32 111
##   desconocido  24   1   6   0  28  59
##   incompleto    6   0   1   0   6  13
##   Sum         106   2   8   1  66 183
chisq.test(v23)
## Warning in chisq.test(v23): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  v23
## X-squared = 18.52, df = 8, p-value = 0.01765
#fisher.test(v23)
assocstats(v23)
##                     X^2 df P(> X^2)
## Likelihood Ratio 19.323  8 0.013225
## Pearson          18.520  8 0.017648
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.303 
## Cramer's V        : 0.225
g1=ggplot(data = X28072024_base_de_W_final, aes(x = grupo_edad, y = dif_def_hos)) +
  geom_boxplot(fill = "#D0D1E6", colour = "black")+geom_jitter(width = 0.3, size = 0.5)
ggarrange(g1, labels = c("A"),ncol = 2, nrow = 1)
## Warning: Removed 32 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 32 rows containing missing values or values outside the scale range
## (`geom_point()`).

g2=ggplot(data = X28072024_base_de_W_final, aes(x = grupo_edad, y = dif_def_sin)) +
  geom_boxplot(fill = "#D0D1E6", colour = "black")+geom_jitter(width = 0.3, size = 0.5)
ggarrange(g1, labels = c("B"),ncol = 2, nrow = 1)
## Warning: Removed 32 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
## Removed 32 rows containing missing values or values outside the scale range
## (`geom_point()`).

ggarrange(g1, g2,  labels = c("A", "B"),ncol = 2, nrow = 1)
## Warning: Removed 32 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
## Removed 32 rows containing missing values or values outside the scale range
## (`geom_point()`).

#DIFERENCIA FECHA DEFUNCION Y HOSPITALZACION (DIAS)

X28072024_base_de_W_final|> summarise(media_df_hx = mean(dif_def_hos, na.rm = TRUE),
                varianza_df_hx = var(dif_def_hos, na.rm = TRUE),
                desvi_df_hx = sd(dif_def_hos, na.rm = TRUE),
                mediana_df_hx = median(dif_def_hos, na.rm = TRUE),
                Q1_df_hx = quantile(dif_def_hos, na.rm = TRUE, probs=0.25),
                D4_df_hx = quantile(dif_def_hos, na.rm = TRUE, probs=0.40),
                P90_df_hx = quantile(dif_def_hos, na.rm = TRUE, probs=0.90))
## # A tibble: 1 × 7
##   media_df_hx varianza_df_hx desvi_df_hx mediana_df_hx Q1_df_hx D4_df_hx
##         <dbl>          <dbl>       <dbl>         <dbl>    <dbl>    <dbl>
## 1        10.6           712.        26.7             2        0        1
## # ℹ 1 more variable: P90_df_hx <dbl>

#DIFERENCIA FECHA DEFUNCION E INICIO DE SINTOMAS (DIAS)

X28072024_base_de_W_final|> summarise(media_df_isin = mean(dif_def_sin, na.rm = TRUE),
                varianza_df_isin = var(dif_def_sin, na.rm = TRUE),
                desvi_df_isin = sd(dif_def_sin, na.rm = TRUE),
                mediana_df_isin = median(dif_def_sin, na.rm = TRUE),
                Q1_df_isin = quantile(dif_def_sin, na.rm = TRUE, probs=0.25),
                Q4_df_isin= quantile(dif_def_sin, na.rm = TRUE, probs=0.40),
                P90_df_isin = quantile(dif_def_sin, na.rm = TRUE, probs=0.90))
## # A tibble: 1 × 7
##   media_df_isin varianza_df_isin desvi_df_isin mediana_df_isin Q1_df_isin
##           <dbl>            <dbl>         <dbl>           <dbl>      <dbl>
## 1          16.6             949.          30.8               8          3
## # ℹ 2 more variables: Q4_df_isin <dbl>, P90_df_isin <dbl>
PlotXTabs2(data=X28072024_base_de_W_final,x=grupo_edad,y=Riesgo_materno)

v40 = table(X28072024_base_de_W_final$grupo_edad, X28072024_base_de_W_final$Riesgo_materno)
rownames(v40) <- c ("Menor 1 mes", "1 a 6 meses", "7 a 11 meses", "1 a 2 años", "3 a 4 años") 
colnames(v40) <- c ("sin riesgo", "sin dato", "con riesgo")              
addmargins(v40)
##               
##                sin riesgo sin dato con riesgo Sum
##   Menor 1 mes          15       31          6  52
##   1 a 6 meses          15       47          8  70
##   7 a 11 meses          8       14          1  23
##   1 a 2 años           13       20          0  33
##   3 a 4 años            2        3          0   5
##   Sum                  53      115         15 183
chisq.test(v40)
## Warning in chisq.test(v40): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  v40
## X-squared = 8.5613, df = 8, p-value = 0.3806
fisher.test(v40)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  v40
## p-value = 0.3374
## alternative hypothesis: two.sided
assocstats(v40)
##                      X^2 df P(> X^2)
## Likelihood Ratio 11.5530  8  0.17229
## Pearson           8.5613  8  0.38064
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.211 
## Cramer's V        : 0.153
PlotXTabs2(data=X28072024_base_de_W_final,x=Riesgo_materno,y=Mortalidad_IRA_rev)

v41 = table(X28072024_base_de_W_final$Riesgo_materno, X28072024_base_de_W_final$Mortalidad_IRA_rev)
rownames(v41) <- c ("con riesgo", "sin dato", "sin riesgo")    
colnames(v41) <- c ("Confirmada COVID-19", "Confirmado IRA", "Confirmado Neumonia")           
addmargins(v41)
##             
##              Confirmada COVID-19 Confirmado IRA Confirmado Neumonia Sum
##   con riesgo                   3             31                  19  53
##   sin dato                    16             45                  54 115
##   sin riesgo                   3              7                   5  15
##   Sum                         22             83                  78 183
chisq.test(v41)
## Warning in chisq.test(v41): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  v41
## X-squared = 7.3057, df = 4, p-value = 0.1206
fisher.test(v41)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  v41
## p-value = 0.1031
## alternative hypothesis: two.sided
assocstats(v41)
##                     X^2 df P(> X^2)
## Likelihood Ratio 7.5142  4  0.11108
## Pearson          7.3057  4  0.12059
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.196 
## Cramer's V        : 0.141
X28072024_base_de_W_final$tipo_parto<- str_replace(X28072024_base_de_W_final$tipo_parto, "Espontaneo","Vaginal")
PlotXTabs2(data=X28072024_base_de_W_final,x=tipo_parto, y=Riesgo_materno)

v44 = table(X28072024_base_de_W_final$Riesgo_materno, X28072024_base_de_W_final$tipo_parto)
rownames(v44) <- c ("sin riesgo", "sin dato", "con riesgo")    
colnames(v44) <- c ("Cesárea", "Ignorado", "Sin Dato", "Vaginal")           
addmargins(v44)
##             
##              Cesárea Ignorado Sin Dato Vaginal Sum
##   sin riesgo      10        7       23      13  53
##   sin dato        20       20       48      27 115
##   con riesgo       0        1        7       7  15
##   Sum             30       28       78      47 183
chisq.test(v44)
## Warning in chisq.test(v44): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  v44
## X-squared = 6.8408, df = 6, p-value = 0.3358
fisher.test(v44)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  v44
## p-value = 0.3689
## alternative hypothesis: two.sided
assocstats(v44)
##                     X^2 df P(> X^2)
## Likelihood Ratio 8.9798  6  0.17472
## Pearson          6.8408  6  0.33583
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.19 
## Cramer's V        : 0.137

MORTALIDAD IRA

Mort_IRA =subset(X28072024_base_de_W_final, X28072024_base_de_W_final$Mortalidad_IRA_rev=="Confirmado IRA")
Mort_IRA
## # A tibble: 83 × 88
##       ID fec_not             semana   ano edad_ uni_med_ grupo_edad  
##    <dbl> <dttm>               <dbl> <dbl> <dbl> <chr>    <chr>       
##  1    11 2021-03-29 00:00:00     13  2021     2 Meses    1 a 6 meses 
##  2    27 2021-07-09 00:00:00     26  2021     3 Meses    1 a 6 meses 
##  3    28 2021-07-09 00:00:00     27  2021     1 Meses    1 a 6 meses 
##  4    30 2021-07-12 00:00:00     28  2021     2 Meses    1 a 6 meses 
##  5    35 2021-08-29 00:00:00     34  2021     2 Meses    1 a 6 meses 
##  6    40 2021-09-28 00:00:00     39  2021    23 dias     Menor 1 mes 
##  7    43 2021-10-29 00:00:00     43  2021     1 Meses    1 a 6 meses 
##  8    49 2021-11-13 00:00:00     45  2021     1 Años     1 a 2 años  
##  9    68 2022-04-11 00:00:00     15  2022     7 Meses    7 a 11 meses
## 10    71 2022-04-20 00:00:00     16  2022     2 Años     1 a 2 años  
## # ℹ 73 more rows
## # ℹ 81 more variables: nombre_nacionalidad <chr>, sexo_ <chr>, dir_res_ <chr>,
## #   tip_ss_ <chr>, cod_ase_ <chr>, per_etn_ <chr>, nom_grupo <chr>,
## #   estrato_ <dbl>, gp_discapa <dbl>, gp_desplaz <dbl>, gp_migrant <dbl>,
## #   fuente_ <chr>, fec_con_ <dttm>, ini_sin_ <dttm>, pac_hos_ <dbl>,
## #   fec_hos_ <dttm>, fec_def_ <dttm>, dif_def_sin <dbl>, dif_def_hos <dbl>,
## #   df_con_sin <dbl>, fecha_nto_ <dttm>, sit_defunc <chr>, tip_ide_ma <chr>, …
PlotXTabs2(data=Mort_IRA,x=grupo_edad,y=sexo_)

v5 = table(Mort_IRA$grupo_edad, Mort_IRA$sexo_)
rownames(v5) <- c("Menor 1 mes", "1 a 6 meses", "7 a 11 meses", "1 a 2 años", "3 a 4 años")           
colnames(v5) <- c ("M", "F")
addmargins(v5)
##               
##                 M  F Sum
##   Menor 1 mes  15 10  25
##   1 a 6 meses  13 23  36
##   7 a 11 meses  4  3   7
##   1 a 2 años    2  9  11
##   3 a 4 años    0  4   4
##   Sum          34 49  83
chisq.test(v5)
## Warning in chisq.test(v5): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  v5
## X-squared = 9.9906, df = 4, p-value = 0.04059
fisher.test(v5)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  v5
## p-value = 0.03968
## alternative hypothesis: two.sided
assocstats(v5)
##                      X^2 df P(> X^2)
## Likelihood Ratio 11.6023  4 0.020567
## Pearson           9.9906  4 0.040586
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.328 
## Cramer's V        : 0.347
v4 = table(Mort_IRA$grupo_edad, Mort_IRA$tipo_infeccion)
rownames(v4) <- c("Menor 1 mes", "1 a 6 meses", "7 a 11 meses", "1 a 2 años", "3 a 4 años")          
colnames(v4) <- c ("viral", "sin agente", "Mixto", "Bacteriano")
addmargins(v4)
##               
##                viral sin agente Mixto Bacteriano Sum
##   Menor 1 mes      0         11     2         12  25
##   1 a 6 meses      1          9    12         14  36
##   7 a 11 meses     0          2     2          3   7
##   1 a 2 años       0          3     2          6  11
##   3 a 4 años       0          0     1          3   4
##   Sum              1         25    19         38  83
chisq.test(v4)
## Warning in chisq.test(v4): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  v4
## X-squared = 10.151, df = 12, p-value = 0.6027
fisher.test(v4)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  v4
## p-value = 0.4342
## alternative hypothesis: two.sided
assocstats(v4)
##                     X^2 df P(> X^2)
## Likelihood Ratio 12.034 12  0.44296
## Pearson          10.151 12  0.60269
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.33 
## Cramer's V        : 0.202
PlotXTabs2(data=Mort_IRA,x=grupo_edad, y=tipo_infeccion)

PlotXTabs2(data=Mort_IRA,x=estado_vacunacion, y=Total_agentes_coinfeccion)

#PlotXTabs2(data = Mort_IRA, x=Total_Agentes_coinfeccion, y=estado_vacunacion)
v3 = table(Mort_IRA$estado_vacunacion, Mort_IRA$Total_agentes_coinfeccion)
rownames(v3) <- c ("Completo", "desconocido", "incompleto")               
colnames(v3) <- c ("0", "1", "2", "3", "4", "5", "6")
addmargins(v3)
##              
##                0  1  2  3  4  5  6 Sum
##   Completo    10 18  8 16  6  4  4  66
##   desconocido  7  6  1  0  0  0  0  14
##   incompleto   2  0  0  0  1  0  0   3
##   Sum         19 24  9 16  7  4  4  83
chisq.test(v3)
## Warning in chisq.test(v3): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  v3
## X-squared = 20.806, df = 12, p-value = 0.05329
fisher.test(v3)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  v3
## p-value = 0.03223
## alternative hypothesis: two.sided
assocstats(v3)
##                     X^2 df P(> X^2)
## Likelihood Ratio 25.173 12 0.014022
## Pearson          20.806 12 0.053291
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.448 
## Cramer's V        : 0.354
PlotXTabs2(data=X28072024_base_de_W_final,x=tip_ss_, y= Mortalidad_IRA_rev)

#PlotXTabs2(data=Mort_IRA,x=estado_vacunacion, y=Total_agentes_coinfeccion)
v2 = table(X28072024_base_de_W_final$tip_ss_, X28072024_base_de_W_final$Mortalidad_IRA_rev)
rownames(v2) <- c ("C", "I", "N", "P", "S") 
colnames(v2) <- c ("Confirmado Neumonia", "Confirmado IRA", "Confirmada COVID-19")              
addmargins(v2)
##      
##       Confirmado Neumonia Confirmado IRA Confirmada COVID-19 Sum
##   C                     9             52                  45 106
##   I                     1              0                   1   2
##   N                     0              3                   5   8
##   P                     0              1                   0   1
##   S                    12             27                  27  66
##   Sum                  22             83                  78 183
chisq.test(v2)
## Warning in chisq.test(v2): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  v2
## X-squared = 10.186, df = 8, p-value = 0.2522
fisher.test(v2)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  v2
## p-value = 0.206
## alternative hypothesis: two.sided
assocstats(v2)
##                     X^2 df P(> X^2)
## Likelihood Ratio 11.118  8  0.19510
## Pearson          10.186  8  0.25222
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.23 
## Cramer's V        : 0.167
PlotXTabs2(data=Mort_IRA,x=estado_vacunacion, y=tip_ss_)

v1 = table(Mort_IRA$estado_vacunacion, Mort_IRA$tip_ss_)
rownames(v1) <- c ("Completo", "desconocido", "incompleto") 
colnames(v1) <- c ("S", "P", "N", "C")              
addmargins(v1)
##              
##                S  P  N  C Sum
##   Completo    47  1  1 17  66
##   desconocido  4  2  0  8  14
##   incompleto   1  0  0  2   3
##   Sum         52  3  1 27  83
chisq.test(v1)
## Warning in chisq.test(v1): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  v1
## X-squared = 13.973, df = 6, p-value = 0.02994
fisher.test(v1)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  v1
## p-value = 0.01028
## alternative hypothesis: two.sided
assocstats(v1)
##                     X^2 df P(> X^2)
## Likelihood Ratio 12.661  6  0.04874
## Pearson          13.973  6  0.02994
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.38 
## Cramer's V        : 0.29

MORTALIDAD NEUMONIA

Mort_NEU =subset(X28072024_base_de_W_final, X28072024_base_de_W_final$Mortalidad_IRA_rev=="Confirmado Neumonia")
Mort_NEU
## # A tibble: 78 × 88
##       ID fec_not             semana   ano edad_ uni_med_ grupo_edad 
##    <dbl> <dttm>               <dbl> <dbl> <dbl> <chr>    <chr>      
##  1     8 2021-03-16 00:00:00     11  2021     4 Meses    1 a 6 meses
##  2    15 2021-10-12 00:00:00     33  2021     6 Meses    1 a 6 meses
##  3    16 2021-05-04 00:00:00     18  2021     4 Años     3 a 4 años 
##  4    33 2021-07-27 00:00:00     30  2021     1 Meses    1 a 6 meses
##  5    34 2021-08-02 00:00:00     31  2021     2 Años     1 a 2 años 
##  6    36 2021-09-01 00:00:00     35  2021     2 Meses    1 a 6 meses
##  7    37 2021-09-15 00:00:00     37  2021     2 Años     1 a 2 años 
##  8    39 2021-09-28 00:00:00     39  2021     3 Años     3 a 4 años 
##  9    42 2021-10-27 00:00:00     43  2021     1 Años     1 a 2 años 
## 10    46 2021-11-04 00:00:00     39  2021     1 Años     1 a 2 años 
## # ℹ 68 more rows
## # ℹ 81 more variables: nombre_nacionalidad <chr>, sexo_ <chr>, dir_res_ <chr>,
## #   tip_ss_ <chr>, cod_ase_ <chr>, per_etn_ <chr>, nom_grupo <chr>,
## #   estrato_ <dbl>, gp_discapa <dbl>, gp_desplaz <dbl>, gp_migrant <dbl>,
## #   fuente_ <chr>, fec_con_ <dttm>, ini_sin_ <dttm>, pac_hos_ <dbl>,
## #   fec_hos_ <dttm>, fec_def_ <dttm>, dif_def_sin <dbl>, dif_def_hos <dbl>,
## #   df_con_sin <dbl>, fecha_nto_ <dttm>, sit_defunc <chr>, tip_ide_ma <chr>, …
PlotXTabs2(data=Mort_NEU,x=grupo_edad,y=sexo_)

v10 = table(Mort_NEU$grupo_edad, Mort_NEU$sexo_)
rownames(v10) <- c("1 a 6 meses", "7 a 11 meses", "1 a 2 años", "3 a 4 años")          
colnames(v10) <- c ("M", "F")
addmargins(v10)
##               
##                 M  F Sum
##   1 a 6 meses  13 11  24
##   7 a 11 meses  6 15  21
##   1 a 2 años    9  7  16
##   3 a 4 años   12  5  17
##   Sum          40 38  78
chisq.test(v10)
## 
##  Pearson's Chi-squared test
## 
## data:  v10
## X-squared = 7.1096, df = 3, p-value = 0.06849
fisher.test(v10)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  v10
## p-value = 0.06928
## alternative hypothesis: two.sided
assocstats(v10)
##                     X^2 df P(> X^2)
## Likelihood Ratio 7.3210  3 0.062341
## Pearson          7.1096  3 0.068487
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.289 
## Cramer's V        : 0.302
v11 = table(Mort_NEU$grupo_edad, Mort_NEU$tipo_infeccion)
rownames(v11) <- c("1 a 6 meses", "7 a 11 meses", "1 a 2 años",  "3 a 4 años")          
colnames(v11) <- c ("viral", "sin agente", "Mixto", "Bacteriano")
addmargins(v11)
##               
##                viral sin agente Mixto Bacteriano Sum
##   1 a 6 meses      1          5     9          9  24
##   7 a 11 meses     0          2    11          8  21
##   1 a 2 años       3          5     2          6  16
##   3 a 4 años       0          3    10          4  17
##   Sum              4         15    32         27  78
chisq.test(v11)
## Warning in chisq.test(v11): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  v11
## X-squared = 16.058, df = 9, p-value = 0.06567
fisher.test(v11)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  v11
## p-value = 0.08622
## alternative hypothesis: two.sided
assocstats(v11)
##                     X^2 df P(> X^2)
## Likelihood Ratio 16.749  9 0.052793
## Pearson          16.058  9 0.065673
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.413 
## Cramer's V        : 0.262
PlotXTabs2(data=Mort_NEU,x=grupo_edad, y=tipo_infeccion)

PlotXTabs2(data=Mort_NEU,x=estado_vacunacion, y=Total_agentes_coinfeccion)

v12 = table(Mort_NEU$estado_vacunacion, Mort_NEU$Total_agentes_coinfeccion)
rownames(v12) <- c ("Completo", "desconocido", "incompleto")               
colnames(v12) <- c ("0", "1", "2", "3", "4", "5", "6" )
addmargins(v12)
##              
##                0  1  2  3  4  5  6 Sum
##   Completo     8  8  9  6  3  3  3  40
##   desconocido 19  7  0  3  0  0  0  29
##   incompleto   5  0  1  0  2  1  0   9
##   Sum         32 15 10  9  5  4  3  78
chisq.test(v12)
## Warning in chisq.test(v12): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  v12
## X-squared = 30.119, df = 12, p-value = 0.00268
#fisher.test(v12)
assocstats(v12)
##                     X^2 df   P(> X^2)
## Likelihood Ratio 39.215 12 9.6998e-05
## Pearson          30.119 12 2.6799e-03
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.528 
## Cramer's V        : 0.439
v13 = table(Mort_NEU$estado_vacunacion, Mort_NEU$tip_ss_)
rownames(v13) <- c ("Completo", "desconocido", "incompleto") 
colnames(v13) <- c ("S", "P", "N", "C")              
addmargins(v13)
##              
##                S  P  N  C Sum
##   Completo    26  0  0 14  40
##   desconocido 15  1  4  9  29
##   incompleto   4  0  1  4   9
##   Sum         45  1  5 27  78
chisq.test(v13)
## Warning in chisq.test(v13): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  v13
## X-squared = 8.2133, df = 6, p-value = 0.2229
fisher.test(v13)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  v13
## p-value = 0.111
## alternative hypothesis: two.sided
assocstats(v13)
##                      X^2 df P(> X^2)
## Likelihood Ratio 10.3911  6  0.10912
## Pearson           8.2133  6  0.22289
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.309 
## Cramer's V        : 0.229

MORTALIDAD COVID

Mort_COVID =subset(X28072024_base_de_W_final, X28072024_base_de_W_final$Mortalidad_IRA_rev=="Confirmada COVID-19")
Mort_COVID
## # A tibble: 22 × 88
##       ID fec_not             semana   ano edad_ uni_med_ grupo_edad  
##    <dbl> <dttm>               <dbl> <dbl> <dbl> <chr>    <chr>       
##  1     1 2021-01-15 00:00:00      2  2021     1 Meses    1 a 6 meses 
##  2     2 2021-01-27 00:00:00      4  2021     1 Años     1 a 2 años  
##  3     3 2021-02-13 00:00:00      5  2021     6 Meses    1 a 6 meses 
##  4     4 2021-02-10 00:00:00      6  2021     2 Meses    1 a 6 meses 
##  5    17 2021-05-07 00:00:00     18  2021     2 Meses    1 a 6 meses 
##  6    18 2021-05-11 00:00:00     19  2021     4 Meses    1 a 6 meses 
##  7    19 2021-06-04 00:00:00     22  2021    10 Meses    7 a 11 meses
##  8    20 2021-09-02 00:00:00     23  2021    10 Meses    7 a 11 meses
##  9    22 2021-09-10 00:00:00     25  2021     4 Meses    1 a 6 meses 
## 10    23 2021-06-16 00:00:00     18  2021     4 Meses    1 a 6 meses 
## # ℹ 12 more rows
## # ℹ 81 more variables: nombre_nacionalidad <chr>, sexo_ <chr>, dir_res_ <chr>,
## #   tip_ss_ <chr>, cod_ase_ <chr>, per_etn_ <chr>, nom_grupo <chr>,
## #   estrato_ <dbl>, gp_discapa <dbl>, gp_desplaz <dbl>, gp_migrant <dbl>,
## #   fuente_ <chr>, fec_con_ <dttm>, ini_sin_ <dttm>, pac_hos_ <dbl>,
## #   fec_hos_ <dttm>, fec_def_ <dttm>, dif_def_sin <dbl>, dif_def_hos <dbl>,
## #   df_con_sin <dbl>, fecha_nto_ <dttm>, sit_defunc <chr>, tip_ide_ma <chr>, …
PlotXTabs2(data=Mort_COVID,x=grupo_edad,y=sexo_)

v14 = table(Mort_COVID$grupo_edad, Mort_COVID$sexo_)
rownames(v14) <- c("Menor 1 mes", "1 a 6 meses", "7 a 11 meses", "1 a 2 años")          
colnames(v14) <- c ("M", "F")
addmargins(v14)
##               
##                 M  F Sum
##   Menor 1 mes   1  2   3
##   1 a 6 meses   6  7  13
##   7 a 11 meses  2  3   5
##   1 a 2 años    0  1   1
##   Sum           9 13  22
chisq.test(v14)
## Warning in chisq.test(v14): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  v14
## X-squared = 0.91317, df = 3, p-value = 0.8222
fisher.test(v14)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  v14
## p-value = 1
## alternative hypothesis: two.sided
assocstats(v14)
##                      X^2 df P(> X^2)
## Likelihood Ratio 1.27311  3  0.73553
## Pearson          0.91317  3  0.82225
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.2 
## Cramer's V        : 0.204
v15 = table(Mort_COVID$grupo_edad, Mort_COVID$tipo_infeccion)
rownames(v15) <- c("Menor 1 mes", "1 a 6 meses", "7 a 11 meses", "1 a 2 años")          
colnames(v15) <- c ("viral", "sin agente", "Mixto")
addmargins(v15)
##               
##                viral sin agente Mixto Sum
##   Menor 1 mes      1          2     0   3
##   1 a 6 meses      1          7     5  13
##   7 a 11 meses     0          2     3   5
##   1 a 2 años       0          1     0   1
##   Sum              2         12     8  22
chisq.test(v15)
## Warning in chisq.test(v15): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  v15
## X-squared = 5.406, df = 6, p-value = 0.4929
fisher.test(v15)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  v15
## p-value = 0.487
## alternative hypothesis: two.sided
assocstats(v15)
##                     X^2 df P(> X^2)
## Likelihood Ratio 6.4237  6  0.37744
## Pearson          5.4060  6  0.49289
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.444 
## Cramer's V        : 0.351
PlotXTabs2(data=Mort_COVID,x=grupo_edad, y=tipo_infeccion)

PlotXTabs2(data=Mort_COVID,x=estado_vacunacion, y=Total_agentes_coinfeccion)

v16 = table(Mort_COVID$estado_vacunacion, Mort_COVID$Total_agentes_coinfeccion)
rownames(v16) <- c ("Completo", "desconocido", "incompleto")               
colnames(v16) <- c ("0", "1", "2", "3", "4")
addmargins(v16)
##              
##                0  1  2  3  4 Sum
##   Completo     0  1  2  1  1   5
##   desconocido 12  4  0  0  0  16
##   incompleto   0  1  0  0  0   1
##   Sum         12  6  2  1  1  22
chisq.test(v16)
## Warning in chisq.test(v16): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  v16
## X-squared = 20.167, df = 8, p-value = 0.009724
fisher.test(v16)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  v16
## p-value = 0.0008935
## alternative hypothesis: two.sided
assocstats(v16)
##                     X^2 df  P(> X^2)
## Likelihood Ratio 20.778  8 0.0077614
## Pearson          20.167  8 0.0097236
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.692 
## Cramer's V        : 0.677
v17 = table(Mort_COVID$estado_vacunacion, Mort_COVID$tip_ss_)
rownames(v17) <- c ("Completo", "desconocido", "incompleto") 
colnames(v17) <- c ("S", "I", "C")              
addmargins(v17)
##              
##                S  I  C Sum
##   Completo     3  1  1   5
##   desconocido  5  0 11  16
##   incompleto   1  0  0   1
##   Sum          9  1 12  22
chisq.test(v17)
## Warning in chisq.test(v17): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  v17
## X-squared = 7.2951, df = 4, p-value = 0.1211
fisher.test(v17)
## 
##  Fisher's Exact Test for Count Data
## 
## data:  v17
## p-value = 0.08174
## alternative hypothesis: two.sided
assocstats(v17)
##                     X^2 df P(> X^2)
## Likelihood Ratio 7.4406  4  0.11436
## Pearson          7.2951  4  0.12109
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.499 
## Cramer's V        : 0.407
library(readxl)
grafica_long <- read_excel("C:/Users/diana/OneDrive/Escritorio/ASESORIAS_R/grafica_long.xlsx", 
    col_types = c("text", "numeric", "numeric"))
## Warning: Coercing text to numeric in B2 / R2C2: '01'
## Warning: Coercing text to numeric in B3 / R3C2: '02'
## Warning: Coercing text to numeric in B4 / R4C2: '03'
## Warning: Coercing text to numeric in B5 / R5C2: '04'
## Warning: Coercing text to numeric in B6 / R6C2: '05'
## Warning: Coercing text to numeric in B7 / R7C2: '06'
## Warning: Coercing text to numeric in B8 / R8C2: '07'
## Warning: Coercing text to numeric in B9 / R9C2: '08'
## Warning: Coercing text to numeric in B10 / R10C2: '09'
## Warning: Coercing text to numeric in B11 / R11C2: '11'
## Warning: Coercing text to numeric in B12 / R12C2: '12'
## Warning: Coercing text to numeric in B13 / R13C2: '13'
## Warning: Coercing text to numeric in B14 / R14C2: '14'
## Warning: Coercing text to numeric in B15 / R15C2: '15'
## Warning: Coercing text to numeric in B16 / R16C2: '16'
## Warning: Coercing text to numeric in B17 / R17C2: '17'
## Warning: Coercing text to numeric in B18 / R18C2: '18'
## Warning: Coercing text to numeric in B19 / R19C2: '19'
## Warning: Coercing text to numeric in B20 / R20C2: '20'
## Warning: Coercing text to numeric in B21 / R21C2: '21'
## Warning: Coercing text to numeric in B22 / R22C2: '22'
## Warning: Coercing text to numeric in B23 / R23C2: '23'
## Warning: Coercing text to numeric in B24 / R24C2: '24'
## Warning: Coercing text to numeric in B25 / R25C2: '25'
## Warning: Coercing text to numeric in B26 / R26C2: '26'
## Warning: Coercing text to numeric in B27 / R27C2: '27'
## Warning: Coercing text to numeric in B28 / R28C2: '28'
## Warning: Coercing text to numeric in B29 / R29C2: '29'
## Warning: Coercing text to numeric in B30 / R30C2: '30'
## Warning: Coercing text to numeric in B31 / R31C2: '31'
## Warning: Coercing text to numeric in B32 / R32C2: '32'
## Warning: Coercing text to numeric in B33 / R33C2: '33'
## Warning: Coercing text to numeric in B34 / R34C2: '34'
## Warning: Coercing text to numeric in B35 / R35C2: '35'
## Warning: Coercing text to numeric in B36 / R36C2: '36'
## Warning: Coercing text to numeric in B37 / R37C2: '37'
## Warning: Coercing text to numeric in B38 / R38C2: '38'
## Warning: Coercing text to numeric in B39 / R39C2: '39'
## Warning: Coercing text to numeric in B40 / R40C2: '40'
## Warning: Coercing text to numeric in B41 / R41C2: '41'
## Warning: Coercing text to numeric in B42 / R42C2: '42'
## Warning: Coercing text to numeric in B43 / R43C2: '43'
## Warning: Coercing text to numeric in B44 / R44C2: '44'
## Warning: Coercing text to numeric in B45 / R45C2: '45'
## Warning: Coercing text to numeric in B46 / R46C2: '46'
## Warning: Coercing text to numeric in B47 / R47C2: '47'
## Warning: Coercing text to numeric in B48 / R48C2: '48'
## Warning: Coercing text to numeric in B49 / R49C2: '49'
## Warning: Coercing text to numeric in B50 / R50C2: '50'
## Warning: Coercing text to numeric in B51 / R51C2: '51'
## Warning: Coercing text to numeric in B52 / R52C2: '52'
## Warning: Coercing text to numeric in B53 / R53C2: '01'
## Warning: Coercing text to numeric in B54 / R54C2: '02'
## Warning: Coercing text to numeric in B55 / R55C2: '03'
## Warning: Coercing text to numeric in B56 / R56C2: '04'
## Warning: Coercing text to numeric in B57 / R57C2: '05'
## Warning: Coercing text to numeric in B58 / R58C2: '06'
## Warning: Coercing text to numeric in B59 / R59C2: '07'
## Warning: Coercing text to numeric in B60 / R60C2: '08'
## Warning: Coercing text to numeric in B61 / R61C2: '09'
## Warning: Coercing text to numeric in B62 / R62C2: '11'
## Warning: Coercing text to numeric in B63 / R63C2: '12'
## Warning: Coercing text to numeric in B64 / R64C2: '13'
## Warning: Coercing text to numeric in B65 / R65C2: '14'
## Warning: Coercing text to numeric in B66 / R66C2: '15'
## Warning: Coercing text to numeric in B67 / R67C2: '16'
## Warning: Coercing text to numeric in B68 / R68C2: '17'
## Warning: Coercing text to numeric in B69 / R69C2: '18'
## Warning: Coercing text to numeric in B70 / R70C2: '19'
## Warning: Coercing text to numeric in B71 / R71C2: '20'
## Warning: Coercing text to numeric in B72 / R72C2: '21'
## Warning: Coercing text to numeric in B73 / R73C2: '22'
## Warning: Coercing text to numeric in B74 / R74C2: '23'
## Warning: Coercing text to numeric in B75 / R75C2: '24'
## Warning: Coercing text to numeric in B76 / R76C2: '25'
## Warning: Coercing text to numeric in B77 / R77C2: '26'
## Warning: Coercing text to numeric in B78 / R78C2: '27'
## Warning: Coercing text to numeric in B79 / R79C2: '28'
## Warning: Coercing text to numeric in B80 / R80C2: '29'
## Warning: Coercing text to numeric in B81 / R81C2: '30'
## Warning: Coercing text to numeric in B82 / R82C2: '31'
## Warning: Coercing text to numeric in B83 / R83C2: '32'
## Warning: Coercing text to numeric in B84 / R84C2: '33'
## Warning: Coercing text to numeric in B85 / R85C2: '34'
## Warning: Coercing text to numeric in B86 / R86C2: '35'
## Warning: Coercing text to numeric in B87 / R87C2: '36'
## Warning: Coercing text to numeric in B88 / R88C2: '37'
## Warning: Coercing text to numeric in B89 / R89C2: '38'
## Warning: Coercing text to numeric in B90 / R90C2: '39'
## Warning: Coercing text to numeric in B91 / R91C2: '40'
## Warning: Coercing text to numeric in B92 / R92C2: '41'
## Warning: Coercing text to numeric in B93 / R93C2: '42'
## Warning: Coercing text to numeric in B94 / R94C2: '43'
## Warning: Coercing text to numeric in B95 / R95C2: '44'
## Warning: Coercing text to numeric in B96 / R96C2: '45'
## Warning: Coercing text to numeric in B97 / R97C2: '46'
## Warning: Coercing text to numeric in B98 / R98C2: '47'
## Warning: Coercing text to numeric in B99 / R99C2: '48'
## Warning: Coercing text to numeric in B100 / R100C2: '49'
## Warning: Coercing text to numeric in B101 / R101C2: '50'
## Warning: Coercing text to numeric in B102 / R102C2: '51'
## Warning: Coercing text to numeric in B103 / R103C2: '52'
## Warning: Coercing text to numeric in B104 / R104C2: '01'
## Warning: Coercing text to numeric in B105 / R105C2: '02'
## Warning: Coercing text to numeric in B106 / R106C2: '03'
## Warning: Coercing text to numeric in B107 / R107C2: '04'
## Warning: Coercing text to numeric in B108 / R108C2: '05'
## Warning: Coercing text to numeric in B109 / R109C2: '06'
## Warning: Coercing text to numeric in B110 / R110C2: '07'
## Warning: Coercing text to numeric in B111 / R111C2: '08'
## Warning: Coercing text to numeric in B112 / R112C2: '09'
## Warning: Coercing text to numeric in B113 / R113C2: '11'
## Warning: Coercing text to numeric in B114 / R114C2: '12'
## Warning: Coercing text to numeric in B115 / R115C2: '13'
## Warning: Coercing text to numeric in B116 / R116C2: '14'
## Warning: Coercing text to numeric in B117 / R117C2: '15'
## Warning: Coercing text to numeric in B118 / R118C2: '16'
## Warning: Coercing text to numeric in B119 / R119C2: '17'
## Warning: Coercing text to numeric in B120 / R120C2: '18'
## Warning: Coercing text to numeric in B121 / R121C2: '19'
## Warning: Coercing text to numeric in B122 / R122C2: '20'
## Warning: Coercing text to numeric in B123 / R123C2: '21'
## Warning: Coercing text to numeric in B124 / R124C2: '22'
## Warning: Coercing text to numeric in B125 / R125C2: '23'
## Warning: Coercing text to numeric in B126 / R126C2: '24'
## Warning: Coercing text to numeric in B127 / R127C2: '25'
## Warning: Coercing text to numeric in B128 / R128C2: '26'
## Warning: Coercing text to numeric in B129 / R129C2: '27'
## Warning: Coercing text to numeric in B130 / R130C2: '28'
## Warning: Coercing text to numeric in B131 / R131C2: '29'
## Warning: Coercing text to numeric in B132 / R132C2: '30'
## Warning: Coercing text to numeric in B133 / R133C2: '31'
## Warning: Coercing text to numeric in B134 / R134C2: '32'
## Warning: Coercing text to numeric in B135 / R135C2: '33'
## Warning: Coercing text to numeric in B136 / R136C2: '34'
## Warning: Coercing text to numeric in B137 / R137C2: '35'
## Warning: Coercing text to numeric in B138 / R138C2: '36'
## Warning: Coercing text to numeric in B139 / R139C2: '37'
## Warning: Coercing text to numeric in B140 / R140C2: '38'
## Warning: Coercing text to numeric in B141 / R141C2: '39'
## Warning: Coercing text to numeric in B142 / R142C2: '40'
## Warning: Coercing text to numeric in B143 / R143C2: '41'
## Warning: Coercing text to numeric in B144 / R144C2: '42'
## Warning: Coercing text to numeric in B145 / R145C2: '43'
## Warning: Coercing text to numeric in B146 / R146C2: '44'
## Warning: Coercing text to numeric in B147 / R147C2: '45'
## Warning: Coercing text to numeric in B148 / R148C2: '46'
## Warning: Coercing text to numeric in B149 / R149C2: '47'
## Warning: Coercing text to numeric in B150 / R150C2: '48'
## Warning: Coercing text to numeric in B151 / R151C2: '49'
## Warning: Coercing text to numeric in B152 / R152C2: '50'
## Warning: Coercing text to numeric in B153 / R153C2: '51'
## Warning: Coercing text to numeric in B154 / R154C2: '52'
View(grafica_long)
library(ggplot2)
ggplot(grafica_long, aes(x = semana, y = Total, color = ano))+geom_line()+geom_point()