N Parameters

Author

Roshan Ranganathan

Warning: package 'tidyverse' was built under R version 4.4.1
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.1     ✔ tibble    3.2.1
✔ lubridate 1.9.3     ✔ tidyr     1.3.1
✔ purrr     1.0.2     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Warning: package 'brms' was built under R version 4.4.1
Loading required package: Rcpp
Loading 'brms' package (version 2.21.0). Useful instructions
can be found by typing help('brms'). A more detailed introduction
to the package is available through vignette('brms_overview').

Attaching package: 'brms'

The following object is masked from 'package:stats':

    ar
Warning: package 'tidybayes' was built under R version 4.4.1

Attaching package: 'tidybayes'

The following objects are masked from 'package:brms':

    dstudent_t, pstudent_t, qstudent_t, rstudent_t
Warning: package 'gtsummary' was built under R version 4.4.1

Using the data from an experiment to determine if people are motivated to vote by social pressure, we seek to forecast the causal effect on voter participation by sending postcards in the Texas election of 2026. Using an experiment as our data, we are trying to determine to what extent social pressure affects the voter’s decisions. Stability may not be true because viewpoints on politics have changed, and will continue to change.

\[y_{i} = \beta_{0} + \beta_{1} age\_z + \beta_{2}male_i + \beta_{3}civic\_duty_i + \\ \beta_{4}hawthorne_i + \beta_{5}self_i + \beta_{6}neighbors_i + \\ \beta_{7}Sometimes\ vote_i + \beta_{8}Always\ vote_i + \\ \beta_{9}civic\_duty_i Sometimes\ vote_i + \beta_{10}hawthorne_i Sometimes\ vote_i + \\ \beta_{11}self_i Sometimes\ vote_i + \beta_{11}neighbors_i Sometimes\ vote_i + \\ \beta_{12}civic\_duty_i Always\ vote_i + \beta_{13}hawthorne_i Always\ vote_i + \\ \beta_{14}self_i Always\ vote_i + \beta_{15}neighbors_i Always\ vote_i + \epsilon_{i}\]

Warning in tidy.brmsfit(x, ..., effects = "fixed"): some parameter names
contain underscores: term naming may be unreliable!

Characteristic

Beta

95% CI

1
(Intercept) 0.151 0.133, 0.170
age_z 0.032 0.027, 0.037
sex

    sexMale 0.010 0.000, 0.020
treatment

    No Postcard
    treatmentCivicDuty 0.016 -0.025, 0.058
    Hawthorne 0.003 -0.039, 0.044
    Self 0.027 -0.013, 0.068
    Neighbors 0.022 -0.019, 0.062
voter_class

    Rarely Vote
    voter_classSometimesVote 0.114 0.094, 0.133
    voter_classAlwaysVote 0.297 0.274, 0.319
treatment * voter_class

    treatmentCivicDuty * voter_classSometimesVote -0.003 -0.049, 0.043
    Hawthorne * voter_classSometimesVote 0.008 -0.037, 0.055
    Self * voter_classSometimesVote 0.035 -0.012, 0.080
    Neighbors * voter_classSometimesVote 0.070 0.025, 0.116
    treatmentCivicDuty * voter_classAlwaysVote -0.013 -0.067, 0.040
    Hawthorne * voter_classAlwaysVote 0.025 -0.028, 0.077
    Self * voter_classAlwaysVote 0.027 -0.024, 0.078
    Neighbors * voter_classAlwaysVote 0.064 0.012, 0.116
1

CI = Credible Interval