Moving Average dan Exponential Smoothing
Data
Library
Import Data
Data yang digunakan adalah data hasil ekspor bulanan di Indonesia (dalam juta USD) dari Bulan Januari tahun 2011 sampai Desember tahun 2022 yang merupakan data deret waktu. Sumber data : https://www.bi.go.id.
ekspor <- read_excel("D:/Data Indikator - 2022.xlsx",sheet = "ekspor")
data.table::data.table(ekspor)
## Time Ekspor
## <POSc> <num>
## 1: 2011-01-01 14606.2
## 2: 2011-02-01 14415.3
## 3: 2011-03-01 16366.0
## 4: 2011-04-01 16554.2
## 5: 2011-05-01 18287.4
## ---
## 140: 2022-08-01 27862.1
## 141: 2022-09-01 24777.2
## 142: 2022-10-01 24728.4
## 143: 2022-11-01 24094.0
## 144: 2022-12-01 23828.1
Plot Data
ekspor$Time <- as.Date(ekspor$Time, "%Y-%M-%D")
ggplot(ekspor, aes(x=Time, y = Ekspor)) + geom_line()
Berdasarkan plot deret waktu diatas, terlihat bahwa data memiliki pola tidak stasioner.
Partisi Data
Data hasil ekspor di partisi menjadi dua bagian yaitu data training (Januari 2011-Desember 2020) dan data testing (Januari 2021-Desember 2022).
## Time Series:
## Start = 1
## End = 120
## Frequency = 1
## [1] 14606.20 14415.30 16366.00 16554.20 18287.40 18386.90 17418.50 18647.80
## [9] 17543.40 16957.70 17235.50 17077.70 15570.20 15695.40 17251.50 16173.20
## [17] 16829.50 15441.50 16090.60 14047.00 15898.10 15324.00 16316.90 15393.90
## [25] 15375.50 15015.60 15024.60 14760.90 16133.40 14758.80 15087.90 13083.70
## [33] 14706.80 15698.30 15938.60 16967.80 14472.30 14634.09 15192.60 14292.50
## [41] 14823.60 15409.50 14124.10 14481.70 15275.80 15349.00 13616.20 14621.30
## [49] 13355.80 12172.80 13634.30 13103.70 12690.20 13506.10 11465.80 12726.80
## [57] 12588.40 12122.10 11111.20 11916.10 10480.60 11312.00 11810.02 11475.86
## [65] 11514.28 12974.40 9530.80 12748.34 12568.50 12742.61 13503.60 13828.70
## [73] 13397.68 12615.98 14718.48 13269.69 14333.86 11661.38 13611.06 15187.99
## [81] 14580.22 15252.56 15334.74 14864.55 14576.30 14132.40 15510.60 14496.20
## [89] 16198.30 12941.70 16284.70 15865.10 14956.30 15909.10 14851.70 14290.10
## [97] 14028.10 12788.60 14447.80 13068.10 14751.80 11763.30 15238.40 14262.00
## [105] 14080.10 14881.50 13944.50 14428.80 13632.00 14060.90 14067.90 12163.10
## [113] 10454.30 12009.30 13702.70 13095.80 13960.50 14362.20 15259.30 16538.30
## Time Series:
## Start = 121
## End = 144
## Frequency = 1
## [1] 15293.7 15256.2 18354.4 18490.7 16932.9 18542.4 19385.8 21427.1 20605.6
## [10] 22029.7 22844.4 22359.5 19173.7 20472.9 26497.5 27322.3 21509.8 26150.1
## [19] 25563.2 27862.1 24777.2 24728.4 24094.0 23828.1
Plot Data Partisi
Berdasarkan plot deret waktu diatas, terlihat bahwa data training dan testing cenderung memiliki pola trend.
Simple Moving Average
Simple Moving Average N=3
Berikut merupakan hasil rata-rata bergerak (pemulusan) dengan simple moving average (N=3).
## Time Series:
## Start = 1
## End = 6
## Frequency = 1
## [1] NA NA 15129.17 15778.50 17069.20 17742.83
Berikutnya dihitung hasil ramalan dari simple moving average (N=3).
## [1] NA NA NA 15129.17 15778.50 17069.20 17742.83 18030.93
## [9] 18151.07 17869.90 17716.30 17245.53 17090.30 16627.80 16114.43 16172.37
## [17] 16373.37 16751.40 16148.07 16120.53 15193.03 15345.23 15089.70 15846.33
## [25] 15678.27 15695.43 15261.67 15138.57 14933.70 15306.30 15217.70 15326.70
## [33] 14310.13 14292.80 14496.27 15447.90 16201.57 15792.90 15358.06 14766.33
## [41] 14706.40 14769.57 14841.87 14785.73 14671.77 14627.20 15035.50 14747.00
## [49] 14528.83 13864.43 13383.30 13054.30 12970.27 13142.73 13100.00 12554.03
## [57] 12566.23 12260.33 12479.10 11940.57 11716.47 11169.30 11236.23 11200.87
## [65] 11532.63 11600.06 11988.18 11339.83 11751.18 11615.88 12686.48 12938.24
## [73] 13358.30 13576.66 13280.79 13577.38 13534.72 14107.34 13088.31 13202.10
## [81] 13486.81 14459.76 15006.92 15055.84 15150.62 14925.19 14524.42 14739.77
## [89] 14713.07 15401.70 14545.40 15141.57 15030.50 15702.03 15576.83 15239.03
## [97] 15016.97 14389.97 13702.27 13754.83 13434.83 14089.23 13194.40 13917.83
## [105] 13754.57 14526.83 14407.87 14302.03 14418.27 14001.77 14040.57 13920.27
## [113] 13430.63 12228.43 11542.23 12055.43 12935.93 13586.33 13806.17 14527.33
## [121] 15386.60
Hasil perhitungan rata-rata bergerak dan ramalan digabungkan dengan data aktualnya:
ekspor3<-cbind(aktual=c(ekspor.training, rep(NA,2)),pemulusan=c(sma3,rep(NA,2)),ramalan=c(ramal3,rep(ramal3[length(ramal3)],1)))
#mengubah dataframe menjadi timeseries
ekspor3.ts<-ts(ekspor3, start=c(2011,1),frequency = 12)
head(ekspor3.ts)
## aktual pemulusan ramalan
## Jan 2011 14606.2 NA NA
## Feb 2011 14415.3 NA NA
## Mar 2011 16366.0 15129.17 NA
## Apr 2011 16554.2 15778.50 15129.17
## May 2011 18287.4 17069.20 15778.50
## Jun 2011 18386.9 17742.83 17069.20
Plot Data Aktual, Pemulusan (Nilai rata-rata bergerak), dan Peramalan
ts.plot(ekspor3.ts[,1], xlab="Bulan", ylab="ekspor Emas", lty=1, col="black")
lines(ekspor3.ts[,2],col="red",lty=1)
lines(ekspor3.ts[,3],col="blue",lty=2)
legend("topleft",c("Data aktual","Data pemulusan","Data peramalan"), lty=8,
col=c("black","red","blue"), cex=0.8)
Ukuran Keakuratan Ramalan SMA (N=3)
## Time Series:
## Start = 1
## End = 120
## Frequency = 1
## [1] NA NA NA 1425.0333333 2508.9000000
## [6] 1317.7000000 -324.3333333 616.8666667 -607.6666667 -912.2000000
## [11] -480.8000000 -167.8333333 -1520.1000000 -932.4000000 1137.0666667
## [16] 0.8333333 456.1333333 -1309.9000000 -57.4666667 -2073.5333333
## [21] 705.0666667 -21.2333333 1227.2000000 -452.4333333 -302.7666667
## [26] -679.8333333 -237.0666667 -377.6666667 1199.7000000 -547.5000000
## [31] -129.8000000 -2243.0000000 396.6666667 1405.5000000 1442.3333333
## [36] 1519.9000000 -1729.2666667 -1158.8096100 -165.4634633 -473.8301300
## [41] 117.2032033 639.9333333 -717.7666667 -304.0333333 604.0333333
## [46] 721.8000000 -1419.3000000 -125.7000000 -1173.0333333 -1691.6333333
## [51] 251.0000000 49.4000000 -280.0666667 363.3666667 -1634.2000000
## [56] 172.7666667 22.1666667 -138.2333333 -1367.9000000 -24.4666667
## [61] -1235.8666667 142.7000000 573.7908579 274.9855291 -18.3444959
## [66] 1374.3439650 -2457.3813046 1408.5085962 817.3253107 1126.7298133
## [71] 817.1164540 890.4619476 39.3732480 -960.6785475 1437.6920526
## [76] -307.6885790 799.1436504 -2445.9658951 522.7539919 1985.8915290
## [81] 1093.4061528 792.8069901 327.8120557 -191.2913232 -574.3154054
## [86] -792.7942301 986.1843035 -243.5666667 1485.2333333 -2460.0000000
## [91] 1739.3000000 723.5333333 -74.2000000 207.0666667 -725.1333333
## [96] -948.9333333 -988.8666667 -1601.3666667 745.5333333 -686.7333333
## [101] 1316.9666667 -2325.9333333 2044.0000000 344.1666667 325.5333333
## [106] 354.6666667 -463.3666667 126.7666667 -786.2666667 59.1333333
## [111] 27.3333333 -1757.1666667 -2976.3333333 -219.1333333 2160.4666667
## [116] 1040.3666667 1024.5666667 775.8666667 1453.1333333 2010.9666667
## [1] 877.7672
#RMSE
MSE3.sqrt=sqrt(mean(error3[4:length(ekspor.training)]^2))
MSE3.sqrt1=1.25*MAE.SMA3
#MAPE
MAPE3=mean(abs((error3[4:length(ekspor.training)]/ekspor.training[4:length(ekspor.training)])*100))
MAPE3
## [1] 6.309797
akurasi3<-data.frame("Ukuran keakuratan ramalan"=c("MAE", "RMSE", "MAPE"),
"Simple Moving Average N=3"=c(MAE.SMA3 , MSE3.sqrt, MAPE3))
akurasi3
## Ukuran.keakuratan.ramalan Simple.Moving.Average.N.3
## 1 MAE 877.767174
## 2 RMSE 1115.889103
## 3 MAPE 6.309797
Simple Moving Average N=4
Berikut merupakan hasil rata-rata bergerak (pemulusan) dengan simple moving average (N=3).
## Time Series:
## Start = 1
## End = 6
## Frequency = 1
## [1] NA NA NA 15485.42 16405.73 17398.63
Berikutnya dihitung hasil ramalan dari simple moving average (N=4).
## [1] NA NA NA NA 15485.42 16405.73
Hasil perhitungan rata-rata bergerak dan ramalan digabungkan dengan data aktualnya:
ekspor4<-cbind(aktual=c(ekspor.training, rep(NA,2)),pemulusan=c(sma4,rep(NA,2)),ramalan=c(ramal4,rep(ramal4[length(ramal4)],1)))
ekspor4.ts<-ts(ekspor4, start=c(2011,1),frequency = 12)
head(ekspor4.ts)
## aktual pemulusan ramalan
## Jan 2011 14606.2 NA NA
## Feb 2011 14415.3 NA NA
## Mar 2011 16366.0 NA NA
## Apr 2011 16554.2 15485.42 NA
## May 2011 18287.4 16405.73 15485.42
## Jun 2011 18386.9 17398.63 16405.73
Plot Data Aktual, Pemulusan, dan Peramalan
ts.plot(ekspor4.ts[,1], xlab="Bulan", ylab="ekspor Emas", lty=1, col="black")
lines(ekspor4.ts[,2],col="red",lty=1)
lines(ekspor4.ts[,3],col="blue",lty=2)
legend("topleft",c("Data aktual","Data pemulusan","Data peramalan"), lty=8,
col=c("black","red","blue"), cex=0.8)
Ukuran Keakuratan Ramalan
## Time Series:
## Start = 1
## End = 120
## Frequency = 1
## [1] NA NA NA NA 2801.97500 1981.17500
## [7] 19.87500 986.05000 -641.75000 -1041.45000 -406.35000 -518.40000
## [13] -1633.37500 -1014.87500 856.80000 -225.50000 656.92500 -1045.90000
## [19] -333.32500 -2086.70000 295.95000 -45.30000 976.97500 -2.60000
## [25] -357.72500 -586.97500 -500.87500 -441.50000 1089.25000 -474.82500
## [31] -81.52500 -2101.55000 -59.15000 1289.00000 1294.42500 2110.95000
## [37] -1355.57500 -1135.15961 -310.59760 -1024.19760 175.72740 673.80240
## [43] -805.45000 -180.72500 566.07500 526.22500 -1191.45000 -59.37500
## [49] -1359.77500 -2062.77500 192.77500 -342.35000 -376.45000 605.85000
## [55] -1767.77500 35.35000 -8.82500 -449.67500 -1114.57500 -221.02500
## [61] -1453.85000 -95.50000 605.04919 96.17921 244.66254 1446.35797
## [67] -2412.84203 1374.50050 876.54910 787.09986 1606.03734 937.93734
## [73] 236.82305 -752.16634 1381.98846 -370.51903 833.40347 -2073.12540
## [79] 115.21170 1968.99399 881.64376 1492.40203 676.77732 -224.32947
## [85] -431.71558 -874.63655 783.60433 -274.76177 1519.42500 -2142.67500
## [91] 1498.00000 884.87500 -366.15000 897.15000 -902.10000 -1105.45000
## [97] -973.70000 -1981.15000 458.17500 -820.55000 1168.65000 -2000.77500
## [103] 1730.65000 556.60000 76.22500 1045.55000 -671.00000 136.77500
## [109] -701.72500 -160.80000 51.35000 -1884.30000 -3026.67500 -677.25000
## [115] 1529.05000 1013.45000 1644.97500 1170.12500 1479.00000 2368.85000
## [1] 917.6931
#RMSE
MSE4.sqrt=sqrt(mean(error4[5:length(ekspor.training)]^2))
MSE4.sqrt1=1.25*MAE.SMA4
#MAPE
MAPE4=mean(abs((error4[5:length(ekspor.training)]/ekspor.training[5:length(ekspor.training)])*100))
MAPE4
## [1] 6.584614
akurasi4<-data.frame("Ukuran keakuratan ramalan"=c("MAE", "RMSE", "MAPE"),
"Simple Moving Average N=4"=c( MAE.SMA4, MSE4.sqrt,MAPE4))
akurasi4
## Ukuran.keakuratan.ramalan Simple.Moving.Average.N.4
## 1 MAE 917.693120
## 2 RMSE 1142.196663
## 3 MAPE 6.584614
Simple Moving Average N=5
Berikut merupakan hasil rata-rata bergerak (pemulusan) dengan simple moving average (N=5).
## Time Series:
## Start = 1
## End = 6
## Frequency = 1
## [1] NA NA NA NA 16045.82 16801.96
Berikutnya dihitung hasil ramalan dari simple moving average (N=5).
## [1] NA NA NA NA NA 16045.82
Hasil perhitungan rata-rata bergerak dan ramalan digabungkan dengan data aktualnya:
ekspor5<-cbind(aktual=c(ekspor.training, rep(NA,2)),pemulusan=c(sma5,rep(NA,2)),ramalan=c(ramal5,rep(ramal5[length(ramal5)],1)))
ekspor5.ts<-ts(ekspor5, start=c(2011,1),frequency = 12)
head(ekspor5.ts)
## aktual pemulusan ramalan
## Jan 2011 14606.2 NA NA
## Feb 2011 14415.3 NA NA
## Mar 2011 16366.0 NA NA
## Apr 2011 16554.2 NA NA
## May 2011 18287.4 16045.82 NA
## Jun 2011 18386.9 16801.96 16045.82
Plot Data Aktual, Pemulusan, dan Peramalan
ts.plot(ekspor5.ts[,1], xlab="Bulan", ylab="ekspor Emas", lty=1, col="black")
lines(ekspor5.ts[,2],col="red",lty=1)
lines(ekspor5.ts[,3],col="blue",lty=2)
legend("topleft",c("Data aktual","Data pemulusan","Data peramalan"), lty=8,
col=c("black","red","blue"), cex=0.8)
Ukuran Keakuratan Ramalan
## Time Series:
## Start = 1
## End = 120
## Frequency = 1
## [1] NA NA NA NA NA 2341.08000
## [7] 616.54000 1245.20000 -315.56000 -1099.10000 -555.36000 -482.88000
## [13] -1922.22000 -1181.50000 744.20000 -392.86000 475.90000 -862.46000
## [19] -187.62000 -2310.26000 181.74000 -337.34000 956.66000 -141.42000
## [25] -20.48000 -646.08000 -460.58000 -664.40000 1019.30000 -503.20000
## [31] -50.76000 -2069.42000 -58.14000 944.18000 1271.50000 2064.74000
## [37] -806.74000 -922.66961 -349.61808 -1148.57808 -288.25808 726.48192
## [43] -746.35808 -286.76000 649.52000 526.06000 -1311.82000 51.94000
## [49] -1313.00000 -2270.82000 -188.72000 -376.38000 -687.38000 514.74000
## [55] -1555.62000 -153.22000 -110.12000 -473.36000 -1370.64000 -86.76000
## [61] -1612.32000 -331.68000 421.62419 149.87542 115.36676 1655.84638
## [67] -2286.51362 1287.26286 919.76806 875.34516 1390.66987 1609.92987
## [73] 319.32646 -592.23783 1500.76430 -343.19730 767.75468 -2005.76037
## [79] 291.18579 1669.09786 967.42031 1377.66242 1276.09370 71.23334
## [85] -467.71066 -789.27247 678.49076 -387.51654 1482.29058 -2041.06000
## [91] 1628.86000 778.80000 -200.90000 659.88000 -339.68000 -1283.28000
## [97] -1146.36000 -2018.46000 74.28000 -1013.16000 1027.26000 -2053.58000
## [103] 1874.48000 408.12000 263.38000 862.38000 -100.56000 -52.50000
## [109] -687.38000 -132.48000 -121.64000 -1863.72000 -3216.24000 -866.34000
## [115] 1151.60000 616.34000 1675.46000 1717.68000 1833.20000 2462.20000
## [1] 911.7628
#RMSE
MSE5.sqrt=sqrt(mean(error5[6:length(ekspor.training)]^2))
MSE5.sqrt1=1.25*MAE.SMA5
#MAPE
MAPE5=mean(abs((error5[6:length(ekspor.training)]/ekspor.training[6:length(ekspor.training)])*100))
MAPE5
## [1] 6.584178
akurasi5<-data.frame("Ukuran keakuratan ramalan"=c("MAE", "RMSE", "MAPE"),
"Simple Moving Average N=5"=c( MAE.SMA5, MSE5.sqrt, MAPE5))
akurasi5
## Ukuran.keakuratan.ramalan Simple.Moving.Average.N.5
## 1 MAE 911.762795
## 2 RMSE 1141.387777
## 3 MAPE 6.584178
Perbandingan SMA (N=3,4,5)
gabungan_akurasi<-cbind(akurasi3,akurasi4$Simple.Moving.Average.N.4,akurasi5$Simple.Moving.Average.N.5)
gabungan_akurasi
## Ukuran.keakuratan.ramalan Simple.Moving.Average.N.3
## 1 MAE 877.767174
## 2 RMSE 1115.889103
## 3 MAPE 6.309797
## akurasi4$Simple.Moving.Average.N.4 akurasi5$Simple.Moving.Average.N.5
## 1 917.693120 911.762795
## 2 1142.196663 1141.387777
## 3 6.584614 6.584178
Berdasarkan perbandingan menggunakan tiga ukuran keakuratan ramalan di atas dapat diketahui bahwa simple moving average dengan ordo 3 memiliki keakuratan terbaik dikarenakan memiliki nilai MAE, RMSE, dan MAPE terendah.
Validasi Model SMA 3 (Data Testing)
## [1] 12055.43 12935.93 13586.33 13806.17 14527.33 15386.60
Berdasarkan hasil ramalan di atas dapat diketahui bahwa nilai ekspor untuk 24 bulan ke depan adalah 15386.60. Hal ini dikarenakan Model SMA hanya mampu digunakan untuk memodelkan data stasioner dan lemah jika digunakan untuk meramalkan data dengan pola lain seperti trend dan seasonal.
## Time Series:
## Start = 1
## End = 24
## Frequency = 1
## hasilramal
## [1,] 15386.6
## [2,] 15386.6
## [3,] 15386.6
## [4,] 15386.6
## [5,] 15386.6
## [6,] 15386.6
## [7,] 15386.6
## [8,] 15386.6
## [9,] 15386.6
## [10,] 15386.6
## [11,] 15386.6
## [12,] 15386.6
## [13,] 15386.6
## [14,] 15386.6
## [15,] 15386.6
## [16,] 15386.6
## [17,] 15386.6
## [18,] 15386.6
## [19,] 15386.6
## [20,] 15386.6
## [21,] 15386.6
## [22,] 15386.6
## [23,] 15386.6
## [24,] 15386.6
Ukuran Keakuratan Ramalan
## Time Series:
## Start = 121
## End = 144
## Frequency = 1
## [1] -92.9 -130.4 2967.8 3104.1 1546.3 3155.8 3999.2 6040.5 5219.0
## [10] 6643.1 7457.8 6972.9 3787.1 5086.3 11110.9 11935.7 6123.2 10763.5
## [19] 10176.6 12475.5 9390.6 9341.8 8707.4 8441.5
## [1] 7020.3
#RMSE
MSE33.sqrt=sqrt(mean(error33[3:length(ekspor.test)]^2))
MSE33.sqrt1=1.25*MAD.SMA33
#MAPE
MAPE33=mean(abs((error33[3:length(ekspor.test)]/ekspor.test[3:length(ekspor.test)])*100))
MAPE33
## [1] 29.95056
akurasi33<-data.frame("Ukuran keakuratan ramalan"=c("MAD", "RMSE", "MAPE"),
"Simple Moving Average N=3"=c(MAD.SMA33 ,MSE33.sqrt, MAPE33))
akurasi33
## Ukuran.keakuratan.ramalan Simple.Moving.Average.N.3
## 1 MAD 7020.30000
## 2 RMSE 7687.31903
## 3 MAPE 29.95056
Single Exponential Smoothing
Single Exponential Smoothing Alpha 0.25
## Holt-Winters exponential smoothing without trend and without seasonal component.
##
## Call:
## HoltWinters(x = ekspor.training, alpha = 0.25, beta = FALSE, gamma = FALSE)
##
## Smoothing parameters:
## alpha: 0.25
## beta : FALSE
## gamma: FALSE
##
## Coefficients:
## [,1]
## a 14581.54
## Time Series:
## Start = 2
## End = 7
## Frequency = 1
## xhat level
## 2 14606.20 14606.20
## 3 14558.48 14558.48
## 4 15010.36 15010.36
## 5 15396.32 15396.32
## 6 16119.09 16119.09
## 7 16686.04 16686.04
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 121 14581.54 13086.05 16077.03 12294.39 16868.69
## 122 14581.54 13040.02 16123.05 12224.00 16939.08
## 123 14581.54 12995.33 16167.74 12155.65 17007.43
## 124 14581.54 12951.87 16211.21 12089.17 17073.91
## 125 14581.54 12909.53 16253.55 12024.42 17138.65
## 126 14581.54 12868.24 16294.84 11961.28 17201.80
## 127 14581.54 12827.92 16335.16 11899.61 17263.46
## 128 14581.54 12788.51 16374.57 11839.34 17323.74
## 129 14581.54 12749.95 16413.13 11780.36 17382.72
## 130 14581.54 12712.18 16450.90 11722.60 17440.48
## 131 14581.54 12675.16 16487.92 11665.98 17497.10
## 132 14581.54 12638.84 16524.24 11610.44 17552.64
## 133 14581.54 12603.19 16559.89 11555.92 17607.16
## 134 14581.54 12568.18 16594.90 11502.36 17660.71
## 135 14581.54 12533.76 16629.32 11449.73 17713.35
## 136 14581.54 12499.91 16663.17 11397.96 17765.12
## 137 14581.54 12466.60 16696.48 11347.02 17816.06
## 138 14581.54 12433.81 16729.27 11296.87 17866.21
## 139 14581.54 12401.51 16761.57 11247.47 17915.61
## 140 14581.54 12369.68 16793.40 11198.79 17964.28
## 141 14581.54 12338.31 16824.77 11150.81 18012.27
## 142 14581.54 12307.36 16855.72 11103.49 18059.59
## 143 14581.54 12276.84 16886.24 11056.80 18106.28
## 144 14581.54 12246.71 16916.37 11010.72 18152.36
## ME RMSE MAE MPE MAPE MASE
## Training set -0.8289378 1162.023 911.9938 -0.6240384 6.541993 0.8793507
## Test set 7231.0317338 8072.552 7231.0317 31.1926724 31.192672 6.9722107
## ACF1 Theil's U
## Training set 0.1869430 NA
## Test set 0.6935623 3.107437
Single Exponential Smoothing Alpha 0.50
## Holt-Winters exponential smoothing without trend and without seasonal component.
##
## Call:
## HoltWinters(x = ekspor.training, alpha = 0.5, beta = FALSE, gamma = FALSE)
##
## Smoothing parameters:
## alpha: 0.5
## beta : FALSE
## gamma: FALSE
##
## Coefficients:
## [,1]
## a 15560.98
## Time Series:
## Start = 2
## End = 7
## Frequency = 1
## xhat level
## 2 14606.20 14606.20
## 3 14510.75 14510.75
## 4 15438.38 15438.38
## 5 15996.29 15996.29
## 6 17141.84 17141.84
## 7 17764.37 17764.37
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 121 15560.98 14128.14 16993.81 13369.641 17752.31
## 122 15560.98 13959.02 17162.94 13110.989 18010.96
## 123 15560.98 13806.12 17315.83 12877.150 18244.80
## 124 15560.98 13665.51 17456.44 12662.113 18459.84
## 125 15560.98 13534.64 17587.31 12461.961 18659.99
## 126 15560.98 13411.72 17710.23 12273.974 18847.98
## 127 15560.98 13295.46 17826.49 12096.172 19025.78
## 128 15560.98 13184.88 17937.07 11927.059 19194.89
## 129 15560.98 13079.23 18042.72 11765.473 19356.48
## 130 15560.98 12977.89 18144.06 11610.491 19511.46
## 131 15560.98 12880.38 18241.57 11461.364 19660.59
## 132 15560.98 12786.30 18335.65 11317.475 19804.48
## 133 15560.98 12695.30 18426.65 11178.307 19943.64
## 134 15560.98 12607.11 18514.84 11043.424 20078.53
## 135 15560.98 12521.47 18600.48 10912.453 20209.50
## 136 15560.98 12438.18 18683.77 10785.073 20336.88
## 137 15560.98 12357.06 18764.89 10661.003 20460.95
## 138 15560.98 12277.93 18844.02 10539.998 20581.95
## 139 15560.98 12200.68 18921.27 10421.841 20700.11
## 140 15560.98 12125.15 18996.80 10306.340 20815.61
## 141 15560.98 12051.26 19070.69 10193.325 20928.63
## 142 15560.98 11978.88 19143.07 10082.640 21039.31
## 143 15560.98 11907.94 19214.01 9974.147 21147.80
## 144 15560.98 11838.36 19283.59 9867.722 21254.23
## ME RMSE MAE MPE MAPE MASE
## Training set 16.04664 1113.456 890.4279 -0.3915778 6.388531 0.8585567
## Test set 6251.59556 7208.378 6299.2664 26.5709116 26.883023 6.0737961
## ACF1 Theil's U
## Training set -0.1269137 NA
## Test set 0.6935623 2.752158
Single Exponential Smoothing Alpha 0.75
## Holt-Winters exponential smoothing without trend and without seasonal component.
##
## Call:
## HoltWinters(x = ekspor.training, alpha = 0.75, beta = FALSE, gamma = FALSE)
##
## Smoothing parameters:
## alpha: 0.75
## beta : FALSE
## gamma: FALSE
##
## Coefficients:
## [,1]
## a 16152.94
## Time Series:
## Start = 2
## End = 7
## Frequency = 1
## xhat level
## 2 14606.20 14606.20
## 3 14463.02 14463.02
## 4 15890.26 15890.26
## 5 16388.21 16388.21
## 6 17812.60 17812.60
## 7 18243.33 18243.33
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 121 16152.94 14646.21 17659.68 13848.586 18457.30
## 122 16152.94 14269.52 18036.37 13272.496 19033.39
## 123 16152.94 13956.51 18349.38 12793.793 19512.10
## 124 16152.94 13682.86 18623.03 12375.272 19930.62
## 125 16152.94 13436.63 18869.26 11998.703 20307.19
## 126 16152.94 13210.94 19094.95 11653.540 20652.35
## 127 16152.94 13001.37 19304.52 11333.032 20972.86
## 128 16152.94 12804.90 19500.99 11032.547 21273.34
## 129 16152.94 12619.33 19686.56 10748.744 21557.14
## 130 16152.94 12443.03 19862.86 10479.119 21826.77
## 131 16152.94 12274.74 20031.15 10221.738 22084.15
## 132 16152.94 12113.45 20192.44 9975.071 22330.82
## 133 16152.94 11958.36 20347.53 9737.881 22568.01
## 134 16152.94 11808.80 20497.09 9509.154 22796.73
## 135 16152.94 11664.23 20641.66 9288.044 23017.85
## 136 16152.94 11524.16 20781.72 9073.836 23232.05
## 137 16152.94 11388.22 20917.67 8865.922 23439.97
## 138 16152.94 11256.04 21049.85 8663.779 23642.11
## 139 16152.94 11127.34 21178.55 8466.949 23838.94
## 140 16152.94 11001.86 21304.03 8275.037 24030.85
## 141 16152.94 10879.36 21426.53 8087.689 24218.20
## 142 16152.94 10759.64 21546.25 7904.595 24401.29
## 143 16152.94 10642.52 21663.37 7725.479 24580.41
## 144 16152.94 10527.84 21778.05 7550.091 24755.80
## ME RMSE MAE MPE MAPE MASE
## Training set 17.33047 1170.893 938.1305 -0.3533665 6.757891 0.9045519
## Test set 5659.62627 6701.465 5805.9587 23.7775285 24.735545 5.5981454
## ACF1 Theil's U
## Training set -0.3554709 NA
## Test set 0.6935623 2.545397
Single Exponential Smoothing Alpha Optimum
## Holt-Winters exponential smoothing without trend and without seasonal component.
##
## Call:
## HoltWinters(x = ekspor.training, beta = FALSE, gamma = FALSE)
##
## Smoothing parameters:
## alpha: 0.4584562
## beta : FALSE
## gamma: FALSE
##
## Coefficients:
## [,1]
## a 15428.91
## Time Series:
## Start = 2
## End = 7
## Frequency = 1
## xhat level
## 2 14606.20 14606.20
## 3 14518.68 14518.68
## 4 15365.60 15365.60
## 5 15910.52 15910.52
## 6 17000.21 17000.21
## 7 17635.95 17635.95
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 121 15428.91 13997.85 16859.97 13240.29 17617.52
## 122 15428.91 13854.63 17003.19 13021.25 17836.56
## 123 15428.91 13723.39 17134.43 12820.54 18037.28
## 124 15428.91 13601.55 17256.27 12634.21 18223.61
## 125 15428.91 13487.34 17370.47 12459.54 18398.28
## 126 15428.91 13379.49 17478.33 12294.59 18563.22
## 127 15428.91 13277.04 17580.78 12137.91 18719.91
## 128 15428.91 13179.24 17678.57 11988.34 18869.47
## 129 15428.91 13085.53 17772.29 11845.02 19012.80
## 130 15428.91 12995.42 17862.40 11707.21 19150.61
## 131 15428.91 12908.53 17949.29 11574.32 19283.49
## 132 15428.91 12824.54 18033.28 11445.87 19411.95
## 133 15428.91 12743.17 18114.64 11321.43 19536.39
## 134 15428.91 12664.20 18193.62 11200.65 19657.16
## 135 15428.91 12587.42 18270.40 11083.23 19774.59
## 136 15428.91 12512.66 18345.15 10968.90 19888.92
## 137 15428.91 12439.77 18418.04 10857.42 20000.39
## 138 15428.91 12368.62 18489.20 10748.60 20109.21
## 139 15428.91 12299.08 18558.73 10642.26 20215.56
## 140 15428.91 12231.06 18626.76 10538.22 20319.60
## 141 15428.91 12164.45 18693.36 10436.35 20421.46
## 142 15428.91 12099.18 18758.64 10336.52 20521.29
## 143 15428.91 12035.16 18822.66 10238.61 20619.20
## 144 15428.91 11972.32 18885.49 10142.52 20715.30
## ME RMSE MAE MPE MAPE MASE
## Training set 15.07999 1112.061 885.1377 -0.4082788 6.346038 0.8534559
## Test set 6383.66237 7323.211 6409.3221 27.1941081 27.362119 6.1799126
## ACF1 Theil's U
## Training set -0.08211838 NA
## Test set 0.69356234 2.799194
Kesimpulan
Nilai Alpha optimum pada Single exponential smoothing adalah 0.4584562, nilai ini menghasilkan ukuran keakuratan ramalan terbaik dibandingkan dengan Single exponential smoothing alpha 0.25, 0.50, dan 0.75.
Double Exponential Smoothing
Double Exponential Smoothing dengan Alpha dan Beta 0.25
## Holt-Winters exponential smoothing with trend and without seasonal component.
##
## Call:
## HoltWinters(x = ekspor.training, alpha = 0.25, beta = 0.25, gamma = FALSE)
##
## Smoothing parameters:
## alpha: 0.25
## beta : 0.25
## gamma: FALSE
##
## Coefficients:
## [,1]
## a 14526.7647
## b 351.7553
## Time Series:
## Start = 3
## End = 8
## Frequency = 1
## xhat level trend
## 3 14224.40 14415.30 -190.90000
## 4 14702.75 14759.80 -57.05000
## 5 15224.28 15165.61 58.66562
## 6 16240.17 15990.06 250.11074
## 7 17161.13 16776.85 384.28141
## 8 17625.84 17225.48 400.36682
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 121 14878.52 13292.31 16464.73 12452.63 17304.41
## 122 15230.28 13568.42 16892.13 12688.69 17771.86
## 123 15582.03 13816.93 17347.13 12882.54 18281.52
## 124 15933.79 14037.17 17830.41 13033.16 18834.42
## 125 16285.54 14229.77 18341.31 13141.52 19429.57
## 126 16637.30 14396.25 18878.34 13209.92 20064.68
## 127 16989.05 14538.52 19439.58 13241.29 20736.82
## 128 17340.81 14658.58 20023.03 13238.70 21442.92
## 129 17692.56 14758.35 20626.78 13205.07 22180.06
## 130 18044.32 14839.54 21249.09 13143.03 22945.60
## 131 18396.07 14903.66 21888.49 13054.89 23737.26
## 132 18747.83 14952.00 22543.66 12942.61 24553.05
## 133 19099.58 14985.66 23213.51 12807.88 25391.29
## 134 19451.34 15005.58 23897.10 12652.14 26250.54
## 135 19803.09 15012.57 24593.62 12476.62 27129.57
## 136 20154.85 15007.31 25302.39 12282.37 28027.33
## 137 20506.61 14990.40 26022.81 12070.30 28942.91
## 138 20858.36 14962.36 26754.36 11841.21 29875.51
## 139 21210.12 14923.65 27496.58 11595.79 30824.44
## 140 21561.87 14874.65 28249.09 11334.66 31789.09
## 141 21913.63 14815.74 29011.51 11058.35 32768.91
## 142 22265.38 14747.23 29783.54 10767.35 33763.41
## 143 22617.14 14669.39 30564.88 10462.11 34772.16
## 144 22968.89 14582.51 31355.28 10143.02 35794.76
## ME RMSE MAE MPE MAPE MASE
## Training set 73.58038 1234.662 993.6101 0.09321529 7.058205 0.9580457
## Test set 2888.86465 3536.488 2888.8647 12.41122711 12.411227 2.7854632
## ACF1 Theil's U
## Training set 0.2242680 NA
## Test set 0.2492717 1.412556
Double Exponential Smoothing dengan Alpha dan Beta 0.50
## Holt-Winters exponential smoothing with trend and without seasonal component.
##
## Call:
## HoltWinters(x = ekspor.training, alpha = 0.5, beta = 0.5, gamma = FALSE)
##
## Smoothing parameters:
## alpha: 0.5
## beta : 0.5
## gamma: FALSE
##
## Coefficients:
## [,1]
## a 16172.2439
## b 927.7673
## Time Series:
## Start = 3
## End = 8
## Frequency = 1
## xhat level trend
## 3 14224.40 14415.30 -190.9000
## 4 15639.70 15295.20 344.5000
## 5 16670.07 16096.95 573.1250
## 6 18456.19 17478.74 977.4562
## 7 19381.68 18421.55 960.1328
## 8 18869.43 18400.09 469.3379
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 121 17100.01 15508.926 18691.10 14666.6565 19533.37
## 122 18027.78 16038.922 20016.64 14986.0852 21069.47
## 123 18955.55 16408.567 21502.52 15060.2778 22850.81
## 124 19883.31 16651.804 23114.82 14941.1465 24825.48
## 125 20811.08 16793.788 24828.37 14667.1611 26955.00
## 126 21738.85 16850.953 26626.74 14263.4571 29214.24
## 127 22666.62 16834.143 28499.09 13746.6193 31586.61
## 128 23594.38 16750.867 30437.90 13128.1282 34060.64
## 129 24522.15 16606.601 32437.70 12416.3631 36627.94
## 130 25449.92 16405.540 34494.30 11617.7351 39282.10
## 131 26377.68 16151.017 36604.35 10737.3457 42018.02
## 132 27305.45 15845.773 38765.13 9779.3846 44831.52
## 133 28233.22 15492.114 40974.32 8747.3802 47719.06
## 134 29160.99 15092.024 43229.95 7644.3649 50677.61
## 135 30088.75 14647.234 45530.27 6472.9869 53704.52
## 136 31016.52 14159.277 47873.77 5235.5903 56797.45
## 137 31944.29 13629.523 50259.05 3934.2723 59954.31
## 138 32872.06 13059.213 52684.90 2570.9268 63173.19
## 139 33799.82 12449.471 55150.18 1147.2765 66452.37
## 140 34727.59 11801.329 57653.85 -335.1004 69790.28
## 141 35655.36 11115.739 60194.98 -1874.7508 73185.47
## 142 36583.13 10393.579 62772.67 -3470.3295 76636.58
## 143 37510.89 9635.667 65386.12 -5120.5862 80142.37
## 144 38438.66 8842.766 68034.55 -6824.3543 83701.67
## ME RMSE MAE MPE MAPE MASE
## Training set 37.92093 1236.840 985.4471 -0.1144615 7.078871 0.9501749
## Test set -5956.76495 7139.795 5956.7649 -26.5320033 26.532003 5.7435538
## ACF1 Theil's U
## Training set -0.1513228 NA
## Test set 0.6787059 2.672508
Double Exponential Smoothing dengan Alpha dan Beta 0.75
## Holt-Winters exponential smoothing with trend and without seasonal component.
##
## Call:
## HoltWinters(x = ekspor.training, alpha = 0.75, beta = 0.75, gamma = FALSE)
##
## Smoothing parameters:
## alpha: 0.75
## beta : 0.75
## gamma: FALSE
##
## Coefficients:
## [,1]
## a 16364.374
## b 1073.028
## Time Series:
## Start = 3
## End = 8
## Frequency = 1
## xhat level trend
## 3 14224.40 14415.30 -190.9000
## 4 16844.35 15830.60 1013.7500
## 5 17477.28 16626.74 850.5406
## 6 19391.10 18084.87 1306.2342
## 7 19379.32 18637.95 741.3696
## 8 17547.11 17908.71 -361.5920
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 121 17437.40 15516.3368 19358.47 14499.3862 20375.42
## 122 18510.43 15340.5812 21680.28 13662.5645 23358.30
## 123 19583.46 14785.2990 24381.62 12245.3071 26921.61
## 124 20656.49 13952.0810 27360.89 10402.9835 30909.99
## 125 21729.51 12888.5026 30570.52 8208.3541 35250.67
## 126 22802.54 11622.1563 33982.93 5703.6179 39901.47
## 127 23875.57 10171.6630 37579.48 2917.2533 44833.89
## 128 24948.60 8550.8239 41346.37 -129.6329 50026.83
## 129 26021.63 6770.4909 45272.76 -3420.4439 55463.69
## 130 27094.65 4839.5405 49349.77 -6941.6043 61130.91
## 131 28167.68 2765.4378 53569.92 -10681.6972 67017.06
## 132 29240.71 554.5916 57926.83 -14630.9214 73112.34
## 133 30313.74 -1787.4084 62414.88 -18780.7280 79408.20
## 134 31386.76 -4255.6251 67029.15 -23123.5663 85897.09
## 135 32459.79 -6845.6522 71765.24 -27652.6976 92572.28
## 136 33532.82 -9553.5235 76619.16 -32362.0560 99427.70
## 137 34605.85 -12375.6424 81587.34 -37246.1410 106457.84
## 138 35678.88 -15308.7272 86666.48 -42299.9336 113657.68
## 139 36751.90 -18349.7664 91853.57 -47518.8285 121022.64
## 140 37824.93 -21495.9838 97145.85 -52898.5794 128548.44
## 141 38897.96 -24744.8085 102540.73 -58435.2546 136231.17
## 142 39970.99 -28093.8506 108035.82 -64125.1991 144067.17
## 143 41044.01 -31540.8809 113628.91 -69965.0037 152053.03
## 144 42117.04 -35083.8135 119317.90 -75951.4781 160185.56
## ME RMSE MAE MPE MAPE MASE
## Training set 19.04223 1492.772 1168.838 -0.2827387 8.418544 1.127002
## Test set -7964.65162 9317.053 7964.652 -35.3013306 35.301331 7.679572
## ACF1 Theil's U
## Training set -0.4629315 NA
## Test set 0.7401520 3.492928
Double Exponential Smoothing dengan Alpha dan Beta Optimum
## Holt-Winters exponential smoothing with trend and without seasonal component.
##
## Call:
## HoltWinters(x = ekspor.training, gamma = FALSE)
##
## Smoothing parameters:
## alpha: 0.4859005
## beta : 0.02647358
## gamma: FALSE
##
## Coefficients:
## [,1]
## a 15510.77811
## b 34.92248
## Time Series:
## Start = 3
## End = 8
## Frequency = 1
## xhat level trend
## 3 14224.40 14415.30 -190.90000
## 4 15101.65 15265.00 -163.35147
## 5 15662.78 15807.45 -144.66659
## 6 16827.18 16938.08 -110.90472
## 7 17494.21 17585.05 -90.84121
## 8 17365.61 17457.42 -91.81507
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 121 15545.70 14092.15 16999.26 13322.679 17768.72
## 122 15580.62 13956.30 17204.94 13096.437 18064.81
## 123 15615.55 13829.07 17402.02 12883.373 18347.72
## 124 15650.47 13708.12 17592.81 12679.910 18621.03
## 125 15685.39 13591.88 17778.90 12483.646 18887.13
## 126 15720.31 13479.24 17961.39 12292.886 19147.74
## 127 15755.24 13369.38 18141.09 12106.385 19404.09
## 128 15790.16 13261.69 18318.63 11923.198 19657.12
## 129 15825.08 13155.69 18494.47 11742.595 19907.57
## 130 15860.00 13050.99 18669.01 11563.996 20156.01
## 131 15894.93 12947.31 18842.54 11386.935 20402.92
## 132 15929.85 12844.38 19015.32 11211.032 20648.66
## 133 15964.77 12742.00 19187.54 11035.971 20893.57
## 134 15999.69 12640.00 19359.38 10861.492 21137.89
## 135 16034.62 12538.24 19530.99 10687.371 21381.86
## 136 16069.54 12436.59 19702.49 10513.422 21625.65
## 137 16104.46 12334.95 19873.98 10339.484 21869.44
## 138 16139.38 12233.22 20045.55 10165.420 22113.35
## 139 16174.31 12131.33 20217.28 9991.109 22357.50
## 140 16209.23 12029.21 20389.24 9816.448 22602.01
## 141 16244.15 11926.81 20561.49 9641.346 22846.95
## 142 16279.07 11824.06 20734.08 9465.725 23092.42
## 143 16314.00 11720.93 20907.06 9289.514 23338.48
## 144 16348.92 11617.38 21080.46 9112.652 23585.18
## ME RMSE MAE MPE MAPE MASE
## Training set 148.7733 1139.156 916.0666 0.5372984 6.55117 0.8832778
## Test set 5865.2617 6773.769 5913.2970 24.9174875 25.23201 5.7016417
## ACF1 Theil's U
## Training set -0.09813519 NA
## Test set 0.66920013 2.590961
Kesimpulan
Nilai Alpha dan Beta optimum pada Double exponential smoothing adalah 0.4859005 dan 0.02647358, nilai ini menghasilkan ukuran keakuratan ramalan terbaik dibandingkan dengan Double exponential smoothing alpha dan Beta 0.25, 0.50, dan 0.75.
Perbanding Single dan Double Exponential Smoothing
## ME RMSE MAE MPE MAPE MASE
## Training set 15.07999 1112.061 885.1377 -0.4082788 6.346038 0.8534559
## Test set 6383.66237 7323.211 6409.3221 27.1941081 27.362119 6.1799126
## ACF1 Theil's U
## Training set -0.08211838 NA
## Test set 0.69356234 2.799194
## ME RMSE MAE MPE MAPE MASE
## Training set 148.7733 1139.156 916.0666 0.5372984 6.55117 0.8832778
## Test set 5865.2617 6773.769 5913.2970 24.9174875 25.23201 5.7016417
## ACF1 Theil's U
## Training set -0.09813519 NA
## Test set 0.66920013 2.590961
Kesimpulan
Berdasarkan hasil di atas dapat disimpulkan bahwa metode Double Exponential Smoothing lebih baik dalam meramalkan data hasil ekspor bulanan di Indonesia karena metode ini memiliki nilai RMSE, MAE, dan MAPE yang lebih kecil dibandingkan dengan Single Exponential Smoothing.
Hasil Ramalan Hasil Ekspor Menggunakan Double Exponential Smoothing
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 121 15545.70 14092.15 16999.26 13322.679 17768.72
## 122 15580.62 13956.30 17204.94 13096.437 18064.81
## 123 15615.55 13829.07 17402.02 12883.373 18347.72
## 124 15650.47 13708.12 17592.81 12679.910 18621.03
## 125 15685.39 13591.88 17778.90 12483.646 18887.13
## 126 15720.31 13479.24 17961.39 12292.886 19147.74
## 127 15755.24 13369.38 18141.09 12106.385 19404.09
## 128 15790.16 13261.69 18318.63 11923.198 19657.12
## 129 15825.08 13155.69 18494.47 11742.595 19907.57
## 130 15860.00 13050.99 18669.01 11563.996 20156.01
## 131 15894.93 12947.31 18842.54 11386.935 20402.92
## 132 15929.85 12844.38 19015.32 11211.032 20648.66
## 133 15964.77 12742.00 19187.54 11035.971 20893.57
## 134 15999.69 12640.00 19359.38 10861.492 21137.89
## 135 16034.62 12538.24 19530.99 10687.371 21381.86
## 136 16069.54 12436.59 19702.49 10513.422 21625.65
## 137 16104.46 12334.95 19873.98 10339.484 21869.44
## 138 16139.38 12233.22 20045.55 10165.420 22113.35
## 139 16174.31 12131.33 20217.28 9991.109 22357.50
## 140 16209.23 12029.21 20389.24 9816.448 22602.01
## 141 16244.15 11926.81 20561.49 9641.346 22846.95
## 142 16279.07 11824.06 20734.08 9465.725 23092.42
## 143 16314.00 11720.93 20907.06 9289.514 23338.48
## 144 16348.92 11617.38 21080.46 9112.652 23585.18
## 145 16383.84 11513.36 21254.32 8935.085 23832.60
## 146 16418.76 11408.85 21428.67 8756.765 24080.76
## 147 16453.69 11303.82 21603.55 8577.649 24329.72
## 148 16488.61 11198.25 21778.97 8397.699 24579.52
## 149 16523.53 11092.10 21954.96 8216.882 24830.18
## 150 16558.45 10985.38 22131.53 8035.167 25081.74