Table 1

Table 1: Demographic characteristics
BA (n=2341)
WA (n=1697)
Mean SD Mean SD
Age 68.2 3.5 69.7 4.2
% male 94.3
95.9
SVM risk score -0.56 0.41 -0.49 0.38
% dementia incidence 4.9
2.9
% censored and alive 78.3
77.2
% censored and dead 16.8
20.0







6-month outcome summaries


## # A tibble: 2 × 2
##   Race  overall
##   <chr>   <int>
## 1 AA       1293
## 2 EA        868
## # A tibble: 6 × 5
## # Groups:   Race [2]
##   Race  event_status2 total overall proportion
##   <chr> <fct>         <int>   <int>      <dbl>
## 1 AA    censored       1035    1293      80.0 
## 2 AA    dementia         64    1293       4.95
## 3 AA    death           194    1293      15.0 
## 4 EA    censored        672     868      77.4 
## 5 EA    dementia         28     868       3.23
## 6 EA    death           168     868      19.4




1-year outcome summaries


## # A tibble: 2 × 2
##   Race  overall
##   <chr>   <int>
## 1 AA       2341
## 2 EA       1697
## # A tibble: 6 × 5
## # Groups:   Race [2]
##   Race  event_status2 total overall proportion
##   <chr> <fct>         <int>   <int>      <dbl>
## 1 AA    censored       1834    2341      78.3 
## 2 AA    dementia        114    2341       4.87
## 3 AA    death           393    2341      16.8 
## 4 EA    censored       1310    1697      77.2 
## 5 EA    dementia         50    1697       2.95
## 6 EA    death           337    1697      19.9






Competing risks analysis (score quintiles)


6-month data


## Call:
## coxph(formula = Surv(time_to_event, event_status2) ~ score_quintile * 
##     Race, data = surv_6m, id = X)
## 
##   n= 2161, number of events= 454 
## 
##                               coef exp(coef) se(coef) robust se      z Pr(>|z|)
## score_quintile_1:2         0.52417   1.68906  0.09696   0.10840  4.836 1.33e-06
## RaceEA_1:2                -1.77283   0.16985  0.95355   1.00515 -1.764   0.0778
## score_quintile:RaceEA_1:2  0.28569   1.33068  0.22116   0.23434  1.219   0.2228
## score_quintile_1:3         0.30726   1.35969  0.05142   0.05494  5.592 2.24e-08
## RaceEA_1:3                 0.06364   1.06571  0.30891   0.31119  0.205   0.8380
## score_quintile:RaceEA_1:3  0.02386   1.02414  0.08110   0.08215  0.290   0.7715
##                              
## score_quintile_1:2        ***
## RaceEA_1:2                .  
## score_quintile:RaceEA_1:2    
## score_quintile_1:3        ***
## RaceEA_1:3                   
## score_quintile:RaceEA_1:3    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                           exp(coef) exp(-coef) lower .95 upper .95
## score_quintile_1:2           1.6891     0.5920   1.36576     2.089
## RaceEA_1:2                   0.1699     5.8875   0.02369     1.218
## score_quintile:RaceEA_1:2    1.3307     0.7515   0.84063     2.106
## score_quintile_1:3           1.3597     0.7355   1.22088     1.514
## RaceEA_1:3                   1.0657     0.9383   0.57910     1.961
## score_quintile:RaceEA_1:3    1.0241     0.9764   0.87183     1.203
## 
## Concordance= 0.647  (se = 0.013 )
## Likelihood ratio test= 132.1  on 6 df,   p=<2e-16
## Wald test            = 108.1  on 6 df,   p=<2e-16
## Score (logrank) test = 129.8  on 6 df,   p=<2e-16,   Robust = 110.1  p=<2e-16
## 
##   (Note: the likelihood ratio and score tests assume independence of
##      observations within a cluster, the Wald and robust score tests do not).



1-year data


## Call:
## coxph(formula = Surv(time_to_event, event_status2) ~ score_quintile * 
##     Race, data = surv_1y, id = X)
## 
##   n= 4038, number of events= 894 
## 
##                               coef exp(coef) se(coef) robust se      z Pr(>|z|)
## score_quintile_1:2         0.49666   1.64322  0.07210   0.07938  6.257 3.94e-10
## RaceEA_1:2                -1.83683   0.15932  0.68566   0.78168 -2.350   0.0188
## score_quintile:RaceEA_1:2  0.29844   1.34775  0.16101   0.18448  1.618   0.1057
## score_quintile_1:3         0.32041   1.37769  0.03646   0.03906  8.203 2.34e-16
## RaceEA_1:3                -0.22086   0.80183  0.22335   0.23021 -0.959   0.3374
## score_quintile:RaceEA_1:3  0.08173   1.08516  0.05806   0.06022  1.357   0.1747
##                              
## score_quintile_1:2        ***
## RaceEA_1:2                *  
## score_quintile:RaceEA_1:2    
## score_quintile_1:3        ***
## RaceEA_1:3                   
## score_quintile:RaceEA_1:3    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                           exp(coef) exp(-coef) lower .95 upper .95
## score_quintile_1:2           1.6432     0.6086   1.40645    1.9198
## RaceEA_1:2                   0.1593     6.2766   0.03443    0.7373
## score_quintile:RaceEA_1:2    1.3477     0.7420   0.93881    1.9348
## score_quintile_1:3           1.3777     0.7259   1.27615    1.4873
## RaceEA_1:3                   0.8018     1.2472   0.51065    1.2590
## score_quintile:RaceEA_1:3    1.0852     0.9215   0.96435    1.2211
## 
## Concordance= 0.653  (se = 0.009 )
## Likelihood ratio test= 274.9  on 6 df,   p=<2e-16
## Wald test            = 219.8  on 6 df,   p=<2e-16
## Score (logrank) test = 270.6  on 6 df,   p=<2e-16,   Robust = 222.3  p=<2e-16
## 
##   (Note: the likelihood ratio and score tests assume independence of
##      observations within a cluster, the Wald and robust score tests do not).




Competing risks with continuous scores


6-month data


## Call:
## coxph(formula = Surv(time_to_event, event_status2) ~ Score_std * 
##     Race, data = surv_6m, id = X)
## 
##   n= 2161, number of events= 454 
## 
##                          coef exp(coef) se(coef) robust se      z Pr(>|z|)    
## Score_std_1:2         0.66678   1.94796  0.09356   0.09231  7.223 5.07e-13 ***
## RaceEA_1:2           -0.62379   0.53591  0.27617   0.26575 -2.347   0.0189 *  
## Score_std:RaceEA_1:2  0.07009   1.07260  0.16797   0.15175  0.462   0.6442    
## Score_std_1:3         0.40243   1.49545  0.05967   0.05857  6.871 6.39e-12 ***
## RaceEA_1:3            0.19357   1.21358  0.11168   0.11035  1.754   0.0794 .  
## Score_std:RaceEA_1:3 -0.03477   0.96583  0.09084   0.08659 -0.402   0.6880    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                      exp(coef) exp(-coef) lower .95 upper .95
## Score_std_1:2           1.9480     0.5134    1.6256    2.3343
## RaceEA_1:2              0.5359     1.8660    0.3183    0.9022
## Score_std:RaceEA_1:2    1.0726     0.9323    0.7967    1.4441
## Score_std_1:3           1.4954     0.6687    1.3333    1.6774
## RaceEA_1:3              1.2136     0.8240    0.9775    1.5066
## Score_std:RaceEA_1:3    0.9658     1.0354    0.8151    1.1445
## 
## Concordance= 0.649  (se = 0.013 )
## Likelihood ratio test= 138.8  on 6 df,   p=<2e-16
## Wald test            = 170.4  on 6 df,   p=<2e-16
## Score (logrank) test = 169.9  on 6 df,   p=<2e-16,   Robust = 98.92  p=<2e-16
## 
##   (Note: the likelihood ratio and score tests assume independence of
##      observations within a cluster, the Wald and robust score tests do not).



1-year data


## Call:
## coxph(formula = Surv(time_to_event, event_status2) ~ Score_std * 
##     Race, data = surv_1y, id = X)
## 
##   n= 4038, number of events= 894 
## 
##                          coef exp(coef) se(coef) robust se      z Pr(>|z|)    
## Score_std_1:2         0.66217   1.93900  0.06928   0.06822  9.707  < 2e-16 ***
## RaceEA_1:2           -0.71982   0.48684  0.20784   0.20058 -3.589 0.000332 ***
## Score_std:RaceEA_1:2  0.14004   1.15032  0.12602   0.11751  1.192 0.233372    
## Score_std_1:3         0.40929   1.50575  0.04160   0.04093  9.999  < 2e-16 ***
## RaceEA_1:3            0.08297   1.08651  0.07944   0.07859  1.056 0.291063    
## Score_std:RaceEA_1:3  0.04886   1.05007  0.06293   0.06163  0.793 0.427897    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                      exp(coef) exp(-coef) lower .95 upper .95
## Score_std_1:2           1.9390     0.5157    1.6963    2.2164
## RaceEA_1:2              0.4868     2.0541    0.3286    0.7213
## Score_std:RaceEA_1:2    1.1503     0.8693    0.9137    1.4483
## Score_std_1:3           1.5057     0.6641    1.3897    1.6315
## RaceEA_1:3              1.0865     0.9204    0.9314    1.2675
## Score_std:RaceEA_1:3    1.0501     0.9523    0.9306    1.1849
## 
## Concordance= 0.655  (se = 0.009 )
## Likelihood ratio test= 298.7  on 6 df,   p=<2e-16
## Wald test            = 355.5  on 6 df,   p=<2e-16
## Score (logrank) test = 372.5  on 6 df,   p=<2e-16,   Robust = 203.3  p=<2e-16
## 
##   (Note: the likelihood ratio and score tests assume independence of
##      observations within a cluster, the Wald and robust score tests do not).





Sensitivity analyses: handling death


We can treat death as a censoring event (middle panel), but as extremes we can also set the censoring time of those who die to be the maximum censoring date (left panel) or we can treat those that die as having developed dementia at the date of death (right panel)




Summarizing death-sensitivity results


Table x: HR by group for death sensitivity analyses
BA group
WA group
Analysis Data HR estimate Lower CI Upper CI HR estimate Lower CI Upper CI
Dementia only 6m 1.948 1.622 2.340 2.089 1.589 2.748
Dementia only 1y 1.922 1.677 2.204 2.229 1.813 2.741
Dementia/death 6m 1.554 1.399 1.726 1.485 1.307 1.688
Dementia/death 1y 1.566 1.453 1.687 1.625 1.487 1.775
Deaths as max 6m 1.777 1.496 2.111 1.979 1.501 2.609
Deaths as max 1y 1.757 1.544 2.000 2.009 1.643 2.456


Individual results for each model


6-month data


## Call:
## coxph(formula = Surv(time_to_event, event_status) ~ Score_std * 
##     Race, data = surv_6m_demonly, id = X)
## 
##   n= 2161, number of events= 92 
## 
##                      coef exp(coef) se(coef)      z Pr(>|z|)    
## Score_std         0.66678   1.94796  0.09356  7.127 1.03e-12 ***
## RaceEA           -0.62379   0.53591  0.27617 -2.259   0.0239 *  
## Score_std:RaceEA  0.07009   1.07260  0.16797  0.417   0.6765    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                  exp(coef) exp(-coef) lower .95 upper .95
## Score_std           1.9480     0.5134    1.6216    2.3400
## RaceEA              0.5359     1.8660    0.3119    0.9208
## Score_std:RaceEA    1.0726     0.9323    0.7717    1.4908
## 
## Concordance= 0.729  (se = 0.027 )
## Likelihood ratio test= 67.73  on 3 df,   p=1e-14
## Wald test            = 80.84  on 3 df,   p=<2e-16
## Score (logrank) test = 88.98  on 3 df,   p=<2e-16



1-year data


## Call:
## coxph(formula = Surv(time_to_event2, event_status2) ~ Score_std * 
##     Race, data = surv_1y_demonly, id = X)
## 
##   n= 4038, number of events= 163 
## 
##                      coef exp(coef) se(coef)      z Pr(>|z|)    
## Score_std         0.64844   1.91255  0.06955  9.324  < 2e-16 ***
## RaceEA           -0.68238   0.50541  0.20757 -3.287  0.00101 ** 
## Score_std:RaceEA  0.14040   1.15074  0.12580  1.116  0.26440    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                  exp(coef) exp(-coef) lower .95 upper .95
## Score_std           1.9125     0.5229    1.6688    2.1919
## RaceEA              0.5054     1.9786    0.3365    0.7592
## Score_std:RaceEA    1.1507     0.8690    0.8993    1.4725
## 
## Concordance= 0.735  (se = 0.02 )
## Likelihood ratio test= 124.1  on 3 df,   p=<2e-16
## Wald test            = 147.1  on 3 df,   p=<2e-16
## Score (logrank) test = 163.1  on 3 df,   p=<2e-16






Death and dementia as the same outcome analysis


6-month data


## Call:
## coxph(formula = Surv(time_to_event2, event_status2) ~ Score_std * 
##     Race, data = surv_6m_both, id = X)
## 
##   n= 2161, number of events= 408 
## 
##                      coef exp(coef) se(coef)      z Pr(>|z|)    
## Score_std         0.44077   1.55390  0.05354  8.232   <2e-16 ***
## RaceEA            0.10480   1.11048  0.10712  0.978    0.328    
## Score_std:RaceEA -0.04503   0.95597  0.08429 -0.534    0.593    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                  exp(coef) exp(-coef) lower .95 upper .95
## Score_std            1.554     0.6435    1.3991     1.726
## RaceEA               1.110     0.9005    0.9002     1.370
## Score_std:RaceEA     0.956     1.0461    0.8104     1.128
## 
## Concordance= 0.638  (se = 0.014 )
## Likelihood ratio test= 93.63  on 3 df,   p=<2e-16
## Wald test            = 106.6  on 3 df,   p=<2e-16
## Score (logrank) test = 108.8  on 3 df,   p=<2e-16



1-year data


## Call:
## coxph(formula = Surv(time_to_event2, event_status2) ~ Score_std * 
##     Race, data = surv_1y_both, id = X)
## 
##   n= 4038, number of events= 803 
## 
##                     coef exp(coef) se(coef)      z Pr(>|z|)    
## Score_std        0.44834   1.56571  0.03812 11.760   <2e-16 ***
## RaceEA           0.02823   1.02863  0.07686  0.367    0.713    
## Score_std:RaceEA 0.03688   1.03757  0.05897  0.625    0.532    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                  exp(coef) exp(-coef) lower .95 upper .95
## Score_std            1.566     0.6387    1.4530     1.687
## RaceEA               1.029     0.9722    0.8848     1.196
## Score_std:RaceEA     1.038     0.9638    0.9243     1.165
## 
## Concordance= 0.647  (se = 0.01 )
## Likelihood ratio test= 218.7  on 3 df,   p=<2e-16
## Wald test            = 256.8  on 3 df,   p=<2e-16
## Score (logrank) test = 263  on 3 df,   p=<2e-16





Setting all those who died to the maximum censoring time


6-month data


## Call:
## coxph(formula = Surv(time_to_event, event_status) ~ Score_std * 
##     Race, data = surv_6m_deathmax, id = X)
## 
##   n= 2161, number of events= 92 
## 
##                      coef exp(coef) se(coef)      z Pr(>|z|)    
## Score_std         0.57480   1.77678  0.08791  6.538 6.22e-11 ***
## RaceEA           -0.63575   0.52954  0.27595 -2.304   0.0212 *  
## Score_std:RaceEA  0.10786   1.11389  0.16614  0.649   0.5162    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                  exp(coef) exp(-coef) lower .95 upper .95
## Score_std           1.7768     0.5628    1.4956    2.1109
## RaceEA              0.5295     1.8884    0.3083    0.9095
## Score_std:RaceEA    1.1139     0.8978    0.8043    1.5426
## 
## Concordance= 0.717  (se = 0.027 )
## Likelihood ratio test= 56.96  on 3 df,   p=3e-12
## Wald test            = 68.62  on 3 df,   p=8e-15
## Score (logrank) test = 73.65  on 3 df,   p=7e-16



1-year data


## Call:
## coxph(formula = Surv(time_to_event, event_status) ~ Score_std * 
##     Race, data = surv_1y_deathmax, id = X)
## 
##   n= 4038, number of events= 164 
## 
##                      coef exp(coef) se(coef)      z Pr(>|z|)    
## Score_std         0.56362   1.75703  0.06597  8.544  < 2e-16 ***
## RaceEA           -0.69613   0.49851  0.20578 -3.383 0.000717 ***
## Score_std:RaceEA  0.13383   1.14320  0.12197  1.097 0.272553    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                  exp(coef) exp(-coef) lower .95 upper .95
## Score_std           1.7570     0.5691    1.5439    1.9995
## RaceEA              0.4985     2.0060    0.3331    0.7462
## Score_std:RaceEA    1.1432     0.8747    0.9001    1.4519
## 
## Concordance= 0.72  (se = 0.02 )
## Likelihood ratio test= 105  on 3 df,   p=<2e-16
## Wald test            = 124.5  on 3 df,   p=<2e-16
## Score (logrank) test = 135.6  on 3 df,   p=<2e-16




Grace period sensitivity analysis



Grace period method 1 involves subtracting the immortal time (data creation date (9/12/18) - index date) from each time to event


9 people excluded from 6 month analysis (all died)
57 people excluded from 1 year analysis (all died)


Grace period method 2 invloves subtracting one year from every time to event


61 people excluded from 6 month analysis (4 developed dementia, 57 died died)
119 people excluded from 1 year analysis (4 developed dementia, 115 died)



Table y: Cause-specific HRs for grace period sensitivity analyses
Dementia incidence
Death
Analysis Data HR estimate Lower CI Upper CI HR estimate Lower CI Upper CI
Primary 6m 1.948 1.626 2.334 1.495 1.333 1.677
Primary 1y 1.939 1.696 2.216 1.506 1.390 1.632
Grace method 1 6m 1.949 1.626 2.336 1.494 1.327 1.682
Grace method 1 1y 1.952 1.705 2.234 1.502 1.378 1.637
Grace method 2 6m 1.960 1.620 2.373 1.503 1.316 1.716
Grace method 2 1y 1.947 1.697 2.234 1.506 1.372 1.653


Individual model results


Grace method 1, 6-month data


## Call:
## coxph(formula = Surv(time_to_event_grace, event_status2) ~ Score_std * 
##     Race, data = surv_6m_grace_v1, id = X)
## 
##   n= 2152, number of events= 445 
## 
##                          coef exp(coef) se(coef) robust se      z Pr(>|z|)    
## Score_std_1:2         0.66715   1.94868  0.09365   0.09250  7.212 5.50e-13 ***
## RaceEA_1:2           -0.61796   0.53904  0.27593   0.26567 -2.326   0.0200 *  
## Score_std:RaceEA_1:2  0.06579   1.06800  0.16763   0.15205  0.433   0.6653    
## Score_std_1:3         0.40123   1.49366  0.06088   0.06052  6.630 3.36e-11 ***
## RaceEA_1:3            0.20266   1.22465  0.11343   0.11204  1.809   0.0705 .  
## Score_std:RaceEA_1:3 -0.03748   0.96321  0.09210   0.08855 -0.423   0.6721    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                      exp(coef) exp(-coef) lower .95 upper .95
## Score_std_1:2           1.9487     0.5132    1.6256    2.3360
## RaceEA_1:2              0.5390     1.8551    0.3202    0.9073
## Score_std:RaceEA_1:2    1.0680     0.9363    0.7928    1.4388
## Score_std_1:3           1.4937     0.6695    1.3266    1.6818
## RaceEA_1:3              1.2247     0.8166    0.9832    1.5254
## Score_std:RaceEA_1:3    0.9632     1.0382    0.8097    1.1458
## 
## Concordance= 0.649  (se = 0.013 )
## Likelihood ratio test= 136.1  on 6 df,   p=<2e-16
## Wald test            = 164.7  on 6 df,   p=<2e-16
## Score (logrank) test = 166.8  on 6 df,   p=<2e-16,   Robust = 95.76  p=<2e-16
## 
##   (Note: the likelihood ratio and score tests assume independence of
##      observations within a cluster, the Wald and robust score tests do not).



Grace method 1, 1-year data


## Call:
## coxph(formula = Surv(time_to_event_grace, event_status2) ~ Score_std * 
##     Race, data = surv_1y_grace_v1, id = X)
## 
##   n= 3981, number of events= 837 
## 
##                          coef exp(coef) se(coef) robust se      z Pr(>|z|)    
## Score_std_1:2         0.66879   1.95187  0.06962   0.06891  9.705  < 2e-16 ***
## RaceEA_1:2           -0.70754   0.49286  0.20770   0.20027 -3.533 0.000411 ***
## Score_std:RaceEA_1:2  0.13006   1.13890  0.12592   0.11754  1.107 0.268497    
## Score_std_1:3         0.40673   1.50190  0.04383   0.04408  9.228  < 2e-16 ***
## RaceEA_1:3            0.09726   1.10215  0.08231   0.08131  1.196 0.231608    
## Score_std:RaceEA_1:3  0.03114   1.03163  0.06653   0.06504  0.479 0.632073    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                      exp(coef) exp(-coef) lower .95 upper .95
## Score_std_1:2           1.9519     0.5123    1.7053    2.2341
## RaceEA_1:2              0.4929     2.0290    0.3329    0.7298
## Score_std:RaceEA_1:2    1.1389     0.8780    0.9046    1.4339
## Score_std_1:3           1.5019     0.6658    1.3776    1.6374
## RaceEA_1:3              1.1022     0.9073    0.9398    1.2926
## Score_std:RaceEA_1:3    1.0316     0.9693    0.9082    1.1719
## 
## Concordance= 0.654  (se = 0.01 )
## Likelihood ratio test= 276.4  on 6 df,   p=<2e-16
## Wald test            = 325.6  on 6 df,   p=<2e-16
## Score (logrank) test = 344.1  on 6 df,   p=<2e-16,   Robust = 185.9  p=<2e-16
## 
##   (Note: the likelihood ratio and score tests assume independence of
##      observations within a cluster, the Wald and robust score tests do not).




Grace method 2, 6-month data


## Call:
## coxph(formula = Surv(time_to_event_grace, event_status2) ~ Score_std * 
##     Race, data = surv_6m_grace_v2, id = X)
## 
##   n= 2100, number of events= 393 
## 
##                          coef exp(coef) se(coef) robust se      z Pr(>|z|)    
## Score_std_1:2         0.67308   1.96027  0.09619   0.09741  6.910 4.85e-12 ***
## RaceEA_1:2           -0.61018   0.54325  0.28169   0.27268 -2.238   0.0252 *  
## Score_std:RaceEA_1:2  0.06585   1.06806  0.17165   0.15853  0.415   0.6779    
## Score_std_1:3         0.40734   1.50282  0.06711   0.06782  6.006 1.90e-09 ***
## RaceEA_1:3            0.28875   1.33476  0.12056   0.11951  2.416   0.0157 *  
## Score_std:RaceEA_1:3 -0.05940   0.94233  0.10008   0.09618 -0.618   0.5368    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                      exp(coef) exp(-coef) lower .95 upper .95
## Score_std_1:2           1.9603     0.5101    1.6196    2.3726
## RaceEA_1:2              0.5433     1.8408    0.3183    0.9271
## Score_std:RaceEA_1:2    1.0681     0.9363    0.7828    1.4573
## Score_std_1:3           1.5028     0.6654    1.3158    1.7165
## RaceEA_1:3              1.3348     0.7492    1.0560    1.6871
## Score_std:RaceEA_1:3    0.9423     1.0612    0.7804    1.1378
## 
## Concordance= 0.649  (se = 0.014 )
## Likelihood ratio test= 126.1  on 6 df,   p=<2e-16
## Wald test            = 149.2  on 6 df,   p=<2e-16
## Score (logrank) test = 154.1  on 6 df,   p=<2e-16,   Robust = 86.59  p=<2e-16
## 
##   (Note: the likelihood ratio and score tests assume independence of
##      observations within a cluster, the Wald and robust score tests do not).



Grace method 2, 1-year data


## Call:
## coxph(formula = Surv(time_to_event_grace, event_status2) ~ Score_std * 
##     Race, data = surv_1y_grace_v2, id = X)
## 
##   n= 3919, number of events= 775 
## 
##                          coef exp(coef) se(coef) robust se      z Pr(>|z|)    
## Score_std_1:2         0.66640   1.94721  0.07031   0.07020  9.492  < 2e-16 ***
## RaceEA_1:2           -0.71301   0.49017  0.21023   0.20358 -3.502 0.000461 ***
## Score_std:RaceEA_1:2  0.13850   1.14855  0.12757   0.12043  1.150 0.250132    
## Score_std_1:3         0.40943   1.50595  0.04658   0.04763  8.595  < 2e-16 ***
## RaceEA_1:3            0.14348   1.15429  0.08557   0.08488  1.690 0.090936 .  
## Score_std:RaceEA_1:3  0.01975   1.01994  0.06999   0.06859  0.288 0.773416    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                      exp(coef) exp(-coef) lower .95 upper .95
## Score_std_1:2           1.9472     0.5136    1.6969    2.2344
## RaceEA_1:2              0.4902     2.0401    0.3289    0.7305
## Score_std:RaceEA_1:2    1.1485     0.8707    0.9071    1.4543
## Score_std_1:3           1.5060     0.6640    1.3717    1.6533
## RaceEA_1:3              1.1543     0.8663    0.9774    1.3632
## Score_std:RaceEA_1:3    1.0199     0.9804    0.8916    1.1667
## 
## Concordance= 0.651  (se = 0.01 )
## Likelihood ratio test= 259.8  on 6 df,   p=<2e-16
## Wald test            = 305.5  on 6 df,   p=<2e-16
## Score (logrank) test = 324  on 6 df,   p=<2e-16,   Robust = 171.5  p=<2e-16
## 
##   (Note: the likelihood ratio and score tests assume independence of
##      observations within a cluster, the Wald and robust score tests do not).