|
BA (n=2341)
|
WA (n=1697)
|
|||
|---|---|---|---|---|
| Mean | SD | Mean | SD | |
| Age | 68.2 | 3.5 | 69.7 | 4.2 |
| % male | 94.3 |
|
95.9 |
|
| SVM risk score | -0.56 | 0.41 | -0.49 | 0.38 |
| % dementia incidence | 4.9 |
|
2.9 |
|
| % censored and alive | 78.3 |
|
77.2 |
|
| % censored and dead | 16.8 |
|
20.0 |
|
## # A tibble: 2 × 2
## Race overall
## <chr> <int>
## 1 AA 1293
## 2 EA 868
## # A tibble: 6 × 5
## # Groups: Race [2]
## Race event_status2 total overall proportion
## <chr> <fct> <int> <int> <dbl>
## 1 AA censored 1035 1293 80.0
## 2 AA dementia 64 1293 4.95
## 3 AA death 194 1293 15.0
## 4 EA censored 672 868 77.4
## 5 EA dementia 28 868 3.23
## 6 EA death 168 868 19.4
## # A tibble: 2 × 2
## Race overall
## <chr> <int>
## 1 AA 2341
## 2 EA 1697
## # A tibble: 6 × 5
## # Groups: Race [2]
## Race event_status2 total overall proportion
## <chr> <fct> <int> <int> <dbl>
## 1 AA censored 1834 2341 78.3
## 2 AA dementia 114 2341 4.87
## 3 AA death 393 2341 16.8
## 4 EA censored 1310 1697 77.2
## 5 EA dementia 50 1697 2.95
## 6 EA death 337 1697 19.9
## Call:
## coxph(formula = Surv(time_to_event, event_status2) ~ score_quintile *
## Race, data = surv_6m, id = X)
##
## n= 2161, number of events= 454
##
## coef exp(coef) se(coef) robust se z Pr(>|z|)
## score_quintile_1:2 0.52417 1.68906 0.09696 0.10840 4.836 1.33e-06
## RaceEA_1:2 -1.77283 0.16985 0.95355 1.00515 -1.764 0.0778
## score_quintile:RaceEA_1:2 0.28569 1.33068 0.22116 0.23434 1.219 0.2228
## score_quintile_1:3 0.30726 1.35969 0.05142 0.05494 5.592 2.24e-08
## RaceEA_1:3 0.06364 1.06571 0.30891 0.31119 0.205 0.8380
## score_quintile:RaceEA_1:3 0.02386 1.02414 0.08110 0.08215 0.290 0.7715
##
## score_quintile_1:2 ***
## RaceEA_1:2 .
## score_quintile:RaceEA_1:2
## score_quintile_1:3 ***
## RaceEA_1:3
## score_quintile:RaceEA_1:3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## score_quintile_1:2 1.6891 0.5920 1.36576 2.089
## RaceEA_1:2 0.1699 5.8875 0.02369 1.218
## score_quintile:RaceEA_1:2 1.3307 0.7515 0.84063 2.106
## score_quintile_1:3 1.3597 0.7355 1.22088 1.514
## RaceEA_1:3 1.0657 0.9383 0.57910 1.961
## score_quintile:RaceEA_1:3 1.0241 0.9764 0.87183 1.203
##
## Concordance= 0.647 (se = 0.013 )
## Likelihood ratio test= 132.1 on 6 df, p=<2e-16
## Wald test = 108.1 on 6 df, p=<2e-16
## Score (logrank) test = 129.8 on 6 df, p=<2e-16, Robust = 110.1 p=<2e-16
##
## (Note: the likelihood ratio and score tests assume independence of
## observations within a cluster, the Wald and robust score tests do not).
## Call:
## coxph(formula = Surv(time_to_event, event_status2) ~ score_quintile *
## Race, data = surv_1y, id = X)
##
## n= 4038, number of events= 894
##
## coef exp(coef) se(coef) robust se z Pr(>|z|)
## score_quintile_1:2 0.49666 1.64322 0.07210 0.07938 6.257 3.94e-10
## RaceEA_1:2 -1.83683 0.15932 0.68566 0.78168 -2.350 0.0188
## score_quintile:RaceEA_1:2 0.29844 1.34775 0.16101 0.18448 1.618 0.1057
## score_quintile_1:3 0.32041 1.37769 0.03646 0.03906 8.203 2.34e-16
## RaceEA_1:3 -0.22086 0.80183 0.22335 0.23021 -0.959 0.3374
## score_quintile:RaceEA_1:3 0.08173 1.08516 0.05806 0.06022 1.357 0.1747
##
## score_quintile_1:2 ***
## RaceEA_1:2 *
## score_quintile:RaceEA_1:2
## score_quintile_1:3 ***
## RaceEA_1:3
## score_quintile:RaceEA_1:3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## score_quintile_1:2 1.6432 0.6086 1.40645 1.9198
## RaceEA_1:2 0.1593 6.2766 0.03443 0.7373
## score_quintile:RaceEA_1:2 1.3477 0.7420 0.93881 1.9348
## score_quintile_1:3 1.3777 0.7259 1.27615 1.4873
## RaceEA_1:3 0.8018 1.2472 0.51065 1.2590
## score_quintile:RaceEA_1:3 1.0852 0.9215 0.96435 1.2211
##
## Concordance= 0.653 (se = 0.009 )
## Likelihood ratio test= 274.9 on 6 df, p=<2e-16
## Wald test = 219.8 on 6 df, p=<2e-16
## Score (logrank) test = 270.6 on 6 df, p=<2e-16, Robust = 222.3 p=<2e-16
##
## (Note: the likelihood ratio and score tests assume independence of
## observations within a cluster, the Wald and robust score tests do not).
## Call:
## coxph(formula = Surv(time_to_event, event_status2) ~ Score_std *
## Race, data = surv_6m, id = X)
##
## n= 2161, number of events= 454
##
## coef exp(coef) se(coef) robust se z Pr(>|z|)
## Score_std_1:2 0.66678 1.94796 0.09356 0.09231 7.223 5.07e-13 ***
## RaceEA_1:2 -0.62379 0.53591 0.27617 0.26575 -2.347 0.0189 *
## Score_std:RaceEA_1:2 0.07009 1.07260 0.16797 0.15175 0.462 0.6442
## Score_std_1:3 0.40243 1.49545 0.05967 0.05857 6.871 6.39e-12 ***
## RaceEA_1:3 0.19357 1.21358 0.11168 0.11035 1.754 0.0794 .
## Score_std:RaceEA_1:3 -0.03477 0.96583 0.09084 0.08659 -0.402 0.6880
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## Score_std_1:2 1.9480 0.5134 1.6256 2.3343
## RaceEA_1:2 0.5359 1.8660 0.3183 0.9022
## Score_std:RaceEA_1:2 1.0726 0.9323 0.7967 1.4441
## Score_std_1:3 1.4954 0.6687 1.3333 1.6774
## RaceEA_1:3 1.2136 0.8240 0.9775 1.5066
## Score_std:RaceEA_1:3 0.9658 1.0354 0.8151 1.1445
##
## Concordance= 0.649 (se = 0.013 )
## Likelihood ratio test= 138.8 on 6 df, p=<2e-16
## Wald test = 170.4 on 6 df, p=<2e-16
## Score (logrank) test = 169.9 on 6 df, p=<2e-16, Robust = 98.92 p=<2e-16
##
## (Note: the likelihood ratio and score tests assume independence of
## observations within a cluster, the Wald and robust score tests do not).
## Call:
## coxph(formula = Surv(time_to_event, event_status2) ~ Score_std *
## Race, data = surv_1y, id = X)
##
## n= 4038, number of events= 894
##
## coef exp(coef) se(coef) robust se z Pr(>|z|)
## Score_std_1:2 0.66217 1.93900 0.06928 0.06822 9.707 < 2e-16 ***
## RaceEA_1:2 -0.71982 0.48684 0.20784 0.20058 -3.589 0.000332 ***
## Score_std:RaceEA_1:2 0.14004 1.15032 0.12602 0.11751 1.192 0.233372
## Score_std_1:3 0.40929 1.50575 0.04160 0.04093 9.999 < 2e-16 ***
## RaceEA_1:3 0.08297 1.08651 0.07944 0.07859 1.056 0.291063
## Score_std:RaceEA_1:3 0.04886 1.05007 0.06293 0.06163 0.793 0.427897
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## Score_std_1:2 1.9390 0.5157 1.6963 2.2164
## RaceEA_1:2 0.4868 2.0541 0.3286 0.7213
## Score_std:RaceEA_1:2 1.1503 0.8693 0.9137 1.4483
## Score_std_1:3 1.5057 0.6641 1.3897 1.6315
## RaceEA_1:3 1.0865 0.9204 0.9314 1.2675
## Score_std:RaceEA_1:3 1.0501 0.9523 0.9306 1.1849
##
## Concordance= 0.655 (se = 0.009 )
## Likelihood ratio test= 298.7 on 6 df, p=<2e-16
## Wald test = 355.5 on 6 df, p=<2e-16
## Score (logrank) test = 372.5 on 6 df, p=<2e-16, Robust = 203.3 p=<2e-16
##
## (Note: the likelihood ratio and score tests assume independence of
## observations within a cluster, the Wald and robust score tests do not).
We can treat death as a censoring event (middle panel), but as extremes we can also set the censoring time of those who die to be the maximum censoring date (left panel) or we can treat those that die as having developed dementia at the date of death (right panel)
|
BA group
|
WA group
|
||||||
|---|---|---|---|---|---|---|---|
| Analysis | Data | HR estimate | Lower CI | Upper CI | HR estimate | Lower CI | Upper CI |
| Dementia only | 6m | 1.948 | 1.622 | 2.340 | 2.089 | 1.589 | 2.748 |
| Dementia only | 1y | 1.922 | 1.677 | 2.204 | 2.229 | 1.813 | 2.741 |
| Dementia/death | 6m | 1.554 | 1.399 | 1.726 | 1.485 | 1.307 | 1.688 |
| Dementia/death | 1y | 1.566 | 1.453 | 1.687 | 1.625 | 1.487 | 1.775 |
| Deaths as max | 6m | 1.777 | 1.496 | 2.111 | 1.979 | 1.501 | 2.609 |
| Deaths as max | 1y | 1.757 | 1.544 | 2.000 | 2.009 | 1.643 | 2.456 |
## Call:
## coxph(formula = Surv(time_to_event, event_status) ~ Score_std *
## Race, data = surv_6m_demonly, id = X)
##
## n= 2161, number of events= 92
##
## coef exp(coef) se(coef) z Pr(>|z|)
## Score_std 0.66678 1.94796 0.09356 7.127 1.03e-12 ***
## RaceEA -0.62379 0.53591 0.27617 -2.259 0.0239 *
## Score_std:RaceEA 0.07009 1.07260 0.16797 0.417 0.6765
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## Score_std 1.9480 0.5134 1.6216 2.3400
## RaceEA 0.5359 1.8660 0.3119 0.9208
## Score_std:RaceEA 1.0726 0.9323 0.7717 1.4908
##
## Concordance= 0.729 (se = 0.027 )
## Likelihood ratio test= 67.73 on 3 df, p=1e-14
## Wald test = 80.84 on 3 df, p=<2e-16
## Score (logrank) test = 88.98 on 3 df, p=<2e-16
## Call:
## coxph(formula = Surv(time_to_event2, event_status2) ~ Score_std *
## Race, data = surv_1y_demonly, id = X)
##
## n= 4038, number of events= 163
##
## coef exp(coef) se(coef) z Pr(>|z|)
## Score_std 0.64844 1.91255 0.06955 9.324 < 2e-16 ***
## RaceEA -0.68238 0.50541 0.20757 -3.287 0.00101 **
## Score_std:RaceEA 0.14040 1.15074 0.12580 1.116 0.26440
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## Score_std 1.9125 0.5229 1.6688 2.1919
## RaceEA 0.5054 1.9786 0.3365 0.7592
## Score_std:RaceEA 1.1507 0.8690 0.8993 1.4725
##
## Concordance= 0.735 (se = 0.02 )
## Likelihood ratio test= 124.1 on 3 df, p=<2e-16
## Wald test = 147.1 on 3 df, p=<2e-16
## Score (logrank) test = 163.1 on 3 df, p=<2e-16
## Call:
## coxph(formula = Surv(time_to_event2, event_status2) ~ Score_std *
## Race, data = surv_6m_both, id = X)
##
## n= 2161, number of events= 408
##
## coef exp(coef) se(coef) z Pr(>|z|)
## Score_std 0.44077 1.55390 0.05354 8.232 <2e-16 ***
## RaceEA 0.10480 1.11048 0.10712 0.978 0.328
## Score_std:RaceEA -0.04503 0.95597 0.08429 -0.534 0.593
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## Score_std 1.554 0.6435 1.3991 1.726
## RaceEA 1.110 0.9005 0.9002 1.370
## Score_std:RaceEA 0.956 1.0461 0.8104 1.128
##
## Concordance= 0.638 (se = 0.014 )
## Likelihood ratio test= 93.63 on 3 df, p=<2e-16
## Wald test = 106.6 on 3 df, p=<2e-16
## Score (logrank) test = 108.8 on 3 df, p=<2e-16
## Call:
## coxph(formula = Surv(time_to_event2, event_status2) ~ Score_std *
## Race, data = surv_1y_both, id = X)
##
## n= 4038, number of events= 803
##
## coef exp(coef) se(coef) z Pr(>|z|)
## Score_std 0.44834 1.56571 0.03812 11.760 <2e-16 ***
## RaceEA 0.02823 1.02863 0.07686 0.367 0.713
## Score_std:RaceEA 0.03688 1.03757 0.05897 0.625 0.532
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## Score_std 1.566 0.6387 1.4530 1.687
## RaceEA 1.029 0.9722 0.8848 1.196
## Score_std:RaceEA 1.038 0.9638 0.9243 1.165
##
## Concordance= 0.647 (se = 0.01 )
## Likelihood ratio test= 218.7 on 3 df, p=<2e-16
## Wald test = 256.8 on 3 df, p=<2e-16
## Score (logrank) test = 263 on 3 df, p=<2e-16
## Call:
## coxph(formula = Surv(time_to_event, event_status) ~ Score_std *
## Race, data = surv_6m_deathmax, id = X)
##
## n= 2161, number of events= 92
##
## coef exp(coef) se(coef) z Pr(>|z|)
## Score_std 0.57480 1.77678 0.08791 6.538 6.22e-11 ***
## RaceEA -0.63575 0.52954 0.27595 -2.304 0.0212 *
## Score_std:RaceEA 0.10786 1.11389 0.16614 0.649 0.5162
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## Score_std 1.7768 0.5628 1.4956 2.1109
## RaceEA 0.5295 1.8884 0.3083 0.9095
## Score_std:RaceEA 1.1139 0.8978 0.8043 1.5426
##
## Concordance= 0.717 (se = 0.027 )
## Likelihood ratio test= 56.96 on 3 df, p=3e-12
## Wald test = 68.62 on 3 df, p=8e-15
## Score (logrank) test = 73.65 on 3 df, p=7e-16
## Call:
## coxph(formula = Surv(time_to_event, event_status) ~ Score_std *
## Race, data = surv_1y_deathmax, id = X)
##
## n= 4038, number of events= 164
##
## coef exp(coef) se(coef) z Pr(>|z|)
## Score_std 0.56362 1.75703 0.06597 8.544 < 2e-16 ***
## RaceEA -0.69613 0.49851 0.20578 -3.383 0.000717 ***
## Score_std:RaceEA 0.13383 1.14320 0.12197 1.097 0.272553
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## Score_std 1.7570 0.5691 1.5439 1.9995
## RaceEA 0.4985 2.0060 0.3331 0.7462
## Score_std:RaceEA 1.1432 0.8747 0.9001 1.4519
##
## Concordance= 0.72 (se = 0.02 )
## Likelihood ratio test= 105 on 3 df, p=<2e-16
## Wald test = 124.5 on 3 df, p=<2e-16
## Score (logrank) test = 135.6 on 3 df, p=<2e-16
9 people excluded from 6 month analysis (all died)
57 people excluded from 1 year analysis (all died)
61 people excluded from 6 month analysis (4 developed dementia, 57 died
died)
119 people excluded from 1 year analysis (4 developed dementia, 115
died)
|
Dementia incidence
|
Death
|
||||||
|---|---|---|---|---|---|---|---|
| Analysis | Data | HR estimate | Lower CI | Upper CI | HR estimate | Lower CI | Upper CI |
| Primary | 6m | 1.948 | 1.626 | 2.334 | 1.495 | 1.333 | 1.677 |
| Primary | 1y | 1.939 | 1.696 | 2.216 | 1.506 | 1.390 | 1.632 |
| Grace method 1 | 6m | 1.949 | 1.626 | 2.336 | 1.494 | 1.327 | 1.682 |
| Grace method 1 | 1y | 1.952 | 1.705 | 2.234 | 1.502 | 1.378 | 1.637 |
| Grace method 2 | 6m | 1.960 | 1.620 | 2.373 | 1.503 | 1.316 | 1.716 |
| Grace method 2 | 1y | 1.947 | 1.697 | 2.234 | 1.506 | 1.372 | 1.653 |
## Call:
## coxph(formula = Surv(time_to_event_grace, event_status2) ~ Score_std *
## Race, data = surv_6m_grace_v1, id = X)
##
## n= 2152, number of events= 445
##
## coef exp(coef) se(coef) robust se z Pr(>|z|)
## Score_std_1:2 0.66715 1.94868 0.09365 0.09250 7.212 5.50e-13 ***
## RaceEA_1:2 -0.61796 0.53904 0.27593 0.26567 -2.326 0.0200 *
## Score_std:RaceEA_1:2 0.06579 1.06800 0.16763 0.15205 0.433 0.6653
## Score_std_1:3 0.40123 1.49366 0.06088 0.06052 6.630 3.36e-11 ***
## RaceEA_1:3 0.20266 1.22465 0.11343 0.11204 1.809 0.0705 .
## Score_std:RaceEA_1:3 -0.03748 0.96321 0.09210 0.08855 -0.423 0.6721
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## Score_std_1:2 1.9487 0.5132 1.6256 2.3360
## RaceEA_1:2 0.5390 1.8551 0.3202 0.9073
## Score_std:RaceEA_1:2 1.0680 0.9363 0.7928 1.4388
## Score_std_1:3 1.4937 0.6695 1.3266 1.6818
## RaceEA_1:3 1.2247 0.8166 0.9832 1.5254
## Score_std:RaceEA_1:3 0.9632 1.0382 0.8097 1.1458
##
## Concordance= 0.649 (se = 0.013 )
## Likelihood ratio test= 136.1 on 6 df, p=<2e-16
## Wald test = 164.7 on 6 df, p=<2e-16
## Score (logrank) test = 166.8 on 6 df, p=<2e-16, Robust = 95.76 p=<2e-16
##
## (Note: the likelihood ratio and score tests assume independence of
## observations within a cluster, the Wald and robust score tests do not).
## Call:
## coxph(formula = Surv(time_to_event_grace, event_status2) ~ Score_std *
## Race, data = surv_1y_grace_v1, id = X)
##
## n= 3981, number of events= 837
##
## coef exp(coef) se(coef) robust se z Pr(>|z|)
## Score_std_1:2 0.66879 1.95187 0.06962 0.06891 9.705 < 2e-16 ***
## RaceEA_1:2 -0.70754 0.49286 0.20770 0.20027 -3.533 0.000411 ***
## Score_std:RaceEA_1:2 0.13006 1.13890 0.12592 0.11754 1.107 0.268497
## Score_std_1:3 0.40673 1.50190 0.04383 0.04408 9.228 < 2e-16 ***
## RaceEA_1:3 0.09726 1.10215 0.08231 0.08131 1.196 0.231608
## Score_std:RaceEA_1:3 0.03114 1.03163 0.06653 0.06504 0.479 0.632073
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## Score_std_1:2 1.9519 0.5123 1.7053 2.2341
## RaceEA_1:2 0.4929 2.0290 0.3329 0.7298
## Score_std:RaceEA_1:2 1.1389 0.8780 0.9046 1.4339
## Score_std_1:3 1.5019 0.6658 1.3776 1.6374
## RaceEA_1:3 1.1022 0.9073 0.9398 1.2926
## Score_std:RaceEA_1:3 1.0316 0.9693 0.9082 1.1719
##
## Concordance= 0.654 (se = 0.01 )
## Likelihood ratio test= 276.4 on 6 df, p=<2e-16
## Wald test = 325.6 on 6 df, p=<2e-16
## Score (logrank) test = 344.1 on 6 df, p=<2e-16, Robust = 185.9 p=<2e-16
##
## (Note: the likelihood ratio and score tests assume independence of
## observations within a cluster, the Wald and robust score tests do not).
## Call:
## coxph(formula = Surv(time_to_event_grace, event_status2) ~ Score_std *
## Race, data = surv_6m_grace_v2, id = X)
##
## n= 2100, number of events= 393
##
## coef exp(coef) se(coef) robust se z Pr(>|z|)
## Score_std_1:2 0.67308 1.96027 0.09619 0.09741 6.910 4.85e-12 ***
## RaceEA_1:2 -0.61018 0.54325 0.28169 0.27268 -2.238 0.0252 *
## Score_std:RaceEA_1:2 0.06585 1.06806 0.17165 0.15853 0.415 0.6779
## Score_std_1:3 0.40734 1.50282 0.06711 0.06782 6.006 1.90e-09 ***
## RaceEA_1:3 0.28875 1.33476 0.12056 0.11951 2.416 0.0157 *
## Score_std:RaceEA_1:3 -0.05940 0.94233 0.10008 0.09618 -0.618 0.5368
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## Score_std_1:2 1.9603 0.5101 1.6196 2.3726
## RaceEA_1:2 0.5433 1.8408 0.3183 0.9271
## Score_std:RaceEA_1:2 1.0681 0.9363 0.7828 1.4573
## Score_std_1:3 1.5028 0.6654 1.3158 1.7165
## RaceEA_1:3 1.3348 0.7492 1.0560 1.6871
## Score_std:RaceEA_1:3 0.9423 1.0612 0.7804 1.1378
##
## Concordance= 0.649 (se = 0.014 )
## Likelihood ratio test= 126.1 on 6 df, p=<2e-16
## Wald test = 149.2 on 6 df, p=<2e-16
## Score (logrank) test = 154.1 on 6 df, p=<2e-16, Robust = 86.59 p=<2e-16
##
## (Note: the likelihood ratio and score tests assume independence of
## observations within a cluster, the Wald and robust score tests do not).
## Call:
## coxph(formula = Surv(time_to_event_grace, event_status2) ~ Score_std *
## Race, data = surv_1y_grace_v2, id = X)
##
## n= 3919, number of events= 775
##
## coef exp(coef) se(coef) robust se z Pr(>|z|)
## Score_std_1:2 0.66640 1.94721 0.07031 0.07020 9.492 < 2e-16 ***
## RaceEA_1:2 -0.71301 0.49017 0.21023 0.20358 -3.502 0.000461 ***
## Score_std:RaceEA_1:2 0.13850 1.14855 0.12757 0.12043 1.150 0.250132
## Score_std_1:3 0.40943 1.50595 0.04658 0.04763 8.595 < 2e-16 ***
## RaceEA_1:3 0.14348 1.15429 0.08557 0.08488 1.690 0.090936 .
## Score_std:RaceEA_1:3 0.01975 1.01994 0.06999 0.06859 0.288 0.773416
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## Score_std_1:2 1.9472 0.5136 1.6969 2.2344
## RaceEA_1:2 0.4902 2.0401 0.3289 0.7305
## Score_std:RaceEA_1:2 1.1485 0.8707 0.9071 1.4543
## Score_std_1:3 1.5060 0.6640 1.3717 1.6533
## RaceEA_1:3 1.1543 0.8663 0.9774 1.3632
## Score_std:RaceEA_1:3 1.0199 0.9804 0.8916 1.1667
##
## Concordance= 0.651 (se = 0.01 )
## Likelihood ratio test= 259.8 on 6 df, p=<2e-16
## Wald test = 305.5 on 6 df, p=<2e-16
## Score (logrank) test = 324 on 6 df, p=<2e-16, Robust = 171.5 p=<2e-16
##
## (Note: the likelihood ratio and score tests assume independence of
## observations within a cluster, the Wald and robust score tests do not).