Data Cleaning

merged_data <- merged_data %>% 
  mutate(
    binary_var = ifelse(
      is.na(control_instruction_),  # Check if experiment_instruct__1 is NA
      1,                             # If TRUE, set binary_var to 1
      ifelse(
        control_instruction_ == 1,    # Check if control_instruction is 1
        0,                           # If TRUE, set binary_var to 0
        1                            # Otherwise, set binary_var to 1
      )
    )
  )

# descriptives 
merged_data <- merged_data %>% rename(Age = Age.x)
merged_data$Age <- as.numeric(merged_data$Age)

merged_data <- remove_labels(merged_data)

# Calculate z-scores
merged_data$ladder_latino_zscore <-  scale(merged_data$ladder_latino_)
merged_data$ladder_white_zscore <-  scale(merged_data$ladder_white_)

Guide to Variables

ladder_latino = Where would you place the average Latino person on the ladder in relation to other people in the United States? Please tick the box that corresponds to the selected rung. 1-10

ladder_white = Where would you place the average White person on the ladder in relation to other people in the United States? Please tick the box that corresponds to the selected rung. 1-10

undoc_imm__2 = In the United States, what percentage of immigrants are undocumented, meaning that they have either entered the country illegally or stayed longer than allowed? 0 to 100

preference_latino_ = Do you support the preferential hiring of Latino people? Strongly oppose, oppose, neither support nor oppose, support, strongly support

preference_white = Do you support the preferential hiring of poor White people? Strongly oppose, oppose, neither support nor oppose, support, strongly support

job_threat_ = To what degree are you worried about losing your job or not finding a job? Not at all, a bit, a lot, extremely

crime_threat_ = Have you felt unsafe from crime in your home? Not at all, a bit, a lot, extremely

household_finance = Thinking about your household’s finances today, do you feel your household is: Financially secure, not financially secure

household_financial_ = How would you rate your household’s financial situation today? poor, only fair, good, excellent

economic_conditions_ = How would you rate economic conditions in the country today? poor, only fair, good, excellent

imm_amvalue_ = Immigrants bring their foreign language and culture. Do you think we should shut the door to immigration? 1 = strongly disagree 5 = strongly agree

imm_urban_ = Immigrants have been found to revitalize urban areas. Do you think we should promote immigration? 1 = strongly disagree 5 = strongly agree

imm_develop_ = Immigrants have been found to create new businesses. Do you think we need to increase the number of immigrants? 1 = strongly disagree 5 = strongly agree

imm_burden_ = immigrants are a burden on our country becuase they take our jobs, housing, and health care. 1 = strongly disagree 5 = strongly agree

imm_strength_ = immigrants today strengthen our country because of their hard work and talents. 1 = strongly disagree 5 = strongly agree

ImmigBilingual = Replace multi-year bilingual instruction in schools (designed to accommodate children born in other countries) with instruction only in English after one year. Strongly oppose, oppose, neither support nor oppose, support, strongly support

DACA = Charge undocumented immigrants attending college a higher tuition rate at state colleges and universities even if they grew up and graduated high school in the United States. Strongly oppose, oppose, neither support nor oppose, support, strongly support

undoc_policy = What is your preferred policy on undocumented or illegal immigration?

anti_imm_att is an aggregate measure of”imm_strength_r”, “imm_burden_”, “imm_develop_r”, “imm_urban_r”, “imm_amvalue_” this variable is coded with 5 being more anti and 1 being more pro.

all_anti_policies is an aggregate measure of “zDACA”, “zanti_policy”, “zImmigIDr”, “zImmigBilingual” with 5 being anti and 1 being pro.

Baseline Models - testing if our experimental condiiton is assocaited with all relevant outcomes

Regression Models Summary - Model 1
  ladder_latino_zscore
Predictors Estimates CI p
(Intercept) -0.01 -0.08 – 0.06 0.716
binary var 0.03 -0.07 – 0.12 0.615
Observations 1599
R2 / R2 adjusted 0.000 / -0.000
Regression Models Summary - Model 2
  undoc_imm__2
Predictors Estimates CI p
(Intercept) 27.80 26.23 – 29.36 <0.001
binary var 1.79 -0.37 – 3.96 0.104
Observations 1599
R2 / R2 adjusted 0.002 / 0.001
Regression Models Summary - Model 3
  preference_latino_
Predictors Estimates CI p
(Intercept) 2.49 2.41 – 2.57 <0.001
binary var 0.03 -0.08 – 0.13 0.628
Observations 1599
R2 / R2 adjusted 0.000 / -0.000
Regression Models Summary - Model 4
  preference_white
Predictors Estimates CI p
(Intercept) 2.43 2.35 – 2.51 <0.001
binary var 0.09 -0.02 – 0.19 0.101
Observations 1599
R2 / R2 adjusted 0.002 / 0.001
Regression Models Summary - Model 6
  job_threat_
Predictors Estimates CI p
(Intercept) 1.82 1.75 – 1.89 <0.001
binary var 0.07 -0.03 – 0.16 0.151
Observations 1599
R2 / R2 adjusted 0.001 / 0.001
Regression Models Summary - Model 7
  crime_threat_
Predictors Estimates CI p
(Intercept) 1.39 1.34 – 1.44 <0.001
binary var 0.09 0.03 – 0.16 0.005
Observations 1599
R2 / R2 adjusted 0.005 / 0.004
Regression Models Summary - Model 8
  household_finance
Predictors Estimates CI p
(Intercept) 1.50 1.46 – 1.53 <0.001
binary var 0.02 -0.03 – 0.07 0.422
Observations 1599
R2 / R2 adjusted 0.000 / -0.000
Regression Models Summary - Model 9
  household_financial_
Predictors Estimates CI p
(Intercept) 2.26 2.20 – 2.32 <0.001
binary var -0.05 -0.14 – 0.03 0.233
Observations 1599
R2 / R2 adjusted 0.001 / 0.000
Regression Models Summary - Model 10
  economic_conditions_
Predictors Estimates CI p
(Intercept) 1.86 1.80 – 1.91 <0.001
binary var -0.01 -0.09 – 0.07 0.812
Observations 1599
R2 / R2 adjusted 0.000 / -0.001
Regression Models Summary - Model 11
  imm_amvalue_
Predictors Estimates CI p
(Intercept) 2.33 2.23 – 2.43 <0.001
binary var 0.15 0.02 – 0.29 0.027
Observations 1599
R2 / R2 adjusted 0.003 / 0.002
Regression Models Summary - Model 12
  imm_urban_
Predictors Estimates CI p
(Intercept) 2.91 2.82 – 3.00 <0.001
binary var -0.04 -0.16 – 0.09 0.559
Observations 1599
R2 / R2 adjusted 0.000 / -0.000
Regression Models Summary - Model 13
  imm_develop_
Predictors Estimates CI p
(Intercept) 2.78 2.70 – 2.87 <0.001
binary var -0.08 -0.20 – 0.03 0.160
Observations 1599
R2 / R2 adjusted 0.001 / 0.001
Regression Models Summary - Model 14
  imm_burden_
Predictors Estimates CI p
(Intercept) 2.46 2.36 – 2.56 <0.001
binary var 0.13 -0.01 – 0.26 0.063
Observations 1599
R2 / R2 adjusted 0.002 / 0.002
Regression Models Summary - Model 15
  imm_strength_
Predictors Estimates CI p
(Intercept) 3.63 3.54 – 3.71 <0.001
binary var -0.14 -0.26 – -0.02 0.027
Observations 1599
R2 / R2 adjusted 0.003 / 0.002
Regression Models Summary - Model 16
  ImmigBilingual
Predictors Estimates CI p
(Intercept) 2.71 2.62 – 2.81 <0.001
binary var 0.03 -0.10 – 0.15 0.700
Observations 1599
R2 / R2 adjusted 0.000 / -0.001
Regression Models Summary - Model 17
  DACA
Predictors Estimates CI p
(Intercept) 2.25 2.15 – 2.34 <0.001
binary var 0.14 0.01 – 0.27 0.035
Observations 1598
R2 / R2 adjusted 0.003 / 0.002
Regression Models Summary - Model 18
  undoc_imm__2
Predictors Estimates CI p
(Intercept) 27.80 26.23 – 29.36 <0.001
binary var 1.79 -0.37 – 3.96 0.104
Observations 1599
R2 / R2 adjusted 0.002 / 0.001

Summary: Main effect of experiemntal condition on crime threat. Crime threat increases with new census latino race question. Significance for Imm_amvalue - with new question people think we should shut the door on immigration more. Significance with imm_strength_ - people think that less that immigration strengthens our country. Significance for DACA - people who see race question think we should charge DACA students higher tuition.

Examining interaction of experimental condition and where people think Latinos are on the social ladder

Regression Models Summary - Model 19
  undoc_imm__2
Predictors Estimates CI p
(Intercept) 20.56 -9.89 – 51.01 0.186
Age 0.18 0.11 – 0.26 <0.001
Sex [Female] -0.18 -30.54 – 30.18 0.991
Sex [Male] -1.72 -32.07 – 28.64 0.912
ladder latino zscore -1.42 -2.97 – 0.12 0.070
binary var 1.74 -0.41 – 3.88 0.112
ladder latino zscore ×
binary var
3.70 1.56 – 5.84 0.001
Observations 1599
R2 / R2 adjusted 0.026 / 0.022
Regression Models Summary - Model 20
  preference_latino_
Predictors Estimates CI p
(Intercept) 2.11 0.58 – 3.63 0.007
Age -0.00 -0.01 – 0.00 0.074
Sex [Female] 0.60 -0.92 – 2.12 0.439
Sex [Male] 0.47 -1.05 – 1.99 0.542
ladder latino zscore 0.05 -0.03 – 0.13 0.213
binary var 0.03 -0.08 – 0.14 0.612
ladder latino zscore ×
binary var
-0.08 -0.19 – 0.03 0.138
Observations 1599
R2 / R2 adjusted 0.007 / 0.003
Regression Models Summary - Model 21
  preference_white
Predictors Estimates CI p
(Intercept) 3.45 1.97 – 4.94 <0.001
Age -0.00 -0.00 – 0.00 0.577
Sex [Female] -0.98 -2.46 – 0.50 0.193
Sex [Male] -0.98 -2.45 – 0.50 0.193
ladder latino zscore 0.01 -0.07 – 0.08 0.816
binary var 0.08 -0.02 – 0.19 0.110
ladder latino zscore ×
binary var
-0.02 -0.12 – 0.09 0.739
Observations 1599
R2 / R2 adjusted 0.003 / -0.001
Regression Models Summary - Model 22
  job_threat_
Predictors Estimates CI p
(Intercept) 2.34 1.03 – 3.64 <0.001
Age -0.01 -0.02 – -0.01 <0.001
Sex [Female] 0.14 -1.16 – 1.45 0.827
Sex [Male] -0.06 -1.36 – 1.24 0.929
ladder latino zscore -0.02 -0.09 – 0.04 0.493
binary var 0.07 -0.02 – 0.16 0.129
ladder latino zscore ×
binary var
0.01 -0.09 – 0.10 0.895
Observations 1599
R2 / R2 adjusted 0.046 / 0.042
Regression Models Summary - Model 23
  crime_threat_
Predictors Estimates CI p
(Intercept) 1.83 0.89 – 2.77 <0.001
Age 0.00 -0.00 – 0.00 0.313
Sex [Female] -0.44 -1.38 – 0.49 0.353
Sex [Male] -0.54 -1.48 – 0.39 0.255
ladder latino zscore -0.00 -0.05 – 0.05 0.924
binary var 0.09 0.03 – 0.16 0.007
ladder latino zscore ×
binary var
0.05 -0.02 – 0.11 0.167
Observations 1599
R2 / R2 adjusted 0.014 / 0.010
Regression Models Summary - Model 24
  household_finance
Predictors Estimates CI p
(Intercept) 1.47 0.78 – 2.16 <0.001
Age 0.00 -0.00 – 0.00 0.279
Sex [Female] 0.04 -0.65 – 0.73 0.903
Sex [Male] -0.08 -0.77 – 0.61 0.815
ladder latino zscore -0.05 -0.08 – -0.01 0.008
binary var 0.02 -0.03 – 0.07 0.415
ladder latino zscore ×
binary var
0.02 -0.03 – 0.07 0.408
Observations 1599
R2 / R2 adjusted 0.022 / 0.019
Regression Models Summary - Model 25
  household_financial_
Predictors Estimates CI p
(Intercept) 1.52 0.33 – 2.71 0.013
Age 0.00 -0.00 – 0.00 0.865
Sex [Female] 0.62 -0.56 – 1.81 0.304
Sex [Male] 0.85 -0.34 – 2.03 0.162
ladder latino zscore 0.11 0.05 – 0.17 0.001
binary var -0.05 -0.13 – 0.03 0.237
ladder latino zscore ×
binary var
-0.08 -0.16 – 0.01 0.076
Observations 1599
R2 / R2 adjusted 0.026 / 0.022
Regression Models Summary - Model 26
  economic_conditions_
Predictors Estimates CI p
(Intercept) 1.23 0.16 – 2.30 0.025
Age 0.01 0.01 – 0.01 <0.001
Sex [Female] 0.13 -0.94 – 1.20 0.815
Sex [Male] 0.38 -0.69 – 1.45 0.488
ladder latino zscore 0.09 0.04 – 0.15 0.001
binary var -0.01 -0.09 – 0.06 0.775
ladder latino zscore ×
binary var
-0.07 -0.15 – 0.00 0.067
Observations 1599
R2 / R2 adjusted 0.052 / 0.048
Regression Models Summary - Model 27
  imm_amvalue_
Predictors Estimates CI p
(Intercept) 2.42 0.53 – 4.31 0.012
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] -0.63 -2.51 – 1.26 0.515
Sex [Male] -0.55 -2.43 – 1.34 0.569
ladder latino zscore -0.10 -0.19 – -0.00 0.047
binary var 0.15 0.01 – 0.28 0.030
ladder latino zscore ×
binary var
0.20 0.06 – 0.33 0.004
Observations 1599
R2 / R2 adjusted 0.023 / 0.019
Regression Models Summary - Model 28
  imm_urban_
Predictors Estimates CI p
(Intercept) 5.53 3.81 – 7.26 <0.001
Age -0.01 -0.02 – -0.01 <0.001
Sex [Female] -2.00 -3.72 – -0.28 0.022
Sex [Male] -1.93 -3.65 – -0.21 0.027
ladder latino zscore 0.12 0.03 – 0.21 0.007
binary var -0.04 -0.16 – 0.08 0.527
ladder latino zscore ×
binary var
-0.15 -0.28 – -0.03 0.013
Observations 1599
R2 / R2 adjusted 0.040 / 0.036
Regression Models Summary - Model 29
  imm_develop_
Predictors Estimates CI p
(Intercept) 4.57 2.93 – 6.21 <0.001
Age -0.01 -0.02 – -0.01 <0.001
Sex [Female] -1.23 -2.86 – 0.40 0.139
Sex [Male] -1.15 -2.78 – 0.48 0.166
ladder latino zscore 0.09 0.01 – 0.18 0.028
binary var -0.08 -0.20 – 0.03 0.154
ladder latino zscore ×
binary var
-0.17 -0.29 – -0.06 0.003
Observations 1599
R2 / R2 adjusted 0.036 / 0.033
Regression Models Summary - Model 30
  imm_burden_
Predictors Estimates CI p
(Intercept) 0.36 -1.54 – 2.26 0.709
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] 1.46 -0.43 – 3.35 0.131
Sex [Male] 1.52 -0.37 – 3.41 0.115
ladder latino zscore -0.11 -0.21 – -0.02 0.020
binary var 0.13 -0.00 – 0.26 0.057
ladder latino zscore ×
binary var
0.21 0.08 – 0.34 0.002
Observations 1599
R2 / R2 adjusted 0.030 / 0.027
Regression Models Summary - Model 31
  imm_strength_
Predictors Estimates CI p
(Intercept) 5.47 3.77 – 7.17 <0.001
Age -0.01 -0.01 – -0.01 <0.001
Sex [Female] -1.43 -3.12 – 0.26 0.097
Sex [Male] -1.44 -3.13 – 0.25 0.095
ladder latino zscore 0.10 0.01 – 0.19 0.024
binary var -0.14 -0.26 – -0.02 0.023
ladder latino zscore ×
binary var
-0.15 -0.27 – -0.03 0.013
Observations 1599
R2 / R2 adjusted 0.021 / 0.017
Regression Models Summary - Model 32
  ImmigBilingual
Predictors Estimates CI p
(Intercept) 2.24 0.50 – 3.99 0.012
Age 0.02 0.02 – 0.03 <0.001
Sex [Female] -0.62 -2.36 – 1.13 0.487
Sex [Male] -0.41 -2.15 – 1.33 0.645
ladder latino zscore -0.06 -0.14 – 0.03 0.216
binary var 0.02 -0.10 – 0.14 0.750
ladder latino zscore ×
binary var
0.11 -0.02 – 0.23 0.094
Observations 1599
R2 / R2 adjusted 0.066 / 0.063
Regression Models Summary - Model 33
  DACA
Predictors Estimates CI p
(Intercept) 1.29 -0.54 – 3.12 0.166
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] 0.22 -1.61 – 2.04 0.817
Sex [Male] 0.45 -1.37 – 2.28 0.626
ladder latino zscore -0.01 -0.10 – 0.09 0.913
binary var 0.14 0.01 – 0.27 0.035
ladder latino zscore ×
binary var
0.16 0.03 – 0.29 0.015
Observations 1598
R2 / R2 adjusted 0.039 / 0.035

Summary:

-Significance for undoc_imm_2 - Meaning that people who view latinos as higher on the social ladder and see the new latino race question there is a 3.7% increase in the percent of Latinx people they think are undocumented.

-Significace for imm_amvalue - meaning that people who see latinos as higher on the social ladder are more likely to want to close the doors on immigration when shown the new latino race question.

-Significance for imm_urban - For people who see latinos as high on the social ladder, there is a decrease of wanting to promote immigration in urban areas for people who see the Latino race question.

Significance for imm_develop - For those who see latinos as higher on the social ladder there is a lower likelihood in thinking we should increase the number of immigrants for bussiness development for people who see the latino race question.

Significance for imm_burden - people who see the latino race question and think that they are higher on the ladder think immigrants are more of a burden.

Significance for imm_strength - people who see the latino race question and think that they are higher on the ladder think less than immigrants strengthen our country.

Significance for DACA - people who see the latino race question and think that they are higher on the ladder think we should charge DACA students more for college.

Examining interaction of experimental condition and where people think Whites are on the social ladder

Regression Models Summary - Model 35
  undoc_imm__2
Predictors Estimates CI p
(Intercept) 23.04 -7.40 – 53.47 0.138
Age 0.18 0.10 – 0.25 <0.001
Sex [Female] -2.31 -32.65 – 28.03 0.881
Sex [Male] -3.99 -34.32 – 26.35 0.797
ladder white zscore -2.80 -4.36 – -1.23 <0.001
binary var 1.77 -0.37 – 3.91 0.105
ladder white zscore ×
binary var
2.23 0.08 – 4.38 0.042
Observations 1599
R2 / R2 adjusted 0.026 / 0.022
Regression Models Summary - Model 36
  preference_white
Predictors Estimates CI p
(Intercept) 3.39 1.91 – 4.86 <0.001
Age -0.00 -0.00 – 0.00 0.697
Sex [Female] -0.93 -2.40 – 0.54 0.215
Sex [Male] -0.92 -2.39 – 0.55 0.219
ladder white zscore 0.13 0.05 – 0.21 0.001
binary var 0.08 -0.02 – 0.19 0.116
ladder white zscore ×
binary var
-0.05 -0.15 – 0.05 0.336
Observations 1599
R2 / R2 adjusted 0.013 / 0.009
Regression Models Summary - Model 37
  preference_latino_
Predictors Estimates CI p
(Intercept) 1.98 0.48 – 3.49 0.010
Age -0.00 -0.01 – 0.00 0.127
Sex [Female] 0.70 -0.80 – 2.19 0.363
Sex [Male] 0.58 -0.92 – 2.08 0.446
ladder white zscore 0.23 0.15 – 0.31 <0.001
binary var 0.03 -0.08 – 0.13 0.643
ladder white zscore ×
binary var
-0.11 -0.21 – 0.00 0.052
Observations 1599
R2 / R2 adjusted 0.034 / 0.030
Regression Models Summary - Model 38
  job_threat_
Predictors Estimates CI p
(Intercept) 2.28 0.98 – 3.59 0.001
Age -0.01 -0.02 – -0.01 <0.001
Sex [Female] 0.20 -1.11 – 1.50 0.768
Sex [Male] -0.00 -1.30 – 1.30 0.996
ladder white zscore 0.01 -0.06 – 0.07 0.874
binary var 0.07 -0.02 – 0.16 0.134
ladder white zscore ×
binary var
0.05 -0.04 – 0.15 0.251
Observations 1599
R2 / R2 adjusted 0.047 / 0.044
Regression Models Summary - Model 39
  crime_threat_
Predictors Estimates CI p
(Intercept) 1.86 0.92 – 2.80 <0.001
Age 0.00 -0.00 – 0.00 0.366
Sex [Female] -0.47 -1.40 – 0.47 0.329
Sex [Male] -0.57 -1.50 – 0.37 0.236
ladder white zscore -0.03 -0.08 – 0.01 0.174
binary var 0.09 0.03 – 0.16 0.006
ladder white zscore ×
binary var
0.05 -0.01 – 0.12 0.116
Observations 1599
R2 / R2 adjusted 0.014 / 0.010
Regression Models Summary - Model 40
  household_finance
Predictors Estimates CI p
(Intercept) 1.46 0.77 – 2.15 <0.001
Age 0.00 -0.00 – 0.00 0.266
Sex [Female] 0.05 -0.64 – 0.74 0.878
Sex [Male] -0.07 -0.76 – 0.62 0.843
ladder white zscore -0.01 -0.05 – 0.02 0.468
binary var 0.02 -0.03 – 0.07 0.432
ladder white zscore ×
binary var
-0.00 -0.05 – 0.05 0.910
Observations 1599
R2 / R2 adjusted 0.018 / 0.014
Regression Models Summary - Model 41
  household_financial_
Predictors Estimates CI p
(Intercept) 1.54 0.35 – 2.74 0.011
Age 0.00 -0.00 – 0.00 0.842
Sex [Female] 0.59 -0.60 – 1.78 0.328
Sex [Male] 0.81 -0.38 – 2.00 0.180
ladder white zscore 0.05 -0.01 – 0.11 0.092
binary var -0.05 -0.13 – 0.03 0.250
ladder white zscore ×
binary var
-0.06 -0.14 – 0.03 0.171
Observations 1599
R2 / R2 adjusted 0.020 / 0.016
Regression Models Summary - Model 42
  economic_conditions_
Predictors Estimates CI p
(Intercept) 1.20 0.13 – 2.26 0.028
Age 0.01 0.01 – 0.01 <0.001
Sex [Female] 0.15 -0.92 – 1.21 0.785
Sex [Male] 0.40 -0.66 – 1.47 0.458
ladder white zscore 0.12 0.06 – 0.17 <0.001
binary var -0.01 -0.09 – 0.06 0.772
ladder white zscore ×
binary var
-0.05 -0.13 – 0.03 0.194
Observations 1599
R2 / R2 adjusted 0.059 / 0.055
Regression Models Summary - Model 43
  imm_amvalue_
Predictors Estimates CI p
(Intercept) 2.57 0.69 – 4.46 0.008
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] -0.76 -2.64 – 1.12 0.428
Sex [Male] -0.69 -2.57 – 1.19 0.470
ladder white zscore -0.19 -0.28 – -0.09 <0.001
binary var 0.15 0.02 – 0.28 0.027
ladder white zscore ×
binary var
0.09 -0.04 – 0.23 0.168
Observations 1599
R2 / R2 adjusted 0.029 / 0.025
Regression Models Summary - Model 44
  imm_urban_
Predictors Estimates CI p
(Intercept) 5.40 3.70 – 7.10 <0.001
Age -0.01 -0.02 – -0.01 <0.001
Sex [Female] -1.89 -3.59 – -0.20 0.029
Sex [Male] -1.81 -3.51 – -0.11 0.037
ladder white zscore 0.25 0.17 – 0.34 <0.001
binary var -0.04 -0.16 – 0.08 0.501
ladder white zscore ×
binary var
-0.11 -0.23 – 0.01 0.064
Observations 1599
R2 / R2 adjusted 0.060 / 0.057
Regression Models Summary - Model 45
  imm_develop_
Predictors Estimates CI p
(Intercept) 4.42 2.80 – 6.04 <0.001
Age -0.01 -0.02 – -0.01 <0.001
Sex [Female] -1.11 -2.72 – 0.51 0.181
Sex [Male] -1.01 -2.63 – 0.60 0.219
ladder white zscore 0.22 0.14 – 0.30 <0.001
binary var -0.09 -0.20 – 0.03 0.140
ladder white zscore ×
binary var
-0.11 -0.23 – 0.00 0.053
Observations 1599
R2 / R2 adjusted 0.051 / 0.048
Regression Models Summary - Model 46
  imm_burden_
Predictors Estimates CI p
(Intercept) 0.51 -1.37 – 2.40 0.593
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] 1.34 -0.54 – 3.22 0.162
Sex [Male] 1.39 -0.49 – 3.27 0.147
ladder white zscore -0.27 -0.36 – -0.17 <0.001
binary var 0.13 -0.00 – 0.26 0.051
ladder white zscore ×
binary var
0.19 0.05 – 0.32 0.006
Observations 1599
R2 / R2 adjusted 0.044 / 0.040
Regression Models Summary - Model 47
  imm_strength_
Predictors Estimates CI p
(Intercept) 5.34 3.66 – 7.03 <0.001
Age -0.01 -0.01 – -0.00 <0.001
Sex [Female] -1.33 -3.01 – 0.35 0.122
Sex [Male] -1.32 -3.00 – 0.36 0.123
ladder white zscore 0.20 0.11 – 0.28 <0.001
binary var -0.14 -0.26 – -0.02 0.021
ladder white zscore ×
binary var
-0.09 -0.21 – 0.03 0.157
Observations 1599
R2 / R2 adjusted 0.033 / 0.030
Regression Models Summary - Model 48
  ImmigBilingual
Predictors Estimates CI p
(Intercept) 2.35 0.61 – 4.08 0.008
Age 0.02 0.02 – 0.03 <0.001
Sex [Female] -0.69 -2.42 – 1.04 0.432
Sex [Male] -0.50 -2.23 – 1.23 0.573
ladder white zscore -0.23 -0.32 – -0.14 <0.001
binary var 0.02 -0.10 – 0.14 0.719
ladder white zscore ×
binary var
0.15 0.03 – 0.28 0.014
Observations 1599
R2 / R2 adjusted 0.081 / 0.077
Regression Models Summary - Model 49
  DACA
Predictors Estimates CI p
(Intercept) 1.47 -0.36 – 3.30 0.114
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] 0.06 -1.76 – 1.88 0.946
Sex [Male] 0.29 -1.53 – 2.11 0.757
ladder white zscore -0.18 -0.28 – -0.09 <0.001
binary var 0.14 0.01 – 0.27 0.031
ladder white zscore ×
binary var
0.13 0.00 – 0.26 0.049
Observations 1598
R2 / R2 adjusted 0.041 / 0.038

Summary: significance for undoc_imm_2, imm_burden, immig_bilinguil, and DACA.

Testing two interactions

Regression Models Summary - Model 51
  undoc_imm__2
Predictors Estimates CI p
(Intercept) 21.28 -9.07 – 51.62 0.169
Age 0.18 0.10 – 0.25 <0.001
Sex [Female] -0.58 -30.84 – 29.68 0.970
Sex [Male] -2.26 -32.51 – 28.00 0.884
ladder white zscore -2.60 -4.22 – -0.97 0.002
binary var 1.76 -0.38 – 3.89 0.107
ladder latino zscore -0.68 -2.29 – 0.92 0.405
ladder white zscore ×
binary var
1.16 -1.09 – 3.41 0.312
binary var × ladder
latino zscore
3.42 1.18 – 5.66 0.003
Observations 1599
R2 / R2 adjusted 0.034 / 0.029
Regression Models Summary - Model 52
  preference_white
Predictors Estimates CI p
(Intercept) 3.41 1.94 – 4.89 <0.001
Age -0.00 -0.00 – 0.00 0.689
Sex [Female] -0.95 -2.42 – 0.52 0.204
Sex [Male] -0.94 -2.41 – 0.52 0.208
ladder white zscore 0.14 0.06 – 0.22 0.001
binary var 0.08 -0.02 – 0.19 0.113
ladder latino zscore -0.03 -0.11 – 0.05 0.437
ladder white zscore ×
binary var
-0.05 -0.16 – 0.06 0.389
binary var × ladder
latino zscore
-0.01 -0.12 – 0.10 0.895
Observations 1599
R2 / R2 adjusted 0.014 / 0.009
Regression Models Summary - Model 53
  preference_latino_
Predictors Estimates CI p
(Intercept) 2.03 0.53 – 3.54 0.008
Age -0.00 -0.01 – 0.00 0.123
Sex [Female] 0.64 -0.85 – 2.14 0.399
Sex [Male] 0.53 -0.97 – 2.03 0.487
ladder white zscore 0.24 0.16 – 0.32 <0.001
binary var 0.03 -0.08 – 0.13 0.631
ladder latino zscore -0.02 -0.10 – 0.06 0.643
ladder white zscore ×
binary var
-0.09 -0.20 – 0.03 0.135
binary var × ladder
latino zscore
-0.06 -0.17 – 0.05 0.270
Observations 1599
R2 / R2 adjusted 0.036 / 0.032
Regression Models Summary - Model 54
  job_threat_
Predictors Estimates CI p
(Intercept) 2.31 1.00 – 3.61 0.001
Age -0.01 -0.02 – -0.01 <0.001
Sex [Female] 0.17 -1.13 – 1.47 0.797
Sex [Male] -0.03 -1.33 – 1.27 0.965
ladder white zscore 0.01 -0.06 – 0.08 0.709
binary var 0.07 -0.02 – 0.16 0.130
ladder latino zscore -0.03 -0.10 – 0.04 0.445
ladder white zscore ×
binary var
0.06 -0.04 – 0.16 0.233
binary var × ladder
latino zscore
-0.01 -0.11 – 0.08 0.785
Observations 1599
R2 / R2 adjusted 0.048 / 0.043
Regression Models Summary - Model 55
  crime_threat_
Predictors Estimates CI p
(Intercept) 1.83 0.90 – 2.77 <0.001
Age 0.00 -0.00 – 0.00 0.359
Sex [Female] -0.44 -1.38 – 0.50 0.358
Sex [Male] -0.54 -1.48 – 0.40 0.259
ladder white zscore -0.04 -0.09 – 0.01 0.164
binary var 0.09 0.03 – 0.16 0.007
ladder latino zscore 0.01 -0.04 – 0.06 0.754
ladder white zscore ×
binary var
0.04 -0.03 – 0.11 0.236
binary var × ladder
latino zscore
0.03 -0.04 – 0.10 0.333
Observations 1599
R2 / R2 adjusted 0.015 / 0.010
Regression Models Summary - Model 56
  household_finance
Predictors Estimates CI p
(Intercept) 1.48 0.78 – 2.17 <0.001
Age 0.00 -0.00 – 0.00 0.275
Sex [Female] 0.04 -0.65 – 0.73 0.910
Sex [Male] -0.09 -0.78 – 0.60 0.808
ladder white zscore 0.00 -0.04 – 0.04 0.967
binary var 0.02 -0.03 – 0.07 0.415
ladder latino zscore -0.05 -0.08 – -0.01 0.011
ladder white zscore ×
binary var
-0.01 -0.06 – 0.04 0.725
binary var × ladder
latino zscore
0.02 -0.03 – 0.07 0.368
Observations 1599
R2 / R2 adjusted 0.023 / 0.018
Regression Models Summary - Model 57
  household_financial_
Predictors Estimates CI p
(Intercept) 1.52 0.33 – 2.71 0.012
Age 0.00 -0.00 – 0.00 0.822
Sex [Female] 0.61 -0.57 – 1.80 0.310
Sex [Male] 0.84 -0.35 – 2.03 0.166
ladder white zscore 0.02 -0.04 – 0.09 0.477
binary var -0.05 -0.13 – 0.03 0.236
ladder latino zscore 0.10 0.04 – 0.16 0.002
ladder white zscore ×
binary var
-0.04 -0.13 – 0.05 0.363
binary var × ladder
latino zscore
-0.06 -0.15 – 0.02 0.158
Observations 1599
R2 / R2 adjusted 0.026 / 0.022
Regression Models Summary - Model 58
  economic_conditions_
Predictors Estimates CI p
(Intercept) 1.20 0.13 – 2.26 0.028
Age 0.01 0.01 – 0.01 <0.001
Sex [Female] 0.15 -0.92 – 1.21 0.787
Sex [Male] 0.40 -0.66 – 1.47 0.458
ladder white zscore 0.10 0.04 – 0.15 0.001
binary var -0.01 -0.09 – 0.06 0.759
ladder latino zscore 0.06 0.01 – 0.12 0.026
ladder white zscore ×
binary var
-0.03 -0.11 – 0.05 0.443
binary var × ladder
latino zscore
-0.06 -0.14 – 0.01 0.111
Observations 1599
R2 / R2 adjusted 0.062 / 0.057
Regression Models Summary - Model 59
  imm_amvalue_
Predictors Estimates CI p
(Intercept) 2.48 0.60 – 4.36 0.010
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] -0.67 -2.55 – 1.21 0.484
Sex [Male] -0.60 -2.48 – 1.27 0.530
ladder white zscore -0.17 -0.27 – -0.07 0.001
binary var 0.15 0.02 – 0.28 0.027
ladder latino zscore -0.05 -0.15 – 0.05 0.348
ladder white zscore ×
binary var
0.03 -0.11 – 0.17 0.635
binary var × ladder
latino zscore
0.19 0.05 – 0.33 0.007
Observations 1599
R2 / R2 adjusted 0.035 / 0.030
Regression Models Summary - Model 60
  imm_urban_
Predictors Estimates CI p
(Intercept) 5.46 3.76 – 7.16 <0.001
Age -0.01 -0.02 – -0.01 <0.001
Sex [Female] -1.95 -3.65 – -0.25 0.024
Sex [Male] -1.86 -3.56 – -0.17 0.031
ladder white zscore 0.24 0.15 – 0.33 <0.001
binary var -0.04 -0.16 – 0.08 0.502
ladder latino zscore 0.05 -0.04 – 0.14 0.255
ladder white zscore ×
binary var
-0.07 -0.20 – 0.06 0.275
binary var × ladder
latino zscore
-0.14 -0.27 – -0.01 0.029
Observations 1599
R2 / R2 adjusted 0.063 / 0.059
Regression Models Summary - Model 61
  imm_develop_
Predictors Estimates CI p
(Intercept) 4.50 2.88 – 6.12 <0.001
Age -0.01 -0.02 – -0.01 <0.001
Sex [Female] -1.19 -2.80 – 0.43 0.150
Sex [Male] -1.10 -2.71 – 0.52 0.184
ladder white zscore 0.21 0.12 – 0.30 <0.001
binary var -0.09 -0.20 – 0.03 0.142
ladder latino zscore 0.03 -0.05 – 0.12 0.453
ladder white zscore ×
binary var
-0.06 -0.18 – 0.06 0.306
binary var × ladder
latino zscore
-0.16 -0.28 – -0.04 0.008
Observations 1599
R2 / R2 adjusted 0.057 / 0.052
Regression Models Summary - Model 62
  imm_burden_
Predictors Estimates CI p
(Intercept) 0.43 -1.46 – 2.31 0.658
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] 1.43 -0.45 – 3.30 0.136
Sex [Male] 1.48 -0.40 – 3.35 0.123
ladder white zscore -0.25 -0.36 – -0.15 <0.001
binary var 0.13 -0.00 – 0.26 0.051
ladder latino zscore -0.04 -0.14 – 0.06 0.413
ladder white zscore ×
binary var
0.13 -0.01 – 0.27 0.067
binary var × ladder
latino zscore
0.18 0.04 – 0.32 0.012
Observations 1599
R2 / R2 adjusted 0.049 / 0.044
Regression Models Summary - Model 63
  imm_strength_
Predictors Estimates CI p
(Intercept) 5.41 3.72 – 7.09 <0.001
Age -0.01 -0.01 – -0.00 <0.001
Sex [Female] -1.39 -3.07 – 0.29 0.105
Sex [Male] -1.38 -3.06 – 0.30 0.106
ladder white zscore 0.18 0.09 – 0.27 <0.001
binary var -0.14 -0.26 – -0.02 0.021
ladder latino zscore 0.05 -0.04 – 0.14 0.304
ladder white zscore ×
binary var
-0.04 -0.17 – 0.08 0.521
binary var × ladder
latino zscore
-0.15 -0.27 – -0.02 0.022
Observations 1599
R2 / R2 adjusted 0.037 / 0.032
Regression Models Summary - Model 64
  ImmigBilingual
Predictors Estimates CI p
(Intercept) 2.30 0.56 – 4.03 0.009
Age 0.02 0.02 – 0.03 <0.001
Sex [Female] -0.64 -2.37 – 1.09 0.466
Sex [Male] -0.45 -2.18 – 1.29 0.614
ladder white zscore -0.23 -0.32 – -0.14 <0.001
binary var 0.02 -0.10 – 0.14 0.728
ladder latino zscore 0.01 -0.08 – 0.10 0.836
ladder white zscore ×
binary var
0.13 0.00 – 0.26 0.046
binary var × ladder
latino zscore
0.07 -0.06 – 0.20 0.275
Observations 1599
R2 / R2 adjusted 0.083 / 0.078
Regression Models Summary - Model 65
  DACA
Predictors Estimates CI p
(Intercept) 1.35 -0.47 – 3.17 0.146
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] 0.18 -1.63 – 2.00 0.844
Sex [Male] 0.41 -1.40 – 2.22 0.657
ladder white zscore -0.20 -0.30 – -0.10 <0.001
binary var 0.14 0.01 – 0.27 0.033
ladder latino zscore 0.05 -0.04 – 0.15 0.293
ladder white zscore ×
binary var
0.08 -0.05 – 0.22 0.225
binary var × ladder
latino zscore
0.14 0.01 – 0.28 0.040
Observations 1598
R2 / R2 adjusted 0.052 / 0.047

Summary:

significance for undoc_imm_2, imm_amvalue, imm_urban, imm_develop, imm_burden_, imm_strength, DACA all with Latino Ladder x binary_var interaction

Creating Aggregate Policy Measures

# Combo should appear in my code but check it. Would be an average of immigrants do this, i want immigrants, reverse scoring in necessary. Same for policies but before averaging policies need to be z scored because they have diff scales
# Assuming you have a data frame `merged_data` containing the variables mentioned in the SPSS code.

# Initializing anti_policy variable
merged_data$anti_policy <- 1

# Updating anti_policy based on conditions
merged_data$anti_policy[merged_data$undoc_policy == 6] <- 4
merged_data$anti_policy[merged_data$undoc_policy == 4] <- NA  # 99 is recoded as missing value (NA)
merged_data$anti_policy[merged_data$undoc_policy == 5] <- 3
merged_data$anti_policy[merged_data$undoc_policy == 3] <- 2

# Recoding ImmigID - Allow immigrants to use an ID issues by a foreign country 
merged_data$ImmigIDr <- merged_data$ImmigID
merged_data$ImmigIDr[merged_data$ImmigID == 1] <- 5 # oppose 
merged_data$ImmigIDr[merged_data$ImmigID == 2] <- 4
merged_data$ImmigIDr[merged_data$ImmigID == 3] <- 3
merged_data$ImmigIDr[merged_data$ImmigID == 4] <- 2
merged_data$ImmigIDr[merged_data$ImmigID == 5] <- 1 # support

# Recoding multiple variables - immigrants today strengthen our country because of their hard work 
merged_data$imm_strength_r <- merged_data$imm_strength_
merged_data$imm_strength_r[merged_data$imm_strength_ == 1] <- 5  # disagree
merged_data$imm_strength_r[merged_data$imm_strength_ == 2] <- 4
merged_data$imm_strength_r[merged_data$imm_strength_ == 3] <- 3
merged_data$imm_strength_r[merged_data$imm_strength_ == 4] <- 2
merged_data$imm_strength_r[merged_data$imm_strength_ == 5] <- 1 # agree

merged_data$imm_develop_r <- merged_data$imm_develop_
merged_data$imm_develop_r[merged_data$imm_develop_ == 1] <- 5 #disagree
merged_data$imm_develop_r[merged_data$imm_develop_ == 2] <- 4
merged_data$imm_develop_r[merged_data$imm_develop_ == 3] <- 3
merged_data$imm_develop_r[merged_data$imm_develop_ == 4] <- 2
merged_data$imm_develop_r[merged_data$imm_develop_ == 5] <- 1 # agree 

merged_data$imm_urban_r <- merged_data$imm_urban_
merged_data$imm_urban_r[merged_data$imm_urban_ == 1] <- 5 #Disagree
merged_data$imm_urban_r[merged_data$imm_urban_ == 2] <- 4
merged_data$imm_urban_r[merged_data$imm_urban_ == 3] <- 3
merged_data$imm_urban_r[merged_data$imm_urban_ == 4] <- 2
merged_data$imm_urban_r[merged_data$imm_urban_ == 5] <- 1 # agree

# Computing anti_imm_att
merged_data$anti_imm_att <- rowMeans(merged_data[, c("imm_strength_r", "imm_burden_", "imm_develop_r", "imm_urban_r", "imm_amvalue_")], na.rm = TRUE)

# Using scale to calculate z-scores
merged_data$zDACA <- scale(merged_data$DACA, center = TRUE, scale = TRUE)
merged_data$zanti_policy <- scale(merged_data$anti_policy, center = TRUE, scale = TRUE)
merged_data$zImmigIDr <- scale(merged_data$ImmigIDr, center = TRUE, scale = TRUE)
merged_data$zImmigBilingual <- scale(merged_data$ImmigBilingual, center = TRUE, scale = TRUE)

# Computing all_anti_policies
merged_data$all_anti_policies <- rowMeans(merged_data[, c("zDACA", "zanti_policy", "zImmigIDr", "zImmigBilingual")], na.rm = TRUE)

anti_imm_att is an aggregate measure of”imm_strength_r”, “imm_burden_”, “imm_develop_r”, “imm_urban_r”, “imm_amvalue_” this variable is coded with 5 being anti immigrant and 1 being pro immigrant

all_anti_policies is an aggregate measure of “zDACA”, “zanti_policy”, “zImmigIDr”, “zImmigBilingual” this variable is coded with 5 being anti immigrant and 1 being pro immigrant

Interaction with anti immigrant attitudes and experimental group

Regression Models Summary - Model 66
  undoc_imm__2
Predictors Estimates CI p
(Intercept) 15.79 -11.19 – 42.78 0.251
Age 0.07 0.00 – 0.13 0.046
Sex [Female] -12.70 -39.41 – 14.01 0.351
Sex [Male] -14.23 -40.94 – 12.47 0.296
anti imm att 8.34 7.11 – 9.57 <0.001
binary var -4.06 -8.98 – 0.86 0.106
anti imm att × binary var 1.75 0.09 – 3.41 0.038
Observations 1599
R2 / R2 adjusted 0.246 / 0.243
Regression Models Summary - Model 67
  preference_white
Predictors Estimates CI p
(Intercept) 3.66 2.19 – 5.13 <0.001
Age 0.00 -0.00 – 0.00 0.627
Sex [Female] -0.82 -2.28 – 0.63 0.268
Sex [Male] -0.82 -2.28 – 0.63 0.268
anti imm att -0.17 -0.23 – -0.10 <0.001
binary var 0.04 -0.23 – 0.31 0.761
anti imm att × binary var 0.02 -0.07 – 0.11 0.635
Observations 1599
R2 / R2 adjusted 0.030 / 0.027
Regression Models Summary - Model 68
  preference_latino_
Predictors Estimates CI p
(Intercept) 2.60 1.30 – 3.90 <0.001
Age 0.00 -0.00 – 0.01 0.060
Sex [Female] 1.18 -0.11 – 2.46 0.073
Sex [Male] 1.05 -0.24 – 2.33 0.109
anti imm att -0.51 -0.56 – -0.45 <0.001
binary var 0.15 -0.09 – 0.38 0.225
anti imm att × binary var -0.02 -0.10 – 0.06 0.572
Observations 1599
R2 / R2 adjusted 0.291 / 0.288
Regression Models Summary - Model 69
  job_threat_
Predictors Estimates CI p
(Intercept) 2.35 1.03 – 3.67 <0.001
Age -0.01 -0.02 – -0.01 <0.001
Sex [Female] 0.16 -1.15 – 1.46 0.814
Sex [Male] -0.05 -1.35 – 1.26 0.945
anti imm att -0.01 -0.07 – 0.05 0.699
binary var 0.04 -0.20 – 0.28 0.768
anti imm att × binary var 0.01 -0.07 – 0.09 0.756
Observations 1599
R2 / R2 adjusted 0.045 / 0.042
Regression Models Summary - Model 70
  crime_threat_
Predictors Estimates CI p
(Intercept) 1.77 0.83 – 2.71 <0.001
Age 0.00 -0.00 – 0.00 0.765
Sex [Female] -0.54 -1.47 – 0.39 0.254
Sex [Male] -0.64 -1.57 – 0.29 0.176
anti imm att 0.07 0.03 – 0.12 0.001
binary var 0.12 -0.05 – 0.29 0.164
anti imm att × binary var -0.01 -0.07 – 0.04 0.647
Observations 1599
R2 / R2 adjusted 0.025 / 0.021
Regression Models Summary - Model 71
  household_finance
Predictors Estimates CI p
(Intercept) 1.45 0.75 – 2.15 <0.001
Age 0.00 -0.00 – 0.00 0.464
Sex [Female] 0.03 -0.66 – 0.72 0.937
Sex [Male] -0.09 -0.78 – 0.60 0.788
anti imm att 0.02 -0.01 – 0.05 0.230
binary var -0.02 -0.15 – 0.11 0.736
anti imm att × binary var 0.01 -0.03 – 0.06 0.522
Observations 1599
R2 / R2 adjusted 0.021 / 0.017
Regression Models Summary - Model 72
  household_financial_
Predictors Estimates CI p
(Intercept) 1.62 0.42 – 2.82 0.008
Age 0.00 -0.00 – 0.00 0.473
Sex [Female] 0.68 -0.51 – 1.87 0.261
Sex [Male] 0.90 -0.29 – 2.09 0.137
anti imm att -0.07 -0.13 – -0.02 0.008
binary var -0.03 -0.25 – 0.18 0.757
anti imm att × binary var -0.00 -0.08 – 0.07 0.952
Observations 1599
R2 / R2 adjusted 0.028 / 0.024
Regression Models Summary - Model 73
  economic_conditions_
Predictors Estimates CI p
(Intercept) 1.55 0.55 – 2.55 0.002
Age 0.01 0.01 – 0.01 <0.001
Sex [Female] 0.39 -0.60 – 1.37 0.439
Sex [Male] 0.64 -0.35 – 1.62 0.206
anti imm att -0.27 -0.32 – -0.23 <0.001
binary var 0.01 -0.17 – 0.19 0.924
anti imm att × binary var 0.00 -0.06 – 0.06 0.903
Observations 1599
R2 / R2 adjusted 0.193 / 0.190
Regression Models Summary - Model 74
  imm_amvalue_
Predictors Estimates CI p
(Intercept) 1.36 0.34 – 2.38 0.009
Age -0.00 -0.00 – 0.00 0.246
Sex [Female] -1.76 -2.77 – -0.75 0.001
Sex [Male] -1.68 -2.69 – -0.67 0.001
anti imm att 1.02 0.98 – 1.07 <0.001
binary var 0.07 -0.12 – 0.25 0.467
anti imm att × binary var -0.01 -0.07 – 0.05 0.729
Observations 1599
R2 / R2 adjusted 0.720 / 0.719
Regression Models Summary - Model 75
  imm_urban_
Predictors Estimates CI p
(Intercept) 6.57 5.82 – 7.32 <0.001
Age -0.00 -0.00 – -0.00 0.006
Sex [Female] -0.94 -1.68 – -0.20 0.013
Sex [Male] -0.87 -1.62 – -0.13 0.021
anti imm att -0.98 -1.02 – -0.95 <0.001
binary var 0.09 -0.04 – 0.23 0.175
anti imm att × binary var -0.01 -0.06 – 0.04 0.677
Observations 1599
R2 / R2 adjusted 0.820 / 0.819
Regression Models Summary - Model 76
  imm_develop_
Predictors Estimates CI p
(Intercept) 5.54 4.76 – 6.32 <0.001
Age -0.00 -0.00 – -0.00 0.046
Sex [Female] -0.22 -0.99 – 0.55 0.582
Sex [Male] -0.14 -0.91 – 0.63 0.727
anti imm att -0.92 -0.96 – -0.89 <0.001
binary var -0.02 -0.16 – 0.13 0.827
anti imm att × binary var 0.01 -0.04 – 0.06 0.645
Observations 1599
R2 / R2 adjusted 0.785 / 0.784
Regression Models Summary - Model 77
  imm_burden_
Predictors Estimates CI p
(Intercept) -0.80 -1.57 – -0.02 0.045
Age -0.00 -0.00 – 0.00 0.911
Sex [Female] 0.24 -0.53 – 1.01 0.542
Sex [Male] 0.30 -0.47 – 1.07 0.441
anti imm att 1.11 1.07 – 1.14 <0.001
binary var 0.04 -0.10 – 0.19 0.541
anti imm att × binary var -0.01 -0.06 – 0.04 0.619
Observations 1599
R2 / R2 adjusted 0.840 / 0.839
Regression Models Summary - Model 78
  imm_strength_
Predictors Estimates CI p
(Intercept) 6.45 5.72 – 7.18 <0.001
Age 0.00 0.00 – 0.00 0.001
Sex [Female] -0.36 -1.08 – 0.36 0.326
Sex [Male] -0.37 -1.09 – 0.35 0.315
anti imm att -0.96 -1.00 – -0.93 <0.001
binary var 0.03 -0.10 – 0.17 0.611
anti imm att × binary var -0.02 -0.07 – 0.02 0.281
Observations 1599
R2 / R2 adjusted 0.823 / 0.822
Regression Models Summary - Model 79
  ImmigBilingual
Predictors Estimates CI p
(Intercept) 1.39 -0.04 – 2.82 0.057
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] -1.28 -2.70 – 0.14 0.077
Sex [Male] -1.07 -2.49 – 0.34 0.137
anti imm att 0.70 0.63 – 0.76 <0.001
binary var 0.20 -0.06 – 0.46 0.133
anti imm att × binary var -0.09 -0.18 – -0.00 0.043
Observations 1599
R2 / R2 adjusted 0.384 / 0.382
Regression Models Summary - Model 80
  DACA
Predictors Estimates CI p
(Intercept) 0.54 -0.87 – 1.95 0.451
Age 0.00 0.00 – 0.01 0.012
Sex [Female] -0.68 -2.08 – 0.71 0.337
Sex [Male] -0.45 -1.84 – 0.94 0.526
anti imm att 0.77 0.71 – 0.83 <0.001
binary var 0.13 -0.13 – 0.39 0.327
anti imm att × binary var -0.03 -0.11 – 0.06 0.561
Observations 1598
R2 / R2 adjusted 0.439 / 0.437

Summary:

Signficance for undoc_imm_2, immigbilingual

Testing interaction with all_anti_policies and binary_var

Regression Models Summary - Model 81
  undoc_imm__2
Predictors Estimates CI p
(Intercept) 38.96 11.52 – 66.40 0.005
Age 0.02 -0.05 – 0.09 0.578
Sex [Female] -10.30 -37.62 – 17.03 0.460
Sex [Male] -13.39 -40.72 – 13.93 0.337
all anti policies 11.68 9.84 – 13.52 <0.001
binary var 1.35 -0.58 – 3.28 0.171
all anti policies ×
binary var
1.97 -0.50 – 4.44 0.119
Observations 1599
R2 / R2 adjusted 0.211 / 0.208
Regression Models Summary - Model 82
  preference_white
Predictors Estimates CI p
(Intercept) 3.15 1.70 – 4.61 <0.001
Age 0.00 -0.00 – 0.01 0.226
Sex [Female] -0.85 -2.30 – 0.61 0.253
Sex [Male] -0.81 -2.26 – 0.64 0.273
all anti policies -0.29 -0.38 – -0.19 <0.001
binary var 0.09 -0.01 – 0.20 0.076
all anti policies ×
binary var
0.06 -0.07 – 0.19 0.392
Observations 1599
R2 / R2 adjusted 0.037 / 0.033
Regression Models Summary - Model 83
  preference_latino_
Predictors Estimates CI p
(Intercept) 1.10 -0.18 – 2.39 0.092
Age 0.01 0.00 – 0.01 <0.001
Sex [Female] 1.09 -0.19 – 2.37 0.094
Sex [Male] 1.06 -0.22 – 2.34 0.104
all anti policies -0.77 -0.86 – -0.69 <0.001
binary var 0.05 -0.04 – 0.14 0.257
all anti policies ×
binary var
-0.02 -0.13 – 0.10 0.743
Observations 1599
R2 / R2 adjusted 0.299 / 0.296
Regression Models Summary - Model 84
  job_threat_
Predictors Estimates CI p
(Intercept) 2.29 0.99 – 3.60 0.001
Age -0.01 -0.02 – -0.01 <0.001
Sex [Female] 0.17 -1.14 – 1.47 0.801
Sex [Male] -0.03 -1.33 – 1.27 0.962
all anti policies -0.03 -0.12 – 0.06 0.495
binary var 0.07 -0.02 – 0.16 0.128
all anti policies ×
binary var
0.01 -0.11 – 0.13 0.844
Observations 1599
R2 / R2 adjusted 0.045 / 0.042
Regression Models Summary - Model 85
  crime_threat_
Predictors Estimates CI p
(Intercept) 1.98 1.04 – 2.91 <0.001
Age -0.00 -0.00 – 0.00 0.964
Sex [Female] -0.52 -1.46 – 0.41 0.269
Sex [Male] -0.64 -1.57 – 0.29 0.179
all anti policies 0.11 0.05 – 0.17 0.001
binary var 0.09 0.02 – 0.15 0.008
all anti policies ×
binary var
-0.03 -0.11 – 0.06 0.507
Observations 1599
R2 / R2 adjusted 0.024 / 0.020
Regression Models Summary - Model 86
  household_finance
Predictors Estimates CI p
(Intercept) 1.47 0.77 – 2.16 <0.001
Age 0.00 -0.00 – 0.00 0.361
Sex [Female] 0.05 -0.64 – 0.75 0.879
Sex [Male] -0.07 -0.76 – 0.62 0.841
all anti policies 0.01 -0.04 – 0.06 0.659
binary var 0.02 -0.03 – 0.07 0.447
all anti policies ×
binary var
0.01 -0.06 – 0.07 0.866
Observations 1599
R2 / R2 adjusted 0.017 / 0.013
Regression Models Summary - Model 87
  household_financial_
Predictors Estimates CI p
(Intercept) 1.47 0.28 – 2.67 0.016
Age 0.00 -0.00 – 0.00 0.547
Sex [Female] 0.63 -0.56 – 1.82 0.298
Sex [Male] 0.86 -0.33 – 2.05 0.157
all anti policies -0.07 -0.15 – 0.01 0.098
binary var -0.05 -0.13 – 0.04 0.274
all anti policies ×
binary var
0.01 -0.10 – 0.12 0.831
Observations 1599
R2 / R2 adjusted 0.021 / 0.017
Regression Models Summary - Model 88
  economic_conditions_
Predictors Estimates CI p
(Intercept) 0.83 -0.18 – 1.84 0.108
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] 0.30 -0.70 – 1.31 0.556
Sex [Male] 0.59 -0.41 – 1.60 0.248
all anti policies -0.37 -0.43 – -0.30 <0.001
binary var 0.00 -0.07 – 0.07 0.974
all anti policies ×
binary var
0.03 -0.06 – 0.12 0.474
Observations 1599
R2 / R2 adjusted 0.158 / 0.155
Regression Models Summary - Model 89
  imm_amvalue_
Predictors Estimates CI p
(Intercept) 3.91 2.45 – 5.37 <0.001
Age -0.00 -0.01 – 0.00 0.059
Sex [Female] -1.37 -2.83 – 0.08 0.064
Sex [Male] -1.44 -2.89 – 0.02 0.053
all anti policies 1.15 1.05 – 1.24 <0.001
binary var 0.11 0.01 – 0.22 0.032
all anti policies ×
binary var
-0.01 -0.14 – 0.12 0.909
Observations 1599
R2 / R2 adjusted 0.417 / 0.415
Regression Models Summary - Model 90
  imm_urban_
Predictors Estimates CI p
(Intercept) 4.05 2.84 – 5.26 <0.001
Age 0.00 -0.00 – 0.00 0.962
Sex [Female] -1.27 -2.48 – -0.07 0.038
Sex [Male] -1.06 -2.27 – 0.14 0.084
all anti policies -1.13 -1.22 – -1.05 <0.001
binary var -0.00 -0.09 – 0.08 0.963
all anti policies ×
binary var
-0.05 -0.16 – 0.06 0.383
Observations 1599
R2 / R2 adjusted 0.526 / 0.524
Regression Models Summary - Model 91
  imm_develop_
Predictors Estimates CI p
(Intercept) 3.14 1.97 – 4.30 <0.001
Age 0.00 -0.00 – 0.00 0.631
Sex [Female] -0.51 -1.67 – 0.65 0.388
Sex [Male] -0.30 -1.46 – 0.86 0.615
all anti policies -1.07 -1.15 – -1.00 <0.001
binary var -0.05 -0.13 – 0.03 0.234
all anti policies ×
binary var
-0.04 -0.14 – 0.07 0.504
Observations 1599
R2 / R2 adjusted 0.513 / 0.511
Regression Models Summary - Model 92
  imm_burden_
Predictors Estimates CI p
(Intercept) 2.11 0.85 – 3.36 0.001
Age -0.00 -0.01 – -0.00 0.017
Sex [Female] 0.60 -0.65 – 1.85 0.348
Sex [Male] 0.49 -0.75 – 1.74 0.439
all anti policies 1.37 1.28 – 1.45 <0.001
binary var 0.09 -0.00 – 0.18 0.052
all anti policies ×
binary var
-0.03 -0.14 – 0.08 0.620
Observations 1599
R2 / R2 adjusted 0.578 / 0.577
Regression Models Summary - Model 93
  imm_strength_
Predictors Estimates CI p
(Intercept) 3.97 2.80 – 5.15 <0.001
Age 0.01 0.00 – 0.01 <0.001
Sex [Female] -0.69 -1.86 – 0.48 0.248
Sex [Male] -0.56 -1.73 – 0.62 0.352
all anti policies -1.13 -1.21 – -1.05 <0.001
binary var -0.10 -0.18 – -0.02 0.016
all anti policies ×
binary var
-0.05 -0.15 – 0.06 0.368
Observations 1599
R2 / R2 adjusted 0.531 / 0.529
Regression Models Summary - Model 94
  ImmigBilingual
Predictors Estimates CI p
(Intercept) 3.82 2.69 – 4.94 <0.001
Age 0.01 0.00 – 0.01 <0.001
Sex [Female] -1.36 -2.48 – -0.24 0.018
Sex [Male] -1.31 -2.43 – -0.19 0.022
all anti policies 1.32 1.24 – 1.39 <0.001
binary var -0.02 -0.10 – 0.06 0.633
all anti policies ×
binary var
-0.10 -0.20 – 0.00 0.054
Observations 1599
R2 / R2 adjusted 0.614 / 0.613
Regression Models Summary - Model 95
  DACA
Predictors Estimates CI p
(Intercept) 3.13 1.99 – 4.27 <0.001
Age -0.00 -0.01 – -0.00 0.010
Sex [Female] -0.73 -1.86 – 0.41 0.209
Sex [Male] -0.66 -1.79 – 0.47 0.253
all anti policies 1.33 1.26 – 1.41 <0.001
binary var 0.10 0.02 – 0.18 0.017
all anti policies ×
binary var
0.05 -0.05 – 0.15 0.340
Observations 1598
R2 / R2 adjusted 0.629 / 0.628

Summary:

No interaction significance

Models testing association between aggreggate measures and experimental condition

Regression Models Summary - Model 104
  all_anti_policies
Predictors Estimates CI p
(Intercept) -1.24 -2.30 – -0.18 0.022
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] 0.58 -0.47 – 1.64 0.279
Sex [Male] 0.71 -0.35 – 1.76 0.188
binary var 0.03 -0.04 – 0.11 0.417
Observations 1599
R2 / R2 adjusted 0.063 / 0.060
Regression Models Summary - Model 105
  anti_imm_att
Predictors Estimates CI p
(Intercept) 1.10 -0.48 – 2.67 0.172
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] 1.04 -0.53 – 2.61 0.196
Sex [Male] 1.04 -0.53 – 2.61 0.195
binary var 0.11 -0.00 – 0.22 0.059
Observations 1599
R2 / R2 adjusted 0.029 / 0.026

Summary:

No significance

Models testing interaction of White/Latino ladder and experimental binary variable

Regression Models Summary - Model 96
  all_anti_policies
Predictors Estimates CI p
(Intercept) -1.93 -2.67 – -1.19 <0.001
Age 0.01 0.01 – 0.01 <0.001
Sex [Female] 0.46 -0.28 – 1.20 0.220
Sex [Male] 0.57 -0.17 – 1.31 0.133
politics 0.36 0.34 – 0.38 <0.001
ladder latino zscore -0.07 -0.11 – -0.03 <0.001
binary var -0.02 -0.07 – 0.04 0.565
ladder latino zscore ×
binary var
0.06 0.01 – 0.12 0.018
Observations 1599
R2 / R2 adjusted 0.540 / 0.538
Regression Models Summary - Model 97
  anti_imm_att
Predictors Estimates CI p
(Intercept) 1.04 -0.53 – 2.61 0.195
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] 1.10 -0.47 – 2.67 0.169
Sex [Male] 1.10 -0.47 – 2.67 0.169
ladder latino zscore -0.10 -0.18 – -0.03 0.010
binary var 0.11 -0.00 – 0.22 0.056
ladder latino zscore ×
binary var
0.18 0.07 – 0.29 0.002
Observations 1599
R2 / R2 adjusted 0.035 / 0.031
Regression Models Summary - Model 98
  all_anti_policies
Predictors Estimates CI p
(Intercept) -1.18 -2.23 – -0.14 0.026
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] 0.55 -0.49 – 1.59 0.300
Sex [Male] 0.67 -0.38 – 1.71 0.210
ladder white zscore -0.17 -0.22 – -0.12 <0.001
binary var 0.03 -0.04 – 0.11 0.380
ladder white zscore ×
binary var
0.10 0.03 – 0.18 0.006
Observations 1599
R2 / R2 adjusted 0.089 / 0.086
Regression Models Summary - Model 99
  anti_imm_att
Predictors Estimates CI p
(Intercept) 1.18 -0.37 – 2.74 0.136
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] 0.98 -0.57 – 2.53 0.216
Sex [Male] 0.97 -0.58 – 2.52 0.221
ladder white zscore -0.22 -0.30 – -0.14 <0.001
binary var 0.11 0.00 – 0.22 0.050
ladder white zscore ×
binary var
0.12 0.01 – 0.23 0.035
Observations 1599
R2 / R2 adjusted 0.051 / 0.048

Summary:

-Significance with all_anti_policies - when people think Latinos or whites are high on the ladder, they are more anti-immigrant when seeing the new latino race question

-Significance with anti_imm_att - when people think Latinos or whites are high on the ladder, they are more anti-immigrant when seeing the new latino race question

Testing both interactions
Regression Models Summary - Model 100
  all_anti_policies
Predictors Estimates CI p
(Intercept) -1.25 -2.29 – -0.21 0.019
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] 0.61 -0.42 – 1.65 0.246
Sex [Male] 0.73 -0.31 – 1.77 0.167
ladder latino zscore 0.01 -0.05 – 0.06 0.851
binary var 0.03 -0.04 – 0.11 0.391
ladder white zscore -0.17 -0.23 – -0.12 <0.001
ladder latino zscore ×
binary var
0.10 0.02 – 0.17 0.013
binary var × ladder white
zscore
0.07 -0.00 – 0.15 0.063
Observations 1599
R2 / R2 adjusted 0.097 / 0.093
Regression Models Summary - Model 101
  anti_imm_att
Predictors Estimates CI p
(Intercept) 1.11 -0.45 – 2.66 0.163
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] 1.06 -0.49 – 2.61 0.182
Sex [Male] 1.04 -0.51 – 2.59 0.187
ladder latino zscore -0.04 -0.13 – 0.04 0.293
binary var 0.11 -0.00 – 0.22 0.050
ladder white zscore -0.21 -0.30 – -0.13 <0.001
ladder latino zscore ×
binary var
0.16 0.05 – 0.28 0.005
binary var × ladder white
zscore
0.07 -0.05 – 0.18 0.250
Observations 1599
R2 / R2 adjusted 0.057 / 0.052

Summary:

all_anti_policies and anti_imm_att interaction with latino ladder is significant, suggesting that whites may feel more threat when latino ethnicity is asked as a race question

Testing ladder difference measure

merged_data <- merged_data %>%
  mutate(ladder_difference_zscore = ladder_white_zscore - ladder_latino_zscore)

model_102 <- lm(all_anti_policies ~ Age + Sex + ladder_difference_zscore*binary_var, data = merged_data)
model_103 <- lm(anti_imm_att ~ Age + Sex + ladder_difference_zscore*binary_var, data = merged_data)
Regression Models Summary - Model 102
  all_anti_policies
Predictors Estimates CI p
(Intercept) -1.26 -2.30 – -0.21 0.019
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] 0.60 -0.44 – 1.65 0.257
Sex [Male] 0.73 -0.32 – 1.77 0.173
ladder difference zscore -0.09 -0.13 – -0.04 <0.001
binary var 0.03 -0.04 – 0.10 0.423
ladder difference zscore
× binary var
-0.01 -0.08 – 0.05 0.669
Observations 1599
R2 / R2 adjusted 0.083 / 0.080
Regression Models Summary - Model 103
  anti_imm_att
Predictors Estimates CI p
(Intercept) 1.07 -0.49 – 2.64 0.178
Age 0.01 0.01 – 0.02 <0.001
Sex [Female] 1.06 -0.50 – 2.62 0.182
Sex [Male] 1.06 -0.50 – 2.62 0.183
ladder difference zscore -0.08 -0.15 – -0.01 0.017
binary var 0.11 -0.00 – 0.22 0.059
ladder difference zscore
× binary var
-0.05 -0.14 – 0.04 0.290
Observations 1599
R2 / R2 adjusted 0.041 / 0.038

Summary:

No significance

Overall Summary

Models with no interaction

-Significance for crime threat. Crime threat increases with new census latino race question.

-Significance for Imm_amvalue - with new question people think we should shut the door on immigration more.

-Significance with imm_strength_ - people think that less that immigration strengthens our country.

-Significance for DACA - people who see race question think we should charge DACA students higher tuition.

Interaction with Latino Ladder

-Significance for undoc_imm_2 - Meaning that people who view latinos as higher on the social ladder and see the new latino race question there is a 3.7% increase in the percent of Latinx people they think are undocumented.

-Significance for imm_amvalue - meaning that people who see latinos as higher on the social ladder are more likely to want to close the doors on immigration when shown the new latino race question.

-Significance for imm_urban - For people who see latinos as high on the social ladder, there is a decrease of wanting to promote immigration in urban areas for people who see the Latino race question.

-Significance for imm_develop - For those who see latinos as higher on the social ladder there is a lower likelihood in thinking we should increase the number of immigrants for bussiness development for people who see the latino race question.

-Significance for imm_burden - people who see the latino race question and think that they are higher on the ladder think immigrants are more of a burden.

-Significance for imm_strength - people who see the latino race question and think that they are higher on the ladder think less than immigrants strengthen our country.

-Significance for DACA - people who see the latino race question and think that they are higher on the ladder think we should charge DACA students more for college.

Testing aggregate policy attitudes

-Significance with all_anti_policies - when people think Latinos or whites are high on the ladder, they are more anti-immigrant when seeing the new latino race question

-Significance with anti_imm_att - when people think Latinos or whites are high on the ladder, they are more anti-immigrant when seeing the new latino race question