merged_data <- merged_data %>%
mutate(
binary_var = ifelse(
is.na(control_instruction_), # Check if experiment_instruct__1 is NA
1, # If TRUE, set binary_var to 1
ifelse(
control_instruction_ == 1, # Check if control_instruction is 1
0, # If TRUE, set binary_var to 0
1 # Otherwise, set binary_var to 1
)
)
)
# descriptives
merged_data <- merged_data %>% rename(Age = Age.x)
merged_data$Age <- as.numeric(merged_data$Age)
merged_data <- remove_labels(merged_data)
# Calculate z-scores
merged_data$ladder_latino_zscore <- scale(merged_data$ladder_latino_)
merged_data$ladder_white_zscore <- scale(merged_data$ladder_white_)
ladder_latino = Where would you place the average Latino person on the ladder in relation to other people in the United States? Please tick the box that corresponds to the selected rung. 1-10
ladder_white = Where would you place the average White person on the ladder in relation to other people in the United States? Please tick the box that corresponds to the selected rung. 1-10
undoc_imm__2 = In the United States, what percentage of immigrants are undocumented, meaning that they have either entered the country illegally or stayed longer than allowed? 0 to 100
preference_latino_ = Do you support the preferential hiring of Latino people? Strongly oppose, oppose, neither support nor oppose, support, strongly support
preference_white = Do you support the preferential hiring of poor White people? Strongly oppose, oppose, neither support nor oppose, support, strongly support
job_threat_ = To what degree are you worried about losing your job or not finding a job? Not at all, a bit, a lot, extremely
crime_threat_ = Have you felt unsafe from crime in your home? Not at all, a bit, a lot, extremely
household_finance = Thinking about your household’s finances today, do you feel your household is: Financially secure, not financially secure
household_financial_ = How would you rate your household’s financial situation today? poor, only fair, good, excellent
economic_conditions_ = How would you rate economic conditions in the country today? poor, only fair, good, excellent
imm_amvalue_ = Immigrants bring their foreign language and culture. Do you think we should shut the door to immigration? 1 = strongly disagree 5 = strongly agree
imm_urban_ = Immigrants have been found to revitalize urban areas. Do you think we should promote immigration? 1 = strongly disagree 5 = strongly agree
imm_develop_ = Immigrants have been found to create new businesses. Do you think we need to increase the number of immigrants? 1 = strongly disagree 5 = strongly agree
imm_burden_ = immigrants are a burden on our country becuase they take our jobs, housing, and health care. 1 = strongly disagree 5 = strongly agree
imm_strength_ = immigrants today strengthen our country because of their hard work and talents. 1 = strongly disagree 5 = strongly agree
ImmigBilingual = Replace multi-year bilingual instruction in schools (designed to accommodate children born in other countries) with instruction only in English after one year. Strongly oppose, oppose, neither support nor oppose, support, strongly support
DACA = Charge undocumented immigrants attending college a higher tuition rate at state colleges and universities even if they grew up and graduated high school in the United States. Strongly oppose, oppose, neither support nor oppose, support, strongly support
undoc_policy = What is your preferred policy on undocumented or illegal immigration?
anti_imm_att is an aggregate measure of”imm_strength_r”, “imm_burden_”, “imm_develop_r”, “imm_urban_r”, “imm_amvalue_” this variable is coded with 5 being more anti and 1 being more pro.
all_anti_policies is an aggregate measure of “zDACA”, “zanti_policy”, “zImmigIDr”, “zImmigBilingual” with 5 being anti and 1 being pro.
ladder_latino_zscore | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | -0.01 | -0.08 – 0.06 | 0.716 |
binary var | 0.03 | -0.07 – 0.12 | 0.615 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.000 / -0.000 |
undoc_imm__2 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 27.80 | 26.23 – 29.36 | <0.001 |
binary var | 1.79 | -0.37 – 3.96 | 0.104 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.002 / 0.001 |
preference_latino_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.49 | 2.41 – 2.57 | <0.001 |
binary var | 0.03 | -0.08 – 0.13 | 0.628 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.000 / -0.000 |
preference_white | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.43 | 2.35 – 2.51 | <0.001 |
binary var | 0.09 | -0.02 – 0.19 | 0.101 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.002 / 0.001 |
job_threat_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.82 | 1.75 – 1.89 | <0.001 |
binary var | 0.07 | -0.03 – 0.16 | 0.151 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.001 / 0.001 |
crime_threat_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.39 | 1.34 – 1.44 | <0.001 |
binary var | 0.09 | 0.03 – 0.16 | 0.005 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.005 / 0.004 |
household_finance | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.50 | 1.46 – 1.53 | <0.001 |
binary var | 0.02 | -0.03 – 0.07 | 0.422 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.000 / -0.000 |
household_financial_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.26 | 2.20 – 2.32 | <0.001 |
binary var | -0.05 | -0.14 – 0.03 | 0.233 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.001 / 0.000 |
economic_conditions_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.86 | 1.80 – 1.91 | <0.001 |
binary var | -0.01 | -0.09 – 0.07 | 0.812 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.000 / -0.001 |
imm_amvalue_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.33 | 2.23 – 2.43 | <0.001 |
binary var | 0.15 | 0.02 – 0.29 | 0.027 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.003 / 0.002 |
imm_urban_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.91 | 2.82 – 3.00 | <0.001 |
binary var | -0.04 | -0.16 – 0.09 | 0.559 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.000 / -0.000 |
imm_develop_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.78 | 2.70 – 2.87 | <0.001 |
binary var | -0.08 | -0.20 – 0.03 | 0.160 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.001 / 0.001 |
imm_burden_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.46 | 2.36 – 2.56 | <0.001 |
binary var | 0.13 | -0.01 – 0.26 | 0.063 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.002 / 0.002 |
imm_strength_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 3.63 | 3.54 – 3.71 | <0.001 |
binary var | -0.14 | -0.26 – -0.02 | 0.027 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.003 / 0.002 |
ImmigBilingual | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.71 | 2.62 – 2.81 | <0.001 |
binary var | 0.03 | -0.10 – 0.15 | 0.700 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.000 / -0.001 |
DACA | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.25 | 2.15 – 2.34 | <0.001 |
binary var | 0.14 | 0.01 – 0.27 | 0.035 |
Observations | 1598 | ||
R2 / R2 adjusted | 0.003 / 0.002 |
undoc_imm__2 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 27.80 | 26.23 – 29.36 | <0.001 |
binary var | 1.79 | -0.37 – 3.96 | 0.104 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.002 / 0.001 |
Summary: Main effect of experiemntal condition on crime threat. Crime threat increases with new census latino race question. Significance for Imm_amvalue - with new question people think we should shut the door on immigration more. Significance with imm_strength_ - people think that less that immigration strengthens our country. Significance for DACA - people who see race question think we should charge DACA students higher tuition.
undoc_imm__2 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 21.28 | -9.07 – 51.62 | 0.169 |
Age | 0.18 | 0.10 – 0.25 | <0.001 |
Sex [Female] | -0.58 | -30.84 – 29.68 | 0.970 |
Sex [Male] | -2.26 | -32.51 – 28.00 | 0.884 |
ladder white zscore | -2.60 | -4.22 – -0.97 | 0.002 |
binary var | 1.76 | -0.38 – 3.89 | 0.107 |
ladder latino zscore | -0.68 | -2.29 – 0.92 | 0.405 |
ladder white zscore × binary var |
1.16 | -1.09 – 3.41 | 0.312 |
binary var × ladder latino zscore |
3.42 | 1.18 – 5.66 | 0.003 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.034 / 0.029 |
preference_white | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 3.41 | 1.94 – 4.89 | <0.001 |
Age | -0.00 | -0.00 – 0.00 | 0.689 |
Sex [Female] | -0.95 | -2.42 – 0.52 | 0.204 |
Sex [Male] | -0.94 | -2.41 – 0.52 | 0.208 |
ladder white zscore | 0.14 | 0.06 – 0.22 | 0.001 |
binary var | 0.08 | -0.02 – 0.19 | 0.113 |
ladder latino zscore | -0.03 | -0.11 – 0.05 | 0.437 |
ladder white zscore × binary var |
-0.05 | -0.16 – 0.06 | 0.389 |
binary var × ladder latino zscore |
-0.01 | -0.12 – 0.10 | 0.895 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.014 / 0.009 |
preference_latino_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.03 | 0.53 – 3.54 | 0.008 |
Age | -0.00 | -0.01 – 0.00 | 0.123 |
Sex [Female] | 0.64 | -0.85 – 2.14 | 0.399 |
Sex [Male] | 0.53 | -0.97 – 2.03 | 0.487 |
ladder white zscore | 0.24 | 0.16 – 0.32 | <0.001 |
binary var | 0.03 | -0.08 – 0.13 | 0.631 |
ladder latino zscore | -0.02 | -0.10 – 0.06 | 0.643 |
ladder white zscore × binary var |
-0.09 | -0.20 – 0.03 | 0.135 |
binary var × ladder latino zscore |
-0.06 | -0.17 – 0.05 | 0.270 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.036 / 0.032 |
job_threat_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.31 | 1.00 – 3.61 | 0.001 |
Age | -0.01 | -0.02 – -0.01 | <0.001 |
Sex [Female] | 0.17 | -1.13 – 1.47 | 0.797 |
Sex [Male] | -0.03 | -1.33 – 1.27 | 0.965 |
ladder white zscore | 0.01 | -0.06 – 0.08 | 0.709 |
binary var | 0.07 | -0.02 – 0.16 | 0.130 |
ladder latino zscore | -0.03 | -0.10 – 0.04 | 0.445 |
ladder white zscore × binary var |
0.06 | -0.04 – 0.16 | 0.233 |
binary var × ladder latino zscore |
-0.01 | -0.11 – 0.08 | 0.785 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.048 / 0.043 |
crime_threat_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.83 | 0.90 – 2.77 | <0.001 |
Age | 0.00 | -0.00 – 0.00 | 0.359 |
Sex [Female] | -0.44 | -1.38 – 0.50 | 0.358 |
Sex [Male] | -0.54 | -1.48 – 0.40 | 0.259 |
ladder white zscore | -0.04 | -0.09 – 0.01 | 0.164 |
binary var | 0.09 | 0.03 – 0.16 | 0.007 |
ladder latino zscore | 0.01 | -0.04 – 0.06 | 0.754 |
ladder white zscore × binary var |
0.04 | -0.03 – 0.11 | 0.236 |
binary var × ladder latino zscore |
0.03 | -0.04 – 0.10 | 0.333 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.015 / 0.010 |
household_finance | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.48 | 0.78 – 2.17 | <0.001 |
Age | 0.00 | -0.00 – 0.00 | 0.275 |
Sex [Female] | 0.04 | -0.65 – 0.73 | 0.910 |
Sex [Male] | -0.09 | -0.78 – 0.60 | 0.808 |
ladder white zscore | 0.00 | -0.04 – 0.04 | 0.967 |
binary var | 0.02 | -0.03 – 0.07 | 0.415 |
ladder latino zscore | -0.05 | -0.08 – -0.01 | 0.011 |
ladder white zscore × binary var |
-0.01 | -0.06 – 0.04 | 0.725 |
binary var × ladder latino zscore |
0.02 | -0.03 – 0.07 | 0.368 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.023 / 0.018 |
household_financial_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.52 | 0.33 – 2.71 | 0.012 |
Age | 0.00 | -0.00 – 0.00 | 0.822 |
Sex [Female] | 0.61 | -0.57 – 1.80 | 0.310 |
Sex [Male] | 0.84 | -0.35 – 2.03 | 0.166 |
ladder white zscore | 0.02 | -0.04 – 0.09 | 0.477 |
binary var | -0.05 | -0.13 – 0.03 | 0.236 |
ladder latino zscore | 0.10 | 0.04 – 0.16 | 0.002 |
ladder white zscore × binary var |
-0.04 | -0.13 – 0.05 | 0.363 |
binary var × ladder latino zscore |
-0.06 | -0.15 – 0.02 | 0.158 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.026 / 0.022 |
economic_conditions_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.20 | 0.13 – 2.26 | 0.028 |
Age | 0.01 | 0.01 – 0.01 | <0.001 |
Sex [Female] | 0.15 | -0.92 – 1.21 | 0.787 |
Sex [Male] | 0.40 | -0.66 – 1.47 | 0.458 |
ladder white zscore | 0.10 | 0.04 – 0.15 | 0.001 |
binary var | -0.01 | -0.09 – 0.06 | 0.759 |
ladder latino zscore | 0.06 | 0.01 – 0.12 | 0.026 |
ladder white zscore × binary var |
-0.03 | -0.11 – 0.05 | 0.443 |
binary var × ladder latino zscore |
-0.06 | -0.14 – 0.01 | 0.111 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.062 / 0.057 |
imm_amvalue_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.48 | 0.60 – 4.36 | 0.010 |
Age | 0.01 | 0.01 – 0.02 | <0.001 |
Sex [Female] | -0.67 | -2.55 – 1.21 | 0.484 |
Sex [Male] | -0.60 | -2.48 – 1.27 | 0.530 |
ladder white zscore | -0.17 | -0.27 – -0.07 | 0.001 |
binary var | 0.15 | 0.02 – 0.28 | 0.027 |
ladder latino zscore | -0.05 | -0.15 – 0.05 | 0.348 |
ladder white zscore × binary var |
0.03 | -0.11 – 0.17 | 0.635 |
binary var × ladder latino zscore |
0.19 | 0.05 – 0.33 | 0.007 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.035 / 0.030 |
imm_urban_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 5.46 | 3.76 – 7.16 | <0.001 |
Age | -0.01 | -0.02 – -0.01 | <0.001 |
Sex [Female] | -1.95 | -3.65 – -0.25 | 0.024 |
Sex [Male] | -1.86 | -3.56 – -0.17 | 0.031 |
ladder white zscore | 0.24 | 0.15 – 0.33 | <0.001 |
binary var | -0.04 | -0.16 – 0.08 | 0.502 |
ladder latino zscore | 0.05 | -0.04 – 0.14 | 0.255 |
ladder white zscore × binary var |
-0.07 | -0.20 – 0.06 | 0.275 |
binary var × ladder latino zscore |
-0.14 | -0.27 – -0.01 | 0.029 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.063 / 0.059 |
imm_develop_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 4.50 | 2.88 – 6.12 | <0.001 |
Age | -0.01 | -0.02 – -0.01 | <0.001 |
Sex [Female] | -1.19 | -2.80 – 0.43 | 0.150 |
Sex [Male] | -1.10 | -2.71 – 0.52 | 0.184 |
ladder white zscore | 0.21 | 0.12 – 0.30 | <0.001 |
binary var | -0.09 | -0.20 – 0.03 | 0.142 |
ladder latino zscore | 0.03 | -0.05 – 0.12 | 0.453 |
ladder white zscore × binary var |
-0.06 | -0.18 – 0.06 | 0.306 |
binary var × ladder latino zscore |
-0.16 | -0.28 – -0.04 | 0.008 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.057 / 0.052 |
imm_burden_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 0.43 | -1.46 – 2.31 | 0.658 |
Age | 0.01 | 0.01 – 0.02 | <0.001 |
Sex [Female] | 1.43 | -0.45 – 3.30 | 0.136 |
Sex [Male] | 1.48 | -0.40 – 3.35 | 0.123 |
ladder white zscore | -0.25 | -0.36 – -0.15 | <0.001 |
binary var | 0.13 | -0.00 – 0.26 | 0.051 |
ladder latino zscore | -0.04 | -0.14 – 0.06 | 0.413 |
ladder white zscore × binary var |
0.13 | -0.01 – 0.27 | 0.067 |
binary var × ladder latino zscore |
0.18 | 0.04 – 0.32 | 0.012 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.049 / 0.044 |
imm_strength_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 5.41 | 3.72 – 7.09 | <0.001 |
Age | -0.01 | -0.01 – -0.00 | <0.001 |
Sex [Female] | -1.39 | -3.07 – 0.29 | 0.105 |
Sex [Male] | -1.38 | -3.06 – 0.30 | 0.106 |
ladder white zscore | 0.18 | 0.09 – 0.27 | <0.001 |
binary var | -0.14 | -0.26 – -0.02 | 0.021 |
ladder latino zscore | 0.05 | -0.04 – 0.14 | 0.304 |
ladder white zscore × binary var |
-0.04 | -0.17 – 0.08 | 0.521 |
binary var × ladder latino zscore |
-0.15 | -0.27 – -0.02 | 0.022 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.037 / 0.032 |
ImmigBilingual | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.30 | 0.56 – 4.03 | 0.009 |
Age | 0.02 | 0.02 – 0.03 | <0.001 |
Sex [Female] | -0.64 | -2.37 – 1.09 | 0.466 |
Sex [Male] | -0.45 | -2.18 – 1.29 | 0.614 |
ladder white zscore | -0.23 | -0.32 – -0.14 | <0.001 |
binary var | 0.02 | -0.10 – 0.14 | 0.728 |
ladder latino zscore | 0.01 | -0.08 – 0.10 | 0.836 |
ladder white zscore × binary var |
0.13 | 0.00 – 0.26 | 0.046 |
binary var × ladder latino zscore |
0.07 | -0.06 – 0.20 | 0.275 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.083 / 0.078 |
DACA | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.35 | -0.47 – 3.17 | 0.146 |
Age | 0.01 | 0.01 – 0.02 | <0.001 |
Sex [Female] | 0.18 | -1.63 – 2.00 | 0.844 |
Sex [Male] | 0.41 | -1.40 – 2.22 | 0.657 |
ladder white zscore | -0.20 | -0.30 – -0.10 | <0.001 |
binary var | 0.14 | 0.01 – 0.27 | 0.033 |
ladder latino zscore | 0.05 | -0.04 – 0.15 | 0.293 |
ladder white zscore × binary var |
0.08 | -0.05 – 0.22 | 0.225 |
binary var × ladder latino zscore |
0.14 | 0.01 – 0.28 | 0.040 |
Observations | 1598 | ||
R2 / R2 adjusted | 0.052 / 0.047 |
Summary:
significance for undoc_imm_2, imm_amvalue, imm_urban, imm_develop, imm_burden_, imm_strength, DACA all with Latino Ladder x binary_var interaction
# Combo should appear in my code but check it. Would be an average of immigrants do this, i want immigrants, reverse scoring in necessary. Same for policies but before averaging policies need to be z scored because they have diff scales
# Assuming you have a data frame `merged_data` containing the variables mentioned in the SPSS code.
# Initializing anti_policy variable
merged_data$anti_policy <- 1
# Updating anti_policy based on conditions
merged_data$anti_policy[merged_data$undoc_policy == 6] <- 4
merged_data$anti_policy[merged_data$undoc_policy == 4] <- NA # 99 is recoded as missing value (NA)
merged_data$anti_policy[merged_data$undoc_policy == 5] <- 3
merged_data$anti_policy[merged_data$undoc_policy == 3] <- 2
# Recoding ImmigID - Allow immigrants to use an ID issues by a foreign country
merged_data$ImmigIDr <- merged_data$ImmigID
merged_data$ImmigIDr[merged_data$ImmigID == 1] <- 5 # oppose
merged_data$ImmigIDr[merged_data$ImmigID == 2] <- 4
merged_data$ImmigIDr[merged_data$ImmigID == 3] <- 3
merged_data$ImmigIDr[merged_data$ImmigID == 4] <- 2
merged_data$ImmigIDr[merged_data$ImmigID == 5] <- 1 # support
# Recoding multiple variables - immigrants today strengthen our country because of their hard work
merged_data$imm_strength_r <- merged_data$imm_strength_
merged_data$imm_strength_r[merged_data$imm_strength_ == 1] <- 5 # disagree
merged_data$imm_strength_r[merged_data$imm_strength_ == 2] <- 4
merged_data$imm_strength_r[merged_data$imm_strength_ == 3] <- 3
merged_data$imm_strength_r[merged_data$imm_strength_ == 4] <- 2
merged_data$imm_strength_r[merged_data$imm_strength_ == 5] <- 1 # agree
merged_data$imm_develop_r <- merged_data$imm_develop_
merged_data$imm_develop_r[merged_data$imm_develop_ == 1] <- 5 #disagree
merged_data$imm_develop_r[merged_data$imm_develop_ == 2] <- 4
merged_data$imm_develop_r[merged_data$imm_develop_ == 3] <- 3
merged_data$imm_develop_r[merged_data$imm_develop_ == 4] <- 2
merged_data$imm_develop_r[merged_data$imm_develop_ == 5] <- 1 # agree
merged_data$imm_urban_r <- merged_data$imm_urban_
merged_data$imm_urban_r[merged_data$imm_urban_ == 1] <- 5 #Disagree
merged_data$imm_urban_r[merged_data$imm_urban_ == 2] <- 4
merged_data$imm_urban_r[merged_data$imm_urban_ == 3] <- 3
merged_data$imm_urban_r[merged_data$imm_urban_ == 4] <- 2
merged_data$imm_urban_r[merged_data$imm_urban_ == 5] <- 1 # agree
# Computing anti_imm_att
merged_data$anti_imm_att <- rowMeans(merged_data[, c("imm_strength_r", "imm_burden_", "imm_develop_r", "imm_urban_r", "imm_amvalue_")], na.rm = TRUE)
# Using scale to calculate z-scores
merged_data$zDACA <- scale(merged_data$DACA, center = TRUE, scale = TRUE)
merged_data$zanti_policy <- scale(merged_data$anti_policy, center = TRUE, scale = TRUE)
merged_data$zImmigIDr <- scale(merged_data$ImmigIDr, center = TRUE, scale = TRUE)
merged_data$zImmigBilingual <- scale(merged_data$ImmigBilingual, center = TRUE, scale = TRUE)
# Computing all_anti_policies
merged_data$all_anti_policies <- rowMeans(merged_data[, c("zDACA", "zanti_policy", "zImmigIDr", "zImmigBilingual")], na.rm = TRUE)
anti_imm_att is an aggregate measure of”imm_strength_r”, “imm_burden_”, “imm_develop_r”, “imm_urban_r”, “imm_amvalue_” this variable is coded with 5 being anti immigrant and 1 being pro immigrant
all_anti_policies is an aggregate measure of “zDACA”, “zanti_policy”, “zImmigIDr”, “zImmigBilingual” this variable is coded with 5 being anti immigrant and 1 being pro immigrant
undoc_imm__2 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 15.79 | -11.19 – 42.78 | 0.251 |
Age | 0.07 | 0.00 – 0.13 | 0.046 |
Sex [Female] | -12.70 | -39.41 – 14.01 | 0.351 |
Sex [Male] | -14.23 | -40.94 – 12.47 | 0.296 |
anti imm att | 8.34 | 7.11 – 9.57 | <0.001 |
binary var | -4.06 | -8.98 – 0.86 | 0.106 |
anti imm att × binary var | 1.75 | 0.09 – 3.41 | 0.038 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.246 / 0.243 |
preference_white | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 3.66 | 2.19 – 5.13 | <0.001 |
Age | 0.00 | -0.00 – 0.00 | 0.627 |
Sex [Female] | -0.82 | -2.28 – 0.63 | 0.268 |
Sex [Male] | -0.82 | -2.28 – 0.63 | 0.268 |
anti imm att | -0.17 | -0.23 – -0.10 | <0.001 |
binary var | 0.04 | -0.23 – 0.31 | 0.761 |
anti imm att × binary var | 0.02 | -0.07 – 0.11 | 0.635 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.030 / 0.027 |
preference_latino_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.60 | 1.30 – 3.90 | <0.001 |
Age | 0.00 | -0.00 – 0.01 | 0.060 |
Sex [Female] | 1.18 | -0.11 – 2.46 | 0.073 |
Sex [Male] | 1.05 | -0.24 – 2.33 | 0.109 |
anti imm att | -0.51 | -0.56 – -0.45 | <0.001 |
binary var | 0.15 | -0.09 – 0.38 | 0.225 |
anti imm att × binary var | -0.02 | -0.10 – 0.06 | 0.572 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.291 / 0.288 |
job_threat_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.35 | 1.03 – 3.67 | <0.001 |
Age | -0.01 | -0.02 – -0.01 | <0.001 |
Sex [Female] | 0.16 | -1.15 – 1.46 | 0.814 |
Sex [Male] | -0.05 | -1.35 – 1.26 | 0.945 |
anti imm att | -0.01 | -0.07 – 0.05 | 0.699 |
binary var | 0.04 | -0.20 – 0.28 | 0.768 |
anti imm att × binary var | 0.01 | -0.07 – 0.09 | 0.756 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.045 / 0.042 |
crime_threat_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.77 | 0.83 – 2.71 | <0.001 |
Age | 0.00 | -0.00 – 0.00 | 0.765 |
Sex [Female] | -0.54 | -1.47 – 0.39 | 0.254 |
Sex [Male] | -0.64 | -1.57 – 0.29 | 0.176 |
anti imm att | 0.07 | 0.03 – 0.12 | 0.001 |
binary var | 0.12 | -0.05 – 0.29 | 0.164 |
anti imm att × binary var | -0.01 | -0.07 – 0.04 | 0.647 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.025 / 0.021 |
household_finance | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.45 | 0.75 – 2.15 | <0.001 |
Age | 0.00 | -0.00 – 0.00 | 0.464 |
Sex [Female] | 0.03 | -0.66 – 0.72 | 0.937 |
Sex [Male] | -0.09 | -0.78 – 0.60 | 0.788 |
anti imm att | 0.02 | -0.01 – 0.05 | 0.230 |
binary var | -0.02 | -0.15 – 0.11 | 0.736 |
anti imm att × binary var | 0.01 | -0.03 – 0.06 | 0.522 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.021 / 0.017 |
household_financial_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.62 | 0.42 – 2.82 | 0.008 |
Age | 0.00 | -0.00 – 0.00 | 0.473 |
Sex [Female] | 0.68 | -0.51 – 1.87 | 0.261 |
Sex [Male] | 0.90 | -0.29 – 2.09 | 0.137 |
anti imm att | -0.07 | -0.13 – -0.02 | 0.008 |
binary var | -0.03 | -0.25 – 0.18 | 0.757 |
anti imm att × binary var | -0.00 | -0.08 – 0.07 | 0.952 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.028 / 0.024 |
economic_conditions_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.55 | 0.55 – 2.55 | 0.002 |
Age | 0.01 | 0.01 – 0.01 | <0.001 |
Sex [Female] | 0.39 | -0.60 – 1.37 | 0.439 |
Sex [Male] | 0.64 | -0.35 – 1.62 | 0.206 |
anti imm att | -0.27 | -0.32 – -0.23 | <0.001 |
binary var | 0.01 | -0.17 – 0.19 | 0.924 |
anti imm att × binary var | 0.00 | -0.06 – 0.06 | 0.903 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.193 / 0.190 |
imm_amvalue_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.36 | 0.34 – 2.38 | 0.009 |
Age | -0.00 | -0.00 – 0.00 | 0.246 |
Sex [Female] | -1.76 | -2.77 – -0.75 | 0.001 |
Sex [Male] | -1.68 | -2.69 – -0.67 | 0.001 |
anti imm att | 1.02 | 0.98 – 1.07 | <0.001 |
binary var | 0.07 | -0.12 – 0.25 | 0.467 |
anti imm att × binary var | -0.01 | -0.07 – 0.05 | 0.729 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.720 / 0.719 |
imm_urban_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 6.57 | 5.82 – 7.32 | <0.001 |
Age | -0.00 | -0.00 – -0.00 | 0.006 |
Sex [Female] | -0.94 | -1.68 – -0.20 | 0.013 |
Sex [Male] | -0.87 | -1.62 – -0.13 | 0.021 |
anti imm att | -0.98 | -1.02 – -0.95 | <0.001 |
binary var | 0.09 | -0.04 – 0.23 | 0.175 |
anti imm att × binary var | -0.01 | -0.06 – 0.04 | 0.677 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.820 / 0.819 |
imm_develop_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 5.54 | 4.76 – 6.32 | <0.001 |
Age | -0.00 | -0.00 – -0.00 | 0.046 |
Sex [Female] | -0.22 | -0.99 – 0.55 | 0.582 |
Sex [Male] | -0.14 | -0.91 – 0.63 | 0.727 |
anti imm att | -0.92 | -0.96 – -0.89 | <0.001 |
binary var | -0.02 | -0.16 – 0.13 | 0.827 |
anti imm att × binary var | 0.01 | -0.04 – 0.06 | 0.645 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.785 / 0.784 |
imm_burden_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | -0.80 | -1.57 – -0.02 | 0.045 |
Age | -0.00 | -0.00 – 0.00 | 0.911 |
Sex [Female] | 0.24 | -0.53 – 1.01 | 0.542 |
Sex [Male] | 0.30 | -0.47 – 1.07 | 0.441 |
anti imm att | 1.11 | 1.07 – 1.14 | <0.001 |
binary var | 0.04 | -0.10 – 0.19 | 0.541 |
anti imm att × binary var | -0.01 | -0.06 – 0.04 | 0.619 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.840 / 0.839 |
imm_strength_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 6.45 | 5.72 – 7.18 | <0.001 |
Age | 0.00 | 0.00 – 0.00 | 0.001 |
Sex [Female] | -0.36 | -1.08 – 0.36 | 0.326 |
Sex [Male] | -0.37 | -1.09 – 0.35 | 0.315 |
anti imm att | -0.96 | -1.00 – -0.93 | <0.001 |
binary var | 0.03 | -0.10 – 0.17 | 0.611 |
anti imm att × binary var | -0.02 | -0.07 – 0.02 | 0.281 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.823 / 0.822 |
ImmigBilingual | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.39 | -0.04 – 2.82 | 0.057 |
Age | 0.01 | 0.01 – 0.02 | <0.001 |
Sex [Female] | -1.28 | -2.70 – 0.14 | 0.077 |
Sex [Male] | -1.07 | -2.49 – 0.34 | 0.137 |
anti imm att | 0.70 | 0.63 – 0.76 | <0.001 |
binary var | 0.20 | -0.06 – 0.46 | 0.133 |
anti imm att × binary var | -0.09 | -0.18 – -0.00 | 0.043 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.384 / 0.382 |
DACA | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 0.54 | -0.87 – 1.95 | 0.451 |
Age | 0.00 | 0.00 – 0.01 | 0.012 |
Sex [Female] | -0.68 | -2.08 – 0.71 | 0.337 |
Sex [Male] | -0.45 | -1.84 – 0.94 | 0.526 |
anti imm att | 0.77 | 0.71 – 0.83 | <0.001 |
binary var | 0.13 | -0.13 – 0.39 | 0.327 |
anti imm att × binary var | -0.03 | -0.11 – 0.06 | 0.561 |
Observations | 1598 | ||
R2 / R2 adjusted | 0.439 / 0.437 |
Summary:
Signficance for undoc_imm_2, immigbilingual
undoc_imm__2 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 38.96 | 11.52 – 66.40 | 0.005 |
Age | 0.02 | -0.05 – 0.09 | 0.578 |
Sex [Female] | -10.30 | -37.62 – 17.03 | 0.460 |
Sex [Male] | -13.39 | -40.72 – 13.93 | 0.337 |
all anti policies | 11.68 | 9.84 – 13.52 | <0.001 |
binary var | 1.35 | -0.58 – 3.28 | 0.171 |
all anti policies × binary var |
1.97 | -0.50 – 4.44 | 0.119 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.211 / 0.208 |
preference_white | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 3.15 | 1.70 – 4.61 | <0.001 |
Age | 0.00 | -0.00 – 0.01 | 0.226 |
Sex [Female] | -0.85 | -2.30 – 0.61 | 0.253 |
Sex [Male] | -0.81 | -2.26 – 0.64 | 0.273 |
all anti policies | -0.29 | -0.38 – -0.19 | <0.001 |
binary var | 0.09 | -0.01 – 0.20 | 0.076 |
all anti policies × binary var |
0.06 | -0.07 – 0.19 | 0.392 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.037 / 0.033 |
preference_latino_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.10 | -0.18 – 2.39 | 0.092 |
Age | 0.01 | 0.00 – 0.01 | <0.001 |
Sex [Female] | 1.09 | -0.19 – 2.37 | 0.094 |
Sex [Male] | 1.06 | -0.22 – 2.34 | 0.104 |
all anti policies | -0.77 | -0.86 – -0.69 | <0.001 |
binary var | 0.05 | -0.04 – 0.14 | 0.257 |
all anti policies × binary var |
-0.02 | -0.13 – 0.10 | 0.743 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.299 / 0.296 |
job_threat_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.29 | 0.99 – 3.60 | 0.001 |
Age | -0.01 | -0.02 – -0.01 | <0.001 |
Sex [Female] | 0.17 | -1.14 – 1.47 | 0.801 |
Sex [Male] | -0.03 | -1.33 – 1.27 | 0.962 |
all anti policies | -0.03 | -0.12 – 0.06 | 0.495 |
binary var | 0.07 | -0.02 – 0.16 | 0.128 |
all anti policies × binary var |
0.01 | -0.11 – 0.13 | 0.844 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.045 / 0.042 |
crime_threat_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.98 | 1.04 – 2.91 | <0.001 |
Age | -0.00 | -0.00 – 0.00 | 0.964 |
Sex [Female] | -0.52 | -1.46 – 0.41 | 0.269 |
Sex [Male] | -0.64 | -1.57 – 0.29 | 0.179 |
all anti policies | 0.11 | 0.05 – 0.17 | 0.001 |
binary var | 0.09 | 0.02 – 0.15 | 0.008 |
all anti policies × binary var |
-0.03 | -0.11 – 0.06 | 0.507 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.024 / 0.020 |
household_finance | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.47 | 0.77 – 2.16 | <0.001 |
Age | 0.00 | -0.00 – 0.00 | 0.361 |
Sex [Female] | 0.05 | -0.64 – 0.75 | 0.879 |
Sex [Male] | -0.07 | -0.76 – 0.62 | 0.841 |
all anti policies | 0.01 | -0.04 – 0.06 | 0.659 |
binary var | 0.02 | -0.03 – 0.07 | 0.447 |
all anti policies × binary var |
0.01 | -0.06 – 0.07 | 0.866 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.017 / 0.013 |
household_financial_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.47 | 0.28 – 2.67 | 0.016 |
Age | 0.00 | -0.00 – 0.00 | 0.547 |
Sex [Female] | 0.63 | -0.56 – 1.82 | 0.298 |
Sex [Male] | 0.86 | -0.33 – 2.05 | 0.157 |
all anti policies | -0.07 | -0.15 – 0.01 | 0.098 |
binary var | -0.05 | -0.13 – 0.04 | 0.274 |
all anti policies × binary var |
0.01 | -0.10 – 0.12 | 0.831 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.021 / 0.017 |
economic_conditions_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 0.83 | -0.18 – 1.84 | 0.108 |
Age | 0.01 | 0.01 – 0.02 | <0.001 |
Sex [Female] | 0.30 | -0.70 – 1.31 | 0.556 |
Sex [Male] | 0.59 | -0.41 – 1.60 | 0.248 |
all anti policies | -0.37 | -0.43 – -0.30 | <0.001 |
binary var | 0.00 | -0.07 – 0.07 | 0.974 |
all anti policies × binary var |
0.03 | -0.06 – 0.12 | 0.474 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.158 / 0.155 |
imm_amvalue_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 3.91 | 2.45 – 5.37 | <0.001 |
Age | -0.00 | -0.01 – 0.00 | 0.059 |
Sex [Female] | -1.37 | -2.83 – 0.08 | 0.064 |
Sex [Male] | -1.44 | -2.89 – 0.02 | 0.053 |
all anti policies | 1.15 | 1.05 – 1.24 | <0.001 |
binary var | 0.11 | 0.01 – 0.22 | 0.032 |
all anti policies × binary var |
-0.01 | -0.14 – 0.12 | 0.909 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.417 / 0.415 |
imm_urban_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 4.05 | 2.84 – 5.26 | <0.001 |
Age | 0.00 | -0.00 – 0.00 | 0.962 |
Sex [Female] | -1.27 | -2.48 – -0.07 | 0.038 |
Sex [Male] | -1.06 | -2.27 – 0.14 | 0.084 |
all anti policies | -1.13 | -1.22 – -1.05 | <0.001 |
binary var | -0.00 | -0.09 – 0.08 | 0.963 |
all anti policies × binary var |
-0.05 | -0.16 – 0.06 | 0.383 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.526 / 0.524 |
imm_develop_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 3.14 | 1.97 – 4.30 | <0.001 |
Age | 0.00 | -0.00 – 0.00 | 0.631 |
Sex [Female] | -0.51 | -1.67 – 0.65 | 0.388 |
Sex [Male] | -0.30 | -1.46 – 0.86 | 0.615 |
all anti policies | -1.07 | -1.15 – -1.00 | <0.001 |
binary var | -0.05 | -0.13 – 0.03 | 0.234 |
all anti policies × binary var |
-0.04 | -0.14 – 0.07 | 0.504 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.513 / 0.511 |
imm_burden_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 2.11 | 0.85 – 3.36 | 0.001 |
Age | -0.00 | -0.01 – -0.00 | 0.017 |
Sex [Female] | 0.60 | -0.65 – 1.85 | 0.348 |
Sex [Male] | 0.49 | -0.75 – 1.74 | 0.439 |
all anti policies | 1.37 | 1.28 – 1.45 | <0.001 |
binary var | 0.09 | -0.00 – 0.18 | 0.052 |
all anti policies × binary var |
-0.03 | -0.14 – 0.08 | 0.620 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.578 / 0.577 |
imm_strength_ | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 3.97 | 2.80 – 5.15 | <0.001 |
Age | 0.01 | 0.00 – 0.01 | <0.001 |
Sex [Female] | -0.69 | -1.86 – 0.48 | 0.248 |
Sex [Male] | -0.56 | -1.73 – 0.62 | 0.352 |
all anti policies | -1.13 | -1.21 – -1.05 | <0.001 |
binary var | -0.10 | -0.18 – -0.02 | 0.016 |
all anti policies × binary var |
-0.05 | -0.15 – 0.06 | 0.368 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.531 / 0.529 |
ImmigBilingual | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 3.82 | 2.69 – 4.94 | <0.001 |
Age | 0.01 | 0.00 – 0.01 | <0.001 |
Sex [Female] | -1.36 | -2.48 – -0.24 | 0.018 |
Sex [Male] | -1.31 | -2.43 – -0.19 | 0.022 |
all anti policies | 1.32 | 1.24 – 1.39 | <0.001 |
binary var | -0.02 | -0.10 – 0.06 | 0.633 |
all anti policies × binary var |
-0.10 | -0.20 – 0.00 | 0.054 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.614 / 0.613 |
DACA | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 3.13 | 1.99 – 4.27 | <0.001 |
Age | -0.00 | -0.01 – -0.00 | 0.010 |
Sex [Female] | -0.73 | -1.86 – 0.41 | 0.209 |
Sex [Male] | -0.66 | -1.79 – 0.47 | 0.253 |
all anti policies | 1.33 | 1.26 – 1.41 | <0.001 |
binary var | 0.10 | 0.02 – 0.18 | 0.017 |
all anti policies × binary var |
0.05 | -0.05 – 0.15 | 0.340 |
Observations | 1598 | ||
R2 / R2 adjusted | 0.629 / 0.628 |
Summary:
No interaction significance
all_anti_policies | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | -1.24 | -2.30 – -0.18 | 0.022 |
Age | 0.01 | 0.01 – 0.02 | <0.001 |
Sex [Female] | 0.58 | -0.47 – 1.64 | 0.279 |
Sex [Male] | 0.71 | -0.35 – 1.76 | 0.188 |
binary var | 0.03 | -0.04 – 0.11 | 0.417 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.063 / 0.060 |
anti_imm_att | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.10 | -0.48 – 2.67 | 0.172 |
Age | 0.01 | 0.01 – 0.02 | <0.001 |
Sex [Female] | 1.04 | -0.53 – 2.61 | 0.196 |
Sex [Male] | 1.04 | -0.53 – 2.61 | 0.195 |
binary var | 0.11 | -0.00 – 0.22 | 0.059 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.029 / 0.026 |
Summary:
No significance
all_anti_policies | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | -1.93 | -2.67 – -1.19 | <0.001 |
Age | 0.01 | 0.01 – 0.01 | <0.001 |
Sex [Female] | 0.46 | -0.28 – 1.20 | 0.220 |
Sex [Male] | 0.57 | -0.17 – 1.31 | 0.133 |
politics | 0.36 | 0.34 – 0.38 | <0.001 |
ladder latino zscore | -0.07 | -0.11 – -0.03 | <0.001 |
binary var | -0.02 | -0.07 – 0.04 | 0.565 |
ladder latino zscore × binary var |
0.06 | 0.01 – 0.12 | 0.018 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.540 / 0.538 |
anti_imm_att | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.04 | -0.53 – 2.61 | 0.195 |
Age | 0.01 | 0.01 – 0.02 | <0.001 |
Sex [Female] | 1.10 | -0.47 – 2.67 | 0.169 |
Sex [Male] | 1.10 | -0.47 – 2.67 | 0.169 |
ladder latino zscore | -0.10 | -0.18 – -0.03 | 0.010 |
binary var | 0.11 | -0.00 – 0.22 | 0.056 |
ladder latino zscore × binary var |
0.18 | 0.07 – 0.29 | 0.002 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.035 / 0.031 |
all_anti_policies | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | -1.18 | -2.23 – -0.14 | 0.026 |
Age | 0.01 | 0.01 – 0.02 | <0.001 |
Sex [Female] | 0.55 | -0.49 – 1.59 | 0.300 |
Sex [Male] | 0.67 | -0.38 – 1.71 | 0.210 |
ladder white zscore | -0.17 | -0.22 – -0.12 | <0.001 |
binary var | 0.03 | -0.04 – 0.11 | 0.380 |
ladder white zscore × binary var |
0.10 | 0.03 – 0.18 | 0.006 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.089 / 0.086 |
anti_imm_att | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.18 | -0.37 – 2.74 | 0.136 |
Age | 0.01 | 0.01 – 0.02 | <0.001 |
Sex [Female] | 0.98 | -0.57 – 2.53 | 0.216 |
Sex [Male] | 0.97 | -0.58 – 2.52 | 0.221 |
ladder white zscore | -0.22 | -0.30 – -0.14 | <0.001 |
binary var | 0.11 | 0.00 – 0.22 | 0.050 |
ladder white zscore × binary var |
0.12 | 0.01 – 0.23 | 0.035 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.051 / 0.048 |
Summary:
-Significance with all_anti_policies - when people think Latinos or whites are high on the ladder, they are more anti-immigrant when seeing the new latino race question
-Significance with anti_imm_att - when people think Latinos or whites are high on the ladder, they are more anti-immigrant when seeing the new latino race question
Testing both interactionsall_anti_policies | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | -1.25 | -2.29 – -0.21 | 0.019 |
Age | 0.01 | 0.01 – 0.02 | <0.001 |
Sex [Female] | 0.61 | -0.42 – 1.65 | 0.246 |
Sex [Male] | 0.73 | -0.31 – 1.77 | 0.167 |
ladder latino zscore | 0.01 | -0.05 – 0.06 | 0.851 |
binary var | 0.03 | -0.04 – 0.11 | 0.391 |
ladder white zscore | -0.17 | -0.23 – -0.12 | <0.001 |
ladder latino zscore × binary var |
0.10 | 0.02 – 0.17 | 0.013 |
binary var × ladder white zscore |
0.07 | -0.00 – 0.15 | 0.063 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.097 / 0.093 |
anti_imm_att | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.11 | -0.45 – 2.66 | 0.163 |
Age | 0.01 | 0.01 – 0.02 | <0.001 |
Sex [Female] | 1.06 | -0.49 – 2.61 | 0.182 |
Sex [Male] | 1.04 | -0.51 – 2.59 | 0.187 |
ladder latino zscore | -0.04 | -0.13 – 0.04 | 0.293 |
binary var | 0.11 | -0.00 – 0.22 | 0.050 |
ladder white zscore | -0.21 | -0.30 – -0.13 | <0.001 |
ladder latino zscore × binary var |
0.16 | 0.05 – 0.28 | 0.005 |
binary var × ladder white zscore |
0.07 | -0.05 – 0.18 | 0.250 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.057 / 0.052 |
Summary:
all_anti_policies and anti_imm_att interaction with latino ladder is significant, suggesting that whites may feel more threat when latino ethnicity is asked as a race question
Testing ladder difference measure
merged_data <- merged_data %>%
mutate(ladder_difference_zscore = ladder_white_zscore - ladder_latino_zscore)
model_102 <- lm(all_anti_policies ~ Age + Sex + ladder_difference_zscore*binary_var, data = merged_data)
model_103 <- lm(anti_imm_att ~ Age + Sex + ladder_difference_zscore*binary_var, data = merged_data)
all_anti_policies | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | -1.26 | -2.30 – -0.21 | 0.019 |
Age | 0.01 | 0.01 – 0.02 | <0.001 |
Sex [Female] | 0.60 | -0.44 – 1.65 | 0.257 |
Sex [Male] | 0.73 | -0.32 – 1.77 | 0.173 |
ladder difference zscore | -0.09 | -0.13 – -0.04 | <0.001 |
binary var | 0.03 | -0.04 – 0.10 | 0.423 |
ladder difference zscore × binary var |
-0.01 | -0.08 – 0.05 | 0.669 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.083 / 0.080 |
anti_imm_att | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 1.07 | -0.49 – 2.64 | 0.178 |
Age | 0.01 | 0.01 – 0.02 | <0.001 |
Sex [Female] | 1.06 | -0.50 – 2.62 | 0.182 |
Sex [Male] | 1.06 | -0.50 – 2.62 | 0.183 |
ladder difference zscore | -0.08 | -0.15 – -0.01 | 0.017 |
binary var | 0.11 | -0.00 – 0.22 | 0.059 |
ladder difference zscore × binary var |
-0.05 | -0.14 – 0.04 | 0.290 |
Observations | 1599 | ||
R2 / R2 adjusted | 0.041 / 0.038 |
Summary:
No significance
Models with no interaction
-Significance for crime threat. Crime threat increases with new census latino race question.
-Significance for Imm_amvalue - with new question people think we should shut the door on immigration more.
-Significance with imm_strength_ - people think that less that immigration strengthens our country.
-Significance for DACA - people who see race question think we should charge DACA students higher tuition.
Interaction with Latino Ladder
-Significance for undoc_imm_2 - Meaning that people who view latinos as higher on the social ladder and see the new latino race question there is a 3.7% increase in the percent of Latinx people they think are undocumented.
-Significance for imm_amvalue - meaning that people who see latinos as higher on the social ladder are more likely to want to close the doors on immigration when shown the new latino race question.
-Significance for imm_urban - For people who see latinos as high on the social ladder, there is a decrease of wanting to promote immigration in urban areas for people who see the Latino race question.
-Significance for imm_develop - For those who see latinos as higher on the social ladder there is a lower likelihood in thinking we should increase the number of immigrants for bussiness development for people who see the latino race question.
-Significance for imm_burden - people who see the latino race question and think that they are higher on the ladder think immigrants are more of a burden.
-Significance for imm_strength - people who see the latino race question and think that they are higher on the ladder think less than immigrants strengthen our country.
-Significance for DACA - people who see the latino race question and think that they are higher on the ladder think we should charge DACA students more for college.
Testing aggregate policy attitudes
-Significance with all_anti_policies - when people think Latinos or whites are high on the ladder, they are more anti-immigrant when seeing the new latino race question
-Significance with anti_imm_att - when people think Latinos or whites are high on the ladder, they are more anti-immigrant when seeing the new latino race question