Import Data

remove(list=ls())
customer_churn <- read.csv("~/Downloads/telecom_customer_churn.csv")

zipcode_pop <- read.csv("~/Downloads/telecom_zipcode_population.csv")

Merge

unique(customer_churn$Zip.code)
## NULL
length(unique(customer_churn$Zip.code))
## [1] 0
unique(zipcode_pop$Zip.code)
## NULL
length(unique(zipcode_pop$Zip.code))
## [1] 0
cc_ID <- as.character(customer_churn$Zip.code)

zp_ID <- as.character(zipcode_pop$Zip.Code)

text <- cbind(cc_ID, zp_ID)

?merge

combined <- merge(x  = customer_churn,
                  y  = zipcode_pop,
                  by = "Zip.Code"
                  )

The unique ID in each set is Zip.Code.

This is a one to many merge.

library(psych)
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
?stargazer

stargazer(combined, type = "text", summary.stat = c("Mean", "Median", "Sd", "Min", "Max") )
## 
## =====================================================================================
## Statistic                            Mean     Median    St. Dev.    Min       Max    
## -------------------------------------------------------------------------------------
## Zip.Code                          93,486.070  93,518   1,856.768   90,001    96,150  
## Age                                 46.510      46       16.750      19        80    
## Number.of.Dependents                0.469        0       0.963       0         9     
## Latitude                            36.197    36.205     2.469     32.556    41.962  
## Longitude                          -119.757  -119.595    2.154    -124.301  -114.193 
## Number.of.Referrals                 1.952        0       3.001       0         11    
## Tenure.in.Months                    32.387      29       24.542      1         72    
## Avg.Monthly.Long.Distance.Charges   25.421    25.690     14.200    1.010     49.990  
## Avg.Monthly.GB.Download             26.190      21       19.587      2         85    
## Monthly.Charge                      63.596    70.050     31.205   -10.000   118.750  
## Total.Charges                     2,280.381  1,394.550 2,266.220   18.800  8,684.800 
## Total.Refunds                       1.962      0.000     7.903     0.000     49.790  
## Total.Extra.Data.Charges            6.861        0       25.105      0        150    
## Total.Long.Distance.Charges        749.099    401.440   846.660    0.000   3,564.720 
## Total.Revenue                     3,034.379  2,108.640 2,865.205   21.360  11,979.340
## Population                        22,139.600  17,554   21,152.390    11     105,285  
## -------------------------------------------------------------------------------------

Then, try to create a table that lists 3 variables - average age and average population for each zipcode.

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
dplyr::mutate(iris, sepal = Sepal.Length + Sepal.Width)
##     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species sepal
## 1            5.1         3.5          1.4         0.2     setosa   8.6
## 2            4.9         3.0          1.4         0.2     setosa   7.9
## 3            4.7         3.2          1.3         0.2     setosa   7.9
## 4            4.6         3.1          1.5         0.2     setosa   7.7
## 5            5.0         3.6          1.4         0.2     setosa   8.6
## 6            5.4         3.9          1.7         0.4     setosa   9.3
## 7            4.6         3.4          1.4         0.3     setosa   8.0
## 8            5.0         3.4          1.5         0.2     setosa   8.4
## 9            4.4         2.9          1.4         0.2     setosa   7.3
## 10           4.9         3.1          1.5         0.1     setosa   8.0
## 11           5.4         3.7          1.5         0.2     setosa   9.1
## 12           4.8         3.4          1.6         0.2     setosa   8.2
## 13           4.8         3.0          1.4         0.1     setosa   7.8
## 14           4.3         3.0          1.1         0.1     setosa   7.3
## 15           5.8         4.0          1.2         0.2     setosa   9.8
## 16           5.7         4.4          1.5         0.4     setosa  10.1
## 17           5.4         3.9          1.3         0.4     setosa   9.3
## 18           5.1         3.5          1.4         0.3     setosa   8.6
## 19           5.7         3.8          1.7         0.3     setosa   9.5
## 20           5.1         3.8          1.5         0.3     setosa   8.9
## 21           5.4         3.4          1.7         0.2     setosa   8.8
## 22           5.1         3.7          1.5         0.4     setosa   8.8
## 23           4.6         3.6          1.0         0.2     setosa   8.2
## 24           5.1         3.3          1.7         0.5     setosa   8.4
## 25           4.8         3.4          1.9         0.2     setosa   8.2
## 26           5.0         3.0          1.6         0.2     setosa   8.0
## 27           5.0         3.4          1.6         0.4     setosa   8.4
## 28           5.2         3.5          1.5         0.2     setosa   8.7
## 29           5.2         3.4          1.4         0.2     setosa   8.6
## 30           4.7         3.2          1.6         0.2     setosa   7.9
## 31           4.8         3.1          1.6         0.2     setosa   7.9
## 32           5.4         3.4          1.5         0.4     setosa   8.8
## 33           5.2         4.1          1.5         0.1     setosa   9.3
## 34           5.5         4.2          1.4         0.2     setosa   9.7
## 35           4.9         3.1          1.5         0.2     setosa   8.0
## 36           5.0         3.2          1.2         0.2     setosa   8.2
## 37           5.5         3.5          1.3         0.2     setosa   9.0
## 38           4.9         3.6          1.4         0.1     setosa   8.5
## 39           4.4         3.0          1.3         0.2     setosa   7.4
## 40           5.1         3.4          1.5         0.2     setosa   8.5
## 41           5.0         3.5          1.3         0.3     setosa   8.5
## 42           4.5         2.3          1.3         0.3     setosa   6.8
## 43           4.4         3.2          1.3         0.2     setosa   7.6
## 44           5.0         3.5          1.6         0.6     setosa   8.5
## 45           5.1         3.8          1.9         0.4     setosa   8.9
## 46           4.8         3.0          1.4         0.3     setosa   7.8
## 47           5.1         3.8          1.6         0.2     setosa   8.9
## 48           4.6         3.2          1.4         0.2     setosa   7.8
## 49           5.3         3.7          1.5         0.2     setosa   9.0
## 50           5.0         3.3          1.4         0.2     setosa   8.3
## 51           7.0         3.2          4.7         1.4 versicolor  10.2
## 52           6.4         3.2          4.5         1.5 versicolor   9.6
## 53           6.9         3.1          4.9         1.5 versicolor  10.0
## 54           5.5         2.3          4.0         1.3 versicolor   7.8
## 55           6.5         2.8          4.6         1.5 versicolor   9.3
## 56           5.7         2.8          4.5         1.3 versicolor   8.5
## 57           6.3         3.3          4.7         1.6 versicolor   9.6
## 58           4.9         2.4          3.3         1.0 versicolor   7.3
## 59           6.6         2.9          4.6         1.3 versicolor   9.5
## 60           5.2         2.7          3.9         1.4 versicolor   7.9
## 61           5.0         2.0          3.5         1.0 versicolor   7.0
## 62           5.9         3.0          4.2         1.5 versicolor   8.9
## 63           6.0         2.2          4.0         1.0 versicolor   8.2
## 64           6.1         2.9          4.7         1.4 versicolor   9.0
## 65           5.6         2.9          3.6         1.3 versicolor   8.5
## 66           6.7         3.1          4.4         1.4 versicolor   9.8
## 67           5.6         3.0          4.5         1.5 versicolor   8.6
## 68           5.8         2.7          4.1         1.0 versicolor   8.5
## 69           6.2         2.2          4.5         1.5 versicolor   8.4
## 70           5.6         2.5          3.9         1.1 versicolor   8.1
## 71           5.9         3.2          4.8         1.8 versicolor   9.1
## 72           6.1         2.8          4.0         1.3 versicolor   8.9
## 73           6.3         2.5          4.9         1.5 versicolor   8.8
## 74           6.1         2.8          4.7         1.2 versicolor   8.9
## 75           6.4         2.9          4.3         1.3 versicolor   9.3
## 76           6.6         3.0          4.4         1.4 versicolor   9.6
## 77           6.8         2.8          4.8         1.4 versicolor   9.6
## 78           6.7         3.0          5.0         1.7 versicolor   9.7
## 79           6.0         2.9          4.5         1.5 versicolor   8.9
## 80           5.7         2.6          3.5         1.0 versicolor   8.3
## 81           5.5         2.4          3.8         1.1 versicolor   7.9
## 82           5.5         2.4          3.7         1.0 versicolor   7.9
## 83           5.8         2.7          3.9         1.2 versicolor   8.5
## 84           6.0         2.7          5.1         1.6 versicolor   8.7
## 85           5.4         3.0          4.5         1.5 versicolor   8.4
## 86           6.0         3.4          4.5         1.6 versicolor   9.4
## 87           6.7         3.1          4.7         1.5 versicolor   9.8
## 88           6.3         2.3          4.4         1.3 versicolor   8.6
## 89           5.6         3.0          4.1         1.3 versicolor   8.6
## 90           5.5         2.5          4.0         1.3 versicolor   8.0
## 91           5.5         2.6          4.4         1.2 versicolor   8.1
## 92           6.1         3.0          4.6         1.4 versicolor   9.1
## 93           5.8         2.6          4.0         1.2 versicolor   8.4
## 94           5.0         2.3          3.3         1.0 versicolor   7.3
## 95           5.6         2.7          4.2         1.3 versicolor   8.3
## 96           5.7         3.0          4.2         1.2 versicolor   8.7
## 97           5.7         2.9          4.2         1.3 versicolor   8.6
## 98           6.2         2.9          4.3         1.3 versicolor   9.1
## 99           5.1         2.5          3.0         1.1 versicolor   7.6
## 100          5.7         2.8          4.1         1.3 versicolor   8.5
## 101          6.3         3.3          6.0         2.5  virginica   9.6
## 102          5.8         2.7          5.1         1.9  virginica   8.5
## 103          7.1         3.0          5.9         2.1  virginica  10.1
## 104          6.3         2.9          5.6         1.8  virginica   9.2
## 105          6.5         3.0          5.8         2.2  virginica   9.5
## 106          7.6         3.0          6.6         2.1  virginica  10.6
## 107          4.9         2.5          4.5         1.7  virginica   7.4
## 108          7.3         2.9          6.3         1.8  virginica  10.2
## 109          6.7         2.5          5.8         1.8  virginica   9.2
## 110          7.2         3.6          6.1         2.5  virginica  10.8
## 111          6.5         3.2          5.1         2.0  virginica   9.7
## 112          6.4         2.7          5.3         1.9  virginica   9.1
## 113          6.8         3.0          5.5         2.1  virginica   9.8
## 114          5.7         2.5          5.0         2.0  virginica   8.2
## 115          5.8         2.8          5.1         2.4  virginica   8.6
## 116          6.4         3.2          5.3         2.3  virginica   9.6
## 117          6.5         3.0          5.5         1.8  virginica   9.5
## 118          7.7         3.8          6.7         2.2  virginica  11.5
## 119          7.7         2.6          6.9         2.3  virginica  10.3
## 120          6.0         2.2          5.0         1.5  virginica   8.2
## 121          6.9         3.2          5.7         2.3  virginica  10.1
## 122          5.6         2.8          4.9         2.0  virginica   8.4
## 123          7.7         2.8          6.7         2.0  virginica  10.5
## 124          6.3         2.7          4.9         1.8  virginica   9.0
## 125          6.7         3.3          5.7         2.1  virginica  10.0
## 126          7.2         3.2          6.0         1.8  virginica  10.4
## 127          6.2         2.8          4.8         1.8  virginica   9.0
## 128          6.1         3.0          4.9         1.8  virginica   9.1
## 129          6.4         2.8          5.6         2.1  virginica   9.2
## 130          7.2         3.0          5.8         1.6  virginica  10.2
## 131          7.4         2.8          6.1         1.9  virginica  10.2
## 132          7.9         3.8          6.4         2.0  virginica  11.7
## 133          6.4         2.8          5.6         2.2  virginica   9.2
## 134          6.3         2.8          5.1         1.5  virginica   9.1
## 135          6.1         2.6          5.6         1.4  virginica   8.7
## 136          7.7         3.0          6.1         2.3  virginica  10.7
## 137          6.3         3.4          5.6         2.4  virginica   9.7
## 138          6.4         3.1          5.5         1.8  virginica   9.5
## 139          6.0         3.0          4.8         1.8  virginica   9.0
## 140          6.9         3.1          5.4         2.1  virginica  10.0
## 141          6.7         3.1          5.6         2.4  virginica   9.8
## 142          6.9         3.1          5.1         2.3  virginica  10.0
## 143          5.8         2.7          5.1         1.9  virginica   8.5
## 144          6.8         3.2          5.9         2.3  virginica  10.0
## 145          6.7         3.3          5.7         2.5  virginica  10.0
## 146          6.7         3.0          5.2         2.3  virginica   9.7
## 147          6.3         2.5          5.0         1.9  virginica   8.8
## 148          6.5         3.0          5.2         2.0  virginica   9.5
## 149          6.2         3.4          5.4         2.3  virginica   9.6
## 150          5.9         3.0          5.1         1.8  virginica   8.9
combined <- dplyr::mutate(combined, age = mean(Age))

head(iris)
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
## 3          4.7         3.2          1.3         0.2  setosa
## 4          4.6         3.1          1.5         0.2  setosa
## 5          5.0         3.6          1.4         0.2  setosa
## 6          5.4         3.9          1.7         0.4  setosa
custom_table <-
combined|>
 group_by(Zip.Code) |>
 summarise(Avg_Population = mean(Population, na.rm = TRUE),
          Avg_Age = median(Age, na.rm = TRUE)
          ) 

head(custom_table)
## # A tibble: 6 × 3
##   Zip.Code Avg_Population Avg_Age
##      <int>          <dbl>   <dbl>
## 1    90001          54492    51  
## 2    90002          44586    51  
## 3    90003          58198    49  
## 4    90004          67852    44  
## 5    90005          43019    42.5
## 6    90006          62784    41

Function Ran and created the table, but I received this error and can’t figure out a fix to save it.

Error in summarize():

! could not find function “summarize”

Quitting from lines 66-73 [unnamed-chunk-5] (Day4_HW.Rmd) #Execution halted