data(sbp)
head(sbp)
## meth item repl y
## 1 J 1 1 100
## 2 J 2 1 108
## 3 J 3 1 76
## 4 J 4 1 108
## 5 J 5 1 124
## 6 J 6 1 122
#sbp <- sbp %>% rename("item" = Id, "repl" = Rep, "meth" = Obs, "y" = Vic) %>% dplyr::select(-Sub)
sbp <- sbp %>% mutate(item = factor(item)) %>% filter(meth != "R")
sbp.wide <-(sbp %>% spread(meth,y)) %>% group_by(item) %>% summarize(J = mean(J,na.rm=TRUE),S=mean(S,na.rm=TRUE))
sbp.mean <-(sbp %>% spread(meth,y)) %>% group_by(item) %>% summarize(J = mean(J,na.rm=TRUE),S=mean(S,na.rm=TRUE))
mod.1 <- lm( y ~ meth , data = sbp)
summary(mod.1)
confint(mod.1)
mod.2 <- lm( S ~ J , data = (sbp %>% spread(meth,y)))
summary(mod.2)
confint(mod.2)
mod.3 <- lm( S ~ J , data = (sbp.mean))
summary(mod.3)
confint(mod.3)
ttest(mod.3, 2,1)
mod.4 <- lme( y ~ meth,random = ~ 1|item, data = sbp)
summary(mod.4)
# tidy(mod.4)
mod.4 <- lmer( y ~ meth + (1|item), data = sbp)
summary(mod.4)
tidy(mod.4)
mod.5 <- lme( S ~ J , random = ~ 1|item, data = sbp.wide)
summary(mod.5)
#intervals(mod.5)
mod.5 <- lme( S ~ J , random = ~ 1|item, data = (sbp %>% spread(meth,y)))
summary(mod.5)
intervals(mod.5)
mod.5 <- lmer( S ~ J + (1|item), data = (sbp %>% spread(meth,y)))
summary(mod.5)
sbp.2 <- sbp %>% spread(meth,y)
mod.5 <- lmer( S ~ J + (1|item), data = sbp.2)
#summary(mod.5)
tidy(mod.5)
#mod.6 <- lmer( y ~ meth-1 + (1|item) + (1|meth) , data = sbp,
control = lmerControl(
optimizer ='optimx', optCtrl=list(method='nlminb')))
#summary(mod.6)
#tidy(mod.6)
sbp.aug <- augment(mod.6,sbp)
head(sbp.aug)
var.test(.wtres~ meth, data = sbp.aug)
We conclude that there is no significant difference in within-item error terms.
grouping.levels(mod.6, "item")
mod.6.inf <- influence(mod.6,group="item")
mod.6.inf
CDs<- cooks.distance(mod.6.inf)
subjectnames<- rownames(cooks.distance(mod.6.inf))
CDdf <- data.frame(subjectnames,CDs)
dfbeta <- dfbetas(mod.6.inf)
subjectnames <- rownames(dfbetas(mod.6.inf))
DFBetadf <- data.frame(subjectnames,dfbeta)
head(DFBetadf)
library(ggplot2)
ggplot(data=DFBetadf,aes(x=methJ,y=methS)) + geom_point() + geom_abline() +
stat_smooth(method="lm",colour="red",se=FALSE)