Tipos de datos

Fechas

#Solo fecha
as.Date("2024-07-24")
## [1] "2024-07-24"
#Fecha y hora
as.POSIXct("2024-07-24 18:43:00")
## [1] "2024-07-24 18:43:00 -05"
Sys.time()
## [1] "2024-07-23 20:58:56 -05"
Sys.Date()
## [1] "2024-07-23"

Estructuras de Datos

Vector

nombres <- c("Nazly","Astrid","Rodolfo","Nataly")
table(nombres)
## nombres
##  Astrid  Nataly   Nazly Rodolfo 
##       1       1       1       1
codes <- c(Italy=380,Canada=124, Egypt=818)
codes
##  Italy Canada  Egypt 
##    380    124    818
names(codes)
## [1] "Italy"  "Canada" "Egypt"
table(codes)
## codes
## 124 380 818 
##   1   1   1
#Acceder a posiciones especificas
codes[2]
## Canada 
##    124
codes[1:2]
##  Italy Canada 
##    380    124
codes[c(1,3)]
## Italy Egypt 
##   380   818
codes["Canada"]
## Canada 
##    124
class(codes)
## [1] "numeric"
#Funciones para generar vectores

seq(1:10)
##  [1]  1  2  3  4  5  6  7  8  9 10
help("seq")
## starting httpd help server ... done
seq(0,100,length.out=5)
## [1]   0  25  50  75 100
a<- c(1,"a",3.14)

Matrices

mat<- matrix(1:12,nrow = 3,ncol = 4,byrow = TRUE)
mat
##      [,1] [,2] [,3] [,4]
## [1,]    1    2    3    4
## [2,]    5    6    7    8
## [3,]    9   10   11   12
rownames(mat)<-c("F1","F2","F3") #Asignar nombres a las filas
colnames(mat)<-c("C1","C2","C3","C4")

# Acceder a posiciones [fila,columna]
mat[1:2,]
##    C1 C2 C3 C4
## F1  1  2  3  4
## F2  5  6  7  8

#Listas

b<-list(numero=1,texto="hola",logico=TRUE,decimal=pi)
print(b)
## $numero
## [1] 1
## 
## $texto
## [1] "hola"
## 
## $logico
## [1] TRUE
## 
## $decimal
## [1] 3.141593
calificacionesDip<-list(name="Astrid",student_id="1234",grades=c(5,4.8),final="A")
calificacionesDip
## $name
## [1] "Astrid"
## 
## $student_id
## [1] "1234"
## 
## $grades
## [1] 5.0 4.8
## 
## $final
## [1] "A"
#Acceder a los elementos
calificacionesDip$student_id
## [1] "1234"
calificacionesDip[["student_id"]]
## [1] "1234"
calificacionesDip[[2]]
## [1] "1234"

#Dataframe

df_mat<-as.data.frame(mat)
df_mat
##    C1 C2 C3 C4
## F1  1  2  3  4
## F2  5  6  7  8
## F3  9 10 11 12
df<-data.frame(nombres=c("Rodolfo","Andres","Maria Daniela"),edades=c(23,24,25))
df
##         nombres edades
## 1       Rodolfo     23
## 2        Andres     24
## 3 Maria Daniela     25
city<-c("Bogota","Cali","Medellin")
temp_C <- c(14,34,28)

df_city_temp <- data.frame(city,temp_C)
df_city_temp
##       city temp_C
## 1   Bogota     14
## 2     Cali     34
## 3 Medellin     28
##Ejercicio agregar una columna al data frame con la temp en F usando una función

#Función
CaF<-function(x){
  return (9*x/5+32)
}

CaF(14)
## [1] 57.2
temp_F<-CaF(temp_C)
df_city_temp$temp_F <- temp_F

df_city_temp[temp_C<30,]
##       city temp_C temp_F
## 1   Bogota     14   57.2
## 3 Medellin     28   82.4
df_city_temp$city
## [1] "Bogota"   "Cali"     "Medellin"

Datasets en R

data()
data("BJsales")
BJsales
## Time Series:
## Start = 1 
## End = 150 
## Frequency = 1 
##   [1] 200.1 199.5 199.4 198.9 199.0 200.2 198.6 200.0 200.3 201.2 201.6 201.5
##  [13] 201.5 203.5 204.9 207.1 210.5 210.5 209.8 208.8 209.5 213.2 213.7 215.1
##  [25] 218.7 219.8 220.5 223.8 222.8 223.8 221.7 222.3 220.8 219.4 220.1 220.6
##  [37] 218.9 217.8 217.7 215.0 215.3 215.9 216.7 216.7 217.7 218.7 222.9 224.9
##  [49] 222.2 220.7 220.0 218.7 217.0 215.9 215.8 214.1 212.3 213.9 214.6 213.6
##  [61] 212.1 211.4 213.1 212.9 213.3 211.5 212.3 213.0 211.0 210.7 210.1 211.4
##  [73] 210.0 209.7 208.8 208.8 208.8 210.6 211.9 212.8 212.5 214.8 215.3 217.5
##  [85] 218.8 220.7 222.2 226.7 228.4 233.2 235.7 237.1 240.6 243.8 245.3 246.0
##  [97] 246.3 247.7 247.6 247.8 249.4 249.0 249.9 250.5 251.5 249.0 247.6 248.8
## [109] 250.4 250.7 253.0 253.7 255.0 256.2 256.0 257.4 260.4 260.0 261.3 260.4
## [121] 261.6 260.8 259.8 259.0 258.9 257.4 257.7 257.9 257.4 257.3 257.6 258.9
## [133] 257.8 257.7 257.2 257.5 256.8 257.5 257.0 257.6 257.3 257.5 259.6 261.1
## [145] 262.9 263.3 262.8 261.8 262.2 262.7
data("HairEyeColor")
HairEyeColor["Blond","Blue","Female"]
## [1] 64
# Fijar una semilla para reproducibilidad
set.seed(123)

# Crear un vector de 1000 números enteros
vector <- sample(1:1000, 1000, replace = TRUE)
vector
##    [1]  415  463  179  526  195  938  818  118  299  229  244   14  374  665
##   [15]  602  603  768  709   91  953  348  649  989  355  840   26  519  426
##   [29]  649  766  211  932  590  593  555  871  373  844  143  544  490  621
##   [43]  775  905  937  842   23  923  956  309  135  821  923  224  166  217
##   [57]  290  989  581   72  588  575  141  722  865  859  153  294  277  463
##   [71]   41  431   90  316  223  528  116  606  774  747  456  598  854   39
##   [85]  159  752  209  374  818   34  516   13   69  895  755  409  308  278
##   [99]   89  928  537  983  291  424  880  286  908  671  121  110  158   64
##  [113]  483  910  477  480  711   67  663  890  847   85  165  648   51   74
##  [127]  178  362  236  610  330  726  127  972  212  686  785  958  814  310
##  [141]  931  744  878  243  862  847  792  113  983  619  903  477  975  151
##  [155]  666  614  767  160  391  155  426    5  326  784  280  800  789  567
##  [169]  843  932  238  764  339  985   39  822  986  137  455  738  560  589
##  [183]   83  696  879   39  196  769  680  286  606  500  985  784  344  310
##  [197]  459  944   20  872  195  861  164   52  876  534  177  554  827   84
##  [211]  523  633  951  392  302  597  877  706  619  589  430  710  761  712
##  [225]  428  672  250  804  429  398  528  983  381  545   40  936  522  473
##  [239]  200  978  125  265  775  903  186  573  252  458  152  831   54  919
##  [253]  538  235  289  185  765  413  627  522  309   54  205  875  779  537
##  [267]  564  794  391  409  727  346  160  468  509  920   57  457  617  357
##  [281]  279  270  878  646  347  129  218  618  881  698  337  797   26  539
##  [295]  981  519  956  757  666  553  724  390  498  222  671  861  657  960
##  [309]  421   57  660  163  985  238  673  578  516  330  225  389  117  537
##  [323]  648   55  217  597  557  658  682  415  134  711  957  873  688  913
##  [337]  757  941  988  447  821  104  821  831  711  468  210  349  401  737
##  [351]  258  177  386  141   24  945  963  466  130  165  703  588  377  781
##  [365]  170  445  710  874  234  422  508  880   64   80  483  548  987  475
##  [379]  291  765  343  323  479  560  450  111  791  963  905  317  807  222
##  [393]  287  734  585  292  226  790  890  684  297  860  605  637  811   39
##  [407]  237  165  619   33   83  396  866  277  209   76   94  803   30  217
##  [421]  946  175  374  323  115  377  850  608  465  358  682  424  938   96
##  [435]  538  397  404  742  148  989  980  862  937  392  935  714  593  447
##  [449]  338  744  243  106  887   11  625  364  386  403  461  141   31  926
##  [463]  115  790   94  714   16  709  420  178  417  464  412  177  524  437
##  [477]  924  578  562  204  175  947  373  646  464  384  122  399  403  315
##  [491]  259  494  865  760  289   48  331  100  108  301   10  170  280  348
##  [505]  999  402  209  468  827  649  309  395  108    8  626  261  541  306
##  [519]  326   74  282  585  267  887  262  736  204  723  219  696  352  667
##  [533]  990  119  452  856  924  579  622  936  646   36   55  490  240  891
##  [547]  632  862  304   10  665  422  612  105  793  388  463  180  278  373
##  [561]  241   24  679  559  956  703   37  686  566  303  719  912   19  712
##  [575]  671  378  549  615  244   48  188  958  464  393  139  299  371  670
##  [589]  189  970  311  189  418  569  382   38   84  319  686  846  838  402
##  [603]  642  120  712  331  533  441  199  499  599   72  315  714  677   81
##  [617]   55  134  424  756    6  128  879  668  800   49  739  476  239  340
##  [631]  193  709  459  303  148  898  190  624  191  446  119  627  522  627
##  [645]   59  817  903   61  422  108  292  373  535  115  930  600  644  950
##  [659]  413  698  983  763  203  758  993  246  440  947  690  251  560  643
##  [673]  545  990  162  322  576  168  442  788   78  665  493  199  424  445
##  [687]  995   95  918  464  379  342  221  696  161  620  448  242  693  927
##  [701]  814  968  536  828  926  407  229  224  785  474  699  441  171   23
##  [715]  218  484  301  648   79  511  507  164  237  579  807  929  422  493
##  [729]  730  796  986  209  599  693  358  650  877  358   41  904  129  848
##  [743]  886  450  232  334  396  730  840  639   41  264  697  201   52  225
##  [757]   67  680  770  577  457  903  973  541   20  206  124  592  775  740
##  [771]   45  332  281   91  653  980  138  606  127  425  780    8  839  271
##  [785]  595  945  747  167  499  255  599  634  931  902   71  772  970   81
##  [799]  944  776  437  579  876  896  437  750  997  270  412  646  137  673
##  [813]  628   46   64  531  229  610  129  220  692  222  836  507  602  122
##  [827]  331  901  502  484  787  291  929  743  709  829  919  169  729  447
##  [841]  561  341   69  320  504   76    2  886  786  772  106  111  855  374
##  [855]   72  449  888  971  229  523  719  335  953   56  618  271  207  436
##  [869]  876  957  601  292  387  263   68  120  744  565  357  792  742  836
##  [883]  835  523  586  256  349  471  901   88  416  857   11  586  463  755
##  [897]  700  287  842  685  827  280  512  803  242  778   64  328  172  298
##  [911]  160  679  903  678  529  468  384  929  741  970  365  970  898  591
##  [925]  471  879 1000  227  834  838  622  315  943  243  265  535  793  911
##  [939]  982  112  456   93  489  789  631   48  969  482  248  105  171  696
##  [953]  459  516  839  312  562  892  139  758  481  843  828  250  742  597
##  [967]  330  633  626  195   99   98   58  424  988  525    8  258  635  262
##  [981]  599  529  928  206  199  589  840  870  459  234  529  839   55  892
##  [995]  531  753  488  271  942  398
# Reemplazar aleatoriamente algunos valores por NA
num_na <- 100  # Número de valores NA deseados
na_indices <- sample(1:1000, num_na)
vector[na_indices] <- NA

print(vector)
##    [1]  415  463  179  526   NA  938  818  118   NA  229  244   14  374  665
##   [15]  602  603  768   NA   91  953  348  649  989  355  840   26  519  426
##   [29]  649  766  211  932  590  593  555  871  373  844  143   NA  490  621
##   [43]  775   NA  937  842   23  923  956  309  135  821  923  224   NA  217
##   [57]  290   NA  581   72  588  575  141  722  865  859   NA  294  277  463
##   [71]   41  431   90   NA  223  528   NA  606  774  747  456  598  854   NA
##   [85]  159  752  209  374  818   34  516   13   69  895  755  409  308  278
##   [99]   89  928  537  983  291  424  880  286  908  671  121  110  158   NA
##  [113]  483  910  477  480  711   67  663  890  847   85  165  648   51   74
##  [127]  178  362  236  610  330  726  127  972  212  686  785  958  814  310
##  [141]  931  744  878  243  862  847  792   NA  983  619   NA  477  975  151
##  [155]   NA  614  767  160  391  155  426    5  326  784  280  800  789   NA
##  [169]  843  932  238  764  339  985   39  822  986  137  455  738  560  589
##  [183]   83  696  879   39  196  769  680  286  606  500  985   NA  344  310
##  [197]  459  944   20   NA  195  861  164   52  876  534  177  554   NA   84
##  [211]  523  633  951  392  302  597  877   NA  619  589  430  710  761  712
##  [225]  428  672  250  804  429  398  528  983  381  545   40  936   NA  473
##  [239]  200  978  125  265  775  903  186  573   NA  458  152  831   54  919
##  [253]  538  235  289  185  765   NA  627  522  309   54  205  875   NA   NA
##  [267]  564  794  391  409  727  346  160  468  509  920   57  457  617  357
##  [281]   NA  270  878  646  347  129   NA  618  881   NA  337  797   26  539
##  [295]  981  519  956  757  666  553  724  390  498  222  671  861  657  960
##  [309]  421   57  660  163  985  238  673  578  516  330  225  389   NA  537
##  [323]  648   55  217  597  557  658   NA  415  134  711  957  873  688  913
##  [337]  757  941   NA  447  821  104  821   NA  711  468   NA   NA  401  737
##  [351]  258  177  386  141   NA  945  963  466  130  165  703  588  377  781
##  [365]  170  445  710  874  234   NA  508  880   64   80  483   NA  987  475
##  [379]  291   NA  343  323   NA  560  450  111  791  963  905  317   NA  222
##  [393]  287  734  585  292  226   NA  890  684  297  860  605  637  811   39
##  [407]   NA  165  619   33   NA  396  866  277  209   76   94  803   30  217
##  [421]  946  175  374  323  115  377  850  608  465  358  682  424  938   96
##  [435]  538  397  404  742  148  989  980  862  937  392  935  714  593  447
##  [449]  338  744  243  106  887   11  625  364  386  403  461   NA   31  926
##  [463]  115  790   94   NA   16  709   NA   NA   NA  464  412  177  524  437
##  [477]  924   NA   NA  204  175  947  373  646  464  384  122   NA  403  315
##  [491]  259  494  865  760  289   48  331  100  108  301   10  170  280  348
##  [505]  999  402  209  468  827  649  309  395  108    8  626  261  541  306
##  [519]  326   74  282  585  267  887  262  736  204  723  219   NA  352  667
##  [533]   NA  119   NA  856  924  579  622  936   NA   36   55  490   NA  891
##  [547]  632  862  304   10   NA  422  612   NA  793  388  463  180  278  373
##  [561]  241   24  679  559   NA  703   37  686  566  303  719  912   19  712
##  [575]  671   NA  549  615  244   48  188  958  464  393  139  299  371  670
##  [589]  189  970   NA  189  418   NA  382   38   84  319  686  846  838  402
##  [603]  642  120   NA  331  533  441  199  499  599   NA  315  714   NA   81
##  [617]   55  134   NA  756    6  128  879  668  800   49  739  476  239  340
##  [631]  193  709  459  303  148  898  190  624  191  446  119   NA  522  627
##  [645]   59  817   NA   61  422  108   NA  373  535  115   NA  600  644   NA
##  [659]  413   NA  983  763  203  758  993  246  440  947  690  251   NA  643
##  [673]  545  990  162  322  576  168  442  788   78  665  493  199  424  445
##  [687]  995   95  918  464   NA  342  221  696  161  620  448  242  693  927
##  [701]  814  968  536  828  926  407  229   NA   NA  474  699  441   NA   23
##  [715]  218  484  301  648   79  511  507  164  237  579  807  929  422  493
##  [729]  730  796  986   NA  599  693  358  650  877  358   41  904  129  848
##  [743]  886  450  232   NA  396  730  840  639   41  264  697  201   52  225
##  [757]   67  680  770  577  457  903  973  541   20   NA  124  592  775  740
##  [771]   45  332  281   91  653  980  138  606  127  425  780    8  839  271
##  [785]  595   NA  747  167  499  255  599  634  931  902   71  772  970   81
##  [799]  944  776  437  579  876  896  437  750  997  270  412   NA  137  673
##  [813]  628   NA   64  531  229   NA  129  220  692  222  836  507  602  122
##  [827]  331  901  502   NA   NA  291  929  743  709  829  919  169  729  447
##  [841]  561  341   69  320  504   76    2  886  786  772  106  111  855  374
##  [855]   72  449  888  971  229   NA  719  335  953   56  618  271   NA  436
##  [869]  876  957  601  292  387  263   68   NA  744   NA  357  792  742  836
##  [883]  835  523  586  256  349  471  901   88  416  857   NA  586  463  755
##  [897]  700  287   NA  685  827  280  512   NA  242  778   NA  328  172  298
##  [911]  160  679   NA  678  529  468  384  929  741  970  365  970  898  591
##  [925]  471  879 1000  227   NA  838  622   NA  943  243  265  535  793  911
##  [939]   NA  112  456   93  489  789  631   48  969  482  248  105  171  696
##  [953]  459  516  839  312  562  892  139  758  481  843  828  250  742  597
##  [967]  330  633  626  195   99   98   58  424  988  525    8  258  635  262
##  [981]  599   NA  928  206  199   NA  840  870  459  234  529  839   55  892
##  [995]  531  753  488  271  942  398
mean(vector)
## [1] NA
ind<-is.na(vector)
ind
##    [1] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [289] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [373] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [409] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [469]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [541]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [553] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [613] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [649] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [709]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [817] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [877] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [901] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [913]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [985] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
sum(ind) #Conteo de NA
## [1] 100
mean(vector)
## [1] NA
mean(vector[!ind])
## [1] 498.2311
s1<-summary(vector)
s2<-summary(vector[!ind])
ls()
##  [1] "a"                 "b"                 "BJsales"          
##  [4] "BJsales.lead"      "CaF"               "calificacionesDip"
##  [7] "city"              "codes"             "df"               
## [10] "df_city_temp"      "df_mat"            "HairEyeColor"     
## [13] "ind"               "mat"               "na_indices"       
## [16] "nombres"           "num_na"            "s1"               
## [19] "s2"                "temp_C"            "temp_F"           
## [22] "vector"
d <- c("a","b","c","d","e")
logi <- c(TRUE,FALSE,TRUE,FALSE,TRUE)
d[!logi]
## [1] "b" "d"
print(s1)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##     2.0   243.8   483.5   498.2   747.8  1000.0     100

Instalar paquetes

#install.packages(c("dslabs","Rtools"))
library(dslabs)

data("murders")

levels(murders$region)
## [1] "Northeast"     "South"         "North Central" "West"
nlevels(murders$region)
## [1] 4
murders
##                   state abb        region population total
## 1               Alabama  AL         South    4779736   135
## 2                Alaska  AK          West     710231    19
## 3               Arizona  AZ          West    6392017   232
## 4              Arkansas  AR         South    2915918    93
## 5            California  CA          West   37253956  1257
## 6              Colorado  CO          West    5029196    65
## 7           Connecticut  CT     Northeast    3574097    97
## 8              Delaware  DE         South     897934    38
## 9  District of Columbia  DC         South     601723    99
## 10              Florida  FL         South   19687653   669
## 11              Georgia  GA         South    9920000   376
## 12               Hawaii  HI          West    1360301     7
## 13                Idaho  ID          West    1567582    12
## 14             Illinois  IL North Central   12830632   364
## 15              Indiana  IN North Central    6483802   142
## 16                 Iowa  IA North Central    3046355    21
## 17               Kansas  KS North Central    2853118    63
## 18             Kentucky  KY         South    4339367   116
## 19            Louisiana  LA         South    4533372   351
## 20                Maine  ME     Northeast    1328361    11
## 21             Maryland  MD         South    5773552   293
## 22        Massachusetts  MA     Northeast    6547629   118
## 23             Michigan  MI North Central    9883640   413
## 24            Minnesota  MN North Central    5303925    53
## 25          Mississippi  MS         South    2967297   120
## 26             Missouri  MO North Central    5988927   321
## 27              Montana  MT          West     989415    12
## 28             Nebraska  NE North Central    1826341    32
## 29               Nevada  NV          West    2700551    84
## 30        New Hampshire  NH     Northeast    1316470     5
## 31           New Jersey  NJ     Northeast    8791894   246
## 32           New Mexico  NM          West    2059179    67
## 33             New York  NY     Northeast   19378102   517
## 34       North Carolina  NC         South    9535483   286
## 35         North Dakota  ND North Central     672591     4
## 36                 Ohio  OH North Central   11536504   310
## 37             Oklahoma  OK         South    3751351   111
## 38               Oregon  OR          West    3831074    36
## 39         Pennsylvania  PA     Northeast   12702379   457
## 40         Rhode Island  RI     Northeast    1052567    16
## 41       South Carolina  SC         South    4625364   207
## 42         South Dakota  SD North Central     814180     8
## 43            Tennessee  TN         South    6346105   219
## 44                Texas  TX         South   25145561   805
## 45                 Utah  UT          West    2763885    22
## 46              Vermont  VT     Northeast     625741     2
## 47             Virginia  VA         South    8001024   250
## 48           Washington  WA          West    6724540    93
## 49        West Virginia  WV         South    1852994    27
## 50            Wisconsin  WI North Central    5686986    97
## 51              Wyoming  WY          West     563626     5
head(murders,3)
##     state abb region population total
## 1 Alabama  AL  South    4779736   135
## 2  Alaska  AK   West     710231    19
## 3 Arizona  AZ   West    6392017   232
str(murders)
## 'data.frame':    51 obs. of  5 variables:
##  $ state     : chr  "Alabama" "Alaska" "Arizona" "Arkansas" ...
##  $ abb       : chr  "AL" "AK" "AZ" "AR" ...
##  $ region    : Factor w/ 4 levels "Northeast","South",..: 2 4 4 2 4 4 1 2 2 2 ...
##  $ population: num  4779736 710231 6392017 2915918 37253956 ...
##  $ total     : num  135 19 232 93 1257 ...
class(murders)
## [1] "data.frame"
names(murders)
## [1] "state"      "abb"        "region"     "population" "total"
sort(murders$total)
##  [1]    2    4    5    5    7    8   11   12   12   16   19   21   22   27   32
## [16]   36   38   53   63   65   67   84   93   93   97   97   99  111  116  118
## [31]  120  135  142  207  219  232  246  250  286  293  310  321  351  364  376
## [46]  413  457  517  669  805 1257
order(murders$total,decreasing = TRUE) #entrega posiciones
##  [1]  5 44 10 33 39 23 11 14 19 26 36 21 34 47 31  3 43 41 15  1 25 22 18 37  9
## [26]  7 50  4 48 29 32  6 17 24  8 38 28 49 45 16  2 40 13 27 20 42 12 30 51 35
## [51] 46
murders$state[5] #Estado con el total de asesinatos más alto
## [1] "California"
murders$state[46] #Estado con el total de asesinatos más bajo
## [1] "Vermont"
attach(murders)

state[5]
## [1] "California"
max(total)
## [1] 1257
pos_max<-which.max(total)
pos_max
## [1] 5
min(total)
## [1] 2
pos_min<-which.min(total)
pos_min
## [1] 46
state[pos_max]
## [1] "California"
state[pos_min]
## [1] "Vermont"

Ejercicio

  1. Escriba una linea de código para mostrar el número de estados por región del dataset murders

  2. Use el dataset movielens del paquete dslabs y responda.

  1. ¿Cuántas filas hay?
  2. ¿Cuántas variables hay?
  3. ¿Qué tipo es la variable title?
  4. ¿Qué tipo es la variable genres?
  5. ¿Cuántos niveles hay en la variable genres?
  1. Utilice el operador $ para acceder a los datos del tamaño de la población y almacenarlos en el objeto pop. A continuación, utilice la función order() para redefinir pop de modo que esté ordenado. Por último, utilice el operador [ ] para informar del menor tamaño de población.