Moneyball and The Power of Sports Analytics in Baseball
author: “Frank Vega” date: “2024-07-08”
#we are creating a dataframe from the baseball csv file
#We have 1232 observations which are rows which either numerical or categorical
#as well as 15 variables/columns which are important attributes/elements of baseball analytics
baseball = read.csv("baseball.csv")
#structure of the dataframe
str(baseball)
## 'data.frame': 1232 obs. of 15 variables:
## $ Team : chr "ARI" "ATL" "BAL" "BOS" ...
## $ League : chr "NL" "NL" "AL" "AL" ...
## $ Year : int 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 ...
## $ RS : int 734 700 712 734 613 748 669 667 758 726 ...
## $ RA : int 688 600 705 806 759 676 588 845 890 670 ...
## $ W : int 81 94 93 69 61 85 97 68 64 88 ...
## $ OBP : num 0.328 0.32 0.311 0.315 0.302 0.318 0.315 0.324 0.33 0.335 ...
## $ SLG : num 0.418 0.389 0.417 0.415 0.378 0.422 0.411 0.381 0.436 0.422 ...
## $ BA : num 0.259 0.247 0.247 0.26 0.24 0.255 0.251 0.251 0.274 0.268 ...
## $ Playoffs : int 0 1 1 0 0 0 1 0 0 1 ...
## $ RankSeason : int NA 4 5 NA NA NA 2 NA NA 6 ...
## $ RankPlayoffs: int NA 5 4 NA NA NA 4 NA NA 2 ...
## $ G : int 162 162 162 162 162 162 162 162 162 162 ...
## $ OOBP : num 0.317 0.306 0.315 0.331 0.335 0.319 0.305 0.336 0.357 0.314 ...
## $ OSLG : num 0.415 0.378 0.403 0.428 0.424 0.405 0.39 0.43 0.47 0.402 ...
#######INDEX###########
#Team - Team name
#League - League in which the team plays
#Year - Year of the season
#RS - Runs scored
#RA - Runs allowed
#W - Wins
#OBP - On-base percentage
#SLG - Slugging percentage
#BA - Batting average
#Playoffs - Indicator of whether the team made the playoffs 0 false and 1 the team qualified
#RankSeason - Season ranking
#RankPlayoffs - Playoff ranking
#G - Games played
#OOBP - Opponent's on-base percentage
#OSLG - Opponent's slugging percentage
# Subset to only include money ball years
moneyball = subset(baseball, Year < 2002)
str(moneyball)
## 'data.frame': 902 obs. of 15 variables:
## $ Team : chr "ANA" "ARI" "ATL" "BAL" ...
## $ League : chr "AL" "NL" "NL" "AL" ...
## $ Year : int 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 ...
## $ RS : int 691 818 729 687 772 777 798 735 897 923 ...
## $ RA : int 730 677 643 829 745 701 795 850 821 906 ...
## $ W : int 75 92 88 63 82 88 83 66 91 73 ...
## $ OBP : num 0.327 0.341 0.324 0.319 0.334 0.336 0.334 0.324 0.35 0.354 ...
## $ SLG : num 0.405 0.442 0.412 0.38 0.439 0.43 0.451 0.419 0.458 0.483 ...
## $ BA : num 0.261 0.267 0.26 0.248 0.266 0.261 0.268 0.262 0.278 0.292 ...
## $ Playoffs : int 0 1 1 0 0 0 0 0 1 0 ...
## $ RankSeason : int NA 5 7 NA NA NA NA NA 6 NA ...
## $ RankPlayoffs: int NA 1 3 NA NA NA NA NA 4 NA ...
## $ G : int 162 162 162 162 161 162 162 162 162 162 ...
## $ OOBP : num 0.331 0.311 0.314 0.337 0.329 0.321 0.334 0.341 0.341 0.35 ...
## $ OSLG : num 0.412 0.404 0.384 0.439 0.393 0.398 0.427 0.455 0.417 0.48 ...
#we're sub setting the data here for all years before 2002
#we can see around 300 less observations
# Compute Run Difference
#this command creates a new column called RD using the moneyball dataframe, and it is populated by the difference of Rs and RA
#Run differential is a crucial statistic in baseball as it correlates to team performance
moneyball$RD = moneyball$RS - moneyball$RA
str(moneyball)
## 'data.frame': 902 obs. of 16 variables:
## $ Team : chr "ANA" "ARI" "ATL" "BAL" ...
## $ League : chr "AL" "NL" "NL" "AL" ...
## $ Year : int 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 ...
## $ RS : int 691 818 729 687 772 777 798 735 897 923 ...
## $ RA : int 730 677 643 829 745 701 795 850 821 906 ...
## $ W : int 75 92 88 63 82 88 83 66 91 73 ...
## $ OBP : num 0.327 0.341 0.324 0.319 0.334 0.336 0.334 0.324 0.35 0.354 ...
## $ SLG : num 0.405 0.442 0.412 0.38 0.439 0.43 0.451 0.419 0.458 0.483 ...
## $ BA : num 0.261 0.267 0.26 0.248 0.266 0.261 0.268 0.262 0.278 0.292 ...
## $ Playoffs : int 0 1 1 0 0 0 0 0 1 0 ...
## $ RankSeason : int NA 5 7 NA NA NA NA NA 6 NA ...
## $ RankPlayoffs: int NA 1 3 NA NA NA NA NA 4 NA ...
## $ G : int 162 162 162 162 161 162 162 162 162 162 ...
## $ OOBP : num 0.331 0.311 0.314 0.337 0.329 0.321 0.334 0.341 0.341 0.35 ...
## $ OSLG : num 0.412 0.404 0.384 0.439 0.393 0.398 0.427 0.455 0.417 0.48 ...
## $ RD : int -39 141 86 -142 27 76 3 -115 76 17 ...
# Scatterplot to check for linear relationship
#After we plot Wins on the Y axis and RD in the X we can see that there is a VERY strong correlation here
#The data is very close together and it has a positive direction
plot(moneyball$RD, moneyball$W)
# Regression model to predict wins
WinsReg = lm(W ~ RD, data=moneyball)
summary(WinsReg)
##
## Call:
## lm(formula = W ~ RD, data = moneyball)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.2662 -2.6509 0.1234 2.9364 11.6570
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 80.881375 0.131157 616.67 <2e-16 ***
## RD 0.105766 0.001297 81.55 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.939 on 900 degrees of freedom
## Multiple R-squared: 0.8808, Adjusted R-squared: 0.8807
## F-statistic: 6651 on 1 and 900 DF, p-value: < 2.2e-16
#This linear regression model examines the relationship between number of wins and the run differential
#Based on the output we got from the model we can see that it is VERY significant as the very large F statistic and extremely low p-value indicate the model is highly significant
#Here we have to reject the null hypothesis as it is impossible for RD to be zero and as we can see in the linear relationship model we have a VERY strong positive linear relationship between runs differential and number of wins meaning it is impossible for the slope to be zero
#updated moneyball structure
str(moneyball)
## 'data.frame': 902 obs. of 16 variables:
## $ Team : chr "ANA" "ARI" "ATL" "BAL" ...
## $ League : chr "AL" "NL" "NL" "AL" ...
## $ Year : int 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 ...
## $ RS : int 691 818 729 687 772 777 798 735 897 923 ...
## $ RA : int 730 677 643 829 745 701 795 850 821 906 ...
## $ W : int 75 92 88 63 82 88 83 66 91 73 ...
## $ OBP : num 0.327 0.341 0.324 0.319 0.334 0.336 0.334 0.324 0.35 0.354 ...
## $ SLG : num 0.405 0.442 0.412 0.38 0.439 0.43 0.451 0.419 0.458 0.483 ...
## $ BA : num 0.261 0.267 0.26 0.248 0.266 0.261 0.268 0.262 0.278 0.292 ...
## $ Playoffs : int 0 1 1 0 0 0 0 0 1 0 ...
## $ RankSeason : int NA 5 7 NA NA NA NA NA 6 NA ...
## $ RankPlayoffs: int NA 1 3 NA NA NA NA NA 4 NA ...
## $ G : int 162 162 162 162 161 162 162 162 162 162 ...
## $ OOBP : num 0.331 0.311 0.314 0.337 0.329 0.321 0.334 0.341 0.341 0.35 ...
## $ OSLG : num 0.412 0.404 0.384 0.439 0.393 0.398 0.427 0.455 0.417 0.48 ...
## $ RD : int -39 141 86 -142 27 76 3 -115 76 17 ...
# Regression model to predict runs scored
RunsReg = lm(RS ~ OBP + SLG + BA, data=moneyball)
summary(RunsReg)
##
## Call:
## lm(formula = RS ~ OBP + SLG + BA, data = moneyball)
##
## Residuals:
## Min 1Q Median 3Q Max
## -70.941 -17.247 -0.621 16.754 90.998
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -788.46 19.70 -40.029 < 2e-16 ***
## OBP 2917.42 110.47 26.410 < 2e-16 ***
## SLG 1637.93 45.99 35.612 < 2e-16 ***
## BA -368.97 130.58 -2.826 0.00482 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 24.69 on 898 degrees of freedom
## Multiple R-squared: 0.9302, Adjusted R-squared: 0.93
## F-statistic: 3989 on 3 and 898 DF, p-value: < 2.2e-16
#straight away while this model is still very good the negative batting average is very peculiar will not work as it is impossible for the batting average to be negative
#We must address and investigate potential multicollinearity in the variable BA and OBP
# Regression model to predict runs scored again but removing the batting average
#We remove the batting average as it is erroneous and needs a further looking into
RunsReg = lm(RS ~ OBP + SLG, data=moneyball)
summary(RunsReg)
##
## Call:
## lm(formula = RS ~ OBP + SLG, data = moneyball)
##
## Residuals:
## Min 1Q Median 3Q Max
## -70.838 -17.174 -1.108 16.770 90.036
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -804.63 18.92 -42.53 <2e-16 ***
## OBP 2737.77 90.68 30.19 <2e-16 ***
## SLG 1584.91 42.16 37.60 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 24.79 on 899 degrees of freedom
## Multiple R-squared: 0.9296, Adjusted R-squared: 0.9294
## F-statistic: 5934 on 2 and 899 DF, p-value: < 2.2e-16
#updated dataframe structure
str(moneyball)
## 'data.frame': 902 obs. of 16 variables:
## $ Team : chr "ANA" "ARI" "ATL" "BAL" ...
## $ League : chr "AL" "NL" "NL" "AL" ...
## $ Year : int 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 ...
## $ RS : int 691 818 729 687 772 777 798 735 897 923 ...
## $ RA : int 730 677 643 829 745 701 795 850 821 906 ...
## $ W : int 75 92 88 63 82 88 83 66 91 73 ...
## $ OBP : num 0.327 0.341 0.324 0.319 0.334 0.336 0.334 0.324 0.35 0.354 ...
## $ SLG : num 0.405 0.442 0.412 0.38 0.439 0.43 0.451 0.419 0.458 0.483 ...
## $ BA : num 0.261 0.267 0.26 0.248 0.266 0.261 0.268 0.262 0.278 0.292 ...
## $ Playoffs : int 0 1 1 0 0 0 0 0 1 0 ...
## $ RankSeason : int NA 5 7 NA NA NA NA NA 6 NA ...
## $ RankPlayoffs: int NA 1 3 NA NA NA NA NA 4 NA ...
## $ G : int 162 162 162 162 161 162 162 162 162 162 ...
## $ OOBP : num 0.331 0.311 0.314 0.337 0.329 0.321 0.334 0.341 0.341 0.35 ...
## $ OSLG : num 0.412 0.404 0.384 0.439 0.393 0.398 0.427 0.455 0.417 0.48 ...
## $ RD : int -39 141 86 -142 27 76 3 -115 76 17 ...
# Regression model to predict runs allowed
#Provided another model which is used to assess the impact of the quality of the opposition's hitting (as measured by OOBP and OSLG) on the number of runs a team allows, which can provide insights into the effectiveness of a team's pitching and defense in preventing runs
RunsAllowedReg = lm(RA ~ OOBP + OSLG, data=moneyball)
summary(RunsAllowedReg)
##
## Call:
## lm(formula = RA ~ OOBP + OSLG, data = moneyball)
##
## Residuals:
## Min 1Q Median 3Q Max
## -82.397 -15.178 -0.129 17.679 60.955
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -837.38 60.26 -13.897 < 2e-16 ***
## OOBP 2913.60 291.97 9.979 4.46e-16 ***
## OSLG 1514.29 175.43 8.632 2.55e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25.67 on 87 degrees of freedom
## (812 observations deleted due to missingness)
## Multiple R-squared: 0.9073, Adjusted R-squared: 0.9052
## F-statistic: 425.8 on 2 and 87 DF, p-value: < 2.2e-16