| N | Age (M) | SD | range |
|---|---|---|---|
| 60 | 22.91 | 2.92 | 18 - 36 |
| L1_IT | mother_L1 | father_L1 | N |
|---|---|---|---|
| Sì | Italiano e Veneto | Italiano e Veneto | 2 |
| Sì | Italiano | Italiano | 52 |
| Sì | Bulgaro | Bulgaro | 1 |
| Sì | Italiano e Dialetto Camuno | Italiano e Dialetto Camuno | 1 |
| Sì | Friulano della Bassa Friulana | Italiano | 1 |
| Sì | Italiano e Veneto | Italiano e Siciliano | 1 |
| Sì | Italiano | Italiano e Friulano | 1 |
| Sì | Tedesco | Siciliano | 1 |
| n_other_L2 | N |
|---|---|
| 0 | 1 |
| 1 | 18 |
| 2 | 15 |
| 3 | 14 |
| 4 | 12 |
| DYS | N |
|---|---|
| No | 54 |
| Sì | 6 |
### Exclude for reading analysis
df %>% filter(ID != "SPOON01") -> df # pilot
df %>%
mutate(exclude = case_when(
ID == "SPOON04" ~ 1,
ID == "SPOON10" ~ 1,
ID == "SPOON49" ~ 1,
ID == "SPOON52" ~ 1,
ID == "SPOON46" ~ 1,
ID == "SPOON44" ~ 1,
TRUE ~ 0
)) -> df
df %>% filter(exclude != 1) -> df
| N | Age (M) | SD | range |
|---|---|---|---|
| 54 | 22.89 | 3.04 | 18 - 36 |
| reading_measure | M | SD | range |
|---|---|---|---|
| Word reading time | -0.79 | 1.31 | -4.23 - 1.46 |
| Word reading errors | -0.25 | 1.42 | -4.34 - 0.99 |
| Nonword reading time | -0.81 | 1.42 | -4.99 - 1.43 |
| Nonword reading errors | -0.35 | 1.46 | -6.71 - 1.18 |
| Accuracy (M) | sd | range |
|---|---|---|
| 0.98 | 0.03 | 0.84 - 1 |
| task | Mean | SD | range |
|---|---|---|---|
| forward | 6.98 | 1.21 | 4 - 9 |
| backward | 5.67 | 1.25 | 3 - 8 |
| wr_time_z | wr_error_z | nwr_time_z | nwr_error_z | it.ok | forward | backward | age | n_other_L2 | |
|---|---|---|---|---|---|---|---|---|---|
| wr_time_z | 1 | 0.43 | 0.83 | 0.47 | 0.39 | 0.32 | 0.15 | 0.04 | 0.19 |
| wr_error_z | 0.43 | 1 | 0.37 | 0.6 | 0.64 | -0.09 | -0.16 | 0.17 | 0.16 |
| nwr_time_z | 0.83 | 0.37 | 1 | 0.51 | 0.38 | 0.19 | 0.1 | 0.07 | 0.32 |
| nwr_error_z | 0.47 | 0.6 | 0.51 | 1 | 0.43 | -0.05 | 0 | 0.15 | 0.21 |
| it.ok | 0.39 | 0.64 | 0.38 | 0.43 | 1 | 0 | 0.11 | 0.26 | 0.23 |
| forward | 0.32 | -0.09 | 0.19 | -0.05 | 0 | 1 | 0.27 | -0.21 | 0.01 |
| backward | 0.15 | -0.16 | 0.1 | 0 | 0.11 | 0.27 | 1 | -0.19 | -0.08 |
| age | 0.04 | 0.17 | 0.07 | 0.15 | 0.26 | -0.21 | -0.19 | 1 | 0.17 |
| n_other_L2 | 0.19 | 0.16 | 0.32 | 0.21 | 0.23 | 0.01 | -0.08 | 0.17 | 1 |
Item structure
| order_admin | n |
|---|---|
| L2-V2/L1-V2 | 7 |
| L1-V3/L2-V3 | 8 |
| L2-V1/L1-V1 | 8 |
| L1-V2/L2-V2 | 6 |
| L2-V3/L1-V3 | 7 |
| L1-V4/L2-V4 | 7 |
| L1-V1/L2-V1 | 6 |
| L2-V4/L1-V4 | 5 |
| condition | n |
|---|---|
| mixed | 8 |
| simple_nonvisual1 | 4 |
| simple_visual2 | 4 |
| simple_visual1 | 4 |
| complex1 | 4 |
| complex4 | 4 |
| complex3 | 4 |
| complex2 | 4 |
df.items %>%
glmer(formula = accuracy_item ~
condition +
(1 + condition|ID) + (1|item_code),
family = "binomial",
control = glmerControl(optimizer = "bobyqa")
) -> m0
Anova(m0, type = "III") %>% as.data.frame() %>%
mutate_all(~round(.x,3)) %>%
kable(caption = "Simple model comparing fine-grained conditions") %>% kable_minimal()
| Chisq | Df | Pr(>Chisq) | |
|---|---|---|---|
| (Intercept) | 5.750 | 1 | 0.016 |
| condition | 46.435 | 7 | 0.000 |
emmeans(m0, pairwise ~ condition, adjust = "bonferroni")$emmeans %>% as.data.frame() %>%
mutate(emmean = plogis(emmean),
emmean = round(emmean,2),
SE = round(SE,2)) %>%
dplyr::select(1:3) %>%
kable(caption = "Estimated Marginal Means") %>% kable_minimal()
| condition | emmean | SE |
|---|---|---|
| complex1 | 0.68 | 0.31 |
| complex2 | 0.86 | 0.38 |
| complex3 | 0.83 | 0.40 |
| complex4 | 0.64 | 0.37 |
| mixed | 0.93 | 0.34 |
| simple_nonvisual1 | 0.93 | 0.48 |
| simple_visual1 | 0.98 | 0.72 |
| simple_visual2 | 0.99 | 1.11 |
emmeans(m0, pairwise ~ condition, adjust = "bonferroni")$contrast %>% as.data.frame() %>%
mutate(across(estimate:z.ratio, ~round(.x,2)),
p.value = round(p.value,3)) -> emmeans2
color.me <- which(emmeans2$p.value <= .05)
emmeans2 %>% kable(caption = "Contrasts") %>% kable_minimal() %>% row_spec(color.me, bold = T)
| contrast | estimate | SE | df | z.ratio | p.value |
|---|---|---|---|---|---|
| complex1 - complex2 | -1.08 | 0.45 | Inf | -2.42 | 0.432 |
| complex1 - complex3 | -0.82 | 0.46 | Inf | -1.79 | 1.000 |
| complex1 - complex4 | 0.18 | 0.43 | Inf | 0.41 | 1.000 |
| complex1 - mixed | -1.81 | 0.43 | Inf | -4.21 | 0.001 |
| complex1 - simple_nonvisual1 | -1.87 | 0.54 | Inf | -3.46 | 0.015 |
| complex1 - simple_visual1 | -3.01 | 0.76 | Inf | -3.93 | 0.002 |
| complex1 - simple_visual2 | -3.94 | 1.15 | Inf | -3.43 | 0.017 |
| complex2 - complex3 | 0.26 | 0.49 | Inf | 0.53 | 1.000 |
| complex2 - complex4 | 1.26 | 0.46 | Inf | 2.76 | 0.163 |
| complex2 - mixed | -0.73 | 0.47 | Inf | -1.56 | 1.000 |
| complex2 - simple_nonvisual1 | -0.79 | 0.58 | Inf | -1.38 | 1.000 |
| complex2 - simple_visual1 | -1.93 | 0.79 | Inf | -2.43 | 0.423 |
| complex2 - simple_visual2 | -2.86 | 1.16 | Inf | -2.47 | 0.379 |
| complex3 - complex4 | 1.00 | 0.45 | Inf | 2.23 | 0.714 |
| complex3 - mixed | -0.99 | 0.47 | Inf | -2.11 | 0.981 |
| complex3 - simple_nonvisual1 | -1.05 | 0.60 | Inf | -1.75 | 1.000 |
| complex3 - simple_visual1 | -2.19 | 0.78 | Inf | -2.82 | 0.135 |
| complex3 - simple_visual2 | -3.11 | 1.19 | Inf | -2.61 | 0.252 |
| complex4 - mixed | -1.98 | 0.45 | Inf | -4.36 | 0.000 |
| complex4 - simple_nonvisual1 | -2.05 | 0.58 | Inf | -3.53 | 0.012 |
| complex4 - simple_visual1 | -3.18 | 0.78 | Inf | -4.09 | 0.001 |
| complex4 - simple_visual2 | -4.11 | 1.18 | Inf | -3.49 | 0.014 |
| mixed - simple_nonvisual1 | -0.06 | 0.56 | Inf | -0.12 | 1.000 |
| mixed - simple_visual1 | -1.20 | 0.76 | Inf | -1.58 | 1.000 |
| mixed - simple_visual2 | -2.13 | 1.14 | Inf | -1.87 | 1.000 |
| simple_nonvisual1 - simple_visual1 | -1.14 | 0.86 | Inf | -1.33 | 1.000 |
| simple_nonvisual1 - simple_visual2 | -2.06 | 1.18 | Inf | -1.75 | 1.000 |
| simple_visual1 - simple_visual2 | -0.93 | 1.32 | Inf | -0.70 | 1.000 |
df.items %>%
glmer(formula = accuracy_item ~
it.ok * condition3 +
# it.ok +
# condition3 +
forward * condition3+
# backward * condition3 +
# backward +
age +
n_other_L2 +
(1 + condition3|ID) + (1|item_code),
family = "binomial",
control = glmerControl(optimizer = "bobyqa")
) -> m1
### Model selection
drop1(m1, test = "Chisq")
## Single term deletions
##
## Model:
## accuracy_item ~ it.ok * condition3 + forward * condition3 + age +
## n_other_L2 + (1 + condition3 | ID) + (1 | item_code)
## npar AIC LRT Pr(Chi)
## <none> 1549.9
## age 1 1553.1 5.1860 0.02277 *
## n_other_L2 1 1551.9 3.9577 0.04666 *
## it.ok:condition3 1 1550.5 2.5544 0.10999
## condition3:forward 1 1551.5 3.5140 0.06085 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
| Chisq | Df | Pr(>Chisq) | |
|---|---|---|---|
| (Intercept) | 2.55 | 1 | 0.110 |
| it.ok | 18.89 | 1 | 0.000 |
| condition3 | 34.11 | 1 | 0.000 |
| forward | 12.77 | 1 | 0.000 |
| age | 5.45 | 1 | 0.020 |
| n_other_L2 | 4.13 | 1 | 0.042 |
| it.ok:condition3 | 2.74 | 1 | 0.098 |
| condition3:forward | 4.04 | 1 | 0.044 |
| condition3 | emmean | SE |
|---|---|---|
| complex | 0.74 | 0.20 |
| simple | 0.94 | 0.24 |
| condition3 | forward.trend | SE | df | asymp.LCL | asymp.UCL | z.ratio | p.value |
|---|---|---|---|---|---|---|---|
| complex | 0.50 | 0.14 | Inf | 0.22 | 0.77 | 3.57 | 0.000 |
| simple | 0.13 | 0.18 | Inf | -0.23 | 0.49 | 0.71 | 0.477 |
df.rt %>%
mutate(response_time = log(response_time)) %>%
filter(!is.na(response_time)) %>%
lmer(formula = response_time ~
# it.ok * condition3 +
it.ok +
condition3 +
# forward * condition3 +
# backward * condition3 +
backward +
forward +
# age +
# n_other_L2 +
(1 + condition3|ID) + (1|item_code)
) -> m2
drop1(m2, test = "Chisq")
## Single term deletions using Satterthwaite's method:
##
## Model:
## response_time ~ it.ok + condition3 + backward + forward + (1 + condition3 | ID) + (1 | item_code)
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## it.ok 2.6367 2.6367 1 49.787 20.0189 4.465e-05 ***
## condition3 6.9411 6.9411 1 50.951 52.6996 2.130e-09 ***
## backward 0.2116 0.2116 1 48.649 1.6065 0.21101
## forward 0.6718 0.6718 1 48.549 5.1008 0.02844 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
| Chisq | Df | Pr(>Chisq) | |
|---|---|---|---|
| (Intercept) | 19309.58 | 1 | 0.000 |
| it.ok | 20.02 | 1 | 0.000 |
| condition3 | 52.70 | 1 | 0.000 |
| backward | 1.61 | 1 | 0.205 |
| forward | 5.10 | 1 | 0.024 |
| contrast | estimate | SE | df | t.ratio | p.value |
|---|---|---|---|---|---|
| complex - simple | 0.31 | 0.04 | 50.95 | 7.25 | 0 |
| Condition | Substitutions (Mean) | N | Deletion (Mean) | N | Insertion (Mean) | N | Real word (Mean) | N | No Response (Mean) | N | Total observations |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Complex | 0.16% | 141 | 0.03% | 22 | 0.1% | 84 | 0.03% | 30 | 0.03% | 28 | 880 |
| Simple | 0.05% | 53 | 0.01% | 9 | 0.01% | 12 | 0.02% | 24 | 0.02% | 21 | 1100 |
| Condition | Substitutions (Mean) | N | Deletion (Mean) | N | Insertion (Mean) | N | Real word (Mean) | N | No Response (Mean) | N | Total observations |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Complex | 0.53% | 141 | 0.08% | 22 | 0.31% | 84 | 0.11% | 30 | 0.1% | 28 | 267 |
| Simple | 0.48% | 53 | 0.08% | 9 | 0.11% | 12 | 0.22% | 24 | 0.19% | 21 | 111 |
| Condition | Total target substitutions | Mean | Tot. Substitutions |
|---|---|---|---|
| complex | 77 | 0.55% | 141 |
| simple | 0 | 0% | 53 |
| item_code | accuracy_item | correlation | condition | prompt_1 | prompt_2 | target_1 | target_2 |
|---|---|---|---|---|---|---|---|
| MIX_08 | 0.89 | 0.47 | mixed | vetro | lasso | letro | vasso |
| MIX_01 | 0.93 | 0.47 | mixed | ruota | latte | luota | ratte |
| MIX_03 | 0.87 | 0.27 | mixed | viso | tazza | tiso | vazza |
| MIX_06 | 0.78 | 0.13 | mixed | rosa | biro | bosa | riro |
| S1_04 | 0.91 | 0.11 | simple_nonvisual1 | fungo | salto | sungo | falto |
| S1_02 | 0.81 | 0.34 | simple_nonvisual1 | fango | suono | sango | fuono |
| SV2_03 | 0.89 | 0.09 | simple_visual2 | miele | nocca | niele | mocca |
| SV1_02 | 0.87 | 0.18 | simple_visual1 | benda | pera | penda | bera |
| SV1_04 | 0.96 | 0.18 | simple_visual1 | bocca | posa | pocca | bosa |
| SV2_01 | 0.96 | -0.06 | simple_visual2 | malta | nave | nalta | mave |
| C1_04 | 0.37 | 0.28 | complex1 | verso | chiosco | cherso | viosco |
| C4_03 | 0.67 | 0.28 | complex4 | giorno | topo | torno | giopo |
| C3_04 | 0.76 | 0.57 | complex3 | tana | ciclo | ciana | ticlo |
| C2_03 | 0.78 | 0.43 | complex2 | ghiaia | sire | siaia | ghire |
| C1_02 | 0.76 | 0.09 | complex1 | nido | chiodo | chido | niodo |
| C4_01 | 0.61 | 0.56 | complex4 | gita | lago | lita | giago |
| C3_02 | 0.83 | 0.35 | complex3 | sole | cinta | ciole | sinta |
| C2_01 | 0.81 | 0.41 | complex2 | ghiro | riccio | riro | ghiccio |
| MIX_07 | 0.85 | 0.59 | mixed | varco | ratto | rarco | vatto |
| MIX_02 | 0.93 | 0.37 | mixed | dosso | vetro | vosso | detro |
| MIX_04 | 0.81 | 0.11 | mixed | torta | rospo | rorta | tospo |
| MIX_05 | 0.91 | 0.24 | mixed | rete | destra | dete | restra |
| S1_03 | 0.87 | 0.20 | simple_nonvisual1 | sosta | fava | fosta | sava |
| S1_01 | 0.93 | 0.26 | simple_nonvisual1 | salto | fuoco | falto | suoco |
| SV2_04 | 0.93 | 0.16 | simple_visual2 | nonna | miglio | monna | niglio |
| SV1_01 | 0.93 | 0.18 | simple_visual1 | palo | barba | balo | parba |
| SV1_03 | 0.96 | 0.12 | simple_visual1 | pila | baffo | bila | paffo |
| SV2_02 | 0.93 | 0.29 | simple_visual2 | ninfa | mela | minfa | nela |
| C1_03 | 0.61 | 0.34 | complex1 | chiave | regno | riave | chegno |
| C4_04 | 0.54 | 0.40 | complex4 | dama | gioco | giama | doco |
| C3_03 | 0.76 | 0.45 | complex3 | cima | nota | nima | ciota |
| C2_04 | 0.80 | 0.33 | complex2 | vista | ghianda | ghista | vianda |
| C1_01 | 0.83 | 0.52 | complex1 | chicca | litro | licca | chitro |
| C4_02 | 0.57 | 0.38 | complex4 | maga | giacca | giaga | macca |
| C3_01 | 0.61 | 0.48 | complex3 | cifra | lato | lifra | ciato |
| C2_02 | 0.80 | 0.31 | complex2 | mito | ghisa | ghito | misa |
| item_code | betas | accuracy_item | correlation | condition | prompt_1 | prompt_2 | target_1 | target_2 |
|---|---|---|---|---|---|---|---|---|
| C1_04 | -2.43 | 0.37 | 0.28 | complex1 | verso | chiosco | cherso | viosco |
| C4_04 | -1.56 | 0.54 | 0.40 | complex4 | dama | gioco | giama | doco |
| C4_02 | -1.36 | 0.57 | 0.38 | complex4 | maga | giacca | giaga | macca |
| C4_01 | -1.16 | 0.61 | 0.56 | complex4 | gita | lago | lita | giago |
| C3_01 | -1.16 | 0.61 | 0.48 | complex3 | cifra | lato | lifra | ciato |
| C1_03 | -1.16 | 0.61 | 0.34 | complex1 | chiave | regno | riave | chegno |
| C4_03 | -0.84 | 0.67 | 0.28 | complex4 | giorno | topo | torno | giopo |
| C3_04 | -0.26 | 0.76 | 0.57 | complex3 | tana | ciclo | ciana | ticlo |
| C3_03 | -0.26 | 0.76 | 0.45 | complex3 | cima | nota | nima | ciota |
| C2_03 | -0.12 | 0.78 | 0.43 | complex2 | ghiaia | sire | siaia | ghire |
| C2_04 | 0.01 | 0.80 | 0.33 | complex2 | vista | ghianda | ghista | vianda |
| C2_02 | 0.01 | 0.80 | 0.31 | complex2 | mito | ghisa | ghito | misa |
| S1_02 | 0.16 | 0.81 | 0.34 | simple_nonvisual1 | fango | suono | sango | fuono |
| C2_01 | 0.16 | 0.81 | 0.41 | complex2 | ghiro | riccio | riro | ghiccio |
| C1_01 | 0.32 | 0.83 | 0.52 | complex1 | chicca | litro | licca | chitro |
| C3_02 | 0.32 | 0.83 | 0.35 | complex3 | sole | cinta | ciole | sinta |
| MIX_07 | 0.49 | 0.85 | 0.59 | mixed | varco | ratto | rarco | vatto |
| MIX_03 | 0.67 | 0.87 | 0.27 | mixed | viso | tazza | tiso | vazza |
| S1_03 | 0.67 | 0.87 | 0.20 | simple_nonvisual1 | sosta | fava | fosta | sava |
| MIX_08 | 0.87 | 0.89 | 0.47 | mixed | vetro | lasso | letro | vasso |
| MIX_05 | 1.11 | 0.91 | 0.24 | mixed | rete | destra | dete | restra |
| MIX_02 | 1.38 | 0.93 | 0.37 | mixed | dosso | vetro | vosso | detro |
| S1_01 | 1.38 | 0.93 | 0.26 | simple_nonvisual1 | salto | fuoco | falto | suoco |
| SV2_02 | 1.38 | 0.93 | 0.29 | simple_visual2 | ninfa | mela | minfa | nela |
| MIX_01 | 1.38 | 0.93 | 0.47 | mixed | ruota | latte | luota | ratte |
| ID | DYS | ID_rasch | pers.par | mean_accuracy | sd |
|---|---|---|---|---|---|
| SPOON38 | Sì | P35 | -1.1629039 | 0.3888889 | 0.4944132 |
| SPOON27 | No | P24 | -0.5248044 | 0.5833333 | 0.5000000 |
| SPOON35 | No | P32 | -0.5248044 | 0.5555556 | 0.5039526 |
| SPOON50 | No | P44 | -0.5248044 | 0.4444444 | 0.5039526 |
| SPOON12 | No | P9 | -0.3258659 | 0.5277778 | 0.5063094 |
| SPOON51 | No | P45 | -0.1291811 | 0.6388889 | 0.4871361 |
| SPOON17 | No | P14 | 0.2663387 | 0.6666667 | 0.4780914 |
| SPOON21 | Sì | P18 | 0.2663387 | 0.6111111 | 0.4944132 |
| SPOON24 | Sì | P21 | 0.2663387 | 0.6666667 | 0.4780914 |
| SPOON26 | No | P23 | 0.2663387 | 0.6666667 | 0.4780914 |
| SPOON08 | No | P6 | 0.4696014 | 0.6944444 | 0.4671766 |
| SPOON14 | No | P11 | 0.6798290 | 0.6944444 | 0.4671766 |
| SPOON28 | No | P25 | 0.6798290 | 0.6944444 | 0.4671766 |
| SPOON41 | No | P38 | 0.6798290 | 0.6944444 | 0.4671766 |
| SPOON61 | No | P54 | 0.6798290 | 0.6944444 | 0.4671766 |
| SPOON11 | No | P8 | 1.1342770 | 0.7500000 | 0.4391550 |
| SPOON57 | No | P50 | 1.1342770 | 0.8055556 | 0.4013865 |
| SPOON58 | Sì | P51 | 1.1342770 | 0.7222222 | 0.4542568 |
| SPOON16 | No | P13 | 1.3878322 | 0.8055556 | 0.4013865 |
| SPOON23 | No | P20 | 1.3878322 | 0.8055556 | 0.4013865 |
| SPOON34 | No | P31 | 1.3878322 | 0.8333333 | 0.3779645 |
| SPOON39 | No | P36 | 1.3878322 | 0.8055556 | 0.4013865 |
| SPOON42 | No | P39 | 1.3878322 | 0.8333333 | 0.3779645 |
| SPOON53 | No | P46 | 1.3878322 | 0.8055556 | 0.4013865 |
| SPOON37 | No | P34 | 1.6688875 | 0.8333333 | 0.3779645 |
| SPOON47 | No | P42 | 1.6688875 | 0.8611111 | 0.3507362 |
| SPOON03 | No | P2 | 1.9906999 | 0.8333333 | 0.3779645 |
| SPOON15 | No | P12 | 1.9906999 | 0.8333333 | 0.3779645 |
| SPOON36 | Sì | P33 | 1.9906999 | 0.8611111 | 0.3507362 |
| SPOON48 | No | P43 | 1.9906999 | 0.8611111 | 0.3507362 |
| SPOON55 | No | P48 | 1.9906999 | 0.8333333 | 0.3779645 |
| SPOON13 | No | P10 | 2.3777216 | 0.8888889 | 0.3187276 |
| SPOON20 | No | P17 | 2.3777216 | 0.8611111 | 0.3507362 |
| SPOON25 | No | P22 | 2.3777216 | 0.8888889 | 0.3187276 |
| SPOON31 | No | P28 | 2.3777216 | 0.8888889 | 0.3187276 |
| SPOON33 | No | P30 | 2.3777216 | 0.9166667 | 0.2803060 |
| SPOON43 | No | P40 | 2.3777216 | 0.8611111 | 0.3507362 |
| SPOON56 | No | P49 | 2.3777216 | 0.8888889 | 0.3187276 |
| SPOON60 | No | P53 | 2.3777216 | 0.9166667 | 0.2803060 |
| SPOON02 | No | P1 | 2.8840871 | 0.9166667 | 0.2803060 |
| SPOON18 | No | P15 | 2.8840871 | 0.9444444 | 0.2323107 |
| SPOON19 | No | P16 | 2.8840871 | 0.9166667 | 0.2803060 |
| SPOON29 | Sì | P26 | 2.8840871 | 0.9444444 | 0.2323107 |
| SPOON30 | No | P27 | 2.8840871 | 0.9166667 | 0.2803060 |
| SPOON40 | No | P37 | 2.8840871 | 0.8888889 | 0.3187276 |
| SPOON54 | No | P47 | 2.8840871 | 0.9166667 | 0.2803060 |
| SPOON05 | No | P3 | 3.6807844 | 0.9444444 | 0.2323107 |
| SPOON06 | No | P4 | 3.6807844 | 0.9444444 | 0.2323107 |
| SPOON09 | No | P7 | 3.6807844 | 0.9722222 | 0.1666667 |
| SPOON22 | No | P19 | 3.6807844 | 0.9444444 | 0.2323107 |
| SPOON59 | No | P52 | 3.6807844 | 0.9444444 | 0.2323107 |
| SPOON07 | No | P5 | 4.5477839 | 0.9722222 | 0.1666667 |
| SPOON32 | No | P29 | 4.5477839 | 0.9444444 | 0.2323107 |
| SPOON45 | No | P41 | 4.5477839 | 1.0000000 | 0.0000000 |
| C1_01 | C1_03 | C1_04 | C2_01 | C2_02 | C2_03 | C2_04 | C3_01 | C3_02 | C3_03 | C3_04 | C4_01 | C4_02 | C4_03 | C4_04 | MIX_01 | MIX_02 | MIX_03 | MIX_05 | MIX_07 | MIX_08 | S1_01 | S1_02 | S1_03 | SV2_02 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| P1 | 0.96 | 0.85 | 0.61 | 0.95 | 0.95 | 0.94 | 0.95 | 0.85 | 0.96 | 0.93 | 0.93 | 0.85 | 0.82 | 0.88 | 0.79 | 0.99 | 0.99 | 0.97 | 0.98 | 0.97 | 0.98 | 0.99 | 0.95 | 0.97 | 0.99 |
| P2 | 0.91 | 0.70 | 0.39 | 0.90 | 0.88 | 0.87 | 0.88 | 0.70 | 0.91 | 0.85 | 0.85 | 0.70 | 0.65 | 0.76 | 0.61 | 0.97 | 0.97 | 0.93 | 0.96 | 0.92 | 0.95 | 0.97 | 0.90 | 0.93 | 0.97 |
| P3 | 0.98 | 0.93 | 0.78 | 0.98 | 0.98 | 0.97 | 0.98 | 0.93 | 0.98 | 0.97 | 0.97 | 0.93 | 0.91 | 0.94 | 0.89 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 |
| P4 | 0.98 | 0.93 | 0.78 | 0.98 | 0.98 | 0.97 | 0.98 | 0.93 | 0.98 | 0.97 | 0.97 | 0.93 | 0.91 | 0.94 | 0.89 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 |
| P6 | 0.69 | 0.33 | 0.12 | 0.65 | 0.62 | 0.59 | 0.62 | 0.33 | 0.69 | 0.55 | 0.55 | 0.33 | 0.29 | 0.41 | 0.25 | 0.86 | 0.86 | 0.76 | 0.83 | 0.72 | 0.79 | 0.86 | 0.65 | 0.76 | 0.86 |
| P7 | 0.98 | 0.93 | 0.78 | 0.98 | 0.98 | 0.97 | 0.98 | 0.93 | 0.98 | 0.97 | 0.97 | 0.93 | 0.91 | 0.94 | 0.89 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 |
| P8 | 0.81 | 0.49 | 0.21 | 0.79 | 0.76 | 0.73 | 0.76 | 0.49 | 0.81 | 0.71 | 0.71 | 0.49 | 0.44 | 0.57 | 0.40 | 0.93 | 0.93 | 0.86 | 0.90 | 0.83 | 0.88 | 0.93 | 0.79 | 0.86 | 0.93 |
| P9 | 0.50 | 0.18 | 0.06 | 0.46 | 0.42 | 0.39 | 0.42 | 0.18 | 0.50 | 0.36 | 0.36 | 0.18 | 0.16 | 0.24 | 0.13 | 0.74 | 0.74 | 0.59 | 0.69 | 0.54 | 0.63 | 0.74 | 0.46 | 0.59 | 0.74 |
| P10 | 0.94 | 0.77 | 0.49 | 0.93 | 0.92 | 0.90 | 0.92 | 0.77 | 0.94 | 0.89 | 0.89 | 0.77 | 0.73 | 0.82 | 0.69 | 0.98 | 0.98 | 0.95 | 0.97 | 0.95 | 0.96 | 0.98 | 0.93 | 0.95 | 0.98 |
| P11 | 0.73 | 0.38 | 0.15 | 0.70 | 0.67 | 0.64 | 0.67 | 0.38 | 0.73 | 0.60 | 0.60 | 0.38 | 0.34 | 0.46 | 0.29 | 0.89 | 0.89 | 0.79 | 0.86 | 0.76 | 0.83 | 0.89 | 0.70 | 0.79 | 0.89 |
| P12 | 0.91 | 0.70 | 0.39 | 0.90 | 0.88 | 0.87 | 0.88 | 0.70 | 0.91 | 0.85 | 0.85 | 0.70 | 0.65 | 0.76 | 0.61 | 0.97 | 0.97 | 0.93 | 0.96 | 0.92 | 0.95 | 0.97 | 0.90 | 0.93 | 0.97 |
| P13 | 0.85 | 0.56 | 0.26 | 0.82 | 0.80 | 0.78 | 0.80 | 0.56 | 0.85 | 0.76 | 0.76 | 0.56 | 0.51 | 0.63 | 0.46 | 0.94 | 0.94 | 0.89 | 0.92 | 0.87 | 0.91 | 0.94 | 0.82 | 0.89 | 0.94 |
| P14 | 0.64 | 0.29 | 0.10 | 0.61 | 0.57 | 0.54 | 0.57 | 0.29 | 0.64 | 0.50 | 0.50 | 0.29 | 0.25 | 0.36 | 0.22 | 0.84 | 0.84 | 0.72 | 0.80 | 0.68 | 0.76 | 0.84 | 0.61 | 0.72 | 0.84 |
| P15 | 0.96 | 0.85 | 0.61 | 0.95 | 0.95 | 0.94 | 0.95 | 0.85 | 0.96 | 0.93 | 0.93 | 0.85 | 0.82 | 0.88 | 0.79 | 0.99 | 0.99 | 0.97 | 0.98 | 0.97 | 0.98 | 0.99 | 0.95 | 0.97 | 0.99 |
| P16 | 0.96 | 0.85 | 0.61 | 0.95 | 0.95 | 0.94 | 0.95 | 0.85 | 0.96 | 0.93 | 0.93 | 0.85 | 0.82 | 0.88 | 0.79 | 0.99 | 0.99 | 0.97 | 0.98 | 0.97 | 0.98 | 0.99 | 0.95 | 0.97 | 0.99 |
| P17 | 0.94 | 0.77 | 0.49 | 0.93 | 0.92 | 0.90 | 0.92 | 0.77 | 0.94 | 0.89 | 0.89 | 0.77 | 0.73 | 0.82 | 0.69 | 0.98 | 0.98 | 0.95 | 0.97 | 0.95 | 0.96 | 0.98 | 0.93 | 0.95 | 0.98 |
| P18 | 0.64 | 0.29 | 0.10 | 0.61 | 0.57 | 0.54 | 0.57 | 0.29 | 0.64 | 0.50 | 0.50 | 0.29 | 0.25 | 0.36 | 0.22 | 0.84 | 0.84 | 0.72 | 0.80 | 0.68 | 0.76 | 0.84 | 0.61 | 0.72 | 0.84 |
| P19 | 0.98 | 0.93 | 0.78 | 0.98 | 0.98 | 0.97 | 0.98 | 0.93 | 0.98 | 0.97 | 0.97 | 0.93 | 0.91 | 0.94 | 0.89 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 |
| P20 | 0.85 | 0.56 | 0.26 | 0.82 | 0.80 | 0.78 | 0.80 | 0.56 | 0.85 | 0.76 | 0.76 | 0.56 | 0.51 | 0.63 | 0.46 | 0.94 | 0.94 | 0.89 | 0.92 | 0.87 | 0.91 | 0.94 | 0.82 | 0.89 | 0.94 |
| P21 | 0.64 | 0.29 | 0.10 | 0.61 | 0.57 | 0.54 | 0.57 | 0.29 | 0.64 | 0.50 | 0.50 | 0.29 | 0.25 | 0.36 | 0.22 | 0.84 | 0.84 | 0.72 | 0.80 | 0.68 | 0.76 | 0.84 | 0.61 | 0.72 | 0.84 |
| P22 | 0.94 | 0.77 | 0.49 | 0.93 | 0.92 | 0.90 | 0.92 | 0.77 | 0.94 | 0.89 | 0.89 | 0.77 | 0.73 | 0.82 | 0.69 | 0.98 | 0.98 | 0.95 | 0.97 | 0.95 | 0.96 | 0.98 | 0.93 | 0.95 | 0.98 |
| P23 | 0.64 | 0.29 | 0.10 | 0.61 | 0.57 | 0.54 | 0.57 | 0.29 | 0.64 | 0.50 | 0.50 | 0.29 | 0.25 | 0.36 | 0.22 | 0.84 | 0.84 | 0.72 | 0.80 | 0.68 | 0.76 | 0.84 | 0.61 | 0.72 | 0.84 |
| P24 | 0.45 | 0.16 | 0.05 | 0.41 | 0.38 | 0.34 | 0.38 | 0.16 | 0.45 | 0.31 | 0.31 | 0.16 | 0.13 | 0.20 | 0.11 | 0.70 | 0.70 | 0.54 | 0.64 | 0.49 | 0.59 | 0.70 | 0.41 | 0.54 | 0.70 |
| P25 | 0.73 | 0.38 | 0.15 | 0.70 | 0.67 | 0.64 | 0.67 | 0.38 | 0.73 | 0.60 | 0.60 | 0.38 | 0.34 | 0.46 | 0.29 | 0.89 | 0.89 | 0.79 | 0.86 | 0.76 | 0.83 | 0.89 | 0.70 | 0.79 | 0.89 |
| P26 | 0.96 | 0.85 | 0.61 | 0.95 | 0.95 | 0.94 | 0.95 | 0.85 | 0.96 | 0.93 | 0.93 | 0.85 | 0.82 | 0.88 | 0.79 | 0.99 | 0.99 | 0.97 | 0.98 | 0.97 | 0.98 | 0.99 | 0.95 | 0.97 | 0.99 |
| P27 | 0.96 | 0.85 | 0.61 | 0.95 | 0.95 | 0.94 | 0.95 | 0.85 | 0.96 | 0.93 | 0.93 | 0.85 | 0.82 | 0.88 | 0.79 | 0.99 | 0.99 | 0.97 | 0.98 | 0.97 | 0.98 | 0.99 | 0.95 | 0.97 | 0.99 |
| P28 | 0.94 | 0.77 | 0.49 | 0.93 | 0.92 | 0.90 | 0.92 | 0.77 | 0.94 | 0.89 | 0.89 | 0.77 | 0.73 | 0.82 | 0.69 | 0.98 | 0.98 | 0.95 | 0.97 | 0.95 | 0.96 | 0.98 | 0.93 | 0.95 | 0.98 |
| P30 | 0.94 | 0.77 | 0.49 | 0.93 | 0.92 | 0.90 | 0.92 | 0.77 | 0.94 | 0.89 | 0.89 | 0.77 | 0.73 | 0.82 | 0.69 | 0.98 | 0.98 | 0.95 | 0.97 | 0.95 | 0.96 | 0.98 | 0.93 | 0.95 | 0.98 |
| P31 | 0.85 | 0.56 | 0.26 | 0.82 | 0.80 | 0.78 | 0.80 | 0.56 | 0.85 | 0.76 | 0.76 | 0.56 | 0.51 | 0.63 | 0.46 | 0.94 | 0.94 | 0.89 | 0.92 | 0.87 | 0.91 | 0.94 | 0.82 | 0.89 | 0.94 |
| P32 | 0.45 | 0.16 | 0.05 | 0.41 | 0.38 | 0.34 | 0.38 | 0.16 | 0.45 | 0.31 | 0.31 | 0.16 | 0.13 | 0.20 | 0.11 | 0.70 | 0.70 | 0.54 | 0.64 | 0.49 | 0.59 | 0.70 | 0.41 | 0.54 | 0.70 |
| P33 | 0.91 | 0.70 | 0.39 | 0.90 | 0.88 | 0.87 | 0.88 | 0.70 | 0.91 | 0.85 | 0.85 | 0.70 | 0.65 | 0.76 | 0.61 | 0.97 | 0.97 | 0.93 | 0.96 | 0.92 | 0.95 | 0.97 | 0.90 | 0.93 | 0.97 |
| P34 | 0.88 | 0.62 | 0.32 | 0.86 | 0.84 | 0.82 | 0.84 | 0.62 | 0.88 | 0.80 | 0.80 | 0.62 | 0.58 | 0.70 | 0.53 | 0.95 | 0.95 | 0.91 | 0.94 | 0.90 | 0.93 | 0.95 | 0.86 | 0.91 | 0.95 |
| P35 | 0.30 | 0.09 | 0.03 | 0.27 | 0.24 | 0.22 | 0.24 | 0.09 | 0.30 | 0.19 | 0.19 | 0.09 | 0.07 | 0.12 | 0.06 | 0.55 | 0.55 | 0.38 | 0.49 | 0.34 | 0.43 | 0.55 | 0.27 | 0.38 | 0.55 |
| P36 | 0.85 | 0.56 | 0.26 | 0.82 | 0.80 | 0.78 | 0.80 | 0.56 | 0.85 | 0.76 | 0.76 | 0.56 | 0.51 | 0.63 | 0.46 | 0.94 | 0.94 | 0.89 | 0.92 | 0.87 | 0.91 | 0.94 | 0.82 | 0.89 | 0.94 |
| P37 | 0.96 | 0.85 | 0.61 | 0.95 | 0.95 | 0.94 | 0.95 | 0.85 | 0.96 | 0.93 | 0.93 | 0.85 | 0.82 | 0.88 | 0.79 | 0.99 | 0.99 | 0.97 | 0.98 | 0.97 | 0.98 | 0.99 | 0.95 | 0.97 | 0.99 |
| P38 | 0.73 | 0.38 | 0.15 | 0.70 | 0.67 | 0.64 | 0.67 | 0.38 | 0.73 | 0.60 | 0.60 | 0.38 | 0.34 | 0.46 | 0.29 | 0.89 | 0.89 | 0.79 | 0.86 | 0.76 | 0.83 | 0.89 | 0.70 | 0.79 | 0.89 |
| P39 | 0.85 | 0.56 | 0.26 | 0.82 | 0.80 | 0.78 | 0.80 | 0.56 | 0.85 | 0.76 | 0.76 | 0.56 | 0.51 | 0.63 | 0.46 | 0.94 | 0.94 | 0.89 | 0.92 | 0.87 | 0.91 | 0.94 | 0.82 | 0.89 | 0.94 |
| P40 | 0.94 | 0.77 | 0.49 | 0.93 | 0.92 | 0.90 | 0.92 | 0.77 | 0.94 | 0.89 | 0.89 | 0.77 | 0.73 | 0.82 | 0.69 | 0.98 | 0.98 | 0.95 | 0.97 | 0.95 | 0.96 | 0.98 | 0.93 | 0.95 | 0.98 |
| P42 | 0.88 | 0.62 | 0.32 | 0.86 | 0.84 | 0.82 | 0.84 | 0.62 | 0.88 | 0.80 | 0.80 | 0.62 | 0.58 | 0.70 | 0.53 | 0.95 | 0.95 | 0.91 | 0.94 | 0.90 | 0.93 | 0.95 | 0.86 | 0.91 | 0.95 |
| P43 | 0.91 | 0.70 | 0.39 | 0.90 | 0.88 | 0.87 | 0.88 | 0.70 | 0.91 | 0.85 | 0.85 | 0.70 | 0.65 | 0.76 | 0.61 | 0.97 | 0.97 | 0.93 | 0.96 | 0.92 | 0.95 | 0.97 | 0.90 | 0.93 | 0.97 |
| P44 | 0.45 | 0.16 | 0.05 | 0.41 | 0.38 | 0.34 | 0.38 | 0.16 | 0.45 | 0.31 | 0.31 | 0.16 | 0.13 | 0.20 | 0.11 | 0.70 | 0.70 | 0.54 | 0.64 | 0.49 | 0.59 | 0.70 | 0.41 | 0.54 | 0.70 |
| P45 | 0.55 | 0.22 | 0.07 | 0.51 | 0.47 | 0.44 | 0.47 | 0.22 | 0.55 | 0.41 | 0.41 | 0.22 | 0.18 | 0.27 | 0.16 | 0.78 | 0.78 | 0.63 | 0.73 | 0.59 | 0.68 | 0.78 | 0.51 | 0.63 | 0.78 |
| P46 | 0.85 | 0.56 | 0.26 | 0.82 | 0.80 | 0.78 | 0.80 | 0.56 | 0.85 | 0.76 | 0.76 | 0.56 | 0.51 | 0.63 | 0.46 | 0.94 | 0.94 | 0.89 | 0.92 | 0.87 | 0.91 | 0.94 | 0.82 | 0.89 | 0.94 |
| P47 | 0.96 | 0.85 | 0.61 | 0.95 | 0.95 | 0.94 | 0.95 | 0.85 | 0.96 | 0.93 | 0.93 | 0.85 | 0.82 | 0.88 | 0.79 | 0.99 | 0.99 | 0.97 | 0.98 | 0.97 | 0.98 | 0.99 | 0.95 | 0.97 | 0.99 |
| P48 | 0.91 | 0.70 | 0.39 | 0.90 | 0.88 | 0.87 | 0.88 | 0.70 | 0.91 | 0.85 | 0.85 | 0.70 | 0.65 | 0.76 | 0.61 | 0.97 | 0.97 | 0.93 | 0.96 | 0.92 | 0.95 | 0.97 | 0.90 | 0.93 | 0.97 |
| P49 | 0.94 | 0.77 | 0.49 | 0.93 | 0.92 | 0.90 | 0.92 | 0.77 | 0.94 | 0.89 | 0.89 | 0.77 | 0.73 | 0.82 | 0.69 | 0.98 | 0.98 | 0.95 | 0.97 | 0.95 | 0.96 | 0.98 | 0.93 | 0.95 | 0.98 |
| P50 | 0.81 | 0.49 | 0.21 | 0.79 | 0.76 | 0.73 | 0.76 | 0.49 | 0.81 | 0.71 | 0.71 | 0.49 | 0.44 | 0.57 | 0.40 | 0.93 | 0.93 | 0.86 | 0.90 | 0.83 | 0.88 | 0.93 | 0.79 | 0.86 | 0.93 |
| P51 | 0.81 | 0.49 | 0.21 | 0.79 | 0.76 | 0.73 | 0.76 | 0.49 | 0.81 | 0.71 | 0.71 | 0.49 | 0.44 | 0.57 | 0.40 | 0.93 | 0.93 | 0.86 | 0.90 | 0.83 | 0.88 | 0.93 | 0.79 | 0.86 | 0.93 |
| P52 | 0.98 | 0.93 | 0.78 | 0.98 | 0.98 | 0.97 | 0.98 | 0.93 | 0.98 | 0.97 | 0.97 | 0.93 | 0.91 | 0.94 | 0.89 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 |
| P53 | 0.94 | 0.77 | 0.49 | 0.93 | 0.92 | 0.90 | 0.92 | 0.77 | 0.94 | 0.89 | 0.89 | 0.77 | 0.73 | 0.82 | 0.69 | 0.98 | 0.98 | 0.95 | 0.97 | 0.95 | 0.96 | 0.98 | 0.93 | 0.95 | 0.98 |
| P54 | 0.73 | 0.38 | 0.15 | 0.70 | 0.67 | 0.64 | 0.67 | 0.38 | 0.73 | 0.60 | 0.60 | 0.38 | 0.34 | 0.46 | 0.29 | 0.89 | 0.89 | 0.79 | 0.86 | 0.76 | 0.83 | 0.89 | 0.70 | 0.79 | 0.89 |
## [1] "Variance = 31.11%"
| item_code | betas | accuracy_item | correlation | condition | prompt_1 | prompt_2 | target_1 | target_2 |
|---|---|---|---|---|---|---|---|---|
| C1_04 | -2.43 | 0.37 | 0.28 | complex1 | verso | chiosco | cherso | viosco |
| C4_04 | -1.56 | 0.54 | 0.40 | complex4 | dama | gioco | giama | doco |
| C4_02 | -1.36 | 0.57 | 0.38 | complex4 | maga | giacca | giaga | macca |
| C4_01 | -1.16 | 0.61 | 0.56 | complex4 | gita | lago | lita | giago |
| C1_03 | -1.16 | 0.61 | 0.34 | complex1 | chiave | regno | riave | chegno |
| C3_04 | -0.26 | 0.76 | 0.57 | complex3 | tana | ciclo | ciana | ticlo |
| C3_03 | -0.26 | 0.76 | 0.45 | complex3 | cima | nota | nima | ciota |
| C2_03 | -0.12 | 0.78 | 0.43 | complex2 | ghiaia | sire | siaia | ghire |
| C2_04 | 0.01 | 0.80 | 0.33 | complex2 | vista | ghianda | ghista | vianda |
| C2_02 | 0.01 | 0.80 | 0.31 | complex2 | mito | ghisa | ghito | misa |
| S1_02 | 0.16 | 0.81 | 0.34 | simple_nonvisual1 | fango | suono | sango | fuono |
| C1_01 | 0.32 | 0.83 | 0.52 | complex1 | chicca | litro | licca | chitro |
| C3_02 | 0.32 | 0.83 | 0.35 | complex3 | sole | cinta | ciole | sinta |
| MIX_07 | 0.49 | 0.85 | 0.59 | mixed | varco | ratto | rarco | vatto |
| MIX_03 | 0.67 | 0.87 | 0.27 | mixed | viso | tazza | tiso | vazza |
| MIX_08 | 0.87 | 0.89 | 0.47 | mixed | vetro | lasso | letro | vasso |
| MIX_05 | 1.11 | 0.91 | 0.24 | mixed | rete | destra | dete | restra |
| SV2_02 | 1.38 | 0.93 | 0.29 | simple_visual2 | ninfa | mela | minfa | nela |
### Excluded items after IRT
df.item.analysis %>% dplyr::select(item_code, betas) -> items
left_join(df, items, by = "item_code") %>% filter(!is.na(betas)) -> df
# df %>% summarize(n = n_distinct(item_code))
df %>% filter(item_code != "C3_01" &
item_code != "C4_03" &
item_code != "C2_01" &
item_code != "S1_03" &
item_code != "MIX_02" &
item_code != "S1_01" &
item_code != "MIX_01"
) -> df
df %>%
group_by(ID) %>%
mutate(spoon.acc = sum(accuracy_item),
spoon.rt = mean(response_time[accuracy_item == 1], na.rm = T)) %>%
ungroup() %>%
dplyr::select(ID:exclude, spoon.acc, spoon.rt) %>%
distinct(ID, .keep_all = T) -> df
### create speed-accuracy score tradeoff using BIS measure
### BIS combines reaction times and error rates in a way that strongly attenuates speed-accuracy trade-offs (see the paper for details). We here provide code to calculate BIS in Matlab, R, and Excel format. If you use one of these functions, please cite: Liesefeld, H. R. & Janczyk, M. (2019). Combining speed and accuracy to control for speed-accuracy trade-offs(?). Behavior Research Methods, 51, 40-60. doi:10.3758/s13428-018-1076-x
BIS <- function(data) {
n <- length(data$group) # sample size to correct var()-function result (which uses n-1)
srt <- sqrt( ((n-1)/n) * var(data$mean_rt_c) ) # sample standard deviation across all rts
spc <- sqrt( ((n-1)/n) * var(data$pc) ) # sample standard deviation across all rts
mrt <- mean(data$mean_rt_c) # mean across all rts
mpc <- mean(data$pc) # mean across all pcs
zrt <- (data$mean_rt_c-mrt)/srt # standardized rts
zpc <- (data$pc-mpc)/spc # z-standardized pcs
data$bis <- zpc - zrt # Balanced Integration Score
return(data) # return data.frame with added variable 'bis'
}
df %>%
dplyr::select(ID, spoon.acc, spoon.rt) %>%
rename(
group = ID,
pc = spoon.acc,
mean_rt_c = spoon.rt
) %>% BIS() %>%
dplyr::select(group, bis) %>%
rename(ID = group) -> df.bis
left_join(df, df.bis, by = "ID") %>% rename(spoon.bis = bis) -> df
| Accuracy (M) | SD | range | RT (M) | SD | range | Speed-accuracy trade off (M) | SD | range |
|---|---|---|---|---|---|---|---|---|
| 13.59 | 3.67 | 4-19 | 7795.47 | 4751.88 | 2817.37-29106.77 | 0 | 1.61 | -5.24-2.22 |
## Single term deletions
##
## Model:
## spoon.acc ~ it.ok + forward + backward
## Df Deviance AIC LRT Pr(>Chi)
## <none> 40.977 282.91
## it.ok 1 48.264 288.20 7.2872 0.006945 **
## forward 1 48.996 288.93 8.0188 0.004629 **
## backward 1 41.283 281.22 0.3054 0.580493
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
| term | estimate | std.error | statistic | p.value |
|---|---|---|---|---|
| (Intercept) | 2.600 | 0.038 | 69.063 | 0.000 |
| it.ok | 0.107 | 0.041 | 2.607 | 0.009 |
| forward | 0.110 | 0.039 | 2.839 | 0.005 |
| backward | 0.022 | 0.040 | 0.552 | 0.581 |
## Single term deletions
##
## Model:
## spoon.rt ~ it.ok + forward + backward
## Df Sum of Sq RSS AIC Pr(>Chi)
## <none> 832570058 886.20
## it.ok 1 324763469 1157333527 901.65 2.941e-05 ***
## forward 1 42616558 875186616 886.84 0.1038
## backward 1 13513987 846084045 885.05 0.3556
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
| term | estimate | std.error | statistic | p.value |
|---|---|---|---|---|
| (Intercept) | 7833.670 | 566.591 | 13.826 | 0.000 |
| it.ok | -2491.213 | 569.823 | -4.372 | 0.000 |
| forward | -929.961 | 587.203 | -1.584 | 0.120 |
| backward | 541.312 | 606.972 | 0.892 | 0.377 |
## Single term deletions
##
## Model:
## spoon.bis ~ it.ok + forward + backward
## Df Sum of Sq RSS AIC Pr(>Chi)
## <none> 75.351 26.649
## it.ok 1 42.169 117.521 48.205 1.213e-06 ***
## forward 1 18.128 93.479 36.075 0.0007244 ***
## backward 1 0.037 75.388 24.675 0.8716389
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
| term | estimate | std.error | statistic | p.value |
|---|---|---|---|---|
| (Intercept) | 0.005 | 0.170 | 0.026 | 0.979 |
| it.ok | 0.898 | 0.171 | 5.237 | 0.000 |
| forward | 0.607 | 0.177 | 3.433 | 0.001 |
| backward | -0.028 | 0.183 | -0.155 | 0.877 |