Spoonerism

Participants

Table 1. Biographical information
N Age (M) SD range
60 22.91 2.92 18 - 36
Table 2. Linguistic background
L1_IT mother_L1 father_L1 N
Sì Italiano e Veneto Italiano e Veneto 2
Sì Italiano Italiano 52
Sì Bulgaro Bulgaro 1
Sì Italiano e Dialetto Camuno Italiano e Dialetto Camuno 1
Sì Friulano della Bassa Friulana Italiano 1
Sì Italiano e Veneto Italiano e Siciliano 1
Sì Italiano Italiano e Friulano 1
Sì Tedesco Siciliano 1
Table 3. Number of L2s
n_other_L2 N
0 1
1 18
2 15
3 14
4 12
Table 4. Diagnosis of dyslexia
DYS N
No 54
Sì 6
### Exclude for reading analysis 
df %>% filter(ID != "SPOON01") -> df # pilot 

df %>% 
  mutate(exclude = case_when(
    ID == "SPOON04" ~ 1, 
    ID == "SPOON10" ~ 1,
    ID == "SPOON49" ~ 1, 
    ID == "SPOON52" ~ 1, 
    ID == "SPOON46" ~ 1, 
    ID == "SPOON44" ~ 1, 
    TRUE ~ 0
  )) -> df 
df %>% filter(exclude != 1) -> df 
Table 5. Tested sample after exclusion
N Age (M) SD range
54 22.89 3.04 18 - 36

Reading measures

Table 6. Reading performance
reading_measure M SD range
Word reading time -0.79 1.31 -4.23 - 1.46
Word reading errors -0.25 1.42 -4.34 - 0.99
Nonword reading time -0.81 1.42 -4.99 - 1.43
Nonword reading errors -0.35 1.46 -6.71 - 1.18

Orthographic choice

Table 7. Orthographic Choice Task
Accuracy (M) sd range
0.98 0.03 0.84 - 1

Digit span memory

Table 8. Digit Span Task
task Mean SD range
forward 6.98 1.21 4 - 9
backward 5.67 1.25 3 - 8

Correlations

Table 8. Correlations across control measures
wr_time_z wr_error_z nwr_time_z nwr_error_z it.ok forward backward age n_other_L2
wr_time_z 1 0.43 0.83 0.47 0.39 0.32 0.15 0.04 0.19
wr_error_z 0.43 1 0.37 0.6 0.64 -0.09 -0.16 0.17 0.16
nwr_time_z 0.83 0.37 1 0.51 0.38 0.19 0.1 0.07 0.32
nwr_error_z 0.47 0.6 0.51 1 0.43 -0.05 0 0.15 0.21
it.ok 0.39 0.64 0.38 0.43 1 0 0.11 0.26 0.23
forward 0.32 -0.09 0.19 -0.05 0 1 0.27 -0.21 0.01
backward 0.15 -0.16 0.1 0 0.11 0.27 1 -0.19 -0.08
age 0.04 0.17 0.07 0.15 0.26 -0.21 -0.19 1 0.17
n_other_L2 0.19 0.16 0.32 0.21 0.23 0.01 -0.08 0.17 1

Item analysis

Item structure

Inferential analysis

Table 9. Counterbalancing
order_admin n
L2-V2/L1-V2 7
L1-V3/L2-V3 8
L2-V1/L1-V1 8
L1-V2/L2-V2 6
L2-V3/L1-V3 7
L1-V4/L2-V4 7
L1-V1/L2-V1 6
L2-V4/L1-V4 5

Accuracy

condition n
mixed 8
simple_nonvisual1 4
simple_visual2 4
simple_visual1 4
complex1 4
complex4 4
complex3 4
complex2 4
df.items %>% 
  
  glmer(formula = accuracy_item ~ 
          
          condition + 
          
          (1 + condition|ID) + (1|item_code), 
        
        family = "binomial", 
        control = glmerControl(optimizer = "bobyqa")
          ) -> m0

Anova(m0, type = "III") %>% as.data.frame() %>% 
  mutate_all(~round(.x,3)) %>% 
  kable(caption = "Simple model comparing fine-grained conditions") %>% kable_minimal()
Simple model comparing fine-grained conditions
Chisq Df Pr(>Chisq)
(Intercept) 5.750 1 0.016
condition 46.435 7 0.000
emmeans(m0, pairwise ~ condition, adjust = "bonferroni")$emmeans %>% as.data.frame() %>% 
  mutate(emmean = plogis(emmean),
         emmean = round(emmean,2),
         SE = round(SE,2)) %>% 
  dplyr::select(1:3) %>% 
  kable(caption = "Estimated Marginal Means") %>% kable_minimal()
Estimated Marginal Means
condition emmean SE
complex1 0.68 0.31
complex2 0.86 0.38
complex3 0.83 0.40
complex4 0.64 0.37
mixed 0.93 0.34
simple_nonvisual1 0.93 0.48
simple_visual1 0.98 0.72
simple_visual2 0.99 1.11
emmeans(m0, pairwise ~ condition, adjust = "bonferroni")$contrast %>% as.data.frame() %>% 
  mutate(across(estimate:z.ratio, ~round(.x,2)),
         p.value = round(p.value,3)) -> emmeans2
color.me <- which(emmeans2$p.value <= .05)
emmeans2 %>% kable(caption = "Contrasts") %>% kable_minimal() %>% row_spec(color.me, bold = T)
Contrasts
contrast estimate SE df z.ratio p.value
complex1 - complex2 -1.08 0.45 Inf -2.42 0.432
complex1 - complex3 -0.82 0.46 Inf -1.79 1.000
complex1 - complex4 0.18 0.43 Inf 0.41 1.000
complex1 - mixed -1.81 0.43 Inf -4.21 0.001
complex1 - simple_nonvisual1 -1.87 0.54 Inf -3.46 0.015
complex1 - simple_visual1 -3.01 0.76 Inf -3.93 0.002
complex1 - simple_visual2 -3.94 1.15 Inf -3.43 0.017
complex2 - complex3 0.26 0.49 Inf 0.53 1.000
complex2 - complex4 1.26 0.46 Inf 2.76 0.163
complex2 - mixed -0.73 0.47 Inf -1.56 1.000
complex2 - simple_nonvisual1 -0.79 0.58 Inf -1.38 1.000
complex2 - simple_visual1 -1.93 0.79 Inf -2.43 0.423
complex2 - simple_visual2 -2.86 1.16 Inf -2.47 0.379
complex3 - complex4 1.00 0.45 Inf 2.23 0.714
complex3 - mixed -0.99 0.47 Inf -2.11 0.981
complex3 - simple_nonvisual1 -1.05 0.60 Inf -1.75 1.000
complex3 - simple_visual1 -2.19 0.78 Inf -2.82 0.135
complex3 - simple_visual2 -3.11 1.19 Inf -2.61 0.252
complex4 - mixed -1.98 0.45 Inf -4.36 0.000
complex4 - simple_nonvisual1 -2.05 0.58 Inf -3.53 0.012
complex4 - simple_visual1 -3.18 0.78 Inf -4.09 0.001
complex4 - simple_visual2 -4.11 1.18 Inf -3.49 0.014
mixed - simple_nonvisual1 -0.06 0.56 Inf -0.12 1.000
mixed - simple_visual1 -1.20 0.76 Inf -1.58 1.000
mixed - simple_visual2 -2.13 1.14 Inf -1.87 1.000
simple_nonvisual1 - simple_visual1 -1.14 0.86 Inf -1.33 1.000
simple_nonvisual1 - simple_visual2 -2.06 1.18 Inf -1.75 1.000
simple_visual1 - simple_visual2 -0.93 1.32 Inf -0.70 1.000

df.items %>%

  glmer(formula = accuracy_item ~ 
          
          it.ok * condition3 + 
          # it.ok + 
          # condition3 + 
        
          forward * condition3+ 
          # backward * condition3 + 
          # backward + 
          
          age + 
          n_other_L2 + 
          
          (1 + condition3|ID) + (1|item_code), 
        
        family = "binomial", 
        control = glmerControl(optimizer = "bobyqa")
          ) -> m1

### Model selection
drop1(m1, test = "Chisq") 
## Single term deletions
## 
## Model:
## accuracy_item ~ it.ok * condition3 + forward * condition3 + age + 
##     n_other_L2 + (1 + condition3 | ID) + (1 | item_code)
##                    npar    AIC    LRT Pr(Chi)  
## <none>                  1549.9                 
## age                   1 1553.1 5.1860 0.02277 *
## n_other_L2            1 1551.9 3.9577 0.04666 *
## it.ok:condition3      1 1550.5 2.5544 0.10999  
## condition3:forward    1 1551.5 3.5140 0.06085 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Model assessing predictive ability of orthographic knowledge, reading skills and verbal STM
Chisq Df Pr(>Chisq)
(Intercept) 2.55 1 0.110
it.ok 18.89 1 0.000
condition3 34.11 1 0.000
forward 12.77 1 0.000
age 5.45 1 0.020
n_other_L2 4.13 1 0.042
it.ok:condition3 2.74 1 0.098
condition3:forward 4.04 1 0.044
Estimated Marginal Means
condition3 emmean SE
complex 0.74 0.20
simple 0.94 0.24

Interaction: Forward * Condition
condition3 forward.trend SE df asymp.LCL asymp.UCL z.ratio p.value
complex 0.50 0.14 Inf 0.22 0.77 3.57 0.000
simple 0.13 0.18 Inf -0.23 0.49 0.71 0.477

Response time

df.rt %>% 
  mutate(response_time = log(response_time)) %>% 
  filter(!is.na(response_time)) %>% 

  
  lmer(formula = response_time ~ 
          
          # it.ok * condition3 + 
          it.ok + 
          condition3 + 
         
          # forward * condition3 + 
          # backward * condition3 + 
          backward + 
          forward + 
          
          # age + 
          # n_other_L2 + 
          
          (1 + condition3|ID) + (1|item_code)
          ) -> m2

drop1(m2, test = "Chisq")
## Single term deletions using Satterthwaite's method:
## 
## Model:
## response_time ~ it.ok + condition3 + backward + forward + (1 + condition3 | ID) + (1 | item_code)
##            Sum Sq Mean Sq NumDF  DenDF F value    Pr(>F)    
## it.ok      2.6367  2.6367     1 49.787 20.0189 4.465e-05 ***
## condition3 6.9411  6.9411     1 50.951 52.6996 2.130e-09 ***
## backward   0.2116  0.2116     1 48.649  1.6065   0.21101    
## forward    0.6718  0.6718     1 48.549  5.1008   0.02844 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Anova table
Chisq Df Pr(>Chisq)
(Intercept) 19309.58 1 0.000
it.ok 20.02 1 0.000
condition3 52.70 1 0.000
backward 1.61 1 0.205
forward 5.10 1 0.024
Contrasts
contrast estimate SE df t.ratio p.value
complex - simple 0.31 0.04 50.95 7.25 0

Error analysis

Percentage of each errors on all responses by condition
Condition Substitutions (Mean) N Deletion (Mean) N Insertion (Mean) N Real word (Mean) N No Response (Mean) N Total observations
Complex 0.16% 141 0.03% 22 0.1% 84 0.03% 30 0.03% 28 880
Simple 0.05% 53 0.01% 9 0.01% 12 0.02% 24 0.02% 21 1100
Percentage of each errors on total errors by condition
Condition Substitutions (Mean) N Deletion (Mean) N Insertion (Mean) N Real word (Mean) N No Response (Mean) N Total observations
Complex 0.53% 141 0.08% 22 0.31% 84 0.11% 30 0.1% 28 267
Simple 0.48% 53 0.08% 9 0.11% 12 0.22% 24 0.19% 21 111

Total target substitutions by condition (e.g., /k/ changed into /ʧ/ or /g/ changed /ʤ/ or vice versa)
Condition Total target substitutions Mean Tot. Substitutions
complex 77 0.55% 141
simple 0 0% 53

IRT analysis

Point-biserial correlations

item_code accuracy_item correlation condition prompt_1 prompt_2 target_1 target_2
MIX_08 0.89 0.47 mixed vetro lasso letro vasso
MIX_01 0.93 0.47 mixed ruota latte luota ratte
MIX_03 0.87 0.27 mixed viso tazza tiso vazza
MIX_06 0.78 0.13 mixed rosa biro bosa riro
S1_04 0.91 0.11 simple_nonvisual1 fungo salto sungo falto
S1_02 0.81 0.34 simple_nonvisual1 fango suono sango fuono
SV2_03 0.89 0.09 simple_visual2 miele nocca niele mocca
SV1_02 0.87 0.18 simple_visual1 benda pera penda bera
SV1_04 0.96 0.18 simple_visual1 bocca posa pocca bosa
SV2_01 0.96 -0.06 simple_visual2 malta nave nalta mave
C1_04 0.37 0.28 complex1 verso chiosco cherso viosco
C4_03 0.67 0.28 complex4 giorno topo torno giopo
C3_04 0.76 0.57 complex3 tana ciclo ciana ticlo
C2_03 0.78 0.43 complex2 ghiaia sire siaia ghire
C1_02 0.76 0.09 complex1 nido chiodo chido niodo
C4_01 0.61 0.56 complex4 gita lago lita giago
C3_02 0.83 0.35 complex3 sole cinta ciole sinta
C2_01 0.81 0.41 complex2 ghiro riccio riro ghiccio
MIX_07 0.85 0.59 mixed varco ratto rarco vatto
MIX_02 0.93 0.37 mixed dosso vetro vosso detro
MIX_04 0.81 0.11 mixed torta rospo rorta tospo
MIX_05 0.91 0.24 mixed rete destra dete restra
S1_03 0.87 0.20 simple_nonvisual1 sosta fava fosta sava
S1_01 0.93 0.26 simple_nonvisual1 salto fuoco falto suoco
SV2_04 0.93 0.16 simple_visual2 nonna miglio monna niglio
SV1_01 0.93 0.18 simple_visual1 palo barba balo parba
SV1_03 0.96 0.12 simple_visual1 pila baffo bila paffo
SV2_02 0.93 0.29 simple_visual2 ninfa mela minfa nela
C1_03 0.61 0.34 complex1 chiave regno riave chegno
C4_04 0.54 0.40 complex4 dama gioco giama doco
C3_03 0.76 0.45 complex3 cima nota nima ciota
C2_04 0.80 0.33 complex2 vista ghianda ghista vianda
C1_01 0.83 0.52 complex1 chicca litro licca chitro
C4_02 0.57 0.38 complex4 maga giacca giaga macca
C3_01 0.61 0.48 complex3 cifra lato lifra ciato
C2_02 0.80 0.31 complex2 mito ghisa ghito misa

Rasch model (RM)

  1. Item difficulty
item_code betas accuracy_item correlation condition prompt_1 prompt_2 target_1 target_2
C1_04 -2.43 0.37 0.28 complex1 verso chiosco cherso viosco
C4_04 -1.56 0.54 0.40 complex4 dama gioco giama doco
C4_02 -1.36 0.57 0.38 complex4 maga giacca giaga macca
C4_01 -1.16 0.61 0.56 complex4 gita lago lita giago
C3_01 -1.16 0.61 0.48 complex3 cifra lato lifra ciato
C1_03 -1.16 0.61 0.34 complex1 chiave regno riave chegno
C4_03 -0.84 0.67 0.28 complex4 giorno topo torno giopo
C3_04 -0.26 0.76 0.57 complex3 tana ciclo ciana ticlo
C3_03 -0.26 0.76 0.45 complex3 cima nota nima ciota
C2_03 -0.12 0.78 0.43 complex2 ghiaia sire siaia ghire
C2_04 0.01 0.80 0.33 complex2 vista ghianda ghista vianda
C2_02 0.01 0.80 0.31 complex2 mito ghisa ghito misa
S1_02 0.16 0.81 0.34 simple_nonvisual1 fango suono sango fuono
C2_01 0.16 0.81 0.41 complex2 ghiro riccio riro ghiccio
C1_01 0.32 0.83 0.52 complex1 chicca litro licca chitro
C3_02 0.32 0.83 0.35 complex3 sole cinta ciole sinta
MIX_07 0.49 0.85 0.59 mixed varco ratto rarco vatto
MIX_03 0.67 0.87 0.27 mixed viso tazza tiso vazza
S1_03 0.67 0.87 0.20 simple_nonvisual1 sosta fava fosta sava
MIX_08 0.87 0.89 0.47 mixed vetro lasso letro vasso
MIX_05 1.11 0.91 0.24 mixed rete destra dete restra
MIX_02 1.38 0.93 0.37 mixed dosso vetro vosso detro
S1_01 1.38 0.93 0.26 simple_nonvisual1 salto fuoco falto suoco
SV2_02 1.38 0.93 0.29 simple_visual2 ninfa mela minfa nela
MIX_01 1.38 0.93 0.47 mixed ruota latte luota ratte

  1. Latent dimension (Participants’ ability)
ID DYS ID_rasch pers.par mean_accuracy sd
SPOON38 Sì P35 -1.1629039 0.3888889 0.4944132
SPOON27 No P24 -0.5248044 0.5833333 0.5000000
SPOON35 No P32 -0.5248044 0.5555556 0.5039526
SPOON50 No P44 -0.5248044 0.4444444 0.5039526
SPOON12 No P9 -0.3258659 0.5277778 0.5063094
SPOON51 No P45 -0.1291811 0.6388889 0.4871361
SPOON17 No P14 0.2663387 0.6666667 0.4780914
SPOON21 Sì P18 0.2663387 0.6111111 0.4944132
SPOON24 Sì P21 0.2663387 0.6666667 0.4780914
SPOON26 No P23 0.2663387 0.6666667 0.4780914
SPOON08 No P6 0.4696014 0.6944444 0.4671766
SPOON14 No P11 0.6798290 0.6944444 0.4671766
SPOON28 No P25 0.6798290 0.6944444 0.4671766
SPOON41 No P38 0.6798290 0.6944444 0.4671766
SPOON61 No P54 0.6798290 0.6944444 0.4671766
SPOON11 No P8 1.1342770 0.7500000 0.4391550
SPOON57 No P50 1.1342770 0.8055556 0.4013865
SPOON58 Sì P51 1.1342770 0.7222222 0.4542568
SPOON16 No P13 1.3878322 0.8055556 0.4013865
SPOON23 No P20 1.3878322 0.8055556 0.4013865
SPOON34 No P31 1.3878322 0.8333333 0.3779645
SPOON39 No P36 1.3878322 0.8055556 0.4013865
SPOON42 No P39 1.3878322 0.8333333 0.3779645
SPOON53 No P46 1.3878322 0.8055556 0.4013865
SPOON37 No P34 1.6688875 0.8333333 0.3779645
SPOON47 No P42 1.6688875 0.8611111 0.3507362
SPOON03 No P2 1.9906999 0.8333333 0.3779645
SPOON15 No P12 1.9906999 0.8333333 0.3779645
SPOON36 Sì P33 1.9906999 0.8611111 0.3507362
SPOON48 No P43 1.9906999 0.8611111 0.3507362
SPOON55 No P48 1.9906999 0.8333333 0.3779645
SPOON13 No P10 2.3777216 0.8888889 0.3187276
SPOON20 No P17 2.3777216 0.8611111 0.3507362
SPOON25 No P22 2.3777216 0.8888889 0.3187276
SPOON31 No P28 2.3777216 0.8888889 0.3187276
SPOON33 No P30 2.3777216 0.9166667 0.2803060
SPOON43 No P40 2.3777216 0.8611111 0.3507362
SPOON56 No P49 2.3777216 0.8888889 0.3187276
SPOON60 No P53 2.3777216 0.9166667 0.2803060
SPOON02 No P1 2.8840871 0.9166667 0.2803060
SPOON18 No P15 2.8840871 0.9444444 0.2323107
SPOON19 No P16 2.8840871 0.9166667 0.2803060
SPOON29 Sì P26 2.8840871 0.9444444 0.2323107
SPOON30 No P27 2.8840871 0.9166667 0.2803060
SPOON40 No P37 2.8840871 0.8888889 0.3187276
SPOON54 No P47 2.8840871 0.9166667 0.2803060
SPOON05 No P3 3.6807844 0.9444444 0.2323107
SPOON06 No P4 3.6807844 0.9444444 0.2323107
SPOON09 No P7 3.6807844 0.9722222 0.1666667
SPOON22 No P19 3.6807844 0.9444444 0.2323107
SPOON59 No P52 3.6807844 0.9444444 0.2323107
SPOON07 No P5 4.5477839 0.9722222 0.1666667
SPOON32 No P29 4.5477839 0.9444444 0.2323107
SPOON45 No P41 4.5477839 1.0000000 0.0000000
C1_01 C1_03 C1_04 C2_01 C2_02 C2_03 C2_04 C3_01 C3_02 C3_03 C3_04 C4_01 C4_02 C4_03 C4_04 MIX_01 MIX_02 MIX_03 MIX_05 MIX_07 MIX_08 S1_01 S1_02 S1_03 SV2_02
P1 0.96 0.85 0.61 0.95 0.95 0.94 0.95 0.85 0.96 0.93 0.93 0.85 0.82 0.88 0.79 0.99 0.99 0.97 0.98 0.97 0.98 0.99 0.95 0.97 0.99
P2 0.91 0.70 0.39 0.90 0.88 0.87 0.88 0.70 0.91 0.85 0.85 0.70 0.65 0.76 0.61 0.97 0.97 0.93 0.96 0.92 0.95 0.97 0.90 0.93 0.97
P3 0.98 0.93 0.78 0.98 0.98 0.97 0.98 0.93 0.98 0.97 0.97 0.93 0.91 0.94 0.89 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.99
P4 0.98 0.93 0.78 0.98 0.98 0.97 0.98 0.93 0.98 0.97 0.97 0.93 0.91 0.94 0.89 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.99
P6 0.69 0.33 0.12 0.65 0.62 0.59 0.62 0.33 0.69 0.55 0.55 0.33 0.29 0.41 0.25 0.86 0.86 0.76 0.83 0.72 0.79 0.86 0.65 0.76 0.86
P7 0.98 0.93 0.78 0.98 0.98 0.97 0.98 0.93 0.98 0.97 0.97 0.93 0.91 0.94 0.89 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.99
P8 0.81 0.49 0.21 0.79 0.76 0.73 0.76 0.49 0.81 0.71 0.71 0.49 0.44 0.57 0.40 0.93 0.93 0.86 0.90 0.83 0.88 0.93 0.79 0.86 0.93
P9 0.50 0.18 0.06 0.46 0.42 0.39 0.42 0.18 0.50 0.36 0.36 0.18 0.16 0.24 0.13 0.74 0.74 0.59 0.69 0.54 0.63 0.74 0.46 0.59 0.74
P10 0.94 0.77 0.49 0.93 0.92 0.90 0.92 0.77 0.94 0.89 0.89 0.77 0.73 0.82 0.69 0.98 0.98 0.95 0.97 0.95 0.96 0.98 0.93 0.95 0.98
P11 0.73 0.38 0.15 0.70 0.67 0.64 0.67 0.38 0.73 0.60 0.60 0.38 0.34 0.46 0.29 0.89 0.89 0.79 0.86 0.76 0.83 0.89 0.70 0.79 0.89
P12 0.91 0.70 0.39 0.90 0.88 0.87 0.88 0.70 0.91 0.85 0.85 0.70 0.65 0.76 0.61 0.97 0.97 0.93 0.96 0.92 0.95 0.97 0.90 0.93 0.97
P13 0.85 0.56 0.26 0.82 0.80 0.78 0.80 0.56 0.85 0.76 0.76 0.56 0.51 0.63 0.46 0.94 0.94 0.89 0.92 0.87 0.91 0.94 0.82 0.89 0.94
P14 0.64 0.29 0.10 0.61 0.57 0.54 0.57 0.29 0.64 0.50 0.50 0.29 0.25 0.36 0.22 0.84 0.84 0.72 0.80 0.68 0.76 0.84 0.61 0.72 0.84
P15 0.96 0.85 0.61 0.95 0.95 0.94 0.95 0.85 0.96 0.93 0.93 0.85 0.82 0.88 0.79 0.99 0.99 0.97 0.98 0.97 0.98 0.99 0.95 0.97 0.99
P16 0.96 0.85 0.61 0.95 0.95 0.94 0.95 0.85 0.96 0.93 0.93 0.85 0.82 0.88 0.79 0.99 0.99 0.97 0.98 0.97 0.98 0.99 0.95 0.97 0.99
P17 0.94 0.77 0.49 0.93 0.92 0.90 0.92 0.77 0.94 0.89 0.89 0.77 0.73 0.82 0.69 0.98 0.98 0.95 0.97 0.95 0.96 0.98 0.93 0.95 0.98
P18 0.64 0.29 0.10 0.61 0.57 0.54 0.57 0.29 0.64 0.50 0.50 0.29 0.25 0.36 0.22 0.84 0.84 0.72 0.80 0.68 0.76 0.84 0.61 0.72 0.84
P19 0.98 0.93 0.78 0.98 0.98 0.97 0.98 0.93 0.98 0.97 0.97 0.93 0.91 0.94 0.89 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.99
P20 0.85 0.56 0.26 0.82 0.80 0.78 0.80 0.56 0.85 0.76 0.76 0.56 0.51 0.63 0.46 0.94 0.94 0.89 0.92 0.87 0.91 0.94 0.82 0.89 0.94
P21 0.64 0.29 0.10 0.61 0.57 0.54 0.57 0.29 0.64 0.50 0.50 0.29 0.25 0.36 0.22 0.84 0.84 0.72 0.80 0.68 0.76 0.84 0.61 0.72 0.84
P22 0.94 0.77 0.49 0.93 0.92 0.90 0.92 0.77 0.94 0.89 0.89 0.77 0.73 0.82 0.69 0.98 0.98 0.95 0.97 0.95 0.96 0.98 0.93 0.95 0.98
P23 0.64 0.29 0.10 0.61 0.57 0.54 0.57 0.29 0.64 0.50 0.50 0.29 0.25 0.36 0.22 0.84 0.84 0.72 0.80 0.68 0.76 0.84 0.61 0.72 0.84
P24 0.45 0.16 0.05 0.41 0.38 0.34 0.38 0.16 0.45 0.31 0.31 0.16 0.13 0.20 0.11 0.70 0.70 0.54 0.64 0.49 0.59 0.70 0.41 0.54 0.70
P25 0.73 0.38 0.15 0.70 0.67 0.64 0.67 0.38 0.73 0.60 0.60 0.38 0.34 0.46 0.29 0.89 0.89 0.79 0.86 0.76 0.83 0.89 0.70 0.79 0.89
P26 0.96 0.85 0.61 0.95 0.95 0.94 0.95 0.85 0.96 0.93 0.93 0.85 0.82 0.88 0.79 0.99 0.99 0.97 0.98 0.97 0.98 0.99 0.95 0.97 0.99
P27 0.96 0.85 0.61 0.95 0.95 0.94 0.95 0.85 0.96 0.93 0.93 0.85 0.82 0.88 0.79 0.99 0.99 0.97 0.98 0.97 0.98 0.99 0.95 0.97 0.99
P28 0.94 0.77 0.49 0.93 0.92 0.90 0.92 0.77 0.94 0.89 0.89 0.77 0.73 0.82 0.69 0.98 0.98 0.95 0.97 0.95 0.96 0.98 0.93 0.95 0.98
P30 0.94 0.77 0.49 0.93 0.92 0.90 0.92 0.77 0.94 0.89 0.89 0.77 0.73 0.82 0.69 0.98 0.98 0.95 0.97 0.95 0.96 0.98 0.93 0.95 0.98
P31 0.85 0.56 0.26 0.82 0.80 0.78 0.80 0.56 0.85 0.76 0.76 0.56 0.51 0.63 0.46 0.94 0.94 0.89 0.92 0.87 0.91 0.94 0.82 0.89 0.94
P32 0.45 0.16 0.05 0.41 0.38 0.34 0.38 0.16 0.45 0.31 0.31 0.16 0.13 0.20 0.11 0.70 0.70 0.54 0.64 0.49 0.59 0.70 0.41 0.54 0.70
P33 0.91 0.70 0.39 0.90 0.88 0.87 0.88 0.70 0.91 0.85 0.85 0.70 0.65 0.76 0.61 0.97 0.97 0.93 0.96 0.92 0.95 0.97 0.90 0.93 0.97
P34 0.88 0.62 0.32 0.86 0.84 0.82 0.84 0.62 0.88 0.80 0.80 0.62 0.58 0.70 0.53 0.95 0.95 0.91 0.94 0.90 0.93 0.95 0.86 0.91 0.95
P35 0.30 0.09 0.03 0.27 0.24 0.22 0.24 0.09 0.30 0.19 0.19 0.09 0.07 0.12 0.06 0.55 0.55 0.38 0.49 0.34 0.43 0.55 0.27 0.38 0.55
P36 0.85 0.56 0.26 0.82 0.80 0.78 0.80 0.56 0.85 0.76 0.76 0.56 0.51 0.63 0.46 0.94 0.94 0.89 0.92 0.87 0.91 0.94 0.82 0.89 0.94
P37 0.96 0.85 0.61 0.95 0.95 0.94 0.95 0.85 0.96 0.93 0.93 0.85 0.82 0.88 0.79 0.99 0.99 0.97 0.98 0.97 0.98 0.99 0.95 0.97 0.99
P38 0.73 0.38 0.15 0.70 0.67 0.64 0.67 0.38 0.73 0.60 0.60 0.38 0.34 0.46 0.29 0.89 0.89 0.79 0.86 0.76 0.83 0.89 0.70 0.79 0.89
P39 0.85 0.56 0.26 0.82 0.80 0.78 0.80 0.56 0.85 0.76 0.76 0.56 0.51 0.63 0.46 0.94 0.94 0.89 0.92 0.87 0.91 0.94 0.82 0.89 0.94
P40 0.94 0.77 0.49 0.93 0.92 0.90 0.92 0.77 0.94 0.89 0.89 0.77 0.73 0.82 0.69 0.98 0.98 0.95 0.97 0.95 0.96 0.98 0.93 0.95 0.98
P42 0.88 0.62 0.32 0.86 0.84 0.82 0.84 0.62 0.88 0.80 0.80 0.62 0.58 0.70 0.53 0.95 0.95 0.91 0.94 0.90 0.93 0.95 0.86 0.91 0.95
P43 0.91 0.70 0.39 0.90 0.88 0.87 0.88 0.70 0.91 0.85 0.85 0.70 0.65 0.76 0.61 0.97 0.97 0.93 0.96 0.92 0.95 0.97 0.90 0.93 0.97
P44 0.45 0.16 0.05 0.41 0.38 0.34 0.38 0.16 0.45 0.31 0.31 0.16 0.13 0.20 0.11 0.70 0.70 0.54 0.64 0.49 0.59 0.70 0.41 0.54 0.70
P45 0.55 0.22 0.07 0.51 0.47 0.44 0.47 0.22 0.55 0.41 0.41 0.22 0.18 0.27 0.16 0.78 0.78 0.63 0.73 0.59 0.68 0.78 0.51 0.63 0.78
P46 0.85 0.56 0.26 0.82 0.80 0.78 0.80 0.56 0.85 0.76 0.76 0.56 0.51 0.63 0.46 0.94 0.94 0.89 0.92 0.87 0.91 0.94 0.82 0.89 0.94
P47 0.96 0.85 0.61 0.95 0.95 0.94 0.95 0.85 0.96 0.93 0.93 0.85 0.82 0.88 0.79 0.99 0.99 0.97 0.98 0.97 0.98 0.99 0.95 0.97 0.99
P48 0.91 0.70 0.39 0.90 0.88 0.87 0.88 0.70 0.91 0.85 0.85 0.70 0.65 0.76 0.61 0.97 0.97 0.93 0.96 0.92 0.95 0.97 0.90 0.93 0.97
P49 0.94 0.77 0.49 0.93 0.92 0.90 0.92 0.77 0.94 0.89 0.89 0.77 0.73 0.82 0.69 0.98 0.98 0.95 0.97 0.95 0.96 0.98 0.93 0.95 0.98
P50 0.81 0.49 0.21 0.79 0.76 0.73 0.76 0.49 0.81 0.71 0.71 0.49 0.44 0.57 0.40 0.93 0.93 0.86 0.90 0.83 0.88 0.93 0.79 0.86 0.93
P51 0.81 0.49 0.21 0.79 0.76 0.73 0.76 0.49 0.81 0.71 0.71 0.49 0.44 0.57 0.40 0.93 0.93 0.86 0.90 0.83 0.88 0.93 0.79 0.86 0.93
P52 0.98 0.93 0.78 0.98 0.98 0.97 0.98 0.93 0.98 0.97 0.97 0.93 0.91 0.94 0.89 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.99
P53 0.94 0.77 0.49 0.93 0.92 0.90 0.92 0.77 0.94 0.89 0.89 0.77 0.73 0.82 0.69 0.98 0.98 0.95 0.97 0.95 0.96 0.98 0.93 0.95 0.98
P54 0.73 0.38 0.15 0.70 0.67 0.64 0.67 0.38 0.73 0.60 0.60 0.38 0.34 0.46 0.29 0.89 0.89 0.79 0.86 0.76 0.83 0.89 0.70 0.79 0.89
## [1] "Variance = 31.11%"

Selected items

item_code betas accuracy_item correlation condition prompt_1 prompt_2 target_1 target_2
C1_04 -2.43 0.37 0.28 complex1 verso chiosco cherso viosco
C4_04 -1.56 0.54 0.40 complex4 dama gioco giama doco
C4_02 -1.36 0.57 0.38 complex4 maga giacca giaga macca
C4_01 -1.16 0.61 0.56 complex4 gita lago lita giago
C1_03 -1.16 0.61 0.34 complex1 chiave regno riave chegno
C3_04 -0.26 0.76 0.57 complex3 tana ciclo ciana ticlo
C3_03 -0.26 0.76 0.45 complex3 cima nota nima ciota
C2_03 -0.12 0.78 0.43 complex2 ghiaia sire siaia ghire
C2_04 0.01 0.80 0.33 complex2 vista ghianda ghista vianda
C2_02 0.01 0.80 0.31 complex2 mito ghisa ghito misa
S1_02 0.16 0.81 0.34 simple_nonvisual1 fango suono sango fuono
C1_01 0.32 0.83 0.52 complex1 chicca litro licca chitro
C3_02 0.32 0.83 0.35 complex3 sole cinta ciole sinta
MIX_07 0.49 0.85 0.59 mixed varco ratto rarco vatto
MIX_03 0.67 0.87 0.27 mixed viso tazza tiso vazza
MIX_08 0.87 0.89 0.47 mixed vetro lasso letro vasso
MIX_05 1.11 0.91 0.24 mixed rete destra dete restra
SV2_02 1.38 0.93 0.29 simple_visual2 ninfa mela minfa nela

Validation

  • Original number: 36 items
  • Removed because of pbc < 0.20: 11 items
  • IRT: 25 items
  • Goal: 18
### Excluded items after IRT 
df.item.analysis %>% dplyr::select(item_code, betas) -> items
left_join(df, items, by = "item_code") %>% filter(!is.na(betas)) -> df 
# df %>% summarize(n = n_distinct(item_code))
df %>% filter(item_code != "C3_01" & 
              item_code != "C4_03" &  
              item_code != "C2_01" &  
              item_code != "S1_03" & 
              item_code != "MIX_02" & 
              item_code != "S1_01" & 
              item_code != "MIX_01"
              ) -> df 

Score calculation & descriptive statistics

df %>% 
  group_by(ID) %>% 
  mutate(spoon.acc = sum(accuracy_item),
         spoon.rt = mean(response_time[accuracy_item == 1], na.rm = T)) %>% 
  ungroup() %>% 
  dplyr::select(ID:exclude, spoon.acc, spoon.rt) %>% 
  distinct(ID, .keep_all = T) -> df
  
### create speed-accuracy score tradeoff using BIS measure
### BIS combines reaction times and error rates in a way that strongly attenuates speed-accuracy trade-offs (see the paper for details). We here provide code to calculate BIS in Matlab, R, and Excel format. If you use one of these functions, please cite: Liesefeld, H. R. & Janczyk, M. (2019). Combining speed and accuracy to control for speed-accuracy trade-offs(?). Behavior Research Methods, 51, 40-60. doi:10.3758/s13428-018-1076-x

BIS <- function(data) {
  n <- length(data$group)    # sample size to correct var()-function result (which uses n-1)
  srt <- sqrt( ((n-1)/n) * var(data$mean_rt_c) )     # sample standard deviation across all rts
  spc <- sqrt( ((n-1)/n) * var(data$pc) )            # sample standard deviation across all rts
  mrt <- mean(data$mean_rt_c)                        # mean across all rts
  mpc <- mean(data$pc)                               # mean across all pcs
  zrt <- (data$mean_rt_c-mrt)/srt                    # standardized rts
  zpc <- (data$pc-mpc)/spc                           # z-standardized pcs
  data$bis <- zpc - zrt                              # Balanced Integration Score
  
  return(data)                                       # return data.frame with added variable 'bis'
}

df %>% 
  dplyr::select(ID, spoon.acc, spoon.rt) %>% 
  rename(
    group = ID,
    pc = spoon.acc, 
    mean_rt_c = spoon.rt
  ) %>% BIS() %>% 
  dplyr::select(group, bis) %>% 
  rename(ID = group) -> df.bis
left_join(df, df.bis, by = "ID") %>% rename(spoon.bis = bis) -> df 
Descriptive results
Accuracy (M) SD range RT (M) SD range Speed-accuracy trade off (M) SD range
13.59 3.67 4-19 7795.47 4751.88 2817.37-29106.77 0 1.61 -5.24-2.22

Correlations

Accuracy

Response time

Speed-accuracy trade-off

Linear regressions

Accuracy

## Single term deletions
## 
## Model:
## spoon.acc ~ it.ok + forward + backward
##          Df Deviance    AIC    LRT Pr(>Chi)   
## <none>        40.977 282.91                   
## it.ok     1   48.264 288.20 7.2872 0.006945 **
## forward   1   48.996 288.93 8.0188 0.004629 **
## backward  1   41.283 281.22 0.3054 0.580493   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Accuracy ~ Italian Orthographic Knowledge & Verbal STM
term estimate std.error statistic p.value
(Intercept) 2.600 0.038 69.063 0.000
it.ok 0.107 0.041 2.607 0.009
forward 0.110 0.039 2.839 0.005
backward 0.022 0.040 0.552 0.581

Response time

## Single term deletions
## 
## Model:
## spoon.rt ~ it.ok + forward + backward
##          Df Sum of Sq        RSS    AIC  Pr(>Chi)    
## <none>                 832570058 886.20              
## it.ok     1 324763469 1157333527 901.65 2.941e-05 ***
## forward   1  42616558  875186616 886.84    0.1038    
## backward  1  13513987  846084045 885.05    0.3556    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RT ~ Italian Orthographic Knowledge & Verbal STM
term estimate std.error statistic p.value
(Intercept) 7833.670 566.591 13.826 0.000
it.ok -2491.213 569.823 -4.372 0.000
forward -929.961 587.203 -1.584 0.120
backward 541.312 606.972 0.892 0.377

Speed-accuracy trade-off

## Single term deletions
## 
## Model:
## spoon.bis ~ it.ok + forward + backward
##          Df Sum of Sq     RSS    AIC  Pr(>Chi)    
## <none>                 75.351 26.649              
## it.ok     1    42.169 117.521 48.205 1.213e-06 ***
## forward   1    18.128  93.479 36.075 0.0007244 ***
## backward  1     0.037  75.388 24.675 0.8716389    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Trade off ~ Italian Orthographic Knowledge & Verbal STM
term estimate std.error statistic p.value
(Intercept) 0.005 0.170 0.026 0.979
it.ok 0.898 0.171 5.237 0.000
forward 0.607 0.177 3.433 0.001
backward -0.028 0.183 -0.155 0.877