Common Humanity & Mindfulness 2023

Explicit evaluation of primers

Author

Álvaro Rivera-Rei

Published

2025-02-26, Wednesday

Code
cat('\014')     # clean terminal
Code
rm(list = ls()) # clean workspace
library(tidyverse)
library(afex)
library(emmeans)
library(lmerTest)
# library(performance)
Code
options(mc_doScale_quiet = TRUE)
theme_set(
  theme_minimal()
)
Code
df_neurokit2 <- read_csv('../meditation_task/data/hrv_hrf_hra_rsa_rrv_neurokit2.csv', col_types = cols())

df_explicit <- list.files('../code_apt/data_eval', pattern = '.*_d[0-9]{2}_s.*', full.names = TRUE) |> 
  lapply(read_csv, col_types = cols()) |> 
  bind_rows() |> 
  mutate(Subject = replace(Subject, Subject == 'd28_s57_t01_m', 'd29_s57_t01_m')) |> 
  mutate(Subject = replace(Subject, Subject == 'd28_s58_t01_m', 'd29_s58_t01_m')) |> 
  mutate(Subject = replace(Subject, Subject == 'd60_s60_t01_m', 'd30_s60_t01_m')) |> 
  separate(Subject, c('duo', 'id', 'session', 'sex'), sep = '_', remove = FALSE) |> 
  mutate(sex = if_else(sex == 'f', 'female', 'male')) |> 
  left_join(y = df_neurokit2[c('sbj', 'grp')], by = c('id' = 'sbj')) |>
  rename(group = grp) |> 
  mutate(primer = factor(primer, levels =  c('it', 'other', 'you', 'me'))) |> 
  mutate_if(is.character, as.factor)
write_csv(df_explicit, 'data/df_explicit_2023_data_clean.csv')

General description

Code
summary(df_explicit)
          Subject          duo             id       session       sex     
 d01_s01_t01_m:  12   d01    :  48   s01    :  24   t01:768   female:768  
 d01_s01_t02_m:  12   d02    :  48   s02    :  24   t02:768   male  :768  
 d01_s02_t01_m:  12   d03    :  48   s03    :  24                         
 d01_s02_t02_m:  12   d04    :  48   s04    :  24                         
 d02_s03_t01_m:  12   d05    :  48   s05    :  24                         
 d02_s03_t02_m:  12   d06    :  48   s06    :  24                         
 (Other)      :1464   (Other):1248   (Other):1392                         
   primer                          photo           explicit       value      
 it   :384   20230515_161630_phone.jpg:384   connection:512   Min.   :1.000  
 other:384   she02.jpeg               :192   positivity:512   1st Qu.:3.000  
 you  :384   IMG_8904.jpg             :126   similarity:512   Median :4.000  
 me   :384   he_02.jpeg               : 60                    Mean   :4.205  
             unnamed.jpg              : 36                    3rd Qu.:6.000  
             IMG_2409.jpg             : 30                    Max.   :7.000  
             (Other)                  :708                                   
       rt                group    
 Min.   :  230   humanity   :768  
 1st Qu.: 2277   mindfulness:768  
 Median : 3398                    
 Mean   : 4377                    
 3rd Qu.: 5192                    
 Max.   :48397                    
                                  

Connection

Code
explicit_connection_lmer <- lmer(value ~ group*sex*primer*session + (primer|id) + (1|duo), 
                                 subset(df_explicit, explicit == 'connection'))
afex_plot(
  explicit_connection_lmer,
  id    = 'id',
  x     = 'primer',
  trace = 'group',
  panel = 'session',
  error_arg = list(width = .4, lwd = .75),
  dodge     = .3,
  data_arg  = list(
    position = 
      position_jitterdodge(
        jitter.width  = .3, 
        jitter.height = .1,
        dodge.width   = .3  ## needs to be same as dodge
      )),
  mapping   = c('color'),
  point_arg = list(size = 3)
)
Figure 1: Explicit Conection Evaluation
Code
options(width = 120)
summary(explicit_connection_lmer)
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: value ~ group * sex * primer * session + (primer | id) + (1 |      duo)
   Data: subset(df_explicit, explicit == "connection")

REML criterion at convergence: 1586.2

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-3.14161 -0.42971  0.06754  0.44179  2.57972 

Random effects:
 Groups   Name        Variance Std.Dev. Corr             
 id       (Intercept) 0.96075  0.9802                    
          primerother 2.08748  1.4448   -0.52            
          primeryou   2.20962  1.4865   -0.54  0.73      
          primerme    1.71642  1.3101   -0.76  0.48  0.52
 duo      (Intercept) 0.05033  0.2243                    
 Residual             0.63593  0.7975                    
Number of obs: 512, groups:  id, 64; duo, 32

Fixed effects:
                                                  Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)                                      2.000e+00  3.257e-01  8.569e+01   6.141 2.49e-08 ***
groupmindfulness                                 1.444e-13  4.606e-01  8.569e+01   0.000 1.000000    
sexmale                                          4.375e-01  4.606e-01  8.569e+01   0.950 0.344879    
primerother                                      1.000e+00  4.582e-01  9.007e+01   2.182 0.031683 *  
primeryou                                        1.813e+00  4.665e-01  8.871e+01   3.886 0.000196 ***
primerme                                         3.875e+00  4.322e-01  9.509e+01   8.966 2.65e-14 ***
sessiont02                                      -4.375e-01  2.819e-01  2.400e+02  -1.552 0.122044    
groupmindfulness:sexmale                        -6.250e-02  6.514e-01  8.569e+01  -0.096 0.923788    
groupmindfulness:primerother                     3.750e-01  6.480e-01  9.007e+01   0.579 0.564240    
groupmindfulness:primeryou                      -1.545e-13  6.597e-01  8.871e+01   0.000 1.000000    
groupmindfulness:primerme                        1.250e-01  6.112e-01  9.509e+01   0.205 0.838381    
sexmale:primerother                             -1.375e-13  6.480e-01  9.007e+01   0.000 1.000000    
sexmale:primeryou                                4.375e-01  6.597e-01  8.871e+01   0.663 0.508926    
sexmale:primerme                                 1.250e-01  6.112e-01  9.509e+01   0.205 0.838381    
groupmindfulness:sessiont02                      3.125e-01  3.987e-01  2.400e+02   0.784 0.433963    
sexmale:sessiont02                               6.250e-02  3.987e-01  2.400e+02   0.157 0.875575    
primerother:sessiont02                           1.125e+00  3.987e-01  2.400e+02   2.821 0.005181 ** 
primeryou:sessiont02                             1.625e+00  3.987e-01  2.400e+02   4.075 6.25e-05 ***
primerme:sessiont02                              5.625e-01  3.987e-01  2.400e+02   1.411 0.159617    
groupmindfulness:sexmale:primerother             1.875e-01  9.164e-01  9.007e+01   0.205 0.838347    
groupmindfulness:sexmale:primeryou              -5.000e-01  9.329e-01  8.871e+01  -0.536 0.593340    
groupmindfulness:sexmale:primerme                5.077e-14  8.643e-01  9.509e+01   0.000 1.000000    
groupmindfulness:sexmale:sessiont02              6.250e-02  5.639e-01  2.400e+02   0.111 0.911837    
groupmindfulness:primerother:sessiont02         -6.250e-01  5.639e-01  2.400e+02  -1.108 0.268807    
groupmindfulness:primeryou:sessiont02           -1.875e-01  5.639e-01  2.400e+02  -0.333 0.739791    
groupmindfulness:primerme:sessiont02             6.250e-02  5.639e-01  2.400e+02   0.111 0.911837    
sexmale:primerother:sessiont02                  -1.875e-01  5.639e-01  2.400e+02  -0.333 0.739791    
sexmale:primeryou:sessiont02                    -3.750e-01  5.639e-01  2.400e+02  -0.665 0.506671    
sexmale:primerme:sessiont02                     -1.250e-01  5.639e-01  2.400e+02  -0.222 0.824755    
groupmindfulness:sexmale:primerother:sessiont02 -2.148e-14  7.975e-01  2.400e+02   0.000 1.000000    
groupmindfulness:sexmale:primeryou:sessiont02   -5.625e-01  7.975e-01  2.400e+02  -0.705 0.481265    
groupmindfulness:sexmale:primerme:sessiont02    -4.375e-01  7.975e-01  2.400e+02  -0.549 0.583776    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 32 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
Code
cat(rep('_', 100), '\n', sep = '')
____________________________________________________________________________________________________
Code
anova(explicit_connection_lmer)
Type III Analysis of Variance Table with Satterthwaite's method
                         Sum Sq Mean Sq NumDF   DenDF  F value    Pr(>F)    
group                      0.07   0.072     1  28.785   0.1126   0.73966    
sex                        2.39   2.390     1  28.785   3.7583   0.06241 .  
primer                   319.68 106.561     3  59.999 167.5656 < 2.2e-16 ***
session                   15.82  15.820     1 240.001  24.8773 1.173e-06 ***
group:sex                  0.20   0.199     1  28.785   0.3127   0.58033    
group:primer               2.56   0.854     3  59.999   1.3424   0.26914    
sex:primer                 0.13   0.043     3  59.999   0.0681   0.97667    
group:session              0.03   0.031     1 240.001   0.0491   0.82475    
sex:session                1.32   1.320     1 240.001   2.0762   0.15092    
primer:session            24.60   8.201     3 240.001  12.8952 7.708e-08 ***
group:sex:primer           1.39   0.465     3  59.999   0.7312   0.53746    
group:sex:session          0.28   0.281     1 240.001   0.4423   0.50667    
group:primer:session       1.95   0.651     3 240.001   1.0238   0.38275    
sex:primer:session         1.85   0.617     3 240.001   0.9705   0.40729    
group:sex:primer:session   0.52   0.172     3 240.001   0.2703   0.84680    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
cat(rep('_', 100), '\n', sep = '')
____________________________________________________________________________________________________
Code
emmeans(explicit_connection_lmer, pairwise ~ primer)
NOTE: Results may be misleading due to involvement in interactions
$emmeans
 primer emmean    SE   df lower.CL upper.CL
 it       2.09 0.147 52.1     1.79     2.38
 other    3.68 0.176 56.9     3.33     4.03
 you      4.59 0.178 57.0     4.24     4.95
 me       6.30 0.133 48.2     6.03     6.57

Results are averaged over the levels of: group, sex, session 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$contrasts
 contrast    estimate    SE df t.ratio p.value
 it - other    -1.594 0.206 60  -7.726  <.0001
 it - you      -2.508 0.211 60 -11.893  <.0001
 it - me       -4.211 0.192 60 -21.964  <.0001
 other - you   -0.914 0.168 60  -5.434  <.0001
 other - me    -2.617 0.203 60 -12.903  <.0001
 you - me      -1.703 0.199 60  -8.562  <.0001

Results are averaged over the levels of: group, sex, session 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 4 estimates 
Code
cat(rep('_', 100), '\n', sep = '')
____________________________________________________________________________________________________
Code
emmeans(explicit_connection_lmer, pairwise ~ session)
NOTE: Results may be misleading due to involvement in interactions
$emmeans
 session emmean    SE   df lower.CL upper.CL
 t01       3.99 0.111 42.5     3.77     4.21
 t02       4.34 0.111 42.5     4.12     4.56

Results are averaged over the levels of: group, sex, primer 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$contrasts
 contrast  estimate     SE  df t.ratio p.value
 t01 - t02   -0.352 0.0705 240  -4.988  <.0001

Results are averaged over the levels of: group, sex, primer 
Degrees-of-freedom method: kenward-roger 
Code
cat(rep('_', 100), '\n', sep = '')
____________________________________________________________________________________________________
Code
emmeans(explicit_connection_lmer, pairwise ~ session|primer)
NOTE: Results may be misleading due to involvement in interactions
$emmeans
primer = it:
 session emmean    SE   df lower.CL upper.CL
 t01       2.20 0.163 77.9     1.88     2.53
 t02       1.97 0.163 77.9     1.64     2.29

primer = other:
 session emmean    SE   df lower.CL upper.CL
 t01       3.44 0.190 76.0     3.06     3.82
 t02       3.92 0.190 76.0     3.54     4.30

primer = you:
 session emmean    SE   df lower.CL upper.CL
 t01       4.11 0.191 75.9     3.73     4.49
 t02       5.08 0.191 75.9     4.70     5.46

primer = me:
 session emmean    SE   df lower.CL upper.CL
 t01       6.20 0.151 77.6     5.90     6.50
 t02       6.39 0.151 77.6     6.09     6.69

Results are averaged over the levels of: group, sex 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$contrasts
primer = it:
 contrast  estimate    SE  df t.ratio p.value
 t01 - t02    0.234 0.141 240   1.663  0.0977

primer = other:
 contrast  estimate    SE  df t.ratio p.value
 t01 - t02   -0.484 0.141 240  -3.436  0.0007

primer = you:
 contrast  estimate    SE  df t.ratio p.value
 t01 - t02   -0.969 0.141 240  -6.872  <.0001

primer = me:
 contrast  estimate    SE  df t.ratio p.value
 t01 - t02   -0.188 0.141 240  -1.330  0.1848

Results are averaged over the levels of: group, sex 
Degrees-of-freedom method: kenward-roger 
Code
cat(rep('_', 100), '\n', sep = '')
____________________________________________________________________________________________________
Code
ranova(explicit_connection_lmer)
ANOVA-like table for random-effects: Single term deletions

Model:
value ~ group + sex + primer + session + (primer | id) + (1 | duo) + group:sex + group:primer + sex:primer + group:session + sex:session + primer:session + group:sex:primer + group:sex:session + group:primer:session + sex:primer:session + group:sex:primer:session
                        npar  logLik    AIC     LRT Df Pr(>Chisq)    
<none>                    44 -793.09 1674.2                          
primer in (primer | id)   35 -849.24 1768.5 112.292  9     <2e-16 ***
(1 | duo)                 43 -793.17 1672.3   0.162  1     0.6876    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Similarity

Code
explicit_similarity_lmer <- lmer(value ~ group*sex*primer*session + (primer|id) + (1|duo), 
                                 subset(df_explicit, explicit == 'similarity'))
afex_plot(
  explicit_similarity_lmer,
  id    = 'id',
  x     = 'primer',
  trace = 'group',
  panel = 'session',
  error_arg = list(width = .4, lwd = .75),
  dodge     = .3,
  data_arg  = list(
    position = 
      position_jitterdodge(
        jitter.width  = .3, 
        jitter.height = .1,
        dodge.width   = .3  ## needs to be same as dodge
      )),
  mapping   = c('color'),
  point_arg = list(size = 3)
)
Figure 2: Explicit Similarity Evaluation
Code
options(width = 140)
summary(explicit_similarity_lmer)
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: value ~ group * sex * primer * session + (primer | id) + (1 |      duo)
   Data: subset(df_explicit, explicit == "similarity")

REML criterion at convergence: 1513

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-2.96126 -0.36293  0.01547  0.41536  2.34900 

Random effects:
 Groups   Name        Variance Std.Dev. Corr             
 id       (Intercept) 0.51312  0.7163                    
          primerother 2.23593  1.4953   -0.56            
          primeryou   2.29581  1.5152   -0.57  0.84      
          primerme    1.24323  1.1150   -0.81  0.58  0.54
 duo      (Intercept) 0.07621  0.2761                    
 Residual             0.59531  0.7716                    
Number of obs: 512, groups:  id, 64; duo, 32

Fixed effects:
                                                  Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)                                      1.312e+00  2.807e-01  1.027e+02   4.676 8.94e-06 ***
groupmindfulness                                 1.250e-01  3.970e-01  1.027e+02   0.315  0.75350    
sexmale                                          2.500e-01  3.970e-01  1.027e+02   0.630  0.53027    
primerother                                      1.875e+00  4.628e-01  8.692e+01   4.052  0.00011 ***
primeryou                                        2.875e+00  4.668e-01  8.634e+01   6.159 2.25e-08 ***
primerme                                         4.938e+00  3.900e-01  1.025e+02  12.660  < 2e-16 ***
sessiont02                                      -6.250e-02  2.728e-01  2.400e+02  -0.229  0.81898    
groupmindfulness:sexmale                        -1.250e-01  5.614e-01  1.027e+02  -0.223  0.82426    
groupmindfulness:primerother                     5.000e-01  6.545e-01  8.692e+01   0.764  0.44694    
groupmindfulness:primeryou                      -1.250e-01  6.602e-01  8.634e+01  -0.189  0.85026    
groupmindfulness:primerme                        1.250e-01  5.516e-01  1.025e+02   0.227  0.82117    
sexmale:primerother                              3.750e-01  6.545e-01  8.692e+01   0.573  0.56813    
sexmale:primeryou                                6.250e-02  6.602e-01  8.634e+01   0.095  0.92479    
sexmale:primerme                                -1.250e-01  5.516e-01  1.025e+02  -0.227  0.82117    
groupmindfulness:sessiont02                      3.125e-01  3.858e-01  2.400e+02   0.810  0.41872    
sexmale:sessiont02                               6.250e-02  3.858e-01  2.400e+02   0.162  0.87144    
primerother:sessiont02                           7.500e-01  3.858e-01  2.400e+02   1.944  0.05305 .  
primeryou:sessiont02                             7.500e-01  3.858e-01  2.400e+02   1.944  0.05305 .  
primerme:sessiont02                             -2.333e-15  3.858e-01  2.400e+02   0.000  1.00000    
groupmindfulness:sexmale:primerother            -5.000e-01  9.255e-01  8.692e+01  -0.540  0.59043    
groupmindfulness:sexmale:primeryou              -4.375e-01  9.336e-01  8.634e+01  -0.469  0.64053    
groupmindfulness:sexmale:primerme                1.875e-01  7.800e-01  1.025e+02   0.240  0.81052    
groupmindfulness:sexmale:sessiont02              1.250e-01  5.456e-01  2.400e+02   0.229  0.81898    
groupmindfulness:primerother:sessiont02         -6.250e-01  5.456e-01  2.400e+02  -1.146  0.25311    
groupmindfulness:primeryou:sessiont02            4.231e-15  5.456e-01  2.400e+02   0.000  1.00000    
groupmindfulness:primerme:sessiont02            -1.250e-01  5.456e-01  2.400e+02  -0.229  0.81898    
sexmale:primerother:sessiont02                  -3.750e-01  5.456e-01  2.400e+02  -0.687  0.49253    
sexmale:primeryou:sessiont02                     3.125e-01  5.456e-01  2.400e+02   0.573  0.56733    
sexmale:primerme:sessiont02                      2.500e-01  5.456e-01  2.400e+02   0.458  0.64720    
groupmindfulness:sexmale:primerother:sessiont02 -2.500e-01  7.716e-01  2.400e+02  -0.324  0.74621    
groupmindfulness:sexmale:primeryou:sessiont02   -1.250e+00  7.716e-01  2.400e+02  -1.620  0.10653    
groupmindfulness:sexmale:primerme:sessiont02    -5.000e-01  7.716e-01  2.400e+02  -0.648  0.51758    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 32 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
Code
cat(rep('_', 100), '\n', sep = '')
____________________________________________________________________________________________________
Code
anova(explicit_similarity_lmer)
Type III Analysis of Variance Table with Satterthwaite's method
                         Sum Sq Mean Sq NumDF   DenDF  F value    Pr(>F)    
group                      0.06   0.058     1  38.414   0.0973  0.756826    
sex                        0.26   0.261     1  38.414   0.4392  0.511465    
primer                   545.18 181.727     3  60.000 305.2632 < 2.2e-16 ***
session                   14.45  14.445     1 240.000  24.2651 1.564e-06 ***
group:sex                  0.93   0.926     1  38.414   1.5562  0.219774    
group:primer               2.86   0.952     3  60.000   1.5997  0.198881    
sex:primer                 0.46   0.153     3  60.000   0.2571  0.855998    
group:session              0.13   0.125     1 240.000   0.2100  0.647203    
sex:session                0.20   0.195     1 240.000   0.3281  0.567326    
primer:session             8.40   2.799     3 240.000   4.7025  0.003286 ** 
group:sex:primer           1.20   0.401     3  60.000   0.6735  0.571668    
group:sex:session          1.12   1.125     1 240.000   1.8898  0.170511    
group:primer:session       2.62   0.875     3 240.000   1.4698  0.223387    
sex:primer:session         1.46   0.487     3 240.000   0.8180  0.485005    
group:sex:primer:session   1.75   0.583     3 240.000   0.9799  0.402885    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
cat(rep('_', 100), '\n', sep = '')
____________________________________________________________________________________________________
Code
emmeans(explicit_similarity_lmer, pairwise ~ primer)
NOTE: Results may be misleading due to involvement in interactions
$emmeans
 primer emmean    SE   df lower.CL upper.CL
 it       1.55 0.123 53.7     1.30     1.79
 other    3.83 0.177 61.4     3.47     4.18
 you      4.58 0.178 61.5     4.22     4.93
 me       6.50 0.119 52.3     6.26     6.74

Results are averaged over the levels of: group, sex, session 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$contrasts
 contrast    estimate    SE df t.ratio p.value
 it - other     -2.28 0.210 60 -10.846  <.0001
 it - you       -3.03 0.213 60 -14.262  <.0001
 it - me        -4.95 0.169 60 -29.224  <.0001
 other - you    -0.75 0.144 60  -5.224  <.0001
 other - me     -2.67 0.182 60 -14.645  <.0001
 you - me       -1.92 0.190 60 -10.091  <.0001

Results are averaged over the levels of: group, sex, session 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 4 estimates 
Code
cat(rep('_', 100), '\n', sep = '')
____________________________________________________________________________________________________
Code
emmeans(explicit_similarity_lmer, pairwise ~ session)
NOTE: Results may be misleading due to involvement in interactions
$emmeans
 session emmean    SE   df lower.CL upper.CL
 t01       3.95 0.106 52.7     3.73     4.16
 t02       4.28 0.106 52.7     4.07     4.49

Results are averaged over the levels of: group, sex, primer 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$contrasts
 contrast  estimate     SE  df t.ratio p.value
 t01 - t02   -0.336 0.0682 240  -4.926  <.0001

Results are averaged over the levels of: group, sex, primer 
Degrees-of-freedom method: kenward-roger 
Code
cat(rep('_', 100), '\n', sep = '')
____________________________________________________________________________________________________
Code
emmeans(explicit_similarity_lmer, pairwise ~ session|primer)
NOTE: Results may be misleading due to involvement in interactions
$emmeans
primer = it:
 session emmean    SE   df lower.CL upper.CL
 t01       1.47 0.140 90.1     1.19     1.75
 t02       1.62 0.140 90.1     1.35     1.90

primer = other:
 session emmean    SE   df lower.CL upper.CL
 t01       3.66 0.190 80.5     3.28     4.03
 t02       4.00 0.190 80.5     3.62     4.38

primer = you:
 session emmean    SE   df lower.CL upper.CL
 t01       4.20 0.191 80.4     3.82     4.58
 t02       4.95 0.191 80.4     4.57     5.33

primer = me:
 session emmean    SE   df lower.CL upper.CL
 t01       6.45 0.137 90.3     6.18     6.73
 t02       6.55 0.137 90.3     6.27     6.82

Results are averaged over the levels of: group, sex 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$contrasts
primer = it:
 contrast  estimate    SE  df t.ratio p.value
 t01 - t02  -0.1562 0.136 240  -1.146  0.2531

primer = other:
 contrast  estimate    SE  df t.ratio p.value
 t01 - t02  -0.3438 0.136 240  -2.520  0.0124

primer = you:
 contrast  estimate    SE  df t.ratio p.value
 t01 - t02  -0.7500 0.136 240  -5.499  <.0001

primer = me:
 contrast  estimate    SE  df t.ratio p.value
 t01 - t02  -0.0938 0.136 240  -0.687  0.4925

Results are averaged over the levels of: group, sex 
Degrees-of-freedom method: kenward-roger 
Code
cat(rep('_', 100), '\n', sep = '')
____________________________________________________________________________________________________
Code
ranova(explicit_similarity_lmer)
ANOVA-like table for random-effects: Single term deletions

Model:
value ~ group + sex + primer + session + (primer | id) + (1 | duo) + group:sex + group:primer + sex:primer + group:session + sex:session + primer:session + group:sex:primer + group:sex:session + group:primer:session + sex:primer:session + group:sex:primer:session
                        npar  logLik    AIC     LRT Df Pr(>Chisq)    
<none>                    44 -756.52 1601.0                          
primer in (primer | id)   35 -823.65 1717.3 134.263  9     <2e-16 ***
(1 | duo)                 43 -757.15 1600.3   1.272  1     0.2594    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Positivity

Code
explicit_positivity_lmer <- lmer(value ~ group*sex*primer*session + (primer|id) + (1|duo), 
                                 subset(df_explicit, explicit == 'positivity'))
afex_plot(
  explicit_positivity_lmer,
  id    = 'id',
  x     = 'primer',
  trace = 'group',
  panel = 'session',
  error_arg = list(width = .4, lwd = .75),
  dodge     = .3,
  data_arg  = list(
    position = 
      position_jitterdodge(
        jitter.width  = .3, 
        jitter.height = .1,
        dodge.width   = .3  ## needs to be same as dodge
      )),
  mapping   = c('color'),
  point_arg = list(size = 3)
)
Figure 3: Explicit Positivity Evaluation
Code
options(width = 160)
summary(explicit_positivity_lmer)
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: value ~ group * sex * primer * session + (primer | id) + (1 |      duo)
   Data: subset(df_explicit, explicit == "positivity")

REML criterion at convergence: 1624.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.3579 -0.4251  0.0231  0.4869  2.7874 

Random effects:
 Groups   Name        Variance  Std.Dev.  Corr             
 id       (Intercept) 1.879e+00 1.3709055                  
          primerother 2.850e+00 1.6883148 -0.62            
          primeryou   2.481e+00 1.5750167 -0.71  0.78      
          primerme    2.765e+00 1.6629038 -0.71  0.63  0.76
 duo      (Intercept) 3.178e-07 0.0005638                  
 Residual             6.293e-01 0.7932815                  
Number of obs: 512, groups:  id, 64; duo, 32

Fixed effects:
                                                Estimate Std. Error       df t value Pr(>|t|)    
(Intercept)                                       2.8750     0.3960  78.0412   7.261 2.50e-10 ***
groupmindfulness                                 -0.7500     0.5600  78.0412  -1.339  0.18435    
sexmale                                          -0.2500     0.5600  78.0412  -0.446  0.65652    
primerother                                       0.8750     0.5068  82.9841   1.727  0.08795 .  
primeryou                                         2.1250     0.4834  85.8580   4.396 3.15e-05 ***
primerme                                          1.1250     0.5015  83.5893   2.243  0.02752 *  
sessiont02                                       -0.3125     0.2805 240.0003  -1.114  0.26630    
groupmindfulness:sexmale                          1.3125     0.7919  78.0412   1.657  0.10147    
groupmindfulness:primerother                      0.6250     0.7167  82.9841   0.872  0.38568    
groupmindfulness:primeryou                        0.8750     0.6837  85.8580   1.280  0.20404    
groupmindfulness:primerme                         2.0625     0.7092  83.5893   2.908  0.00466 ** 
sexmale:primerother                               1.1875     0.7167  82.9841   1.657  0.10130    
sexmale:primeryou                                 0.3750     0.6837  85.8580   0.549  0.58477    
sexmale:primerme                                  1.8125     0.7092  83.5893   2.556  0.01241 *  
groupmindfulness:sessiont02                       0.1875     0.3966 240.0003   0.473  0.63684    
sexmale:sessiont02                                0.8750     0.3966 240.0003   2.206  0.02833 *  
primerother:sessiont02                            0.5625     0.3966 240.0003   1.418  0.15744    
primeryou:sessiont02                              0.8125     0.3966 240.0003   2.048  0.04160 *  
primerme:sessiont02                               1.1250     0.3966 240.0003   2.836  0.00495 ** 
groupmindfulness:sexmale:primerother             -1.6250     1.0135  82.9841  -1.603  0.11267    
groupmindfulness:sexmale:primeryou               -1.9375     0.9669  85.8580  -2.004  0.04823 *  
groupmindfulness:sexmale:primerme                -3.0625     1.0030  83.5893  -3.053  0.00303 ** 
groupmindfulness:sexmale:sessiont02              -0.9375     0.5609 240.0003  -1.671  0.09596 .  
groupmindfulness:primerother:sessiont02           0.0625     0.5609 240.0003   0.111  0.91138    
groupmindfulness:primeryou:sessiont02            -0.0625     0.5609 240.0003  -0.111  0.91138    
groupmindfulness:primerme:sessiont02             -0.7500     0.5609 240.0003  -1.337  0.18247    
sexmale:primerother:sessiont02                   -1.1250     0.5609 240.0003  -2.006  0.04602 *  
sexmale:primeryou:sessiont02                     -0.5625     0.5609 240.0003  -1.003  0.31697    
sexmale:primerme:sessiont02                      -1.2500     0.5609 240.0003  -2.228  0.02678 *  
groupmindfulness:sexmale:primerother:sessiont02   0.8750     0.7933 240.0003   1.103  0.27113    
groupmindfulness:sexmale:primeryou:sessiont02     0.6250     0.7933 240.0003   0.788  0.43155    
groupmindfulness:sexmale:primerme:sessiont02      0.9375     0.7933 240.0003   1.182  0.23845    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 32 > 12.
Use print(x, correlation=TRUE)  or
    vcov(x)        if you need it
optimizer (nloptwrap) convergence code: 0 (OK)
unable to evaluate scaled gradient
Model failed to converge: degenerate  Hessian with 1 negative eigenvalues
Code
cat(rep('_', 100), '\n', sep = '')
____________________________________________________________________________________________________
Code
anova(explicit_positivity_lmer)
Type III Analysis of Variance Table with Satterthwaite's method
                          Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
group                      0.143   0.143     1    60  0.2279   0.63484    
sex                        1.880   1.880     1    60  2.9873   0.08906 .  
primer                   103.669  34.556     3    60 54.9127 < 2.2e-16 ***
session                   11.580  11.580     1   240 18.4017 2.595e-05 ***
group:sex                  0.720   0.720     1    60  1.1448   0.28893    
group:primer               0.818   0.273     3    60  0.4335   0.72980    
sex:primer                 4.394   1.465     3    60  2.3275   0.08358 .  
group:session              0.861   0.861     1   240  1.3687   0.24319    
sex:session                0.018   0.018     1   240  0.0279   0.86741    
primer:session             7.100   2.367     3   240  3.7606   0.01147 *  
group:sex:primer           5.188   1.729     3    60  2.7481   0.05060 .  
group:sex:session          0.861   0.861     1   240  1.3687   0.24319    
group:primer:session       2.693   0.898     3   240  1.4267   0.23560    
sex:primer:session         3.256   1.085     3   240  1.7246   0.16256    
group:sex:primer:session   1.100   0.367     3   240  0.5825   0.62705    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
cat(rep('_', 100), '\n', sep = '')
____________________________________________________________________________________________________
Code
emmeans(explicit_positivity_lmer, pairwise ~ primer)
NOTE: Results may be misleading due to involvement in interactions
$emmeans
 primer emmean    SE   df lower.CL upper.CL
 it       2.70 0.185 50.8     2.32     3.07
 other    4.20 0.185 50.7     3.82     4.57
 you      5.29 0.158 44.7     4.97     5.61
 me       5.17 0.164 46.3     4.84     5.50

Results are averaged over the levels of: group, sex, session 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$contrasts
 contrast    estimate    SE df t.ratio p.value
 it - other    -1.500 0.233 60  -6.433  <.0001
 it - you      -2.594 0.220 60 -11.766  <.0001
 it - me       -2.477 0.230 60 -10.753  <.0001
 other - you   -1.094 0.167 60  -6.532  <.0001
 other - me    -0.977 0.205 60  -4.765  0.0001
 you - me       0.117 0.172 60   0.683  0.9032

Results are averaged over the levels of: group, sex, session 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 4 estimates 
Code
cat(rep('_', 100), '\n', sep = '')
____________________________________________________________________________________________________
Code
emmeans(explicit_positivity_lmer, pairwise ~ session)
NOTE: Results may be misleading due to involvement in interactions
$emmeans
 session emmean    SE   df lower.CL upper.CL
 t01       4.19 0.124 34.1     3.94     4.44
 t02       4.49 0.124 34.1     4.24     4.74

Results are averaged over the levels of: group, sex, primer 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$contrasts
 contrast  estimate     SE  df t.ratio p.value
 t01 - t02   -0.301 0.0701 240  -4.290  <.0001

Results are averaged over the levels of: group, sex, primer 
Degrees-of-freedom method: kenward-roger 
Code
cat(rep('_', 100), '\n', sep = '')
____________________________________________________________________________________________________
Code
emmeans(explicit_positivity_lmer, pairwise ~ session|primer)
NOTE: Results may be misleading due to involvement in interactions
$emmeans
primer = it:
 session emmean    SE   df lower.CL upper.CL
 t01       2.70 0.198 66.1     2.31     3.10
 t02       2.69 0.198 66.1     2.29     3.08

primer = other:
 session emmean    SE   df lower.CL upper.CL
 t01       4.08 0.197 66.1     3.68     4.47
 t02       4.31 0.197 66.1     3.92     4.71

primer = you:
 session emmean    SE   df lower.CL upper.CL
 t01       4.97 0.173 63.6     4.62     5.31
 t02       5.61 0.173 63.6     5.26     5.96

primer = me:
 session emmean    SE   df lower.CL upper.CL
 t01       5.00 0.178 64.4     4.64     5.36
 t02       5.34 0.178 64.4     4.99     5.70

Results are averaged over the levels of: group, sex 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$contrasts
primer = it:
 contrast  estimate   SE  df t.ratio p.value
 t01 - t02   0.0156 0.14 240   0.111  0.9114

primer = other:
 contrast  estimate   SE  df t.ratio p.value
 t01 - t02  -0.2344 0.14 240  -1.671  0.0960

primer = you:
 contrast  estimate   SE  df t.ratio p.value
 t01 - t02  -0.6406 0.14 240  -4.568  <.0001

primer = me:
 contrast  estimate   SE  df t.ratio p.value
 t01 - t02  -0.3438 0.14 240  -2.451  0.0149

Results are averaged over the levels of: group, sex 
Degrees-of-freedom method: kenward-roger 
Code
cat(rep('_', 100), '\n', sep = '')
____________________________________________________________________________________________________
Code
ranova(explicit_positivity_lmer)
ANOVA-like table for random-effects: Single term deletions

Model:
value ~ group + sex + primer + session + (primer | id) + (1 | duo) + group:sex + group:primer + sex:primer + group:session + sex:session + primer:session + group:sex:primer + group:sex:session + group:primer:session + sex:primer:session + group:sex:primer:session
                        npar  logLik    AIC    LRT Df Pr(>Chisq)    
<none>                    44 -812.22 1712.5                         
primer in (primer | id)   35 -873.61 1817.2 122.77  9     <2e-16 ***
(1 | duo)                 43 -812.22 1710.5   0.00  1     0.9995    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1