TAS Descriptive statistics

We will be going through

Step 1: Loading Packages

library(tidyverse)
library(readxl)
library(ggplot2)

Step 2: Import the data

TAS_original_data_new <- read_excel("C:/ZZ_SherMay/TAS_original_data_new.xlsx")

Step 3: Preview the data

view(TAS_original_data_new)
head(TAS_original_data_new)
## # A tibble: 6 × 101
##     TAS TAS05 TAS09 TAS15 ER30001 ER30002 ER32000 ER32006 ER33801 ER33802
##   <dbl> <dbl> <dbl> <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
## 1     1    NA     1    NA       4      37       1       2    1288       3
## 2     1    NA     1    NA       4      38       2       2    6880       2
## 3     2    NA     1     1       4      39       2       2     289       3
## 4     1    NA    NA     1       4      41       2       2    1157       3
## 5     2     1     1    NA       4     180       2       3     771       2
## 6     2     1     1    NA       5      32       2       2     624       3
## # ℹ 91 more variables: ER33803 <dbl>, TA050001 <dbl>, TA050044 <dbl>,
## #   TA050047 <dbl>, TA050050 <dbl>, TA050065 <dbl>, TA050066 <dbl>,
## #   TA050067 <dbl>, TA050070 <dbl>, TA050071 <dbl>, TA050127 <dbl>,
## #   TA050128 <dbl>, TA050129 <dbl>, TA050130 <dbl>, TA050573 <dbl>,
## #   TA050574 <dbl>, TA050575 <dbl>, TA050594 <dbl>, TA050595 <dbl>,
## #   TA050639 <dbl>, TA050663 <dbl>, TA050664 <dbl>, TA050665 <dbl>,
## #   TA050670 <dbl>, TA050675 <dbl>, TA050676 <dbl>, TA050884 <dbl>, …

Step 4: Table

2005

Mean

Mean_B5A <- TAS_original_data_new %>% select(TA050044) %>% drop_na() %>% summarize("Responsibility_for_self" = mean(TA050044))
Mean_B5D <- TAS_original_data_new %>% select(TA050047) %>% drop_na() %>% summarize("Managing_own_money" = mean(TA050047))
Mean_B6C <- TAS_original_data_new %>% select(TA050050) %>% drop_na() %>% summarize("Money_management_skills" = mean(TA050050))
Mean_C2D <- TAS_original_data_new %>% select(TA050065) %>% drop_na() %>%  summarize("Worry_about_expenses" = mean(TA050065))
Mean_C2E <- TAS_original_data_new %>% select(TA050066) %>% drop_na() %>%  summarize("Worry_about_future_job" = mean(TA050066))
Mean_C2F <- TAS_original_data_new %>% select(TA050067) %>% drop_na() %>% filter(TA050067 <= 7) %>% summarize("Discouraged_about_future" = mean(TA050067))
Mean_G1 <- TAS_original_data_new %>% select(TA050573) %>% drop_na() %>% filter(TA050573 < 3) %>%  summarize("Education_status" = mean(TA050573))
Mean_G2 <- TAS_original_data_new %>% select(TA050575) %>% drop_na() %>% filter(TA050575 > 0) %>%  summarize("High_school_graduation_year" = mean(TA050575))
Mean_G30A <- TAS_original_data_new %>% select(TA050639) %>% drop_na() %>% filter(TA050639 > 0) %>%  summarize("Likelihood_of_well-paying_job" = mean(TA050639))
Mean_G41A <- TAS_original_data_new %>% select(TA050663) %>% drop_na() %>%  summarize("Importance_of_job_status" = mean(TA050663))
Mean_G41B <- TAS_original_data_new %>% select(TA050664) %>% drop_na() %>%  summarize("Importance_of_decision-making" = mean(TA050664))
Mean_G41C <- TAS_original_data_new %>% select(TA050665) %>% drop_na() %>%  summarize("Importance_of_challenging_work" = mean(TA050665))
Mean_G41H <- TAS_original_data_new %>% select(TA050670) %>% drop_na() %>%  summarize("Importance_of_healthcare_benefits" = mean(TA050670))
Mean_G41P <- TAS_original_data_new %>% select(TA050675) %>% drop_na() %>% filter(TA050675 < 8) %>%  summarize("Importance_of_job_central_to_identity" = mean(TA050675))
Mean_H1 <- TAS_original_data_new %>% select(TA050676) %>% drop_na() %>% filter(TA050676 < 8) %>%  summarize("General_health" = mean(TA050676))
TAS_descriptive_table <- data.frame(Name = c("Mean_2005"), Mean_B5A, Mean_B5D, Mean_B6C, Mean_C2D, Mean_C2E, Mean_C2F, Mean_G1, Mean_G2, Mean_G30A, Mean_G41A, Mean_G41B, Mean_G41C, Mean_G41H, Mean_G41P, Mean_H1)

2005

Standard Deviation

sd_B5A <- TAS_original_data_new %>% select(TA050044) %>% drop_na() %>% summarize(sd_B5A = sd(TA050044))
sd_B5D <- TAS_original_data_new %>% select(TA050047) %>% drop_na() %>% summarize(sd_B5D = sd(TA050047))
sd_B6C <- TAS_original_data_new %>% select(TA050050) %>% drop_na() %>% summarize(sd_B6C = sd(TA050050))
sd_C2D <- TAS_original_data_new %>% select(TA050065) %>% drop_na() %>%  summarize(sd_C2D = sd(TA050065))
sd_C2E <- TAS_original_data_new %>% select(TA050066) %>% drop_na() %>%  summarize(sd_C2E = sd(TA050066))
sd_C2F <- TAS_original_data_new %>% select(TA050067) %>% drop_na() %>% filter(TA050067 <= 7) %>% summarize(sd_C2F = sd(TA050067))
sd_G1 <- TAS_original_data_new %>% select(TA050573) %>% drop_na() %>% filter(TA050573 < 3) %>%  summarize(sd_G1 = sd(TA050573))
sd_G2 <- TAS_original_data_new %>% select(TA050575) %>% drop_na() %>% filter(TA050575 > 0) %>%  summarize(sd_G2 = sd(TA050575))
sd_G30A <- TAS_original_data_new %>% select(TA050639) %>% drop_na() %>% filter(TA050639 > 0) %>%  summarize(sd_G30A = sd(TA050639))
sd_G41A <- TAS_original_data_new %>% select(TA050663) %>% drop_na() %>%  summarize(sd_G41A = sd(TA050663))
sd_G41B <- TAS_original_data_new %>% select(TA050664) %>% drop_na() %>%  summarize(sd_G41B = sd(TA050664))
sd_G41C <- TAS_original_data_new %>% select(TA050665) %>% drop_na() %>%  summarize(sd_G41C = sd(TA050665))
sd_G41H <- TAS_original_data_new %>% select(TA050670) %>% drop_na() %>%  summarize(sd_G41H = sd(TA050670))
sd_G41P <- TAS_original_data_new %>% select(TA050675) %>% drop_na() %>% filter(TA050675 < 8) %>%  summarize(sd_G41P = sd(TA050675))
sd_H1 <- TAS_original_data_new %>% select(TA050676) %>% drop_na() %>% filter(TA050676 < 8) %>%  summarize(sd_H1 = sd(TA050676))
new_sd <- data.frame(Name = c("SD_2005"), sd_B5A, sd_B5D, sd_B6C, sd_C2D, sd_C2E, sd_C2F, sd_G1, sd_G2, sd_G30A, sd_G41A, sd_G41B, sd_G41C, sd_G41H, sd_G41P, sd_H1)
TAS_descriptive_table[nrow(TAS_descriptive_table) + 1,] <- new_sd

2005

Range

range_B5A <- TAS_original_data_new %>% select(TA050044) %>% drop_na() %>% summarize("Responsibility_for_self" = range(TA050044))
range_B5D <- TAS_original_data_new %>% select(TA050047) %>% drop_na() %>% summarize("Managing_own_money" = range(TA050047))
range_B6C <- TAS_original_data_new %>% select(TA050050) %>% drop_na() %>% summarize("Money_management_skills" = range(TA050050))
range_C2D <- TAS_original_data_new %>% select(TA050065) %>% drop_na() %>%  summarize("Worry_about_expenses" = range(TA050065))
range_C2E <- TAS_original_data_new %>% select(TA050066) %>% drop_na() %>%  summarize("Worry_about_future_job" = range(TA050066))
range_C2F <- TAS_original_data_new %>% select(TA050067) %>% drop_na() %>% filter(TA050067 <= 7) %>% summarize("Discouraged_about_future" = range(TA050067))
range_G1 <- TAS_original_data_new %>% select(TA050573) %>% drop_na() %>% filter(TA050573 < 3) %>%  summarize("Education_status" = range(TA050573))
range_G2 <- TAS_original_data_new %>% select(TA050575) %>% drop_na() %>% filter(TA050575 > 0) %>%  summarize("High_school_graduation_year" = range(TA050575))
range_G30A <- TAS_original_data_new %>% select(TA050639) %>% drop_na() %>% filter(TA050639 > 0) %>%  summarize("Likelihood_of_well-paying_job" = range(TA050639))
range_G41A <- TAS_original_data_new %>% select(TA050663) %>% drop_na() %>%  summarize("Importance_of_job_status" = range(TA050663))
range_G41B <- TAS_original_data_new %>% select(TA050664) %>% drop_na() %>%  summarize("Importance_of_decision-making" = range(TA050664))
range_G41C <- TAS_original_data_new %>% select(TA050665) %>% drop_na() %>%  summarize("Importance_of_challenging_work" = range(TA050665))
range_G41H <- TAS_original_data_new %>% select(TA050670) %>% drop_na() %>%  summarize("Importance_of_healthcare_benefits" = range(TA050670))
range_G41P <- TAS_original_data_new %>% select(TA050675) %>% drop_na() %>% filter(TA050675 < 8) %>%  summarize("Importance_of_job_central_to_identity" = range(TA050675))
range_H1 <- TAS_original_data_new %>% select(TA050676) %>% drop_na() %>% filter(TA050676 < 8) %>%  summarize("General_health" = range(TA050676))
new_range <- data.frame(Name = c("Range_2005_low", "Range_2005_high"), range_B5A, range_B5D, range_B6C, range_C2D, range_C2E, range_C2F, range_G1, range_G2, range_G30A, range_G41A, range_G41B, range_G41C, range_G41H, range_G41P, range_H1)
TAS_descriptive_table_2005 <- rbind.data.frame(TAS_descriptive_table, new_range)

2005 TABLE

head(TAS_descriptive_table_2005)
##              Name Responsibility_for_self Managing_own_money
## 1       Mean_2005                3.598658          4.3919463
## 2         SD_2005                1.163397          0.9329336
## 3  Range_2005_low                1.000000          1.0000000
## 4 Range_2005_high                5.000000          5.0000000
##   Money_management_skills Worry_about_expenses Worry_about_future_job
## 1                5.348993             3.734228               3.620134
## 2                1.465216             1.897004               1.997141
## 3                1.000000             1.000000               1.000000
## 4                7.000000             7.000000               7.000000
##   Discouraged_about_future Education_status High_school_graduation_year
## 1                 3.074024        1.0710974                 2003.724541
## 2                 1.836633        0.2571863                    1.066007
## 3                 1.000000        1.0000000                 2000.000000
## 4                 7.000000        2.0000000                 2005.000000
##   Likelihood_of_well.paying_job Importance_of_job_status
## 1                      5.998498                 5.363758
## 2                      1.019360                 1.619945
## 3                      1.000000                 1.000000
## 4                      7.000000                 7.000000
##   Importance_of_decision.making Importance_of_challenging_work
## 1                      5.778523                       5.520805
## 2                      1.144444                       1.186804
## 3                      1.000000                       1.000000
## 4                      7.000000                       7.000000
##   Importance_of_healthcare_benefits Importance_of_job_central_to_identity
## 1                          6.358389                              5.070081
## 2                          1.006237                              1.543064
## 3                          1.000000                              1.000000
## 4                          7.000000                              7.000000
##   General_health
## 1      2.1965007
## 2      0.9296776
## 3      1.0000000
## 4      5.0000000
knitr::kable(TAS_descriptive_table_2005)
Name Responsibility_for_self Managing_own_money Money_management_skills Worry_about_expenses Worry_about_future_job Discouraged_about_future Education_status High_school_graduation_year Likelihood_of_well.paying_job Importance_of_job_status Importance_of_decision.making Importance_of_challenging_work Importance_of_healthcare_benefits Importance_of_job_central_to_identity General_health
Mean_2005 3.598658 4.3919463 5.348993 3.734228 3.620134 3.074024 1.0710974 2003.724541 5.998499 5.363758 5.778524 5.520805 6.358389 5.070081 2.1965007
SD_2005 1.163397 0.9329336 1.465216 1.897004 1.997141 1.836633 0.2571863 1.066007 1.019360 1.619945 1.144445 1.186804 1.006237 1.543064 0.9296776
Range_2005_low 1.000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.0000000 2000.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
Range_2005_high 5.000000 5.0000000 7.000000 7.000000 7.000000 7.000000 2.0000000 2005.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 5.0000000

2009

Mean

Mean_B5A_09 <- TAS_original_data_new %>% select(TA090045) %>% drop_na() %>% filter(TA090045 < 8) %>%  summarize("Responsibility_for_self" = mean(TA090045))
Mean_B5D_09 <- TAS_original_data_new %>% select(TA090048) %>% drop_na() %>% filter(TA090048 < 8) %>% summarize("Managing_own_money" = mean(TA090048))
Mean_B6C_09 <- TAS_original_data_new %>% select(TA090051) %>% drop_na() %>%  summarize("Money_management_skills" = mean(TA090051))
Mean_C2D_09 <- TAS_original_data_new %>% select(TA090066) %>% drop_na() %>%  summarize("Worry_about_expenses" = mean(TA090066))
Mean_C2E_09 <- TAS_original_data_new %>% select(TA090067) %>% drop_na() %>%  summarize("Worry_about_future_job" = mean(TA090067))
Mean_C2F_09 <- TAS_original_data_new %>% select(TA090068) %>% drop_na() %>% filter(TA090068 <= 7) %>% summarize("Discouraged_about_future" = mean(TA090068))
Mean_G1_09 <- TAS_original_data_new %>% select(TA090590) %>% drop_na() %>% filter(TA090590 > 0) %>% filter(TA090590 < 3) %>%  summarize("Education_status" = mean(TA090590))
Mean_G2_09 <- TAS_original_data_new %>% select(TA090592) %>% drop_na() %>% filter(TA090592 > 0) %>%  summarize("High_school_graduation_year" = mean(TA090592))
Mean_G30A_09 <- TAS_original_data_new %>% select(TA090663) %>% drop_na() %>% filter(TA090663 > 0) %>% filter(TA090663 < 9) %>%   summarize("Likelihood_of_well-paying_job" = mean(TA090663))
Mean_G41A_09 <- TAS_original_data_new %>% select(TA090687) %>% drop_na() %>% filter(TA090687 < 8) %>% summarize("Importance_of_job_status" = mean(TA090687))
Mean_G41B_09 <- TAS_original_data_new %>% select(TA090688) %>% drop_na() %>% filter(TA090688 < 8) %>% summarize("Importance_of_decision-making" = mean(TA090688))
Mean_G41C_09 <- TAS_original_data_new %>% select(TA090689) %>% drop_na() %>% filter(TA090689 > 0) %>% filter(TA090689 < 8) %>% summarize("Importance_of_challenging_work" = mean(TA090689))
Mean_G41H_09 <- TAS_original_data_new %>% select(TA090694) %>% drop_na() %>% filter(TA090694 < 8) %>% summarize("Importance_of_healthcare_benefits" = mean(TA090694))
Mean_G41P_09 <- TAS_original_data_new %>% select(TA090699) %>% drop_na() %>% filter(TA090699 < 8) %>%  summarize("Importance_of_job_central_to_identity" = mean(TA090699))
Mean_H1_09 <- TAS_original_data_new %>% select(TA090700) %>% drop_na() %>% filter(TA090700 < 8) %>%  summarize("General_health" = mean(TA090700))
new_mean_09 <- data.frame(Name = c("Mean_2009"),Mean_B5A_09, Mean_B5D_09, Mean_B6C_09, Mean_C2D_09, Mean_C2E_09, Mean_C2F_09, Mean_G1_09, Mean_G2_09, Mean_G30A_09, Mean_G41A_09, Mean_G41B_09, Mean_G41C_09, Mean_G41H_09, Mean_G41P_09, Mean_H1_09)
TAS_descriptive_table_2005[nrow(TAS_descriptive_table_2005) + 1,] <- new_mean_09

2009

Standard Deviation

sd_B5A_09 <- TAS_original_data_new %>% select(TA090045) %>% drop_na() %>% filter(TA090045 < 8) %>%  summarize(B5A = sd(TA090045))
sd_B5D_09 <- TAS_original_data_new %>% select(TA090048) %>% drop_na() %>% filter(TA090048 < 8) %>% summarize(B5D = sd(TA090048))
sd_B6C_09 <- TAS_original_data_new %>% select(TA090051) %>% drop_na() %>%  summarize(B6C = sd(TA090051))
sd_C2D_09 <- TAS_original_data_new %>% select(TA090066) %>% drop_na() %>%  summarize(C2D = sd(TA090066))
sd_C2E_09 <- TAS_original_data_new %>% select(TA090067) %>% drop_na() %>%  summarize(C2E = sd(TA090067))
sd_C2F_09 <- TAS_original_data_new %>% select(TA090068) %>% drop_na() %>% filter(TA090068 <= 7) %>% summarize(C2F = sd(TA090068))
sd_G1_09 <- TAS_original_data_new %>% select(TA090590) %>% drop_na() %>% filter(TA090590 > 0) %>% filter(TA090590 < 3) %>%  summarize(G1 = sd(TA090590))
sd_G2_09 <- TAS_original_data_new %>% select(TA090592) %>% drop_na() %>% filter(TA090592 > 0) %>%  summarize(G2 = sd(TA090592))
sd_G30A_09 <- TAS_original_data_new %>% select(TA090663) %>% drop_na() %>% filter(TA090663 > 0) %>% filter(TA090663 < 9) %>%   summarize(G30A = sd(TA090663))
sd_G41A_09 <- TAS_original_data_new %>% select(TA090687) %>% drop_na() %>% filter(TA090687 < 8) %>% summarize(G41A = sd(TA090687))
sd_G41B_09 <- TAS_original_data_new %>% select(TA090688) %>% drop_na() %>% filter(TA090688 < 8) %>% summarize(G41B = sd(TA090688))
sd_G41C_09 <- TAS_original_data_new %>% select(TA090689) %>% drop_na() %>% filter(TA090689 > 0) %>% filter(TA090689 < 8) %>% summarize(G41C = sd(TA090689))
sd_G41H_09 <- TAS_original_data_new %>% select(TA090694) %>% drop_na() %>% filter(TA090694 < 8) %>% summarize(G41H = sd(TA090694))
sd_G41P_09 <- TAS_original_data_new %>% select(TA090699) %>% drop_na() %>% filter(TA090699 < 8) %>%  summarize(G41P = sd(TA090699))
sd_H1_09 <- TAS_original_data_new %>% select(TA090700) %>% drop_na() %>% filter(TA090700 < 8) %>%  summarize(H1 = sd(TA090700))
new_sd_09 <- data.frame(Name = c("SD_2009"),sd_B5A_09, sd_B5D_09, sd_B6C_09, sd_C2D_09, sd_C2E_09, sd_C2F_09, sd_G1_09, sd_G2_09, sd_G30A_09, sd_G41A_09, sd_G41B_09, sd_G41C_09, sd_G41H_09, sd_G41P_09, sd_H1_09)
TAS_descriptive_table_2005[nrow(TAS_descriptive_table_2005) + 1,] <- new_sd_09

2009

Range

range_B5A_09 <- TAS_original_data_new %>% select(TA090045) %>% drop_na() %>% filter(TA090045 < 8) %>%  summarize("Responsibility_for_self" = range(TA090045))
range_B5D_09 <- TAS_original_data_new %>% select(TA090048) %>% drop_na() %>% filter(TA090048 < 8) %>% summarize("Managing_own_money" = range(TA090048))
range_B6C_09 <- TAS_original_data_new %>% select(TA090051) %>% drop_na() %>%  summarize("Money_management_skills" = range(TA090051))
range_C2D_09 <- TAS_original_data_new %>% select(TA090066) %>% drop_na() %>%  summarize("Worry_about_expenses" = range(TA090066))
range_C2E_09 <- TAS_original_data_new %>% select(TA090067) %>% drop_na() %>%  summarize("Worry_about_future_job" = range(TA090067))
range_C2F_09 <- TAS_original_data_new %>% select(TA090068) %>% drop_na() %>% filter(TA090068 <= 7) %>% summarize("Discouraged_about_future" = range(TA090068))
range_G1_09 <- TAS_original_data_new %>% select(TA090590) %>% drop_na() %>% filter(TA090590 > 0) %>% filter(TA090590 < 3) %>%  summarize("Education_status" = range(TA090590))
range_G2_09 <- TAS_original_data_new %>% select(TA090592) %>% drop_na() %>% filter(TA090592 > 0) %>%  summarize("High_school_graduation_year" = range(TA090592))
range_G30A_09 <- TAS_original_data_new %>% select(TA090663) %>% drop_na() %>% filter(TA090663 > 0) %>% filter(TA090663 < 9) %>%   summarize("Likelihood_of_well-paying_job" = range(TA090663))
range_G41A_09 <- TAS_original_data_new %>% select(TA090687) %>% drop_na() %>% filter(TA090687 < 8) %>% summarize("Importance_of_job_status" = range(TA090687))
range_G41B_09 <- TAS_original_data_new %>% select(TA090688) %>% drop_na() %>% filter(TA090688 < 8) %>% summarize("Importance_of_decision-making" = range(TA090688))
range_G41C_09 <- TAS_original_data_new %>% select(TA090689) %>% drop_na() %>% filter(TA090689 > 0) %>% filter(TA090689 < 8) %>% summarize("Importance_of_challenging_work" = range(TA090689))
range_G41H_09 <- TAS_original_data_new %>% select(TA090694) %>% drop_na() %>% filter(TA090694 < 8) %>% summarize("Importance_of_healthcare_benefits" = range(TA090694))
range_G41P_09 <- TAS_original_data_new %>% select(TA090699) %>% drop_na() %>% filter(TA090699 < 8) %>%  summarize("Importance_of_job_central_to_identity" = range(TA090699))
range_H1_09 <- TAS_original_data_new %>% select(TA090700) %>% drop_na() %>% filter(TA090700 < 8) %>%  summarize("General_health" = range(TA090700))
new_range_09 <- data.frame(Name = c("Range_2009_low", "Range_2009_high"),range_B5A_09, range_B5D_09, range_B6C_09, range_C2D_09, range_C2E_09, range_C2F_09, range_G1_09, range_G2_09, range_G30A_09, range_G41A_09, range_G41B_09, range_G41C_09, range_G41H_09, range_G41P_09, range_H1_09)
TAS_descriptive_table_2009 <- rbind.data.frame(TAS_descriptive_table_2005, new_range_09)

2009 TABLE

head(TAS_descriptive_table_2009)
##              Name Responsibility_for_self Managing_own_money
## 1       Mean_2005                3.598658          4.3919463
## 2         SD_2005                1.163397          0.9329336
## 3  Range_2005_low                1.000000          1.0000000
## 4 Range_2005_high                5.000000          5.0000000
## 5       Mean_2009                3.915593          4.5473278
## 6         SD_2009                1.154685          0.8715031
##   Money_management_skills Worry_about_expenses Worry_about_future_job
## 1                5.348993             3.734228               3.620134
## 2                1.465216             1.897004               1.997141
## 3                1.000000             1.000000               1.000000
## 4                7.000000             7.000000               7.000000
## 5                5.456885             3.938867               3.771557
## 6                1.294799             1.915335               1.967525
##   Discouraged_about_future Education_status High_school_graduation_year
## 1                 3.074024        1.0710974                 2003.724541
## 2                 1.836633        0.2571863                    1.066007
## 3                 1.000000        1.0000000                 2000.000000
## 4                 7.000000        2.0000000                 2005.000000
## 5                 3.261261        1.0771429                 2005.823256
## 6                 1.799322        0.2669133                    2.202281
##   Likelihood_of_well.paying_job Importance_of_job_status
## 1                      5.998498                 5.363758
## 2                      1.019360                 1.619945
## 3                      1.000000                 1.000000
## 4                      7.000000                 7.000000
## 5                      5.934321                 4.961340
## 6                      1.114947                 1.799004
##   Importance_of_decision.making Importance_of_challenging_work
## 1                      5.778523                       5.520805
## 2                      1.144444                       1.186804
## 3                      1.000000                       1.000000
## 4                      7.000000                       7.000000
## 5                      5.694784                       5.531230
## 6                      1.230342                       1.283503
##   Importance_of_healthcare_benefits Importance_of_job_central_to_identity
## 1                          6.358389                              5.070081
## 2                          1.006237                              1.543064
## 3                          1.000000                              1.000000
## 4                          7.000000                              7.000000
## 5                          6.327753                              4.754522
## 6                          1.093613                              1.750560
##   General_health
## 1      2.1965007
## 2      0.9296776
## 3      1.0000000
## 4      5.0000000
## 5      2.1867354
## 6      0.9066787
knitr::kable(TAS_descriptive_table_2009)
Name Responsibility_for_self Managing_own_money Money_management_skills Worry_about_expenses Worry_about_future_job Discouraged_about_future Education_status High_school_graduation_year Likelihood_of_well.paying_job Importance_of_job_status Importance_of_decision.making Importance_of_challenging_work Importance_of_healthcare_benefits Importance_of_job_central_to_identity General_health
Mean_2005 3.598658 4.3919463 5.348993 3.734228 3.620134 3.074024 1.0710974 2003.724541 5.998499 5.363758 5.778524 5.520805 6.358389 5.070081 2.1965007
SD_2005 1.163397 0.9329336 1.465216 1.897004 1.997141 1.836633 0.2571863 1.066007 1.019360 1.619945 1.144445 1.186804 1.006237 1.543064 0.9296776
Range_2005_low 1.000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.0000000 2000.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
Range_2005_high 5.000000 5.0000000 7.000000 7.000000 7.000000 7.000000 2.0000000 2005.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 5.0000000
Mean_2009 3.915593 4.5473278 5.456886 3.938867 3.771557 3.261261 1.0771429 2005.823256 5.934321 4.961340 5.694784 5.531230 6.327753 4.754522 2.1867354
SD_2009 1.154684 0.8715031 1.294799 1.915335 1.967525 1.799322 0.2669133 2.202281 1.114947 1.799004 1.230342 1.283503 1.093613 1.750560 0.9066787
Range_2009_low 1.000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1999.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
Range_2009_high 5.000000 5.0000000 7.000000 7.000000 7.000000 7.000000 2.0000000 2009.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 5.0000000

2015

Mean

Mean_B5A_15 <- TAS_original_data_new %>% select(TA150045) %>% drop_na() %>% filter(TA150045 < 8) %>%  summarize("Responsibility_for_self" = mean(TA150045))
Mean_B5D_15 <- TAS_original_data_new %>% select(TA150048) %>% drop_na() %>% filter(TA150048 < 8) %>% summarize("Managing_own_money" = mean(TA150048))
Mean_B6C_15 <- TAS_original_data_new %>% select(TA150051) %>% drop_na() %>%  summarize("Money_management_skills" = mean(TA150051))
Mean_C2D_15 <- TAS_original_data_new %>% select(TA150066) %>% drop_na() %>%  summarize("Worry_about_expenses" = mean(TA150066))
Mean_C2E_15 <- TAS_original_data_new %>% select(TA150067) %>% drop_na() %>%  summarize("Worry_about_future_job" = mean(TA150067))
Mean_C2F_15 <- TAS_original_data_new %>% select(TA150068) %>% drop_na() %>% filter(TA150068 <= 7) %>% summarize("Discouraged_about_future" = mean(TA150068))
Mean_G1_15 <- TAS_original_data_new %>% select(TA150701) %>% drop_na() %>% filter(TA150701 > 0) %>% filter(TA150701 < 3) %>%  summarize("Education_status" = mean(TA150701))
Mean_G2_15 <- TAS_original_data_new %>% select(TA150703) %>% drop_na() %>% filter(TA150703 > 0) %>%  summarize("High_school_graduation_year" = mean(TA150703))
Mean_G30A_15 <- TAS_original_data_new %>% select(TA150784) %>% drop_na() %>% filter(TA150784 > 0) %>% filter(TA150784 < 9) %>%   summarize("Likelihood_of_well-paying_job" = mean(TA150784))
Mean_G41A_15 <- TAS_original_data_new %>% select(TA150808) %>% drop_na() %>% filter(TA150808 < 8) %>% summarize("Importance_of_job_status" = mean(TA150808))
Mean_G41B_15 <- TAS_original_data_new %>% select(TA150809) %>% drop_na() %>% filter(TA150809 < 8) %>% summarize("Importance_of_decision-making" = mean(TA150809))
Mean_G41C_15 <- TAS_original_data_new %>% select(TA150810) %>% drop_na() %>% filter(TA150810 > 0) %>% filter(TA150810 < 8) %>% summarize("Importance_of_challenging_work" = mean(TA150810))
Mean_G41H_15 <- TAS_original_data_new %>% select(TA150815) %>% drop_na() %>% filter(TA150815 < 8) %>% summarize("Importance_of_healthcare_benefits" = mean(TA150815))
Mean_G41P_15 <- TAS_original_data_new %>% select(TA150820) %>% drop_na() %>% filter(TA150820 < 8) %>%  summarize("Importance_of_job_central_to_identity" = mean(TA150820))
Mean_H1_15 <- TAS_original_data_new %>% select(TA150821) %>% drop_na() %>% filter(TA150821 < 8) %>%  summarize("General_health" = mean(TA150821))
new_mean_15 <- data.frame(Name = c("Mean_2015"),Mean_B5A_15, Mean_B5D_15, Mean_B6C_15, Mean_C2D_15, Mean_C2E_15, Mean_C2F_15, Mean_G1_15, Mean_G2_15, Mean_G30A_15, Mean_G41A_15, Mean_G41B_15, Mean_G41C_15, Mean_G41H_15, Mean_G41P_15, Mean_H1_15)
TAS_descriptive_table_2009[nrow(TAS_descriptive_table_2009) + 1,] <- new_mean_15

2015

Standard Deviation

sd_B5A_15 <- TAS_original_data_new %>% select(TA150045) %>% drop_na() %>% filter(TA150045 < 8) %>%  summarize(B5A = sd(TA150045))
sd_B5D_15 <- TAS_original_data_new %>% select(TA150048) %>% drop_na() %>% filter(TA150048 < 8) %>% summarize(B5D = sd(TA150048))
sd_B6C_15 <- TAS_original_data_new %>% select(TA150051) %>% drop_na() %>%  summarize(B6C = sd(TA150051))
sd_C2D_15 <- TAS_original_data_new %>% select(TA150066) %>% drop_na() %>%  summarize(C2D = sd(TA150066))
sd_C2E_15 <- TAS_original_data_new %>% select(TA150067) %>% drop_na() %>%  summarize(C2E = sd(TA150067))
sd_C2F_15 <- TAS_original_data_new %>% select(TA150068) %>% drop_na() %>% filter(TA150068 <= 7) %>% summarize(C2F = sd(TA150068))
sd_G1_15 <- TAS_original_data_new %>% select(TA150701) %>% drop_na() %>% filter(TA150701 > 0) %>% filter(TA150701 < 3) %>%  summarize(G1 = sd(TA150701))
sd_G2_15 <- TAS_original_data_new %>% select(TA150703) %>% drop_na() %>% filter(TA150703 > 0) %>%  summarize(G2 = sd(TA150703))
sd_G30A_15 <- TAS_original_data_new %>% select(TA150784) %>% drop_na() %>% filter(TA150784 > 0) %>% filter(TA150784 < 9) %>%   summarize(G30A = sd(TA150784))
sd_G41A_15 <- TAS_original_data_new %>% select(TA150808) %>% drop_na() %>% filter(TA150808 < 8) %>% summarize(G41A = sd(TA150808))
sd_G41B_15 <- TAS_original_data_new %>% select(TA150809) %>% drop_na() %>% filter(TA150809 < 8) %>% summarize(G41B = sd(TA150809))
sd_G41C_15 <- TAS_original_data_new %>% select(TA150810) %>% drop_na() %>% filter(TA150810 > 0) %>% filter(TA150810 < 8) %>% summarize(G41C = sd(TA150810))
sd_G41H_15 <- TAS_original_data_new %>% select(TA150815) %>% drop_na() %>% filter(TA150815 < 8) %>% summarize(G41H = sd(TA150815))
sd_G41P_15 <- TAS_original_data_new %>% select(TA150820) %>% drop_na() %>% filter(TA150820 < 8) %>%  summarize(G41P = sd(TA150820))
sd_H1_15 <- TAS_original_data_new %>% select(TA150821) %>% drop_na() %>% filter(TA150821 < 8) %>%  summarize(H1 = sd(TA150821))
new_sd_15 <- data.frame(Name = c("SD_2015"),sd_B5A_15, sd_B5D_15, sd_B6C_15, sd_C2D_15, sd_C2E_15, sd_C2F_15, sd_G1_15, sd_G2_15, sd_G30A_15, sd_G41A_15, sd_G41B_15, sd_G41C_15, sd_G41H_15, sd_G41P_15, sd_H1_15)
TAS_descriptive_table_2009[nrow(TAS_descriptive_table_2009) + 1,] <- new_sd_15

2015

Range

range_B5A_15 <- TAS_original_data_new %>% select(TA150045) %>% drop_na() %>% filter(TA150045 < 8) %>%  summarize("Responsibility_for_self" = range(TA150045))
range_B5D_15 <- TAS_original_data_new %>% select(TA150048) %>% drop_na() %>% filter(TA150048 < 8) %>% summarize("Managing_own_money" = range(TA150048))
range_B6C_15 <- TAS_original_data_new %>% select(TA150051) %>% drop_na() %>%  summarize("Money_management_skills" = range(TA150051))
range_C2D_15 <- TAS_original_data_new %>% select(TA150066) %>% drop_na() %>%  summarize("Worry_about_expenses" = range(TA150066))
range_C2E_15 <- TAS_original_data_new %>% select(TA150067) %>% drop_na() %>%  summarize("Worry_about_future_job" = range(TA150067))
range_C2F_15 <- TAS_original_data_new %>% select(TA150068) %>% drop_na() %>% filter(TA150068 <= 7) %>% summarize("Discouraged_about_future" = range(TA150068))
range_G1_15 <- TAS_original_data_new %>% select(TA150701) %>% drop_na() %>% filter(TA150701 > 0) %>% filter(TA150701 < 3) %>%  summarize("Education_status" = range(TA150701))
range_G2_15 <- TAS_original_data_new %>% select(TA150703) %>% drop_na() %>% filter(TA150703 > 0) %>%  summarize("High_school_graduation_year" = range(TA150703))
range_G30A_15 <- TAS_original_data_new %>% select(TA150784) %>% drop_na() %>% filter(TA150784 > 0) %>% filter(TA150784 < 9) %>%   summarize("Likelihood_of_well-paying_job" = range(TA150784))
range_G41A_15 <- TAS_original_data_new %>% select(TA150808) %>% drop_na() %>% filter(TA150808 < 8) %>% summarize("Importance_of_job_status" = range(TA150808))
range_G41B_15 <- TAS_original_data_new %>% select(TA150809) %>% drop_na() %>% filter(TA150809 < 8) %>% summarize("Importance_of_decision-making" = range(TA150809))
range_G41C_15 <- TAS_original_data_new %>% select(TA150810) %>% drop_na() %>% filter(TA150810 > 0) %>% filter(TA150810 < 8) %>% summarize("Importance_of_challenging_work" = range(TA150810))
range_G41H_15 <- TAS_original_data_new %>% select(TA150815) %>% drop_na() %>% filter(TA150815 < 8) %>% summarize("Importance_of_healthcare_benefits" = range(TA150815))
range_G41P_15 <- TAS_original_data_new %>% select(TA150820) %>% drop_na() %>% filter(TA150820 < 8) %>%  summarize("Importance_of_job_central_to_identity" = range(TA150820))
range_H1_15 <- TAS_original_data_new %>% select(TA150821) %>% drop_na() %>% filter(TA150821 < 8) %>%  summarize("General_health" = range(TA150821))
new_range_15 <- data.frame(Name = c("Range_2015_low", "Range_2015_high"),range_B5A_15, range_B5D_15, range_B6C_15, range_C2D_15, range_C2E_15, range_C2F_15, range_G1_15, range_G2_15, range_G30A_15, range_G41A_15, range_G41B_15, range_G41C_15, range_G41H_15, range_G41P_15, range_H1_15)
final_TAS_descriptive_table <- rbind.data.frame(TAS_descriptive_table_2009, new_range_15)

Step 5: TAS descriptive statistics table

head(final_TAS_descriptive_table)
##              Name Responsibility_for_self Managing_own_money
## 1       Mean_2005                3.598658          4.3919463
## 2         SD_2005                1.163397          0.9329336
## 3  Range_2005_low                1.000000          1.0000000
## 4 Range_2005_high                5.000000          5.0000000
## 5       Mean_2009                3.915593          4.5473278
## 6         SD_2009                1.154685          0.8715031
##   Money_management_skills Worry_about_expenses Worry_about_future_job
## 1                5.348993             3.734228               3.620134
## 2                1.465216             1.897004               1.997141
## 3                1.000000             1.000000               1.000000
## 4                7.000000             7.000000               7.000000
## 5                5.456885             3.938867               3.771557
## 6                1.294799             1.915335               1.967525
##   Discouraged_about_future Education_status High_school_graduation_year
## 1                 3.074024        1.0710974                 2003.724541
## 2                 1.836633        0.2571863                    1.066007
## 3                 1.000000        1.0000000                 2000.000000
## 4                 7.000000        2.0000000                 2005.000000
## 5                 3.261261        1.0771429                 2005.823256
## 6                 1.799322        0.2669133                    2.202281
##   Likelihood_of_well.paying_job Importance_of_job_status
## 1                      5.998498                 5.363758
## 2                      1.019360                 1.619945
## 3                      1.000000                 1.000000
## 4                      7.000000                 7.000000
## 5                      5.934321                 4.961340
## 6                      1.114947                 1.799004
##   Importance_of_decision.making Importance_of_challenging_work
## 1                      5.778523                       5.520805
## 2                      1.144444                       1.186804
## 3                      1.000000                       1.000000
## 4                      7.000000                       7.000000
## 5                      5.694784                       5.531230
## 6                      1.230342                       1.283503
##   Importance_of_healthcare_benefits Importance_of_job_central_to_identity
## 1                          6.358389                              5.070081
## 2                          1.006237                              1.543064
## 3                          1.000000                              1.000000
## 4                          7.000000                              7.000000
## 5                          6.327753                              4.754522
## 6                          1.093613                              1.750560
##   General_health
## 1      2.1965007
## 2      0.9296776
## 3      1.0000000
## 4      5.0000000
## 5      2.1867354
## 6      0.9066787
knitr::kable(final_TAS_descriptive_table)
Name Responsibility_for_self Managing_own_money Money_management_skills Worry_about_expenses Worry_about_future_job Discouraged_about_future Education_status High_school_graduation_year Likelihood_of_well.paying_job Importance_of_job_status Importance_of_decision.making Importance_of_challenging_work Importance_of_healthcare_benefits Importance_of_job_central_to_identity General_health
Mean_2005 3.598658 4.3919463 5.348993 3.734228 3.620134 3.074024 1.0710974 2003.724541 5.998499 5.363758 5.778524 5.520805 6.358389 5.070081 2.1965007
SD_2005 1.163397 0.9329336 1.465216 1.897004 1.997141 1.836633 0.2571863 1.066007 1.019360 1.619945 1.144445 1.186804 1.006237 1.543064 0.9296776
Range_2005_low 1.000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.0000000 2000.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
Range_2005_high 5.000000 5.0000000 7.000000 7.000000 7.000000 7.000000 2.0000000 2005.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 5.0000000
Mean_2009 3.915593 4.5473278 5.456886 3.938867 3.771557 3.261261 1.0771429 2005.823256 5.934321 4.961340 5.694784 5.531230 6.327753 4.754522 2.1867354
SD_2009 1.154684 0.8715031 1.294799 1.915335 1.967525 1.799322 0.2669133 2.202281 1.114947 1.799004 1.230342 1.283503 1.093613 1.750560 0.9066787
Range_2009_low 1.000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1999.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
Range_2009_high 5.000000 5.0000000 7.000000 7.000000 7.000000 7.000000 2.0000000 2009.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 5.0000000
Mean_2015 4.081197 4.5997559 5.426569 3.607556 3.495430 3.086533 1.0611046 2011.609130 6.040268 4.809030 5.596705 5.489903 6.178768 4.936430 2.2971324
SD_2015 1.122383 0.8369664 1.286753 1.888551 1.954079 1.783343 0.2396629 2.536843 1.085295 1.861706 1.359276 1.286893 1.227638 1.666983 0.9448454
Range_2015_low 1.000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.0000000 2001.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
Range_2015_high 5.000000 5.0000000 7.000000 7.000000 7.000000 7.000000 2.0000000 2015.000000 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000 5.0000000